Self-similar groups and hyperbolic groupoids II

Volodymyr Nekrashevych

June 22, 2012, Orleans

V. Nekrashevych (Texas A&M)

Self-similar groups

June 22, 2012, Orleans 1 / 22

Contracting groups

Let (G, X) be a self-similar group. For every $g \in G$ and $v \in X^*$ there exists $g|_v \in G$ such that

$$g(vw) = g(v)g|_v(w)$$

for all $w \in X^*$. We call $g|_v$ the section of g at v.

ş

We say that (G, X) is *contracting* if there exists a finite subset $\mathcal{N} \subset G$ such that for every $g \in G$ there exists $n \in \mathbb{N}$ such that $g|_{v} \in \mathcal{N}$ for all $v \in X^*$ such that $|v| \ge n$.

Proposition

If $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is an expanding covering of a Riemannian manifold, then its iterated monodromy group is contracting.

Section $\gamma|_{x_1x_2...x_n}$ is the loop

$$\ell_{y_n}^{-1}\ell_{y_ny_{n-1}}^{-1}\ldots\ell_{y_n\ldots y_1}^{-1}\gamma_{x_1\ldots x_n}\ell_{x_n\ldots x_1}\ldots\ell_{x_nx_{n-1}}\ell_{x_n},$$

where $\ell_{a_n...a_k}$ is the lift of ℓ_{a_n} by f^{n-k} starting at the end of $\ell_{a_{n-1}...a_k}$, and $\gamma_{x_1...x_n}$ is the lift of γ by f^n starting at the end of $\ell_{x_1...x_n}$. Since the length of lifts of paths by f^n exponentially decrease, we get a uniform bound on the length of γ_v for all v big enough.

Some properties of contracting groups

- Contracting groups have solvable word problem in polynomial time.
- Contracting groups have no free subgroups (amenable?).
- Many (all except for virtually nilpotent?) are not finitely presented.

Limit dynamical system

Let (G, X) be a contracting group. Consider the space $X^{-\omega} = \{\dots x_2 x_1\}$ of left-infinite sequences over X. Two sequences $\dots x_2 x_1, \dots y_2 y_1$ are equivalent w.r.t. G if there exists a sequence $g_n \in G$ assuming a finite set of values such that

$$g_n(x_n\ldots x_1)=y_n\ldots y_1.$$

The quotient of $X^{-\omega}$ by this equivalence relation is the *limit space* \mathcal{J}_G of (G, X). The equivalence relation is invariant under the shift

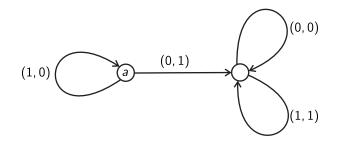
$$\ldots x_2 x_1 \mapsto \ldots x_3 x_2.$$

Hence, the shift induces a continuous map $s : \mathcal{J}_{\mathcal{G}} \longrightarrow \mathcal{J}_{\mathcal{G}}$.

Another definition

Let Γ be the diagram of the automaton generating (G, X). Paths going along the arrows describe the action of the generators. Let $R \subset X^{-\omega} \times X^{-\omega}$ be the pairs of infinite words read along left-infinite paths (paths going against the arrows). Then the equivalence relation generated by R is the equivalence relation defining \mathcal{J}_G .

Adding machine action



We get identifications $\dots 001x_n \dots x_1 \sim \dots 110x_n \dots x_1$, and all their shifts, hence $\mathcal{J}_{\mathbb{Z}} = \mathbb{R}/\mathbb{Z}$.

Main theorem

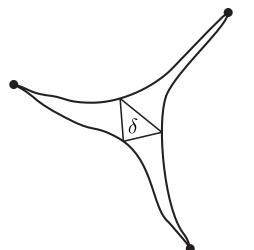
Theorem

Suppose that $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is expanding. Then G = IMG(f) is contracting and (\mathcal{J}_G, s) is topologically conjugate to the action of f on the set of accumulation points of $\bigcup_{n>0} f^{-n}(t)$.

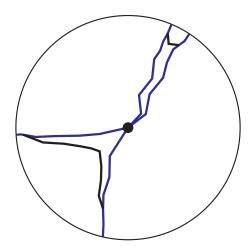
Hence, the contructions of the iterated monodromy group and the limit dynamical system are inverse to each other in hyperbolic cases (expanding maps and contracting self-similar groups).

Hyperbolic graphs

A geodesic metric space (e.g., a graph) is δ -hyperbolic if every geodesic triangle is δ -thin.



Hyperbolic boundary



V. Nekrashevych (Texas A&M)

Limit spaces as Gromov boundaries

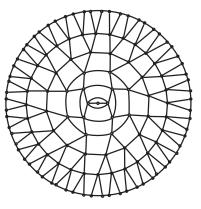
Consider the graph $\Gamma(G, X)$ with the set of vertices X^* in which two vertices are connected by an edge in two cases:

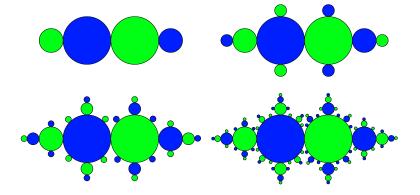
- they are of the form v and xv;
- they are of the form v and s(v), where s belongs to a fixed finite generating set of G.

Theorem

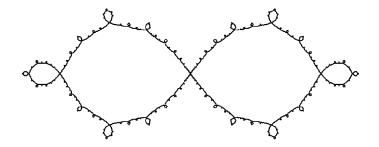
If (G, X) is contracting, then $\Gamma(G, X)$ is Gromov hyperbolic. Its boundary is homeomorphic to \mathcal{J}_G . The shift $s : \mathcal{J}_G \longrightarrow \mathcal{J}_G$ is induced by the map $vx \mapsto v$ on $\Gamma(G, X) \setminus \{\emptyset\}$.

The graph $\Gamma(G, X)$ consists of the tree of edges (v, xv) and of the union of *Schreier* graphs describing the action of the generating set on the levels X^n .

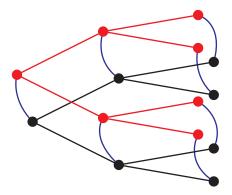




V. Nekrashevych (Texas A&M)



Let $f : \mathcal{M} \longrightarrow \mathcal{M}$ be a self-covering. Let γ be a path in \mathcal{M} from t_1 to t_2 . The lifts of γ by iterations of f define an isomorphism H_{γ} between the trees $T_{t_i} = \bigsqcup_{n=0}^{\infty} f^{-n}(t_i)$.



If f is expanding, then the length of lifts approaches 0, and hence $d(v, H_{\gamma}(v)) \rightarrow 0$ in \mathcal{M} as $v \rightarrow \infty$ in T_{t_1} .

If γ is a path in \mathcal{M} between two vertices of T_t , then it defines an isomorphism between the corresponding sub-trees of T_t : These are transformations of the form $v_1w \mapsto v_2g(w)$ for fixed $v_1, v_2 \in X^*$ and $g \in \mathrm{IMG}(f)$. They form an inverse semigroup generated by G and the transformations $T_x : w \mapsto xw$.

Cuntz-Pimsner algebras of self-similar groups

Let (G, X) be a self-similar group. Its *Cuntz-Pimsner algebra* \mathcal{O}_G is the universal C^* generated by G (as unitaries) and isometries S_x for $x \in X$ satisfying

$$S_x^* S_x = 1, \qquad \sum_{x \in \mathsf{X}} S_x S_x^* = 1$$

and

$$g \cdot S_x = S_y \cdot h$$

whenever $g \cdot x = y \cdot h$. The algebra generated by S_x , $x \in X$ is the *Cuntz* algebra $\mathcal{O}_{|X|}$.

Let $H = L^2(X^{\omega})$ for the uniform Bernoulli measure on X^{ω} . *G* acts by measure-preserving transformations on X^{ω} , and we get the associated unitary representation of *G* on *H*. The transformations $T_x : w \mapsto xw$ satisfy $\mu(T_x(A)) = \frac{1}{|X|}\mu(A)$, hence the operator S_x given by

$$S_x(f)(yw) = \left\{egin{array}{cc} \sqrt{|{\sf X}|}f(w) & ext{if } y = x \ 0 & ext{othewise} \end{array}
ight.$$

is an isometry. It is easy to check that G and S_x satisfying the defining relations of \mathcal{O}_G , hence they define a representation of \mathcal{O}_G .

A contracting group (G, X) is *regular* if for every $g \in G$ and $w \in X^{\omega}$ either $g(w) \neq w$, or g acts trivially on a neighborhood of w. Equivalently, (G, X) is regular iff s : $\mathcal{J}_G \longrightarrow \mathcal{J}_G$ is a covering map. For example, $\mathrm{IMG}(f)$ is regular if f is a hyperbolic rational function.

Theorem

If (G, X) is a regular contracting group, then \mathcal{O}_G is defined by a finite set of relations, simple, purely infinite, nuclear, and satisfies the UCT.

In particular, \mathcal{O}_G is a Kirchberg algebra, and is classifiable by its K-theory. If $f(z) = z^2 + c$ is a hyperbolic quadratic polynomial, then $\mathcal{O}_{\text{IMG}(f)}$ is generated by the Cuntz algebra $\mathcal{O}_2 = \langle S_0, S_1 \rangle$ and a unitary *a* satisfying

$$a = S_1 S_0^* + S_0 (1 - S_v S_v^* + S_v a S_v^*) S_1^*.$$

for a product $S_v = S_{x_1}S_{x_2}\cdots S_{x_n}$, where $x_1x_2\ldots x_n$ is related to the *kneading sequence* of the polynomial.

K-theory of hyperbolic rational functions

Theorem

Let G = IMG(f), where f is a hyperbolic rational function. Then

$$\mathcal{K}_0(\mathcal{O}_{\mathrm{IMG}(f)})\cong \mathbb{Z}/(d-1)\mathbb{Z}\oplus \mathbb{Z}^{c-1},$$

$$K_1(\mathcal{O}_{\mathrm{IMG}(f)}) \cong \mathbb{Z}/I\mathbb{Z} \oplus \mathbb{Z}^{c-1},$$

where $d = \deg f$, c is the number of attracting cycles, l is the g.c.d. of their lengths.

In particular, all algebras $\mathcal{O}_{\mathrm{IMG}(f)}$ are pairwise isomorphic for all hyperbolic quadratic polynomials $f(z) = z^2 + c$. The Cuntz-Pimsner algebras of the bimodules over $C_0(J_f)$ have the same K-theory.

The Cuntz-Pimsner algebra \mathcal{O}_G have a natural action of the circle:

$$\Gamma_z(S_x) = zS_x, \qquad \Gamma_z(g) = g.$$

Theorem

Let (G_i, X) be regular contracting groups. The dynamical systems $(\mathcal{O}_{G_i}, \Gamma_z)$, i = 1, 2, are isomorphic iff the limit dynamical systems (\mathcal{J}_{G_i}, s) are topologically conjugate.