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Topological Polynomials

Topological polynomials

A branched covering f : S2 → S2 is a local homeomorphism at every
point, except for a finite set of critical points Cf .
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Topological Polynomials

Topological polynomials

A branched covering f : S2 → S2 is a local homeomorphism at every
point, except for a finite set of critical points Cf .

A topological polynomial is a branched covering f : S2 → S2 such that
f −1(∞) = {∞}, where ∞ ∈ S2 is a distinguished “point at infinity”.
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Topological Polynomials

A post-critically finite branched covering (a Thurston map) is an
orientation-preserving branched covering

f : S2 → S2

such that the post-critical set

Pf =
⋃

n≥1

f n (Cf )

is finite.
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Topological Polynomials

Two Thurston maps f1 and f2 are combinatorially equivalent if they are
conjugate up to homotopies:
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Topological Polynomials

Two Thurston maps f1 and f2 are combinatorially equivalent if they are
conjugate up to homotopies:
there exist homeomorphisms h1, h2 : S2 → S2 such that hi (Pf1) = Pf2, the
diagram

S2 f1→ S2
yh1

yh2

S2 f2→ S2

is commutative and h1 is isotopic to h2 rel Pf1.
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Rabbit and Airplane

Rabbit and Airplane
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Rabbit and Airplane

Twisted Rabbit

Let fr be the “rabbit” and let T be the Dehn twist
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Rabbit and Airplane

“Twisted rabbit” question of J. H. Hubbard

The Thurston’s theorem implies that the composition

fr ◦ Tm

is combinatorially equivalent either to the “rabbit” fr or to the
“anti-rabbit”, or to the “airplane”.
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is combinatorially equivalent either to the “rabbit” fr or to the
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Rabbit and Airplane

“Twisted rabbit” question of J. H. Hubbard

The Thurston’s theorem implies that the composition

fr ◦ Tm

is combinatorially equivalent either to the “rabbit” fr or to the
“anti-rabbit”, or to the “airplane”. (There are no obstructions.)

Give an answer as a function of m.
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Rabbit and Airplane

“Twisted rabbit” question of J. H. Hubbard

The Thurston’s theorem implies that the composition

fr ◦ Tm

is combinatorially equivalent either to the “rabbit” fr or to the
“anti-rabbit”, or to the “airplane”. (There are no obstructions.)

Give an answer as a function of m.

More generally, give an answer for fr ◦ g , where g is any

homeomorphism fixing {0, c , c2 + c} pointwise.
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Rabbit and Airplane

Theorem

If the 4-adic expansion of m has digits 1 or 2, then fr ◦Tm is equivalent to

the “airplane”, otherwise it is equivalent to the “rabbit” for m ≥ 0 and to

the “anti-rabbit” for m < 0.
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Rabbit and Airplane

Theorem

If the 4-adic expansion of m has digits 1 or 2, then fr ◦Tm is equivalent to

the “airplane”, otherwise it is equivalent to the “rabbit” for m ≥ 0 and to

the “anti-rabbit” for m < 0.

Here we use 4-adic expansions without sign. For example,

−1 = . . . 333,

so that fr ◦ T−1 is equivalent to the “anti-rabbit”.
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Iterated monodromy groups

Iterated monodromy groups

Let f : M1 → M be a d-fold covering map, where M1 is an open subset
of M.
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Iterated monodromy groups

Iterated monodromy groups

Let f : M1 → M be a d-fold covering map, where M1 is an open subset
of M. (In our case M = S2 \ Pf and M1 = f −1(M).)
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Iterated monodromy groups

Iterated monodromy groups

Let f : M1 → M be a d-fold covering map, where M1 is an open subset
of M. (In our case M = S2 \ Pf and M1 = f −1(M).)

Take a basepoint t ∈ M. We get the tree of preimages

⋃

n≥0

f −n(t)
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Iterated monodromy groups

Iterated monodromy groups

Let f : M1 → M be a d-fold covering map, where M1 is an open subset
of M. (In our case M = S2 \ Pf and M1 = f −1(M).)

Take a basepoint t ∈ M. We get the tree of preimages

⋃

n≥0

f −n(t)

on which the fundamental group π1 (M, t) acts.
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Iterated monodromy groups
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Iterated monodromy groups

The obtained automorphism group of the rooted tree is called
the iterated monodromy group of f .
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Iterated monodromy groups

Iterated monodromy groups can be computed as groups generated by
automata.
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Iterated monodromy groups

Iterated monodromy groups can be computed as groups generated by
automata.

If two topological polynomials are combinatorially equivalent, then their
iterated monodromy groups coincide.
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Iterated monodromy groups

Iterated monodromy groups can be computed as groups generated by
automata.

If two topological polynomials are combinatorially equivalent, then their
iterated monodromy groups coincide.

This makes it possible to distinguish specific Thurston maps.
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Iterated monodromy groups
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Solution

We prove that the following pairs of branched coverings are
combinatorially equivalent:
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We prove that the following pairs of branched coverings are
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Solution

We prove that the following pairs of branched coverings are
combinatorially equivalent:

fr ◦ T 4n ∼ fr ◦ T n,

fr ◦ T 4n+1 ∼ fr ◦ T ,
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Solution

We prove that the following pairs of branched coverings are
combinatorially equivalent:

fr ◦ T 4n ∼ fr ◦ T n,

fr ◦ T 4n+1 ∼ fr ◦ T ,

fr ◦ T 4n+2 ∼ fr ◦ T ,

fr ◦ T 4n+3 ∼ fr ◦ T n.
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Solution

Let G be the mapping class group of the plane with three punctures. It is
freely generated by two Dehn twists T and S .
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Solution

Proposition

Let ψ be defined on H =
〈
T 2,S ,ST

〉
< G by

ψ
(
T 2
)

= S−1T−1, ψ (S) = T , ψ
(
ST
)

= 1.
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Solution

Proposition

Let ψ be defined on H =
〈
T 2,S ,ST

〉
< G by

ψ
(
T 2
)

= S−1T−1, ψ (S) = T , ψ
(
ST
)

= 1.

Then g ◦ fr and fr ◦ ψ(g) are homotopic.
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Solution

Proposition

Let ψ be defined on H =
〈
T 2,S ,ST

〉
< G by

ψ
(
T 2
)

= S−1T−1, ψ (S) = T , ψ
(
ST
)

= 1.

Then g ◦ fr and fr ◦ ψ(g) are homotopic.

Consider

ψ : g 7→

{
ψ(g) if g belongs to H,

Tψ
(
gT−1

)
otherwise.
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Solution

Proposition

Let ψ be defined on H =
〈
T 2,S ,ST

〉
< G by

ψ
(
T 2
)

= S−1T−1, ψ (S) = T , ψ
(
ST
)

= 1.

Then g ◦ fr and fr ◦ ψ(g) are homotopic.

Consider

ψ : g 7→

{
ψ(g) if g belongs to H,

Tψ
(
gT−1

)
otherwise.

Then for every g ∈ G the branched coverings fr ◦ g and fr ◦ ψ(g) are

combinatorially equivalent.
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Solution

fr ◦ T 4n ∼ fr ◦ T n,

fr ◦ T 4n+1 ∼ fr ◦ T ,

fr ◦ T 4n+2 ∼ fr ◦ T ,

fr ◦ T 4n+3 ∼ fr ◦ T n.
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Solution

The map ψ is contracting on G:
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Solution

The map ψ is contracting on G: for every g ∈ G there exists n such that

ψ
m

(g) ∈ {1,T ,T−1,T 2S ,S−1}

for all m ≥ n
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Solution

The map ψ is contracting on G: for every g ∈ G there exists n such that

ψ
m

(g) ∈ {1,T ,T−1,T 2S ,S−1}

for all m ≥ n

Here 1 and T are fixed by ψ and the last three elements form a cycle
under the action of ψ.
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Solution

The map ψ is contracting on G: for every g ∈ G there exists n such that

ψ
m

(g) ∈ {1,T ,T−1,T 2S ,S−1}

for all m ≥ n

Here 1 and T are fixed by ψ and the last three elements form a cycle
under the action of ψ.

This solves the problem for every g ∈ G.
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Dynamics on the Teichmüller space

Dynamics on the Teichmüller space

The Teichmüller space TPf
modelled on (S2,Pf ) is the space of

homeomorphisms
τ : S2 → Ĉ,

where τ1 ∼ τ2 if ∃ an automorphism h : Ĉ → Ĉ such that h ◦ τ1 is isotopic
to τ2 rel Pf .
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The Teichmüller space TPf
modelled on (S2,Pf ) is the space of

homeomorphisms
τ : S2 → Ĉ,

where τ1 ∼ τ2 if ∃ an automorphism h : Ĉ → Ĉ such that h ◦ τ1 is isotopic
to τ2 rel Pf .

TPf
is the universal covering of the moduli space MPf

, i.e., the space of
injective maps

τ : Pf ↪→ Ĉ

modulo post-compositions with Möbius transformations.
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Dynamics on the Teichmüller space

Dynamics on the Teichmüller space

The Teichmüller space TPf
modelled on (S2,Pf ) is the space of

homeomorphisms
τ : S2 → Ĉ,

where τ1 ∼ τ2 if ∃ an automorphism h : Ĉ → Ĉ such that h ◦ τ1 is isotopic
to τ2 rel Pf .

TPf
is the universal covering of the moduli space MPf

, i.e., the space of
injective maps

τ : Pf ↪→ Ĉ

modulo post-compositions with Möbius transformations.

The covering map is τ 7→ τ |Pf
.
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Dynamics on the Teichmüller space

Consider f = fr ◦ g for g ∈ G.
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Dynamics on the Teichmüller space

Consider f = fr ◦ g for g ∈ G. Then Pf =
{
∞, 0, c , c2 + c

}
and we may

assume that
τ(∞) = ∞, τ(0) = 0, τ(c) = 1.
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Dynamics on the Teichmüller space

Consider f = fr ◦ g for g ∈ G. Then Pf =
{
∞, 0, c , c2 + c

}
and we may

assume that
τ(∞) = ∞, τ(0) = 0, τ(c) = 1.

Then every τ ∈ MPf
is determined by p = τ(c2 + c) ∈ Ĉ \ {∞, 1, 0}.
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Dynamics on the Teichmüller space

Consider f = fr ◦ g for g ∈ G. Then Pf =
{
∞, 0, c , c2 + c

}
and we may

assume that
τ(∞) = ∞, τ(0) = 0, τ(c) = 1.

Then every τ ∈ MPf
is determined by p = τ(c2 + c) ∈ Ĉ \ {∞, 1, 0}.

Hence, MPf
∼= Ĉ \ {∞, 1, 0}.
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Dynamics on the Teichmüller space

For every τ ∈ TPf
there exist unique τ ′ ∈ TPf

and fτ ∈ C(z) such that the
diagram

S2 f
→ S2

yτ
′

yτ

Ĉ
fτ→ Ĉ

is commutative.
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and fτ ∈ C(z) such that the
diagram

S2 f
→ S2

yτ
′

yτ

Ĉ
fτ→ Ĉ

is commutative.
The map σf : TPf

→ TPf
: τ 7→ τ ′ has at most one fixed point.
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Dynamics on the Teichmüller space

For every τ ∈ TPf
there exist unique τ ′ ∈ TPf

and fτ ∈ C(z) such that the
diagram

S2 f
→ S2

yτ
′

yτ

Ĉ
fτ→ Ĉ

is commutative.
The map σf : TPf

→ TPf
: τ 7→ τ ′ has at most one fixed point.

If τ is a fixed point, then f is combinatorially equivalent to fτ .
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Dynamics on the Teichmüller space

For every τ ∈ TPf
there exist unique τ ′ ∈ TPf

and fτ ∈ C(z) such that the
diagram

S2 f
→ S2

yτ
′

yτ

Ĉ
fτ→ Ĉ

is commutative.
The map σf : TPf

→ TPf
: τ 7→ τ ′ has at most one fixed point.

If τ is a fixed point, then f is combinatorially equivalent to fτ .
The fixed point (if exists) is

lim
n→∞

σn
f (τ0).
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Dynamics on the Teichmüller space

Let us compute σf .
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Denote p0 = τ ′(c2 + c) and p1 = τ(c2 + c).
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Dynamics on the Teichmüller space

Let us compute σf .
Denote p0 = τ ′(c2 + c) and p1 = τ(c2 + c).

S2 f
→ S2

yτ
′

yτ

Ĉ
fτ→ Ĉ

Then fτ is a quadratic polynomial with critical point 0 such that

fτ (0) = 1, fτ (1) = p1, fτ (p0) = 0.
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Dynamics on the Teichmüller space

Let us compute σf .
Denote p0 = τ ′(c2 + c) and p1 = τ(c2 + c).

S2 f
→ S2

yτ
′

yτ

Ĉ
fτ→ Ĉ

Then fτ is a quadratic polynomial with critical point 0 such that

fτ (0) = 1, fτ (1) = p1, fτ (p0) = 0.

We get fτ (z) = az2 + 1 and ap2
0 + 1 = 0, hence a = − 1

p2
0

and

p1 = 1 −
1

p2
0

, fτ (z) = 1 −
z2

p2
0

.
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Dynamics on the Teichmüller space

We have proved

Proposition

The correspondence σf (τ) 7→ τ on TPf
is projected by the universal

covering map to the rational function

P(z) = 1 −
1

z2

on the moduli space MPf
= Ĉ \ {∞, 0, 1}.
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Dynamics on the Teichmüller space

We have proved

Proposition

The correspondence σf (τ) 7→ τ on TPf
is projected by the universal

covering map to the rational function

P(z) = 1 −
1

z2

on the moduli space MPf
= Ĉ \ {∞, 0, 1}.

If τ is the fixed point of σf , then f is equivalent to fτ = 1− z2

p2 , where p is

the corresponding fixed point of P in the moduli space Ĉ \ {∞, 0, 1}.
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Dynamics on the Teichmüller space

Fix a basepoint t0 ∈ MPf
corresponding to the “rabbit”.
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Dynamics on the Teichmüller space

Fix a basepoint t0 ∈ MPf
corresponding to the “rabbit”.

ψ
(
T 2
)

= S−1T−1, ψ (S) = T , ψ
(
ST
)

= 1.
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Dynamics on the Teichmüller space

Fix a basepoint t0 ∈ MPf
corresponding to the “rabbit”.

ψ
(
T 2
)

= S−1T−1, ψ (S) = T , ψ
(
ST
)

= 1.

g ◦ fr ∼ fr ◦ ψ(g)

.
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Dynamics on the Teichmüller space

Proposition

Let g ∈ G be represented by a loop γ ∈ π1 (MPf
, t0). Then

lim
n→∞

σn
fr◦g

(τ0)

is projected onto the end of the path

γγ1γ2 . . .

in MPf
, where γn continues γn−1 and is a preimage of γn−1 under 1 − 1

z2 .
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Dynamics on the Teichmüller space
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2-dimensional iteration

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one
map on P

2.

V. Nekrashevych (Texas A&M) Topological Polynomials March 11, 2006, Toronto 26 / 37



2-dimensional iteration

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one
map on P

2.

F

(
z

p

)
=

(
1 − z2

p2

1 − 1
p2

)

,
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2-dimensional iteration

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one
map on P

2.

F

(
z

p

)
=

(
1 − z2

p2

1 − 1
p2

)

,

or
F ([z : p : u]) = [p2 − z2 : p2 − u2 : p2].
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2-dimensional iteration

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one
map on P

2.

F

(
z

p

)
=

(
1 − z2

p2

1 − 1
p2

)

,

or
F ([z : p : u]) = [p2 − z2 : p2 − u2 : p2].

Its post-critical set is {z = 0} ∪ {z = 1} ∪ {z = p} ∪ {p = 0} ∪ {p = 1}
and the line at infinity.
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2-dimensional iteration

The Julia set of F is projected by (z , p) 7→ p onto the Julia set of
P(p) = 1 − 1

p2 .
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2-dimensional iteration

The Julia set of F is projected by (z , p) 7→ p onto the Julia set of
P(p) = 1 − 1

p2 .

The fibers of the projection are the Julia sets of the iteration

z , fp1(z), fp2 ◦ fp1(z), fp3 ◦ fp2 ◦ fp1(z), . . . ,

where pn+1 = P(pn).

V. Nekrashevych (Texas A&M) Topological Polynomials March 11, 2006, Toronto 27 / 37



2-dimensional iteration

A minimal Cantor set of 3-generated groups

The iterated monodromy groups of the backward iterations

· · ·
fp3→ z2

fp2→ z1
fp1→ z0,

where pn−1 = P(pn),
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· · ·
fp3→ z2

fp2→ z1
fp1→ z0,

where pn−1 = P(pn), is a Cantor set of 3-generated groups Gw with
countable dense isomorphism classes.
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2-dimensional iteration

A minimal Cantor set of 3-generated groups

The iterated monodromy groups of the backward iterations

· · ·
fp3→ z2

fp2→ z1
fp1→ z0,

where pn−1 = P(pn), is a Cantor set of 3-generated groups Gw with
countable dense isomorphism classes.

For any finite set of relations between the generators of Gw1 there exists a
generating set of Gw2 with the same relations.
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z2 + i

Twisting z
2 + i

Let a and b be the Dehn twists
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z2 + i

The corresponding map on the moduli space is

P(p) =

(
1 −

2

p

)2
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z2 + i

The corresponding map on the moduli space is

P(p) =

(
1 −

2

p

)2

and the map on P
2 is

F

(
z

p

)
=





(
1 − 2z

p

)2

(
1 − 2

p

)2



 ,

or
F [z : p : u] = [(p − 2z)2 : (p − 2u)2 : p2].
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z2 + i

The corresponding map on the moduli space is

P(p) =

(
1 −

2

p

)2

and the map on P
2 is

F

(
z

p

)
=





(
1 − 2z

p

)2

(
1 − 2

p

)2



 ,

or
F [z : p : u] = [(p − 2z)2 : (p − 2u)2 : p2].

This map was studied by J. E. Fornæss and N. Sibony (1992).
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z2 + i

Solution

Consider the group Z
2

o C4 of affine transformations of C

z 7→ ikz + z0,

where k ∈ Z and z0 ∈ Z[i ].
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z2 + i

Solution

Consider the group Z
2

o C4 of affine transformations of C

z 7→ ikz + z0,

where k ∈ Z and z0 ∈ Z[i ]. It is the fundamental group of the orbifold
(4, 4, 2), which is associated with (1 − 2/p)2.
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z2 + i

Solution

Consider the group Z
2

o C4 of affine transformations of C

z 7→ ikz + z0,

where k ∈ Z and z0 ∈ Z[i ]. It is the fundamental group of the orbifold
(4, 4, 2), which is associated with (1 − 2/p)2.

We have a natural homomorphism φ : G → Z
2

o C4

a 7→ −z + 1, b 7→ iz
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z2 + i

Let g ∈ G be arbitrary. Then fi ◦ g is either

equivalent to z2 + i ,
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Let g ∈ G be arbitrary. Then fi ◦ g is either

equivalent to z2 + i ,

or to z2 − i
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z2 + i

Let g ∈ G be arbitrary. Then fi ◦ g is either

equivalent to z2 + i ,

or to z2 − i

or is obstructed,
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z2 + i

Let g ∈ G be arbitrary. Then fi ◦ g is either

equivalent to z2 + i ,

or to z2 − i

or is obstructed,

i.e., is not equivalent to any rational function.
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z2 + i

Let g ∈ G be arbitrary. Then fi ◦ g is either

equivalent to z2 + i ,

or to z2 − i

or is obstructed,

i.e., is not equivalent to any rational function.

It depends only on φ(g), which of these cases takes place.
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z2 + i

The answer
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z2 + i

Obstructed polynomials
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z2 + i

The iterated monodromy group of obstructed polynomials fi ◦ g is a
Grigorchuk group (very similar to the example constructed as a solution of
a problem posed by John Milnor in 1968).
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z2 + i

The iterated monodromy group of obstructed polynomials fi ◦ g is a
Grigorchuk group (very similar to the example constructed as a solution of
a problem posed by John Milnor in 1968).

A. Erschler proved that the growth of this group has bounds

exp

(
n

ln2+ε(n)

)
≺ v(n) ≺ exp

(
n

ln1−ε(n)

)

for all ε > 0.
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The iterated monodromy group of obstructed polynomials fi ◦ g is a
Grigorchuk group (very similar to the example constructed as a solution of
a problem posed by John Milnor in 1968).

A. Erschler proved that the growth of this group has bounds

exp

(
n

ln2+ε(n)

)
≺ v(n) ≺ exp

(
n

ln1−ε(n)

)

for all ε > 0.

IMG
(
z2 + i

)
also has intermediate growth (Kai-Uwe Bux and Rodrigo

Pérez, 2004)

V. Nekrashevych (Texas A&M) Topological Polynomials March 11, 2006, Toronto 35 / 37


	Topological Polynomials
	Rabbit and Airplane
	Iterated monodromy groups
	Solution
	Dynamics on the Teichmüller space
	2-dimensional iteration
	z2+i

