Self-similar and branch groups III

Volodymyr Nekrashevych

October 6, 2010, Montreal

V. Nekrashevych (Texas A&M)

Self-similar groups

October 6, 2010, Montreal 1 / 15

Rigidity

Recall that a level-transitive group $G \leq \operatorname{Aut}(T)$ is weakly branch if for every $v \in T$ there is $g \in G \setminus \{1\}$ acting trivially outside of T_v .

Theorem (Y. Lavrenyuk, V.N.)

Let $G_1, G_2 \leq \operatorname{Aut}(T)$ be weakly branch groups. Then every isomorphism $\phi: G_1 \longrightarrow G_2$ is induced by a measure preserving homeomorphism of ∂T .

An isomorphism $\phi : G_1 \longrightarrow G_2$ is *saturated* if there is a sequence of subgroups H_n of the *n*th level stabilizers in G_1 such that H_n and $\phi(H_n)$ stabilize the *n*th level, and act level-transitively on subtrees growing from the *n*th level.

Proposition

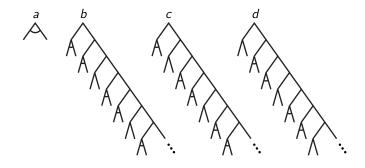
If $\phi: G_1 \longrightarrow G_2$ is a saturated isomorphism of weakly branch groups, then it is induced by an automorphism of T.

Grigorchuk groups

For $w = x_1 x_2 \ldots \in \{0, 1, 2\}$ and $w' = x_2 x_3 \ldots$ consider the group G_w acting on $X^* = \{0, 1\}^*$ and generated by

$$\begin{aligned} a_w(0v) &= 1v, \quad a_w(1v) = 0v, \\ b_w(1v) &= 1b_{w'}(v), \quad c_w(1v) = 1c_{w'}(v), \quad d_w(1v) = 1d_{w'}(v) \\ b_w(0v) &= \begin{cases} 0a_{w'}(v), & \text{if } x_1 \in \{0,1\}, \\ 0v, & \text{otherwise,} \end{cases} \\ c_w(0v) &= \begin{cases} 0a_{w'}(v), & \text{if } x_1 \in \{0,2\}, \\ 0v, & \text{otherwise,} \end{cases} \\ d_w(0v) &= \begin{cases} 0a_{w'}(v), & \text{if } x_1 \in \{1,2\}, \\ 0v, & \text{otherwise.} \end{cases} \end{aligned}$$

Grigorchuk groups



If w is not eventually constant, then G_w is branch. Using the sequence $H_n = (H_{n-1})^2$ we see that all isomorphisms are saturated.

Proposition

Two groups G_{w_1} and G_{w_2} such that w_1 and w_2 are not eventually constant are isomorphic if and only if they are conjugate in $Aut(X^*)$.

The map $\operatorname{Aut}(X^*) \longrightarrow \operatorname{Aut}(X^*) / \operatorname{Aut}(X^*)' \cong C_2^{\infty}$ maps conjugate subgroups of $\operatorname{Aut}(X^*)$ to the same groups. Images of G_{w_1} and G_{w_2} are equal if and only if $G_{w_1} = G_{w_2}$, i.e., if w_1 is obtained from w_2 by application of a permutation $\pi \in \operatorname{Symm}(\{0, 1, 2\})$ to each coordinate.

Theorem (L. Bartholdi, V.N.)

The iterated monodromy groups of p.c.f. quadratic polynomials are generated by bounded automata, weakly branch, and saturated.

Theorem (V.N.)

Let G_1, G_2 be contracting weakly branch saturated groups generated by bounded automata. Let (\mathcal{X}_1, s_1) and (\mathcal{X}_2, s_2) be the respective limit dynamical systems. If G_1 and G_2 are isomorphic then there exists n_1, n_2 such that $(\mathcal{X}_1, s_1^{n_1})$ and $(\mathcal{X}_2, s_2^{n_2})$ are topologically conjugate.

Rabbit and Airplane

Consider the groups G_1 and G_2 generated by

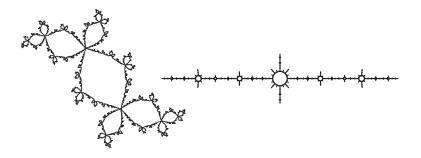
$$a(0v) = 1v, \quad a(1v) = 0b(v),$$

 $b(0v) = 0v, \quad b(1v) = 1c(v),$
 $c(0v) = 0v, \quad c(1v) = 1a(v),$

and

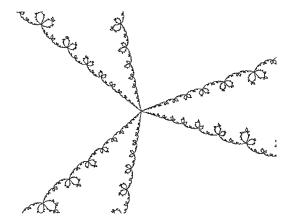
$$\begin{aligned} &a(0v) = 1v, \qquad a(1v) = 0b(v), \\ &b(0v) = 0v, \qquad b(1v) = 1c(v), \\ &c(0v) = 0a(v), \quad c(1v) = 1v. \end{aligned}$$

Rabbit and Airplane

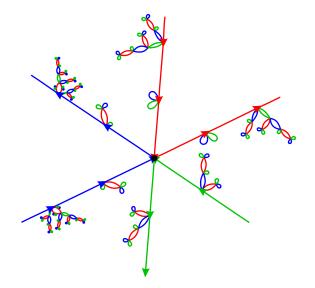


Consequently G_1 and G_2 are not isomorphic as abstract groups. What is growth of G_2 ? Does it have free sub-semigroups? For which quadratic polynomials f growth of IMG(f) is sub-exponential? Which contracting groups are (weakly) branch?

A free sub-semigroup of G_1



A free sub-semigroup of G_1



V. Nekrashevych (Texas A&M)

Functoriality of the limit dynamical system

Let G and H be self-similar groups over alphabets X and Y. Suppose that $\phi: G \longrightarrow H$ and $F: X \longrightarrow Y$ are such that

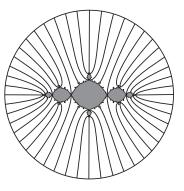
$$\phi(g)(F(x)) = F(g(x)), \qquad \phi(g|_x) = \phi(g)|_{F(x)}$$

for all $g \in G$ and $x \in X$. Then the map $F(\ldots x_2x_1) = \ldots F(x_2)F(x_1)$ induces a continuous map from the limit space of G to the limit space of H commuting with the shift. $IMG(z^2-1)$ is generated by

$$a(0w) = 1w, \quad a(1w) = 0b(w), \quad b(0w) = 0w, \quad b(1w) = 1a^b(w)$$
 then

$$ab(0w)=a(0w)=1w,$$
 $ab(1w)=a(1a^b(w))=0ab(w),$

hence the adding machine is contained in $IMG(z^2 - 1)$. We get the *Carateodori loop*.



 $IMG(z^2 + i)$ is generated by

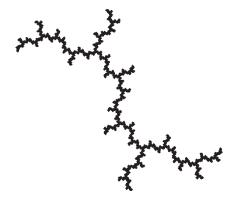
$$\begin{aligned} \alpha(0v) &= 1v, & \alpha(1v) = 0v, \\ \beta(0v) &= 0\alpha(v), & \beta(1v) = 1\gamma(v), \\ \gamma(0v) &= 0\beta(v), & \gamma(1v) = 1v \end{aligned}$$

The limit space of the group $\langle \alpha, \beta, \gamma, \textit{a}, \textit{b}, \textit{c} \rangle$

$$a(0v) = 1v,$$
 $a(1v) = 0v,$
 $b(0v) = 0a(v),$ $b(1v) = 1c(v),$
 $c(0v) = 0b(v),$ $c(1v) = 1b(v)$

is the same as of $\langle a, b, c \rangle$ and is the isosceles right triangle.

Julia set of $z^2 + i$



Filling a triangle

