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Self-similar groups

Self-similar groups

Definition

Let X be a finite alphabet. A self-similar group is a faithful action of a
group G on the set X∗ of finite words such that for every g ∈ G and x ∈ X
there exist h ∈ G and y ∈ X such that

g(xw) = yh(w)

for all w ∈ X∗.

Example: consider X = {0, 1} and let a be defined by

a(0w) = 1w , a(1w) = 0a(w).

This is the rule of adding 1 to a dyadic integer. The transformation a (and
the corresponding action of Z) is called the adding machine.
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Self-similar groups

Wreath recursions

It is easy to define a finitely generated self-similar group. Just choose for
every generator g a permutation π ∈ SX and elements gx ∈ G for all
x ∈ X, and then define

g(xw) = π(x)gx (w)

for all w ∈ X∗. For example, take G = 〈a, b〉 and X = {O, I , J}, where

a(Ow) = Iw , a(Iw) = Oa(w), a(Jw) = Jw

b(Ow) = Jw , b(Iw) = Iw , b(Jw) = Ob(w)

The rules can be compactly written as homomorphisms
G −→ G o SX : g 7→ (gx)π, called wreath recursions.
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Self-similar groups

If gx are also generators, the group is generated by a finite automaton. For
example, the adding machine action is described by the following graph.

To find g(x1x2 . . .), find a directed path starting at g and labeled by
(x1, y1), (x2, y2), . . .. Then g(x1x2 . . .) = y1y2 . . ..
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Self-similar groups

Bisets

Let (G ,X) be a self-similar group. Identify letters x ∈ X with
transformations

w 7→ xw .

Then the equality g(xw) = ygx(w) can be written as an equality of
compositions of transformations:

g · x = y · gx .

Note that the set X · G is invariant under post- and pre-compositions with
elements of G :

g · (x · h) = y · (gxh), (x · h) · g = x · (hg).

We get a biset: a set with commuting left and right actions of G .
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Self-similar groups

Covering bisets

The right action of G on X · G is free (i.e., m · g = m implies g = 1) and
has |X| orbits labeled by the letters of X (since x · h · g = x · (hg)).

Definition

A biset M is a covering biset if the right action is free and has a finite
number of orbits.
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Self-similar groups

Let M be a covering G -biset. Choose a right orbit transversal Y ⊂ M, i.e.,
choose one element in each orbit. Then for every g ∈ G and x ∈ Y the
element g · x ∈ M can be uniquely written as

g · x = y · h

for some y ∈ Y and h ∈ G . We get the associated action on Y∗ defined
recurrently by the condition that

g(xw) = yh(w)

for all w ∈ X∗ if g · x = y · h.
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Self-similar groups

Consider the set M of transformations of R of the form x 7→ (x + n)/2 for
n ∈ Z. Z acts on R in the usual way. Then M is invariant under pre- and
post-compositions with elements of Z:

x 7→ (x +m + n)/2, x 7→ (x + n)/2 +m = (x + n + 2m)/2.

The action by post-compositions has two orbits (corresponding to parity of
n).
If we choose the transversal {f0 = x/2, f1 = (x +1)/2}, then the generator
a : x 7→ x + 1 satisfies (for the right action):

x · (a · f0) = (x+1)/2 = x · f1, x · (a · f1) = (x+2)/2 = x/2+1 = x · f0 ·a.

We see that the action associated with the biset is the adding machine.
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Iterated monodromy groups

Iterated monodromy groups

Let f : M1 −→ M be a finite covering map, where M1 ⊂ M. In general,
one can consider a pair of maps f : M1 −→ M and ι : M1 −→ M.
Choose a basepoint t ∈ M and consider the tree of preimages
T =

⊔∞
n=0 f

−n(t):
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Iterated monodromy groups

Iterated monodromy group

The fundamental group π1(M, t) acts on T by the monodromy actions on
each of the levels f −n(t).

The obtained action is the iterated monodromy action. The quotient of
π1(M, t) by the kernel of the iterated mondromy action is the iterated

monodromy group IMG(f ).
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Iterated monodromy groups

Associated biset

Let Mf be the set of homotopy classes of paths in M from t to a point
z ∈ f −1(t).
The fundamental group acts on Mf by attaching loops to the beginning t

and lifts of loops by f to the ends z ∈ f −1(t) of elements of Mf

It is easy to see that the two actions commute. The first action is free.
The number of its orbits is equal to |f −1(t)|, where the orbits are in a
bijection with the ends of paths ` ∈ M.
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Iterated monodromy groups

It is easy to check that the self-similar action of π1(M, t) associated with
the biset Mf is conjugate to the iterated monodromy action.
Choosing a right orbit transversal, i.e., a collection of paths `x starting in t

and ending in L(x) ∈ f −1(t) (where x ∈ X, |X| = deg f , and
L : X −→ f −1(t) is a bijection) we get the standard self-similar action of
the iterated monodromy group, and a labeling of the vertices of T by
words over X.
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Iterated monodromy groups

The point labeled by xv is the end of the lift of the path `x by f |v | starting
at the point labeled by v .
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Iterated monodromy groups

Let {`x} and L : X −→ f −1(t), be as before. Let γ ∈ π1(M, t), and let γx
be the lift of γ starting at L(x). Let L(y) be the end of γx . Then the
standard action is given by the rule

γ(xw) = y(`−1
y γx`x)(w).
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Iterated monodromy groups

The “interlaced adding machine” is the i.m.g. of f (z) = − z3

2 + 3z
2 seen as

the map C \ {±1,±2} −→ C \ {±1}.
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Iterated monodromy groups

IMG(−z
3/2 + 3z/2) continued

a(Ow) = Iw , a(Iw) = Oa(w), a(Jw) = Jw

b(Ow) = Jw , b(Iw) = Iw , b(Jw) = Ob(w).
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Iterated monodromy groups

A multi-dimensional example

Consider the map F of C2:

(x , y) 7→

(

1−
y2

x2
, 1−

1

x2

)

It can be naturally extended to the projective plane.

(x : y : z) 7→ (x2 − y2 : x2 − z2 : x2).

The set {x = 0} ∪ {y = 0} ∪ {z = 0} is the critical locus. The
post-critical set is the union of the line at infinity with the lines
x = 0, x = 1, y = 0, y = 1, x = y .
They are permuted as follows:

{x = 0} 7→ {z = 0} 7→ {y = 1} 7→ {x = y} 7→ {x = 0}

{y = 0} 7→ {x = 1} 7→ {y = 0}.
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Iterated monodromy groups

The iterated monodromy group of F (as computed by J. Belk and
S. Koch) is generated by the transformations:

a(1v) = 1b(v), a(2v) = 2v , a(3v) = 3v , a(4v) = 4b(v),

b(1v) = 1c(v), b(2v) = 2c(v), b(3v) = 3v , b(4v) = 4v ,

c(1v) = 4d(v), c(2v) = 3(ceb)−1(v), c(3v) = 2(fa)−1(v), c(4v) = 1v ,

d(1v) = 2v , d(2v) = 1a(v), d(3v) = 4v , d(4v) = 3a(v),

e(1v) = 1f (v), e(2v) = 2v , e(3v) = 3f (v), e(4v) = 4v ,

f (1v) = 3b−1(v), f (2v) = 4v , f (3v) = 1eb(v), f (4v) = 2e(v).
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Iterated monodromy groups

Bimodules

We have described a relation between two structures: pairs of maps
f , ι : M1 −→ M, where f is a covering map (and ι was an embedding),
and G -bisets M. Both define bimodules over algebras.
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Iterated monodromy groups

In the case of a pair of maps f , ι : M1 −→ M, consider the algebra
A = C0(M) of continuous functions on M, and the space Φ = C0(M1) of
continuous functions on M1. Let Φ be a right module w.r.t.

φ · a(x) = φ(x)a(f (x)), x ∈ M1

with A-valued inner product

〈φ1|φ2〉(x) =
∑

z∈f−1(x)

φ1(z)φ2(z).

Define a structure of a left A-module on Φ by

(a · φ)(x) = a(ι(x))φ(x), x ∈ M1.
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Iterated monodromy groups

In the case of a covering biset M over a group G , consider the group ring
A = C[G ] and the linear space Φ spanned by M. Since G acts by
commuting left and right actions on M, extending the action by linearity,
we get a bimodule structure on Φ.
We also have an A-valued inner product on Φ given by the condition that
if x , y ∈ M are such that y = x · g for some g ∈ G , then 〈x |y〉 = g ;
otherwise 〈x |y〉 = 0.
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