Iterated Monodromy Groups Lecture 4

Volodymyr Nekrashevych

August, 2009 Bath

Dendroid sets of permutations

Let $\alpha_1, \alpha_2, \ldots, \alpha_n \in S_d$. A cycle diagram of the sequence is the CW complex with the set of vertices $\{1, 2, \ldots, d\}$ with 2-cells corresponding to the cycles of the permutations α_i .

The sequence is called *dendroid* if its cycle diagram is contractible.

Properties of dendroid sets

If $\alpha_1, \alpha_2, \dots, \alpha_n$ is dendroid, then $\alpha_1 \alpha_2 \cdots \alpha_n$ is a transitive cycle. If $\alpha_1, \alpha_2, \dots, \alpha_n$ is dendroid, then

$$\alpha_1 \cdots \alpha_{k_1}, \quad \alpha_{k_1+1} \cdots \alpha_{k_2}, \quad \dots, \quad \alpha_{k_m+1} \cdots \alpha_n$$

is a dendroid sequence.

IMGs of polynomial iterations

A sequence

$$\mathbb{C} \xleftarrow{f_1} \mathbb{C} \xleftarrow{f_2} \mathbb{C} \xleftarrow{f_3} \cdots$$

of polynomials is *post-critically finite* if there is a finite set $P \subset \mathbb{C}$ such that for every *n* the set of critical values of $f_1 \circ f_2 \circ \cdots \circ f_n$ is contained in *P*. Examples are constant sequences of p.c.f. polynomials or any sequence of z^2 and $1 - z^2$.

Theorem

A group acting on a rooted tree T is the iterated monodromy group of a post-critically finite sequence of polynomials iff it has a generating set g_1, \ldots, g_n such that for every n the sequence of restrictions of g_i onto the nth level of T is dendroid.

Let f_1, f_2, \ldots , be a sequence of z^2 and $1 - z^2$ in some order. Then its IMG is generated by a_1, b_1 , which are given by

$$a_n = \begin{cases} \sigma(1, a_{n+1}) & \text{if } f_n(z) = z^2 \\ \sigma(1, b_{n+1}) & \text{if } f_n(z) = 1 - z^2 \end{cases}$$
$$b_n = \begin{cases} (1, b_{n+1}) & \text{if } f_n(z) = z^2 \\ (1, a_{n+1}) & \text{if } f_n(z) = 1 - z^2 \end{cases}$$

Julia sets of forward iterations of z^2 and $1-z^2$

Julia sets of forward iterations of z^2 and $1 - z^2$

Quadratic polynomials

Post-critically finite quadratic polynomials $z^2 + c$ are parametrized by rational angles $\theta \in \mathbb{R}/\mathbb{Z}$ in the following way.

Mandelbrot set is the set M of numbers $c \in \mathbb{C}$ such that the sequence

$$0, f(0), f^{\circ 2}(0), \ldots, f^{\circ n}(0), \ldots$$

is bounded, where $f(z) = z^2 + c$.

There exists a unique bi-holomorphic isomorphism $\Phi : \mathbb{C} \setminus \overline{\mathbb{D}} \longrightarrow \mathbb{C} \setminus M$ tangent to identity at infinity. Here $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$.

Mandelbrot set

V. Nekrashevych (Texas A&M)

The image R_{θ} of the ray $\{r \cdot e^{\theta \cdot 2\pi i} : r \in (1, +\infty)\}$ under Φ is called the *parameter ray at the angle* θ .

We say that R_{θ} lands on a point $c \in M$ if $c = \lim_{r \searrow 1} \Phi(r \cdot e^{\theta \cdot 2\pi i})$. It is known that rays with $\theta \in \mathbb{Q}/\mathbb{Z}$ land.

If the orbit $\{f^{\circ n}(c)\}_{n\geq 1}$ of c is *pre-periodic*, then c belongs to the boundary of M and it is a landing point of a finite number of parameter rays R_{θ} . Each such θ is a rational number with even denominator.

If $\theta \in \mathbb{Q}/\mathbb{Z}$ has even denominator, then the ray R_{θ} lands on a point $c \in M$ such that the orbit of c under action of $f(z) = z^2 + c$ is pre-periodic.

For example, the landing point of $R_{1/6}$ is *i*. The orbit of *i* under $z^2 + i$ is $i \mapsto -1 + i \mapsto -i \mapsto -1 + i$. The orbit of 1/6 under angle doubling is $1/6 \mapsto 1/3 \mapsto 2/3 \mapsto 4/3 = 1/3$.

If c is periodic, then c is an internal point of M. There are two rays $R_{\theta_1}, R_{\theta_2}$ landing on the *root* of the component of $\stackrel{\circ}{M}$ to which c belongs.

Both angles θ_i have odd denominators and their periods under angle doubling are equal to the period of c under the action of $z^2 + c$.

For example, the orbit of -1 under $z^2 - 1$ is $-1 \mapsto 0 \mapsto -1$. The corresponding angles are 1/3 and 2/3. The action of angle doubling is $1/3 \mapsto 2/3 \mapsto 4/3 = 1/3$.

Fix $\theta \in \mathbb{Q}/\mathbb{Z}$. The points $\theta/2$ and $(\theta + 1)/2$ divide the circle \mathbb{R}/\mathbb{Z} into two open semicircles S_0, S_1 . Here S_0 is the semicircle containing 0.

Kneading sequence $\hat{\theta}$ is $x_1 x_2 \dots$, where

$$x_k = \begin{cases} 0 & \text{if } 2^k \theta \in S_0 \\ 1 & \text{if } 2^k \theta \in S_1 \\ * & \text{if } 2^k \theta \in \{\theta/2, (\theta+1)/2\} \end{cases}$$

Denote for $v = x_1 \dots x_{n-1}$ by $\Re(v)$ the group generated by

$$a_1 = \sigma(1, a_n), \qquad a_{i+1} = egin{cases} (a_i, 1) & ext{if } x_i = 0, \ (1, a_i) & ext{if } x_i = 1, \end{cases}$$

Denote for $w = y_1 \dots y_k \in X^*$ and $v = x_1 \dots x_n \in X^*$ such that $y_k \neq x_n$ by $\mathfrak{K}(w, v)$ the group generated by

$$b_1 = \sigma, \qquad b_{j+1} = \begin{cases} (b_j, 1) & \text{if } y_j = 0\\ (1, b_j) & \text{if } y_j = 1 \end{cases}$$
$$a_1 = \begin{cases} (b_k, a_n) & \text{if } y_k = 0 \text{ and } x_n = 1,\\ (a_n, b_k) & \text{if } y_k = 1 \text{ and } x_n = 0, \end{cases} a_{i+1} = \begin{cases} (a_i, 1) & \text{if } x_i = 0\\ (1, a_i) & \text{if } x_i = 1 \end{cases}$$

V. Nekrashevych (Texas A&M)

Examples

Quadratic polynomials

The automaton generating $\Re(x_1x_2...x_{n-1})$

Examples

Quadratic polynomials

The automaton generating $\Re(y_1 \dots y_k, x_1 \dots x_n)$

Theorem (L. Bartholdi, V. N.)

Denote by $z^2 + c_{\theta}$ the polynomial corresponding to the angle $\theta \in \mathbb{Q}/\mathbb{Z}$. If $\hat{\theta} = (x_1 x_2 \dots x_{n-1} *)^{\infty}$, then

IMG
$$(z^2 + c_\theta) = \Re (x_1 x_2 \dots x_{n-1}).$$

If $\widehat{\theta} = y_1 y_2 \dots y_k (x_1 x_2 \dots x_n)^{\infty}$, then

IMG
$$(z^2 + c_\theta) = \Re(y_1y_2 \dots y_k, x_1x_2 \dots x_n).$$

"Smooth" examples: for $\theta = 0$: IMG $(z^2) = \Re(\emptyset) = \mathbb{Z}$, for $\theta = 1/2$: IMG $(z^2 - 2) = \Re(1, 0) = \mathbb{D}_{\infty}$. If we take $\theta = 1/3$, then $\widehat{1/3} = (1*)^{\infty}$ and hence IMG $(z^2 - 1)$ is generated by

$$a_1 = \sigma(1, a_2), \qquad a_2 = (1, a_1).$$

L-presentation

Fix $v = x_1 \dots x_{n-1}$. Define the following endomorphism of the free group:

$$\varphi(a_n) = a_1^2, \qquad \varphi(a_i) = \begin{cases} a_{i+1} & \text{if } x_i = 0\\ a_{i+1}^{a_1} & \text{if } x_i = 1 \end{cases}$$

Let R be the set of commutators

$$\left[a_i,a_j^{a_1^k}\right],$$

where $2 \le i, j \le n$, and k = 0, 2 if $x_{i-1} \ne x_{j-1}$ and k = 1 if $x_{i-1} = x_{j-1}$.

Theorem (L. Bartholdi, V. N.)

$$\mathfrak{K}(\mathbf{v}) = \Big\langle a_1, \dots, a_n \, \Big| \, \varphi^{\ell}(R) \text{ for all } \ell \geq 0 \Big\rangle.$$

Corollary

Write $p(t) = x_{n-1}t + x_{n-2}t^2 + \cdots + x_1t^{n-1} \in \mathbb{Z}[t]$. Then the group $\Re(v)$ is isomorphic to the subgroup $\langle a, a^t, a^{t^2}, \dots, a^{t^{n-1}} \rangle$ of the finitely presented group

$$\Big\langle \mathsf{a},\mathsf{t} \ \Big| \ \mathsf{a}^{\mathsf{t}^n - 2\mathsf{a}^{\mathsf{p}(\mathsf{t})}}, \big[\mathsf{a}^{\mathsf{t}^i},\mathsf{a}^{\mathsf{t}^j\mathsf{a}}\big], \big[\mathsf{a}^{\mathsf{t}^i},\mathsf{a}^{\mathsf{t}^j\mathsf{a}^3}\big] ext{ for all } 1 \leq i,k < n \Big\rangle.$$

Open problem: Find similar embeddings for other IMGs and their relation with the topology of the respective maps.

Theorem (D. Schleicher, V. N.)

Let f_1 and f_2 be post-critically finite quadratic polynomials. The following conditions are equivalent.

- **1** IMG (f_1) and IMG (f_2) are isomorphic as abstract groups.
- There is a homeomorphism between the Julia sets of f₁ and f₂, conjugating the corresponding dynamical systems.
- Solution The corresponding kneading sequences coincide.

In particular, if $IMG(f_1)$ and $IMG(f_2)$ are isomorphic, then the Julia sets of f_1 and f_2 are homeomorphic.

Example: rabbit and airplane

Consider the groups:

$${\cal G}_1=\langle {\sf a}_1=\sigma(1,{\sf c}_1), \quad {\sf b}_1=(1,{\sf a}_1), \quad {\sf c}_1=(1,{\sf b}_1)
angle,$$

$$G_2 = \langle a_2 = \sigma(1, c_2), \quad b_2 = (1, a_2), \quad c_2 = (b_2, 1) \rangle.$$

They are IMGs of two polynomials with critical point of period 3:

$$z^2 - 0.1226 \ldots + 0.7449 \ldots i, \quad z^2 - 1.7549 \ldots$$

They are not isomorphic, since the Julia sets of these polynomials (known as "Douady Rabbit" and "Airplane") are not homeomorphic.

Theorem

The closures of the groups G_1 and G_2 in the automorphism group of the binary tree coincide.

For every finite sets of relations and inequalities between the generators a_1, b_1, c_1 of G_1 there exists a generating set a'_1, b'_1, c'_1 of G_2 satisfying the same relations and inequalities.

a_1, b_1, c_1 generate a free monoid

A zoom of the Douady Rabbit

A zoom of the Douady Rabbit

Theorem

Let f be a post-critically finite polynomial. If there exist two finite Fatou components of f with intersecting closures, then IMG(f) contains a free subsemigroup.

There are more examples of IMG(f) of exponential growth, since every semi-conjugacy of dynamical systems induces an embedding of the IMGs.

The following is a result of K.-U. Bux and R. Perez.

Theorem

IMG $(z^2 + i)$ has intermediate growth.

An earlier example is the Gupta-Fabrikowski group, which is IMG $(z^3(-3/2 + i\sqrt{3}/2) + 1)$.

Which polynomials have IMG of intermediate growth?