Iterated Monodromy Groups Lecture 4

Volodymyr Nekrashevych

August, 2009
Bath

Dendroid sets of permutations

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in S_{d}$. A cycle diagram of the sequence is the CW complex with the set of vertices $\{1,2, \ldots, d\}$ with 2 -cells corresponding to the cycles of the permutations α_{i}.

The sequence is called dendroid if its cycle diagram is contractible.

$$
\begin{array}{lll}
d=2 & \longmapsto \\
d=3 & \longmapsto & \square \\
d=4 & \because \square \square
\end{array}
$$

Properties of dendroid sets

If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is dendroid, then $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ is a transitive cycle.
If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is dendroid, then

$$
\alpha_{1} \cdots \alpha_{k_{1}}, \quad \alpha_{k_{1}+1} \cdots \alpha_{k_{2}}, \quad \cdots, \quad \alpha_{k_{m}+1} \cdots \alpha_{n}
$$

is a dendroid sequence.

IMGs of polynomial iterations

A sequence

$$
\mathbb{C} \stackrel{f_{1}}{\leftrightarrows} \mathbb{C} \stackrel{f_{2}}{\leftrightarrows} \mathbb{C} \stackrel{f_{3}}{\leftrightarrows} \cdots
$$

of polynomials is post-critically finite if there is a finite set $P \subset \mathbb{C}$ such that for every n the set of critical values of $f_{1} \circ f_{2} \circ \cdots \circ f_{n}$ is contained in P. Examples are constant sequences of p.c.f. polynomials or any sequence of z^{2} and $1-z^{2}$.

Theorem
A group acting on a rooted tree T is the iterated monodromy group of a post-critically finite sequence of polynomials iff it has a generating set g_{1}, \ldots, g_{n} such that for every n the sequence of restrictions of g_{i} onto the nth level of T is dendroid.

Let f_{1}, f_{2}, \ldots, be a sequence of z^{2} and $1-z^{2}$ in some order. Then its IMG is generated by a_{1}, b_{1}, which are given by

$$
\begin{aligned}
& a_{n}=\left\{\begin{array}{lr}
\sigma\left(1, a_{n+1}\right) & \text { if } f_{n}(z)=z^{2} \\
\sigma\left(1, b_{n+1}\right) & \text { if } f_{n}(z)=1-z^{2}
\end{array}\right. \\
& b_{n}=\left\{\begin{array}{lr}
\left(1, b_{n+1}\right) & \text { if } f_{n}(z)=z^{2} \\
\left(1, a_{n+1}\right) & \text { if } f_{n}(z)=1-z^{2}
\end{array}\right.
\end{aligned}
$$

Julia sets of forward iterations of z^{2} and $1-z^{2}$

Julia sets of forward iterations of z^{2} and $1-z^{2}$

Quadratic polynomials

Post-critically finite quadratic polynomials $z^{2}+c$ are parametrized by rational angles $\theta \in \mathbb{R} / \mathbb{Z}$ in the following way.

Mandelbrot set is the set M of numbers $c \in \mathbb{C}$ such that the sequence

$$
0, f(0), f^{\circ 2}(0), \ldots, f^{\circ n}(0), \ldots
$$

is bounded, where $f(z)=z^{2}+c$.
There exists a unique bi-holomorphic isomorphism $\Phi: \mathbb{C} \backslash \overline{\mathbb{D}} \longrightarrow \mathbb{C} \backslash M$ tangent to identity at infinity. Here $\overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq 1\}$.

Mandelbrot set

The image R_{θ} of the ray $\left\{r \cdot e^{\theta \cdot 2 \pi i}: r \in(1,+\infty)\right\}$ under Φ is called the parameter ray at the angle θ.

We say that R_{θ} lands on a point $c \in M$ if $c=\lim _{r \backslash 1} \Phi\left(r \cdot e^{\theta \cdot 2 \pi i}\right)$. It is known that rays with $\theta \in \mathbb{Q} / \mathbb{Z}$ land.

If the orbit $\left\{f^{\circ n}(c)\right\}_{n \geq 1}$ of c is pre-periodic, then c belongs to the boundary of M and it is a landing point of a finite number of parameter rays R_{θ}. Each such θ is a rational number with even denominator.

If $\theta \in \mathbb{Q} / \mathbb{Z}$ has even denominator, then the ray R_{θ} lands on a point $c \in M$ such that the orbit of c under action of $f(z)=z^{2}+c$ is pre-periodic.

For example, the landing point of $R_{1 / 6}$ is i. The orbit of i under $z^{2}+i$ is $i \mapsto-1+i \mapsto-i \mapsto-1+i$. The orbit of $1 / 6$ under angle doubling is $1 / 6 \mapsto 1 / 3 \mapsto 2 / 3 \mapsto 4 / 3=1 / 3$.

If c is periodic, then c is an internal point of M. There are two rays $R_{\theta_{1}}, R_{\theta_{2}}$ landing on the root of the component of M to which c belongs.

Both angles θ_{i} have odd denominators and their periods under angle doubling are equal to the period of c under the action of $z^{2}+c$.

For example, the orbit of -1 under $z^{2}-1$ is $-1 \mapsto 0 \mapsto-1$. The corresponding angles are $1 / 3$ and $2 / 3$. The action of angle doubling is $1 / 3 \mapsto 2 / 3 \mapsto 4 / 3=1 / 3$.

Fix $\theta \in \mathbb{Q} / \mathbb{Z}$. The points $\theta / 2$ and $(\theta+1) / 2$ divide the circle \mathbb{R} / \mathbb{Z} into two open semicircles S_{0}, S_{1}. Here S_{0} is the semicircle containing 0 .

Kneading sequence $\widehat{\theta}$ is $x_{1} x_{2} \ldots$, where

$$
x_{k}= \begin{cases}0 & \text { if } 2^{k} \theta \in S_{0} \\ 1 & \text { if } 2^{k} \theta \in S_{1} \\ * & \text { if } 2^{k} \theta \in\{\theta / 2,(\theta+1) / 2\}\end{cases}
$$

Denote for $v=x_{1} \ldots x_{n-1}$ by $\mathfrak{K}(v)$ the group generated by

$$
a_{1}=\sigma\left(1, a_{n}\right), \quad a_{i+1}= \begin{cases}\left(a_{i}, 1\right) & \text { if } x_{i}=0 \\ \left(1, a_{i}\right) & \text { if } x_{i}=1\end{cases}
$$

Denote for $w=y_{1} \ldots y_{k} \in X^{*}$ and $v=x_{1} \ldots x_{n} \in X^{*}$ such that $y_{k} \neq x_{n}$ by $\mathfrak{K}(w, v)$ the group generated by

$$
\begin{gathered}
b_{1}=\sigma, \quad b_{j+1}= \begin{cases}\left(b_{j}, 1\right) & \text { if } y_{j}=0 \\
\left(1, b_{j}\right) & \text { if } y_{j}=1\end{cases} \\
a_{1}=\left\{\begin{array}{ll}
\left(b_{k}, a_{n}\right) & \text { if } y_{k}=0 \text { and } x_{n}=1, \\
\left(a_{n}, b_{k}\right) & \text { if } y_{k}=1 \text { and } x_{n}=0,
\end{array} a_{i+1}= \begin{cases}\left(a_{i}, 1\right) & \text { if } x_{i}=0 \\
\left(1, a_{i}\right) & \text { if } x_{i}=1\end{cases} \right.
\end{gathered}
$$

The automaton generating $\mathfrak{K}\left(x_{1} x_{2} \ldots x_{n-1}\right)$

The automaton generating $\mathfrak{K}\left(y_{1} \ldots y_{k}, x_{1} \ldots x_{n}\right)$

Theorem (L. Bartholdi, V. N.)
Denote by $z^{2}+c_{\theta}$ the polynomial corresponding to the angle $\theta \in \mathbb{Q} / \mathbb{Z}$. If $\widehat{\theta}=\left(x_{1} x_{2} \ldots x_{n-1}\right)^{\infty}$, then

$$
\operatorname{IMG}\left(z^{2}+c_{\theta}\right)=\mathfrak{K}\left(x_{1} x_{2} \ldots x_{n-1}\right) .
$$

If $\widehat{\theta}=y_{1} y_{2} \ldots y_{k}\left(x_{1} x_{2} \ldots x_{n}\right)^{\infty}$, then

$$
\operatorname{IMG}\left(z^{2}+c_{\theta}\right)=\mathfrak{K}\left(y_{1} y_{2} \ldots y_{k}, x_{1} x_{2} \ldots x_{n}\right) .
$$

"Smooth" examples: for $\theta=0$: $\operatorname{IMG}\left(z^{2}\right)=\mathfrak{K}(\varnothing)=\mathbb{Z}$, for $\theta=1 / 2$: $\operatorname{IMG}\left(z^{2}-2\right)=\mathfrak{K}(1,0)=\mathbb{D}_{\infty}$.
If we take $\theta=1 / 3$, then $\widehat{1 / 3}=(1 *)^{\infty}$ and hence $\operatorname{IMG}\left(z^{2}-1\right)$ is generated by

$$
a_{1}=\sigma\left(1, a_{2}\right), \quad a_{2}=\left(1, a_{1}\right) .
$$

L-presentation

Fix $v=x_{1} \ldots x_{n-1}$. Define the following endomorphism of the free group:

$$
\varphi\left(a_{n}\right)=a_{1}^{2}, \quad \varphi\left(a_{i}\right)= \begin{cases}a_{i+1} & \text { if } x_{i}=0 \\ a_{i+1}^{a_{1}} & \text { if } x_{i}=1\end{cases}
$$

Let R be the set of commutators

$$
\left[a_{i}, a_{j}^{a_{1}^{k}}\right]
$$

where $2 \leq i, j \leq n$, and $k=0,2$ if $x_{i-1} \neq x_{j-1}$ and $k=1$ if $x_{i-1}=x_{j-1}$.
Theorem (L. Bartholdi, V. N.)

$$
\left.\mathfrak{K}(v)=\left\langle a_{1}, \ldots, a_{n}\right| \varphi^{\ell}(R) \text { for all } \ell \geq 0\right\rangle .
$$

Corollary

Write $p(t)=x_{n-1} t+x_{n-2} t^{2}+\cdots+x_{1} t^{n-1} \in \mathbb{Z}[t]$. Then the group $\mathfrak{K}(v)$ is isomorphic to the subgroup $\left\langle a, a^{t}, a^{t^{2}}, \ldots, a^{t^{n-1}}\right\rangle$ of the finitely presented group

$$
\left.\langle a, t| a^{t^{n}-2 a^{p(t)}},\left[a^{t^{i}}, a^{t^{j} a}\right],\left[a^{t^{i}}, a^{t^{j} a^{3}}\right] \text { for all } 1 \leq i, k<n\right\rangle
$$

Open problem: Find similar embeddings for other IMGs and their relation with the topology of the respective maps.

Theorem (D. Schleicher, V. N.)
Let f_{1} and f_{2} be post-critically finite quadratic polynomials. The following conditions are equivalent.
(1) $\operatorname{IMG}\left(f_{1}\right)$ and $\operatorname{IMG}\left(f_{2}\right)$ are isomorphic as abstract groups.
(2) There is a homeomorphism between the Julia sets of f_{1} and f_{2}, conjugating the corresponding dynamical systems.
(3) The corresponding kneading sequences coincide.

In particular, if $\operatorname{IMG}\left(f_{1}\right)$ and $\operatorname{IMG}\left(f_{2}\right)$ are isomorphic, then the Julia sets of f_{1} and f_{2} are homeomorphic.

Example: rabbit and airplane

Consider the groups:

$$
\begin{array}{ll}
G_{1}=\left\langle a_{1}=\sigma\left(1, c_{1}\right),\right. & b_{1}=\left(1, a_{1}\right), \\
\left.c_{1}=\left(1, b_{1}\right)\right\rangle, \\
G_{2}=\left\langle a_{2}=\sigma\left(1, c_{2}\right),\right. & b_{2}=\left(1, a_{2}\right), \\
\left.c_{2}=\left(b_{2}, 1\right)\right\rangle .
\end{array}
$$

They are IMGs of two polynomials with critical point of period 3:

$$
z^{2}-0.1226 \ldots+0.7449 \ldots i, \quad z^{2}-1.7549 \ldots
$$

They are not isomorphic, since the Julia sets of these polynomials (known as "Douady Rabbit" and "Airplane") are not homeomorphic.

Theorem

The closures of the groups G_{1} and G_{2} in the automorphism group of the binary tree coincide.
For every finite sets of relations and inequalities between the generators a_{1}, b_{1}, c_{1} of G_{1} there exists a generating set $a_{1}^{\prime}, b_{1}^{\prime}, c_{1}^{\prime}$ of G_{2} satisfying the same relations and inequalities.

a_{1}, b_{1}, c_{1} generate a free monoid

A zoom of the Douady Rabbit

A zoom of the Douady Rabbit

> Theorem
> Let f be a post-critically finite polynomial. If there exist two finite Fatou components of f with intersecting closures, then $\operatorname{IMG}(f)$ contains a free subsemigroup.

There are more examples of $\operatorname{IMG}(f)$ of exponential growth, since every semi-conjugacy of dynamical systems induces an embedding of the IMGs.

The following is a result of K.-U. Bux and R. Perez.
Theorem
IMG $\left(z^{2}+i\right)$ has intermediate growth.
An earlier example is the Gupta-Fabrikowski group, which is IMG $\left(z^{3}(-3 / 2+i \sqrt{3} / 2)+1\right)$.

Which polynomials have IMG of intermediate growth?

