Self-similar groups and hyperbolic groupoids I

Volodymyr Nekrashevych

June 21, 2012, Orleans

V. Nekrashevych (Texas A&M)

Self-similar groups

June 21, 2012, Orleans 1 / 21

Self-similar groups

Definition

Let X be a finite alphabet. A *self-similar group* is a faithful action of a group G on the set X^{*} of finite words such that for every $g \in G$ and $x \in X$ there exist $h \in G$ and $y \in X$ such that

$$g(xw) = yh(w)$$

for all $w \in X^*$.

Example: consider $X = \{0, 1\}$ and let *a* be defined by

$$a(0w) = 1w, \qquad a(1w) = 0a(w).$$

This is the rule of adding 1 to a dyadic integer. The transformation a (and the corresponding action of \mathbb{Z}) is called the *adding machine*.

Wreath recursions

It is easy to define a finitely generated self-similar group. Just choose for every generator g a permutation $\pi \in S_X$ and elements $g_x \in G$ for all $x \in X$, and then define

$$g(xw) = \pi(x)g_x(w)$$

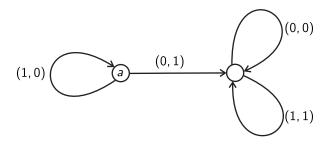
for all $w \in X^*$. For example, take $G = \langle a, b \rangle$ and $X = \{O, I, J\}$, where

$$a(\mathit{Ow}) = \mathit{Iw}, \quad a(\mathit{Iw}) = \mathit{Oa}(w), \quad a(\mathit{Jw}) = \mathit{Jw}$$

$$b(Ow) = Jw, \quad b(Iw) = Iw, \quad b(Jw) = Ob(w)$$

The rules can be compactly written as homomorphisms $G \longrightarrow G \wr S_X : g \mapsto (g_x)\pi$, called wreath recursions.

If g_x are also generators, the group is generated by a *finite automaton*. For example, the adding machine action is described by the following graph.



To find $g(x_1x_2...)$, find a directed path starting at g and labeled by $(x_1, y_1), (x_2, y_2), \ldots$ Then $g(x_1x_2...) = y_1y_2...$

Bisets

Let (G, X) be a self-similar group. Identify letters $x \in X$ with transformations

$$w \mapsto xw.$$

Then the equality $g(xw) = yg_x(w)$ can be written as an equality of compositions of transformations:

$$g \cdot x = y \cdot g_x.$$

Note that the set $X \cdot G$ is invariant under post- and pre-compositions with elements of G:

$$g \cdot (x \cdot h) = y \cdot (g_x h), \qquad (x \cdot h) \cdot g = x \cdot (hg).$$

We get a *biset*: a set with commuting left and right actions of G.

Covering bisets

The right action of G on $X \cdot G$ is free (i.e., $m \cdot g = m$ implies g = 1) and has |X| orbits labeled by the letters of X (since $x \cdot h \cdot g = x \cdot (hg)$).

Definition

A biset \mathfrak{M} is a *covering biset* if the right action is free and has a finite number of orbits.

Let \mathfrak{M} be a covering *G*-biset. Choose a right orbit transversal $Y \subset \mathfrak{M}$, i.e., choose one element in each orbit. Then for every $g \in G$ and $x \in Y$ the element $g \cdot x \in \mathfrak{M}$ can be uniquely written as

$$g \cdot x = y \cdot h$$

for some $y \in Y$ and $h \in G$. We get the *associated action* on Y^{*} defined recurrently by the condition that

$$g(xw) = yh(w)$$

for all $w \in X^*$ if $g \cdot x = y \cdot h$.

Consider the set \mathfrak{M} of transformations of \mathbb{R} of the form $x \mapsto (x+n)/2$ for $n \in \mathbb{Z}$. \mathbb{Z} acts on \mathbb{R} in the usual way. Then \mathfrak{M} is invariant under pre- and post-compositions with elements of \mathbb{Z} :

$$x \mapsto (x + m + n)/2, \qquad x \mapsto (x + n)/2 + m = (x + n + 2m)/2.$$

The action by post-compositions has two orbits (corresponding to parity of n).

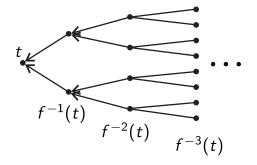
If we choose the transversal $\{f_0 = x/2, f_1 = (x+1)/2\}$, then the generator $a : x \mapsto x + 1$ satisfies (for the right action):

 $x \cdot (a \cdot f_0) = (x+1)/2 = x \cdot f_1, \quad x \cdot (a \cdot f_1) = (x+2)/2 = x/2 + 1 = x \cdot f_0 \cdot a.$

We see that the action associated with the biset is the adding machine.

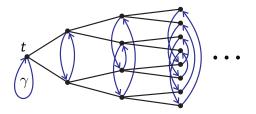
Iterated monodromy groups

Let $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ be a finite covering map, where $\mathcal{M}_1 \subset \mathcal{M}$. In general, one can consider a pair of maps $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$. Choose a basepoint $t \in \mathcal{M}$ and consider the tree of preimages $T = \bigsqcup_{n=0}^{\infty} f^{-n}(t)$:



Iterated monodromy group

The fundamental group $\pi_1(\mathcal{M}, t)$ acts on T by the *monodromy actions* on each of the levels $f^{-n}(t)$.

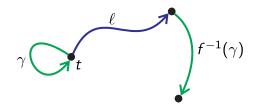


The obtained action is the *iterated monodromy action*. The quotient of $\pi_1(\mathcal{M}, t)$ by the kernel of the iterated mondromy action is the *iterated monodromy group* IMG(f).

Associated biset

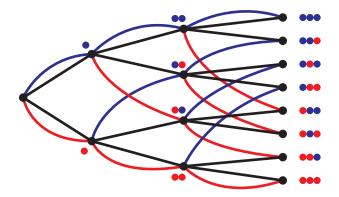
Let \mathfrak{M}_f be the set of homotopy classes of paths in \mathcal{M} from t to a point $z \in f^{-1}(t)$.

The fundamental group acts on \mathfrak{M}_f by attaching loops to the beginning tand lifts of loops by f to the ends $z \in f^{-1}(t)$ of elements of \mathfrak{M}_f



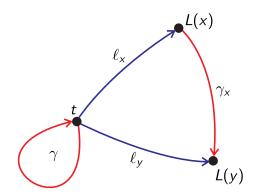
It is easy to see that the two actions commute. The first action is free. The number of its orbits is equal to $|f^{-1}(t)|$, where the orbits are in a bijection with the ends of paths $\ell \in \mathfrak{M}$.

It is easy to check that the self-similar action of $\pi_1(\mathcal{M}, t)$ associated with the biset \mathfrak{M}_f is conjugate to the iterated monodromy action. Choosing a right orbit transversal, i.e., a collection of paths ℓ_x starting in tand ending in $L(x) \in f^{-1}(t)$ (where $x \in X$, $|X| = \deg f$, and $L : X \longrightarrow f^{-1}(t)$ is a bijection) we get the *standard self-similar action* of the iterated monodromy group, and a labeling of the vertices of T by words over X. The point labeled by xv is the end of the lift of the path ℓ_x by $f^{|v|}$ starting at the point labeled by v.

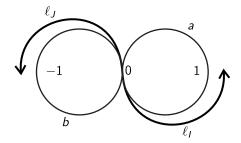


Let $\{\ell_x\}$ and $L: X \longrightarrow f^{-1}(t)$, be as before. Let $\gamma \in \pi_1(\mathcal{M}, t)$, and let γ_x be the lift of γ starting at L(x). Let L(y) be the end of γ_x . Then the standard action is given by the rule

$$\gamma(xw) = y(\ell_y^{-1}\gamma_x\ell_x)(w).$$

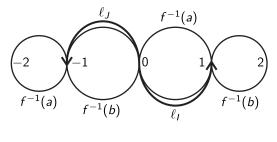


The "interlaced adding machine" is the i.m.g. of $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$ seen as the map $\mathbb{C} \setminus \{\pm 1, \pm 2\} \longrightarrow \mathbb{C} \setminus \{\pm 1\}.$



Iterated monodromy groups

$IMG(-z^3/2+3z/2)$ continued



 $a(Ow) = Iw, \quad a(Iw) = Oa(w), \quad a(Jw) = Jw$

 $b(Ow) = Jw, \quad b(Iw) = Iw, \quad b(Jw) = Ob(w).$

V. Nekrashevych (Texas A&M)

A multi-dimensional example

Consider the map F of \mathbb{C}^2 :

$$(x,y)\mapsto\left(1-rac{y^2}{x^2},1-rac{1}{x^2}
ight)$$

It can be naturally extended to the projective plane.

$$(x:y:z)\mapsto (x^2-y^2:x^2-z^2:x^2).$$

The set $\{x = 0\} \cup \{y = 0\} \cup \{z = 0\}$ is the critical locus. The post-critical set is the union of the line at infinity with the lines x = 0, x = 1, y = 0, y = 1, x = y. They are permuted as follows:

$$\{x = 0\} \mapsto \{z = 0\} \mapsto \{y = 1\} \mapsto \{x = y\} \mapsto \{x = 0\}$$

$${y = 0} \mapsto {x = 1} \mapsto {y = 0}.$$

The iterated monodromy group of F (as computed by J. Belk and S. Koch) is generated by the transformations:

$$\begin{split} a(1v) &= 1b(v), \quad a(2v) = 2v, \quad a(3v) = 3v, \quad a(4v) = 4b(v), \\ b(1v) &= 1c(v), \quad b(2v) = 2c(v), \quad b(3v) = 3v, \quad b(4v) = 4v, \\ c(1v) &= 4d(v), c(2v) = 3(ceb)^{-1}(v), c(3v) = 2(fa)^{-1}(v), c(4v) = 1v, \\ d(1v) &= 2v, \quad d(2v) = 1a(v), \quad d(3v) = 4v, \quad d(4v) = 3a(v), \\ e(1v) &= 1f(v), \quad e(2v) = 2v, \quad e(3v) = 3f(v), \quad e(4v) = 4v, \\ f(1v) &= 3b^{-1}(v), \quad f(2v) = 4v, \quad f(3v) = 1eb(v), \quad f(4v) = 2e(v). \end{split}$$

Bimodules

We have described a relation between two structures: pairs of maps $f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$, where f is a covering map (and ι was an embedding), and G-bisets \mathfrak{M} . Both define *bimodules* over algebras.

In the case of a pair of maps $f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$, consider the algebra $A = C_0(\mathcal{M})$ of continuous functions on \mathcal{M} , and the space $\Phi = C_0(\mathcal{M}_1)$ of continuous functions on \mathcal{M}_1 . Let Φ be a right module w.r.t.

$$\phi \cdot a(x) = \phi(x)a(f(x)), \ x \in \mathcal{M}_1$$

with A-valued inner product

$$\langle \phi_1 | \phi_2 \rangle(x) = \sum_{z \in f^{-1}(x)} \overline{\phi_1(z)} \phi_2(z).$$

Define a structure of a left A-module on Φ by

$$(a \cdot \phi)(x) = a(\iota(x))\phi(x), \ x \in \mathcal{M}_1.$$

In the case of a covering biset \mathfrak{M} over a group G, consider the group ring $A = \mathbb{C}[G]$ and the linear space Φ spanned by \mathfrak{M} . Since G acts by commuting left and right actions on \mathfrak{M} , extending the action by linearity, we get a bimodule structure on Φ .

We also have an A-valued inner product on Φ given by the condition that if $x, y \in \mathfrak{M}$ are such that $y = x \cdot g$ for some $g \in G$, then $\langle x | y \rangle = g$; otherwise $\langle x | y \rangle = 0$.