Combinatorial equivalence of topological polynomials and group theory

Volodymyr Nekrashevych
(joint work with L. Bartholdi)

March 11, 2006,
Toronto

Topological polynomials

A branched covering $f: S^{2} \rightarrow S^{2}$ is a local homeomorphism at every point, except for a finite set of critical points C_{f}.

Topological polynomials

A branched covering $f: S^{2} \rightarrow S^{2}$ is a local homeomorphism at every point, except for a finite set of critical points C_{f}.

A topological polynomial is a branched covering $f: S^{2} \rightarrow S^{2}$ such that $f^{-1}(\infty)=\{\infty\}$, where $\infty \in S^{2}$ is a distinguished "point at infinity".

A post-critically finite branched covering (a Thurston map) is an orientation-preserving branched covering

$$
f: S^{2} \rightarrow S^{2}
$$

such that the post-critical set

$$
P_{f}=\bigcup_{n \geq 1} f^{n}\left(C_{f}\right)
$$

is finite.

Two Thurston maps f_{1} and f_{2} are combinatorially equivalent if they are conjugate up to homotopies:

Two Thurston maps f_{1} and f_{2} are combinatorially equivalent if they are conjugate up to homotopies: there exist homeomorphisms $h_{1}, h_{2}: S^{2} \rightarrow S^{2}$ such that $h_{i}\left(P_{f_{1}}\right)=P_{f_{2}}$, the diagram

$$
\begin{array}{llll}
S^{2} & \xrightarrow{f_{1}} & S^{2} \\
l^{h_{1}} & & a_{2} \\
h_{2} & \xrightarrow{f_{2}} & S^{2}
\end{array}
$$

is commutative and h_{1} is isotopic to h_{2} rel $P_{f_{1}}$.

Rabbit and Airplane

Twisted Rabbit

Let f_{r} be the "rabbit" and let T be the Dehn twist

Twisted Rabbit

Let f_{r} be the "rabbit" and let T be the Dehn twist

Twisted Rabbit

Let f_{r} be the "rabbit" and let T be the Dehn twist

"Twisted rabbit" question of J. H. Hubbard

The Thurston's theorem implies that the composition

$$
f_{r} \circ T^{m}
$$

is combinatorially equivalent either to the "rabbit" f_{r} or to the "anti-rabbit", or to the "airplane".

"Twisted rabbit" question of J. H. Hubbard

The Thurston's theorem implies that the composition

$$
f_{r} \circ T^{m}
$$

is combinatorially equivalent either to the "rabbit" f_{r} or to the "anti-rabbit", or to the "airplane". (There are no obstructions.)

"Twisted rabbit" question of J. H. Hubbard

The Thurston's theorem implies that the composition

$$
f_{r} \circ T^{m}
$$

is combinatorially equivalent either to the "rabbit" f_{r} or to the "anti-rabbit", or to the "airplane". (There are no obstructions.)

Give an answer as a function of m.

"Twisted rabbit" question of J. H. Hubbard

The Thurston's theorem implies that the composition

$$
f_{r} \circ T^{m}
$$

is combinatorially equivalent either to the "rabbit" f_{r} or to the "anti-rabbit", or to the "airplane". (There are no obstructions.)

Give an answer as a function of m.
More generally, give an answer for $f_{r} \circ g$, where g is any homeomorphism fixing $\left\{0, c, c^{2}+c\right\}$ pointwise.

```
Theorem
If the 4-adic expansion of \(m\) has digits 1 or 2 , then \(f_{r} \circ T^{m}\) is equivalent to the "airplane", otherwise it is equivalent to the "rabbit" for \(m \geq 0\) and to the "anti-rabbit" for \(m<0\).
```

```
Theorem
If the 4-adic expansion of \(m\) has digits 1 or 2 , then \(f_{r} \circ T^{m}\) is equivalent to the "airplane", otherwise it is equivalent to the "rabbit" for \(m \geq 0\) and to the "anti-rabbit" for \(m<0\).
```

Here we use 4-adic expansions without sign. For example,

$$
-1=\ldots 333,
$$

so that $f_{r} \circ T^{-1}$ is equivalent to the "anti-rabbit".

Iterated monodromy groups

Let $f: \mathcal{M}_{1} \rightarrow \mathcal{M}$ be a d-fold covering map, where \mathcal{M}_{1} is an open subset of \mathcal{M}.

Iterated monodromy groups

Let $f: \mathcal{M}_{1} \rightarrow \mathcal{M}$ be a d-fold covering map, where \mathcal{M}_{1} is an open subset of \mathcal{M}. (In our case $\mathcal{M}=S^{2} \backslash P_{f}$ and $\mathcal{M}_{1}=f^{-1}(\mathcal{M})$.)

Iterated monodromy groups

Let $f: \mathcal{M}_{1} \rightarrow \mathcal{M}$ be a d-fold covering map, where \mathcal{M}_{1} is an open subset of \mathcal{M}. (In our case $\mathcal{M}=S^{2} \backslash P_{f}$ and $\mathcal{M}_{1}=f^{-1}(\mathcal{M})$.)

Take a basepoint $t \in \mathcal{M}$. We get the tree of preimages

$$
\bigcup_{n \geq 0} f^{-n}(t)
$$

Iterated monodromy groups

Let $f: \mathcal{M}_{1} \rightarrow \mathcal{M}$ be a d-fold covering map, where \mathcal{M}_{1} is an open subset of \mathcal{M}. (In our case $\mathcal{M}=S^{2} \backslash P_{f}$ and $\mathcal{M}_{1}=f^{-1}(\mathcal{M})$.)

Take a basepoint $t \in \mathcal{M}$. We get the tree of preimages

$$
\bigcup_{n \geq 0} f^{-n}(t)
$$

on which the fundamental group $\pi_{1}(\mathcal{M}, t)$ acts.

The obtained automorphism group of the rooted tree is called the iterated monodromy group of f.

Iterated monodromy groups can be computed as groups generated by automata.

Iterated monodromy groups can be computed as groups generated by automata.

If two topological polynomials are combinatorially equivalent, then their iterated monodromy groups coincide.

Iterated monodromy groups can be computed as groups generated by automata.

If two topological polynomials are combinatorially equivalent, then their iterated monodromy groups coincide.

This makes it possible to distinguish specific Thurston maps.

We prove that the following pairs of branched coverings are combinatorially equivalent:

We prove that the following pairs of branched coverings are combinatorially equivalent:

- $f_{r} \circ T^{4 n} \sim f_{r} \circ T^{n}$,

We prove that the following pairs of branched coverings are combinatorially equivalent:

- $f_{r} \circ T^{4 n} \sim f_{r} \circ T^{n}$,
- $f_{r} \circ T^{4 n+1} \sim f_{r} \circ T$,

We prove that the following pairs of branched coverings are combinatorially equivalent:

- $f_{r} \circ T^{4 n} \sim f_{r} \circ T^{n}$,
- $f_{r} \circ T^{4 n+1} \sim f_{r} \circ T$,
- $f_{r} \circ T^{4 n+2} \sim f_{r} \circ T$,

We prove that the following pairs of branched coverings are combinatorially equivalent:

- $f_{r} \circ T^{4 n} \sim f_{r} \circ T^{n}$,
- $f_{r} \circ T^{4 n+1} \sim f_{r} \circ T$,
- $f_{r} \circ T^{4 n+2} \sim f_{r} \circ T$,
- $f_{r} \circ T^{4 n+3} \sim f_{r} \circ T^{n}$.

Let \mathcal{G} be the mapping class group of the plane with three punctures. It is freely generated by two Dehn twists T and S.

Let \mathcal{G} be the mapping class group of the plane with three punctures. It is freely generated by two Dehn twists T and S.

Proposition

Let ψ be defined on $H=\left\langle T^{2}, S, S^{T}\right\rangle<\mathcal{G}$ by

$$
\psi\left(T^{2}\right)=S^{-1} T^{-1}, \quad \psi(S)=T, \quad \psi\left(S^{T}\right)=1
$$

Proposition

Let ψ be defined on $H=\left\langle T^{2}, S, S^{T}\right\rangle<\mathcal{G}$ by

$$
\psi\left(T^{2}\right)=S^{-1} T^{-1}, \quad \psi(S)=T, \quad \psi\left(S^{T}\right)=1
$$

Then $g \circ f_{r}$ and $f_{r} \circ \psi(g)$ are homotopic.

Proposition

Let ψ be defined on $H=\left\langle T^{2}, S, S^{T}\right\rangle<\mathcal{G}$ by

$$
\psi\left(T^{2}\right)=S^{-1} T^{-1}, \quad \psi(S)=T, \quad \psi\left(S^{T}\right)=1
$$

Then $g \circ f_{r}$ and $f_{r} \circ \psi(g)$ are homotopic.
Consider

$$
\bar{\psi}: g \mapsto \begin{cases}\psi(g) & \text { if } g \text { belongs to } H, \\ T \psi\left(g T^{-1}\right) & \text { otherwise. }\end{cases}
$$

Proposition

Let ψ be defined on $H=\left\langle T^{2}, S, S^{T}\right\rangle<\mathcal{G}$ by

$$
\psi\left(T^{2}\right)=S^{-1} T^{-1}, \quad \psi(S)=T, \quad \psi\left(S^{T}\right)=1
$$

Then $g \circ f_{r}$ and $f_{r} \circ \psi(g)$ are homotopic.
Consider

$$
\bar{\psi}: g \mapsto \begin{cases}\psi(g) & \text { if } g \text { belongs to } H \\ T \psi\left(g T^{-1}\right) & \text { otherwise. }\end{cases}
$$

Then for every $g \in \mathcal{G}$ the branched coverings $f_{r} \circ g$ and $f_{r} \circ \bar{\psi}(g)$ are combinatorially equivalent.

- $f_{r} \circ T^{4 n} \sim f_{r} \circ T^{n}$,
- $f_{r} \circ T^{4 n+1} \sim f_{r} \circ T$,
- $f_{r} \circ T^{4 n+2} \sim f_{r} \circ T$,
- $f_{r} \circ T^{4 n+3} \sim f_{r} \circ T^{n}$.

The map $\bar{\psi}$ is contracting on \mathcal{G} :

The map $\bar{\psi}$ is contracting on \mathcal{G} : for every $g \in \mathcal{G}$ there exists n such that

$$
\bar{\psi}^{m}(g) \in\left\{1, T, T^{-1}, T^{2} S, S^{-1}\right\}
$$

for all $m \geq n$

The map $\bar{\psi}$ is contracting on \mathcal{G} : for every $g \in \mathcal{G}$ there exists n such that

$$
\bar{\psi}^{m}(g) \in\left\{1, T, T^{-1}, T^{2} S, S^{-1}\right\}
$$

for all $m \geq n$
Here 1 and T are fixed by $\bar{\psi}$ and the last three elements form a cycle under the action of $\bar{\psi}$.

The map $\bar{\psi}$ is contracting on \mathcal{G} : for every $g \in \mathcal{G}$ there exists n such that

$$
\bar{\psi}^{m}(g) \in\left\{1, T, T^{-1}, T^{2} S, S^{-1}\right\}
$$

for all $m \geq n$
Here 1 and T are fixed by $\bar{\psi}$ and the last three elements form a cycle under the action of $\bar{\psi}$.

This solves the problem for every $g \in \mathcal{G}$.

Dynamics on the Teichmüller space

The Teichmüller space $\mathcal{T}_{P_{f}}$ modelled on $\left(S^{2}, P_{f}\right)$ is the space of homeomorphisms

$$
\tau: S^{2} \rightarrow \widehat{\mathbb{C}}
$$

where $\tau_{1} \sim \tau_{2}$ if \exists an automorphism $h: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that $h \circ \tau_{1}$ is isotopic to τ_{2} rel P_{f}.

Dynamics on the Teichmüller space

The Teichmüller space $\mathcal{T}_{P_{f}}$ modelled on $\left(S^{2}, P_{f}\right)$ is the space of homeomorphisms

$$
\tau: S^{2} \rightarrow \widehat{\mathbb{C}}
$$

where $\tau_{1} \sim \tau_{2}$ if \exists an automorphism $h: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that $h \circ \tau_{1}$ is isotopic to τ_{2} rel P_{f}.
$\mathcal{T}_{P_{f}}$ is the universal covering of the moduli space $\mathcal{M}_{P_{f}}$, i.e., the space of injective maps

$$
\tau: P_{f} \hookrightarrow \widehat{\mathbb{C}}
$$

modulo post-compositions with Möbius transformations.

Dynamics on the Teichmüller space

The Teichmüller space $\mathcal{T}_{P_{f}}$ modelled on $\left(S^{2}, P_{f}\right)$ is the space of homeomorphisms

$$
\tau: S^{2} \rightarrow \widehat{\mathbb{C}}
$$

where $\tau_{1} \sim \tau_{2}$ if \exists an automorphism $h: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ such that $h \circ \tau_{1}$ is isotopic to τ_{2} rel P_{f}.
$\mathcal{T}_{P_{f}}$ is the universal covering of the moduli space $\mathcal{M}_{P_{f}}$, i.e., the space of injective maps

$$
\tau: P_{f} \hookrightarrow \widehat{\mathbb{C}}
$$

modulo post-compositions with Möbius transformations.
The covering map is $\left.\tau \mapsto \tau\right|_{P_{f}}$.

Consider $f=f_{r} \circ g$ for $g \in \mathcal{G}$.

Consider $f=f_{r} \circ g$ for $g \in \mathcal{G}$. Then $P_{f}=\left\{\infty, 0, c, c^{2}+c\right\}$ and we may assume that

$$
\tau(\infty)=\infty, \quad \tau(0)=0, \quad \tau(c)=1
$$

Consider $f=f_{r} \circ g$ for $g \in \mathcal{G}$. Then $P_{f}=\left\{\infty, 0, c, c^{2}+c\right\}$ and we may assume that

$$
\tau(\infty)=\infty, \quad \tau(0)=0, \quad \tau(c)=1
$$

Then every $\tau \in \mathcal{M}_{P_{f}}$ is determined by $p=\tau\left(c^{2}+c\right) \in \widehat{\mathbb{C}} \backslash\{\infty, 1,0\}$.

Consider $f=f_{r} \circ g$ for $g \in \mathcal{G}$. Then $P_{f}=\left\{\infty, 0, c, c^{2}+c\right\}$ and we may assume that

$$
\tau(\infty)=\infty, \quad \tau(0)=0, \quad \tau(c)=1
$$

Then every $\tau \in \mathcal{M}_{P_{f}}$ is determined by $p=\tau\left(c^{2}+c\right) \in \widehat{\mathbb{C}} \backslash\{\infty, 1,0\}$. Hence, $\mathcal{M}_{P_{f}} \cong \widehat{\mathbb{C}} \backslash\{\infty, 1,0\}$.

For every $\tau \in \mathcal{T}_{P_{f}}$ there exist unique $\tau^{\prime} \in \mathcal{T}_{P_{f}}$ and $f_{\tau} \in \mathbb{C}(z)$ such that the diagram

$$
\begin{aligned}
& S^{2} \xrightarrow{f} S^{2} \\
& \begin{array}{lll}
l^{\prime} & & \\
\widehat{\mathbb{C}} & \xrightarrow{\tau_{\tau}} & \xrightarrow{〔}
\end{array}
\end{aligned}
$$

is commutative.

For every $\tau \in \mathcal{T}_{P_{f}}$ there exist unique $\tau^{\prime} \in \mathcal{T}_{P_{f}}$ and $f_{\tau} \in \mathbb{C}(z)$ such that the diagram

is commutative.
The map $\sigma_{f}: \mathcal{T}_{P_{f}} \rightarrow \mathcal{T}_{P_{f}}: \tau \mapsto \tau^{\prime}$ has at most one fixed point.

For every $\tau \in \mathcal{T}_{P_{f}}$ there exist unique $\tau^{\prime} \in \mathcal{T}_{P_{f}}$ and $f_{\tau} \in \mathbb{C}(z)$ such that the diagram

$$
\begin{array}{lll}
S^{2} & \xrightarrow{f} & S^{2} \\
l^{\tau^{\prime}} & & \\
\tau_{\mathbb{C}} & & \\
f_{\tau} & \widehat{\mathbb{C}}
\end{array}
$$

is commutative.
The map $\sigma_{f}: \mathcal{T}_{P_{f}} \rightarrow \mathcal{T}_{P_{f}}: \tau \mapsto \tau^{\prime}$ has at most one fixed point. If τ is a fixed point, then f is combinatorially equivalent to f_{τ}.

For every $\tau \in \mathcal{T}_{P_{f}}$ there exist unique $\tau^{\prime} \in \mathcal{T}_{P_{f}}$ and $f_{\tau} \in \mathbb{C}(z)$ such that the diagram

$$
\begin{array}{lll}
S^{2} & \xrightarrow{f} & S^{2} \\
l^{\tau^{\prime}} & & \\
\overbrace{\mathbb{C}} & \xrightarrow{f_{\tau}} & \xrightarrow{\widehat{\mathbb{C}}}
\end{array}
$$

is commutative.
The map $\sigma_{f}: \mathcal{T}_{P_{f}} \rightarrow \mathcal{T}_{P_{f}}: \tau \mapsto \tau^{\prime}$ has at most one fixed point. If τ is a fixed point, then f is combinatorially equivalent to f_{τ}. The fixed point (if exists) is

$$
\lim _{n \rightarrow \infty} \sigma_{f}^{n}\left(\tau_{0}\right)
$$

Let us compute σ_{f}.

Let us compute σ_{f}. Denote $p_{0}=\tau^{\prime}\left(c^{2}+c\right)$ and $p_{1}=\tau\left(c^{2}+c\right)$.

Let us compute σ_{f}. Denote $p_{0}=\tau^{\prime}\left(c^{2}+c\right)$ and $p_{1}=\tau\left(c^{2}+c\right)$.

Let us compute σ_{f}.
Denote $p_{0}=\tau^{\prime}\left(c^{2}+c\right)$ and $p_{1}=\tau\left(c^{2}+c\right)$.

Then f_{τ} is a quadratic polynomial with critical point 0 such that

$$
f_{\tau}(0)=1, \quad f_{\tau}(1)=p_{1}, \quad f_{\tau}\left(p_{0}\right)=0
$$

Let us compute σ_{f}.
Denote $p_{0}=\tau^{\prime}\left(c^{2}+c\right)$ and $p_{1}=\tau\left(c^{2}+c\right)$.

Then f_{τ} is a quadratic polynomial with critical point 0 such that

$$
f_{\tau}(0)=1, \quad f_{\tau}(1)=p_{1}, \quad f_{\tau}\left(p_{0}\right)=0 .
$$

We get $f_{\tau}(z)=a z^{2}+1$ and $a p_{0}^{2}+1=0$, hence $a=-\frac{1}{p_{0}^{2}}$ and

$$
p_{1}=1-\frac{1}{p_{0}^{2}}, \quad f_{\tau}(z)=1-\frac{z^{2}}{p_{0}^{2}}
$$

We have proved
Proposition
The correspondence $\sigma_{f}(\tau) \mapsto \tau$ on $\mathcal{T}_{P_{f}}$ is projected by the universal covering map to the rational function

$$
P(z)=1-\frac{1}{z^{2}}
$$

on the moduli space $\mathcal{M}_{P_{f}}=\widehat{\mathbb{C}} \backslash\{\infty, 0,1\}$.

We have proved

Proposition

The correspondence $\sigma_{f}(\tau) \mapsto \tau$ on $\mathcal{T}_{P_{f}}$ is projected by the universal covering map to the rational function

$$
P(z)=1-\frac{1}{z^{2}}
$$

on the moduli space $\mathcal{M}_{P_{f}}=\widehat{\mathbb{C}} \backslash\{\infty, 0,1\}$.
If τ is the fixed point of σ_{f}, then f is equivalent to $f_{\tau}=1-\frac{z^{2}}{p^{2}}$, where p is the corresponding fixed point of P in the moduli space $\widehat{\mathbb{C}} \backslash\{\infty, 0,1\}$.

Fix a basepoint $t_{0} \in \mathcal{M}_{P_{f}}$ corresponding to the "rabbit".

Fix a basepoint $t_{0} \in \mathcal{M}_{P_{f}}$ corresponding to the "rabbit".

Fix a basepoint $t_{0} \in \mathcal{M}_{P_{f}}$ corresponding to the "rabbit".

Fix a basepoint $t_{0} \in \mathcal{M}_{P_{f}}$ corresponding to the "rabbit".

Proposition

Let $g \in \mathcal{G}$ be represented by a loop $\gamma \in \pi_{1}\left(\mathcal{M}_{P_{f}}, t_{0}\right)$. Then

$$
\lim _{n \rightarrow \infty} \sigma_{f_{r} \circ g}^{n}\left(\tau_{0}\right)
$$

is projected onto the end of the path

$$
\gamma \gamma_{1} \gamma_{2} \ldots
$$

in $\mathcal{M}_{P_{f}}$, where γ_{n} continues γ_{n-1} and is a preimage of γ_{n-1} under $1-\frac{1}{z^{2}}$.

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one map on \mathbb{P}^{2}.

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one map on \mathbb{P}^{2}.

$$
F\binom{z}{p}=\binom{1-\frac{z^{2}}{p^{2}}}{1-\frac{1}{p^{2}}},
$$

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one map on \mathbb{P}^{2}.

$$
F\binom{z}{p}=\binom{1-\frac{z^{2}}{p^{2}}}{1-\frac{1}{p^{2}}},
$$

or

$$
F([z: p: u])=\left[p^{2}-z^{2}: p^{2}-u^{2}: p^{2}\right] .
$$

A 2-dimensional iteration

Let us put together iteration on the moduli space and on the plane in one map on \mathbb{P}^{2}.

$$
F\binom{z}{p}=\binom{1-\frac{z^{2}}{p^{2}}}{1-\frac{1}{p^{2}}},
$$

or

$$
F([z: p: u])=\left[p^{2}-z^{2}: p^{2}-u^{2}: p^{2}\right] .
$$

Its post-critical set is $\{z=0\} \cup\{z=1\} \cup\{z=p\} \cup\{p=0\} \cup\{p=1\}$ and the line at infinity.

The Julia set of F is projected by $(z, p) \mapsto p$ onto the Julia set of $P(p)=1-\frac{1}{p^{2}}$.

The Julia set of F is projected by $(z, p) \mapsto p$ onto the Julia set of $P(p)=1-\frac{1}{p^{2}}$.

The fibers of the projection are the Julia sets of the iteration

$$
z, \quad f_{p_{1}}(z), \quad f_{p_{2}} \circ f_{p_{1}}(z), \quad f_{p_{3}} \circ f_{p_{2}} \circ f_{p_{1}}(z), \ldots,
$$

where $p_{n+1}=P\left(p_{n}\right)$.

A minimal Cantor set of 3-generated groups

The iterated monodromy groups of the backward iterations

$$
\cdots \xrightarrow{f_{p_{3}}} z_{2} \xrightarrow{f_{p_{2}}} z_{1} \xrightarrow{f_{p_{1}}} z_{0},
$$

where $p_{n-1}=P\left(p_{n}\right)$,

A minimal Cantor set of 3-generated groups

The iterated monodromy groups of the backward iterations

$$
\cdots \xrightarrow{f_{p_{3}}} z_{2} \xrightarrow{f_{p_{2}}} z_{1} \xrightarrow{f_{p_{1}}} z_{0},
$$

where $p_{n-1}=P\left(p_{n}\right)$, is a Cantor set of 3-generated groups G_{w} with countable dense isomorphism classes.

A minimal Cantor set of 3-generated groups

The iterated monodromy groups of the backward iterations

$$
\cdots \xrightarrow{f_{p_{3}}} z_{2} \xrightarrow{f_{p_{2}}} z_{1} \xrightarrow{f_{p_{1}}} z_{0},
$$

where $p_{n-1}=P\left(p_{n}\right)$, is a Cantor set of 3-generated groups G_{w} with countable dense isomorphism classes.

For any finite set of relations between the generators of $G_{w_{1}}$ there exists a generating set of $G_{w_{2}}$ with the same relations.

Twisting $z^{2}+i$

Let a and b be the Dehn twists

The corresponding map on the moduli space is

$$
P(p)=\left(1-\frac{2}{p}\right)^{2}
$$

The corresponding map on the moduli space is

$$
P(p)=\left(1-\frac{2}{p}\right)^{2}
$$

and the map on \mathbb{P}^{2} is

$$
F\binom{z}{p}=\binom{\left(1-\frac{2 z}{p}\right)^{2}}{\left(1-\frac{2}{p}\right)^{2}}
$$

or

$$
F[z: p: u]=\left[(p-2 z)^{2}:(p-2 u)^{2}: p^{2}\right] .
$$

The corresponding map on the moduli space is

$$
P(p)=\left(1-\frac{2}{p}\right)^{2}
$$

and the map on \mathbb{P}^{2} is

$$
F\binom{z}{p}=\binom{\left(1-\frac{2 z}{p}\right)^{2}}{\left(1-\frac{2}{p}\right)^{2}}
$$

or

$$
F[z: p: u]=\left[(p-2 z)^{2}:(p-2 u)^{2}: p^{2}\right] .
$$

This map was studied by J. E. Fornæss and N. Sibony (1992).

Solution

Consider the group $\mathbb{Z}^{2} \rtimes C_{4}$ of affine transformations of \mathbb{C}

$$
z \mapsto i^{k} z+z_{0},
$$

where $k \in \mathbb{Z}$ and $z_{0} \in \mathbb{Z}[i]$.

Solution

Consider the group $\mathbb{Z}^{2} \rtimes C_{4}$ of affine transformations of \mathbb{C}

$$
z \mapsto i^{k} z+z_{0},
$$

where $k \in \mathbb{Z}$ and $z_{0} \in \mathbb{Z}[i]$. It is the fundamental group of the orbifold $(4,4,2)$, which is associated with $(1-2 / p)^{2}$.

Solution

Consider the group $\mathbb{Z}^{2} \rtimes C_{4}$ of affine transformations of \mathbb{C}

$$
z \mapsto i^{k} z+z_{0}
$$

where $k \in \mathbb{Z}$ and $z_{0} \in \mathbb{Z}[i]$. It is the fundamental group of the orbifold $(4,4,2)$, which is associated with $(1-2 / p)^{2}$.

We have a natural homomorphism $\phi: \mathcal{G} \rightarrow \mathbb{Z}^{2} \rtimes C_{4}$

$$
a \mapsto-z+1, \quad b \mapsto i z
$$

Let $g \in \mathcal{G}$ be arbitrary. Then $f_{i} \circ g$ is either

- equivalent to $z^{2}+i$,

Let $g \in \mathcal{G}$ be arbitrary. Then $f_{i} \circ g$ is either

- equivalent to $z^{2}+i$,
- or to $z^{2}-i$

Let $g \in \mathcal{G}$ be arbitrary. Then $f_{i} \circ g$ is either

- equivalent to $z^{2}+i$,
- or to $z^{2}-i$
- or is obstructed,

Let $g \in \mathcal{G}$ be arbitrary. Then $f_{i} \circ g$ is either

- equivalent to $z^{2}+i$,
- or to $z^{2}-i$
- or is obstructed,
i.e., is not equivalent to any rational function.

Let $g \in \mathcal{G}$ be arbitrary. Then $f_{i} \circ g$ is either

- equivalent to $z^{2}+i$,
- or to $z^{2}-i$
- or is obstructed,
i.e., is not equivalent to any rational function.

It depends only on $\phi(g)$, which of these cases takes place.

The answer

Obstructed polynomials

The iterated monodromy group of obstructed polynomials $f_{i} \circ g$ is a Grigorchuk group (very similar to the example constructed as a solution of a problem posed by John Milnor in 1968).

The iterated monodromy group of obstructed polynomials $f_{i} \circ g$ is a Grigorchuk group (very similar to the example constructed as a solution of a problem posed by John Milnor in 1968).
A. Erschler proved that the growth of this group has bounds

$$
\exp \left(\frac{n}{\ln ^{2+\epsilon}(n)}\right) \prec v(n) \prec \exp \left(\frac{n}{\ln ^{1-\epsilon}(n)}\right)
$$

for all $\epsilon>0$.

The iterated monodromy group of obstructed polynomials $f_{i} \circ g$ is a Grigorchuk group (very similar to the example constructed as a solution of a problem posed by John Milnor in 1968).
A. Erschler proved that the growth of this group has bounds

$$
\exp \left(\frac{n}{\ln ^{2+\epsilon}(n)}\right) \prec v(n) \prec \exp \left(\frac{n}{\ln ^{1-\epsilon}(n)}\right)
$$

for all $\epsilon>0$.
IMG $\left(z^{2}+i\right)$ also has intermediate growth (Kai-Uwe Bux and Rodrigo Pérez, 2004)

