A Cantor set in the space of 3-generated groups

Volodymyr Nekrashevych

May 6, 2006,
Vanderbilt

Binary tree

Notation

Notation

Notation

$$
g=\left(g_{0}, g_{1}\right)
$$

$$
g(0 v)=0 g_{0}(v)
$$

$$
g(1 v)=1 g_{1}(v)
$$

Notation

$$
g=\left(g_{0}, g_{1}\right)
$$

$$
g(0 v)=0 g_{0}(v)
$$

$$
g(1 v)=1 g_{1}(v)
$$

Notation

$$
g=\left(g_{0}, g_{1}\right)
$$

$$
g(0 v)=0 g_{0}(v)
$$

$$
g(1 v)=1 g_{1}(v)
$$

Notation

$$
g=\left(g_{0}, g_{1}\right)
$$

$$
g(0 v)=0 g_{0}(v)
$$

$$
g(1 v)=1 g_{1}(v)
$$

$$
g=\sigma\left(g_{0}, g_{1}\right)
$$

$$
g(0 v)=1 g_{0}(v)
$$

$$
g(1 v)=0 g_{1}(v)
$$

The Family \mathcal{D}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.

The Family \mathcal{D}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$. Define

$$
\begin{aligned}
\alpha_{w} & =\sigma, \\
\beta_{w} & =\left(\alpha_{\bar{w}}, \gamma_{\bar{w}}\right), \\
\gamma_{w} & = \begin{cases}\left(\beta_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \beta_{\bar{w}}\right) & \text { if } x=1 .\end{cases}
\end{aligned}
$$

The Family \mathcal{D}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
& \alpha_{w}=\sigma, \\
& \beta_{w}=\left(\alpha_{\bar{w}}, \gamma_{\bar{w}}\right), \\
& \gamma_{w}= \begin{cases}\left(\beta_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \beta_{\bar{w}}\right) & \text { if } x=1 .\end{cases}
\end{aligned}
$$

Let $\mathcal{D}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.

The Family \mathcal{D}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma, \\
\beta_{w} & =\left(\alpha_{\bar{w}}, \gamma_{\bar{w}}\right), \\
\gamma_{w} & = \begin{cases}\left(\beta_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \beta_{\bar{w}}\right) & \text { if } x=1 .\end{cases}
\end{aligned}
$$

Let $\mathcal{D}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.
$\mathcal{D}_{00 \ldots}=\operatorname{IMG}\left(z^{2}+i\right)$
$\mathcal{D}_{11 \ldots}=G_{0101 \ldots}$

The Family \mathcal{D}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma, \\
\beta_{w} & =\left(\alpha_{\bar{w}}, \gamma_{\bar{w}}\right), \\
\gamma_{w} & = \begin{cases}\left(\beta_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \beta_{\bar{w}}\right) & \text { if } x=1 .\end{cases}
\end{aligned}
$$

Let $\mathcal{D}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.
$\mathcal{D}_{00 \ldots}=\operatorname{IMG}\left(z^{2}+i\right)$
$\mathcal{D}_{11 \ldots}=G_{0101 \ldots}$ (a Grigorchuk group).

$\alpha_{11 \ldots}, \beta_{11 \ldots .}, \gamma_{11 \ldots}$

Proposition

Suppose that h_{0}, h_{1}, h_{2} are conjugate to $\alpha_{w}, \beta_{w}, \gamma_{w} \operatorname{in} \operatorname{Aut}\left(X^{*}\right)$. Then there exists a unique $w^{\prime} \in\{0,1\}^{\infty}$ such that h_{0}, h_{1}, h_{2} are simultaneously conjugate to $\alpha_{w^{\prime}}, \beta_{w^{\prime}}, \gamma_{w^{\prime}}$.

Proposition

Suppose that h_{0}, h_{1}, h_{2} are conjugate to $\alpha_{w}, \beta_{w}, \gamma_{w}$ in $\operatorname{Aut}\left(X^{*}\right)$. Then there exists a unique $w^{\prime} \in\{0,1\}^{\infty}$ such that h_{0}, h_{1}, h_{2} are simultaneously conjugate to $\alpha_{w^{\prime}}, \beta_{w^{\prime}}, \gamma_{w^{\prime}}$.

Corollary

For any $w \in\{0,1\}^{\infty}$ the set of $w^{\prime} \in\{0,1\}^{\infty}$ such that \mathcal{D}_{w} is conjugate with $\mathcal{D}_{w^{\prime}}$ is at most countable.

Proposition

Suppose that h_{0}, h_{1}, h_{2} are conjugate to $\alpha_{w}, \beta_{w}, \gamma_{w}$ in $\operatorname{Aut}\left(X^{*}\right)$. Then there exists a unique $w^{\prime} \in\{0,1\}^{\infty}$ such that h_{0}, h_{1}, h_{2} are simultaneously conjugate to $\alpha_{w^{\prime}}, \beta_{w^{\prime}}, \gamma_{w^{\prime}}$.

Corollary

For any $w \in\{0,1\}^{\infty}$ the set of $w^{\prime} \in\{0,1\}^{\infty}$ such that \mathcal{D}_{w} is conjugate with $\mathcal{D}_{w^{\prime}}$ is at most countable.

Theorem
Groups $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic if and only if they are conjugate in $\operatorname{Aut}\left(X^{*}\right)$.

The Family \mathcal{R}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.

The Family \mathcal{R}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma\left(1, \gamma_{\bar{w}}\right), \\
\beta_{w} & = \begin{cases}\left(\alpha_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \alpha_{\bar{w}}\right) & \text { if } x=1,\end{cases} \\
\gamma_{w} & =\left(1, \beta_{\bar{w}}\right) .
\end{aligned}
$$

The Family \mathcal{R}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma\left(1, \gamma_{\bar{w}}\right), \\
\beta_{w} & = \begin{cases}\left(\alpha_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \alpha_{\bar{w}}\right) & \text { if } x=1,\end{cases} \\
\gamma_{w} & =\left(1, \beta_{\bar{w}}\right) .
\end{aligned}
$$

Let $\mathcal{R}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.

The Family \mathcal{R}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma\left(1, \gamma_{\bar{w}}\right), \\
\beta_{w} & = \begin{cases}\left(\alpha_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \alpha_{\bar{w}}\right) & \text { if } x=1,\end{cases} \\
\gamma_{w} & =\left(1, \beta_{\bar{w}}\right) .
\end{aligned}
$$

Let $\mathcal{R}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.
$\mathcal{R}_{11 \ldots}=\operatorname{IMG}\left(z^{2}+(-0.1226 \ldots+0.7449 \ldots i)\right)$ and $\mathcal{R}_{00 \ldots}=\operatorname{IMG}\left(z^{2}-1.7549 \ldots\right)$.

The Space of Finitely Generated Groups

Let $F_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid \emptyset\right\rangle$.

The Space of Finitely Generated Groups

Let $F_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid \emptyset\right\rangle$.
The set \mathfrak{G}_{n} of quotients of F_{n}, i.e., the set of marked n-generated groups

$$
\mathfrak{G}_{n}=\left\{\left(G, a_{1}, \ldots, a_{n}\right):\left\langle a_{1}, \ldots, a_{n}\right\rangle=G\right\}
$$

has a natural topology.

The Space of Finitely Generated Groups

Let $F_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid \emptyset\right\rangle$.
The set \mathfrak{G}_{n} of quotients of F_{n}, i.e., the set of marked n-generated groups

$$
\mathfrak{G}_{n}=\left\{\left(G, a_{1}, \ldots, a_{n}\right):\left\langle a_{1}, \ldots, a_{n}\right\rangle=G\right\}
$$

has a natural topology.
Two groups are close if their Cayley graphs coincide on a large ball.

The Space of Finitely Generated Groups

Let $F_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid \emptyset\right\rangle$.
The set \mathfrak{G}_{n} of quotients of F_{n}, i.e., the set of marked n-generated groups

$$
\mathfrak{G}_{n}=\left\{\left(G, a_{1}, \ldots, a_{n}\right):\left\langle a_{1}, \ldots, a_{n}\right\rangle=G\right\}
$$

has a natural topology.
Two groups are close if their Cayley graphs coincide on a large ball. It is induced from the direct product topology on $2^{F_{n}}$, if we identify a group with the kernel of the canonical epimorphism.

The space \mathfrak{G}_{n} was used by R. Grigorchuk in his study of growth of groups (1983).

The space \mathfrak{G}_{n} was used by R. Grigorchuk in his study of growth of groups (1983). He studied a Cantor set set $\left\{G_{w}\right\}$ of 3-generated groups.

The space \mathfrak{G}_{n} was used by R. Grigorchuk in his study of growth of groups (1983). He studied a Cantor set set $\left\{G_{w}\right\}$ of 3-generated groups.
C. Champetier (2000) proved that the isomorphism relation on \mathfrak{G}_{n} is not smooth

The space \mathfrak{G}_{n} was used by R. Grigorchuk in his study of growth of groups (1983). He studied a Cantor set set $\left\{G_{w}\right\}$ of 3-generated groups.
C. Champetier (2000) proved that the isomorphism relation on \mathfrak{G}_{n} is not smooth and showed, using methods of A. Olshanskiy, that the closure of the set of hyperbolic groups contains "exotic groups" (and is also a Cantor set).

The space \mathfrak{G}_{n} was used by R. Grigorchuk in his study of growth of groups (1983). He studied a Cantor set set $\left\{G_{w}\right\}$ of 3-generated groups.
C. Champetier (2000) proved that the isomorphism relation on \mathfrak{G}_{n} is not smooth and showed, using methods of A. Olshanskiy, that the closure of the set of hyperbolic groups contains "exotic groups" (and is also a Cantor set).
Y. Stadler and L. Guyot studied the set of limit points of $B(m, n)$ as $n \rightarrow \infty$.

Theorem

The $\operatorname{map}\{0,1\}^{\infty} \rightarrow \mathfrak{G}_{3}$

$$
w \mapsto\left(\mathcal{R}_{w}, \alpha_{w}, \beta_{w}, \gamma_{w}\right)
$$

is a homeomorphic embedding.

Theorem
The $\operatorname{map}\{0,1\}^{\infty} \rightarrow \mathfrak{G}_{3}$

$$
w \mapsto\left(\mathcal{R}_{w}, \alpha_{w}, \beta_{w}, \gamma_{w}\right)
$$

is a homeomorphic embedding.
Let $\Omega \subset\{0,1\}^{\infty}$ be the set of sequences which have infinitely many zeros.
Then the map $\Omega \rightarrow \mathfrak{G}_{3}$

$$
w \mapsto\left(\mathcal{D}_{w}, \alpha_{w}, \beta_{w}, \gamma_{w}\right)
$$

is a homeomorphic embedding.

Theorem
Two groups $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic if and only if the sequences w_{1} and w_{2} are cofinal, i.e., if they are of the form $w_{1}=v_{1} u$ and $w_{2}=v_{2} u$ for $\left|v_{1}\right|=\left|v_{2}\right|$.

Theorem

Two groups $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic if and only if the sequences w_{1} and w_{2} are cofinal, i.e., if they are of the form $w_{1}=v_{1} u$ and $w_{2}=v_{2} u$ for $\left|v_{1}\right|=\left|v_{2}\right|$.
The isomorphism classes are dense and countable in the family $\left\{\mathcal{R}_{w}\right\}_{w \in\{0,1\}^{\infty}}$.

Theorem

Two groups $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic if and only if the sequences w_{1} and w_{2} are cofinal, i.e., if they are of the form $w_{1}=v_{1} u$ and $w_{2}=v_{2} u$ for $\left|v_{1}\right|=\left|v_{2}\right|$.
The isomorphism classes are dense and countable in the family $\left\{\mathcal{R}_{w}\right\}_{w \in\{0,1\}^{\infty}}$.

Corollary

For any $w_{1}, w_{2} \in\{0,1\}^{\infty}$ and any finite set of relations and inequalities between the generators of $\mathcal{R}_{w_{1}}$ there are generators of $\mathcal{R}_{w_{2}}$ such that the same relations and inequalities hold.

Theorem
Let

$$
R_{i}=\left\{\left[\beta^{\alpha^{2 n+i}}, \gamma\right],\left[\beta^{\alpha^{2 n+1}}, \beta\right],\left[\gamma^{\alpha^{2 n+1}}, \gamma\right]: n \in \mathbb{Z}\right\}
$$

for $i=0,1$, and

$$
\begin{array}{ll}
\varphi_{0}(\alpha)=\alpha \beta \alpha^{-1}, & \varphi_{1}(\alpha)=\beta \\
\varphi_{0}(\beta)=\gamma, & \varphi_{1}(\beta)=\gamma \\
\varphi_{0}(\gamma)=\alpha^{2}, & \varphi_{1}(\gamma)=\alpha^{2}
\end{array}
$$

Then for every $w=x_{1} x_{2} \ldots \in\{0,1\}^{\infty}$

$$
\bigcup_{n=1}^{\infty} \varphi_{x_{1}} \circ \varphi_{x_{2}} \circ \cdots \circ \varphi_{x_{n-1}}\left(R_{x_{n}}\right)
$$

is a set of defining relations of \mathcal{R}_{w}.

Universal Groups of the Families

Let \mathcal{D} be the subgroup of $\prod_{w \in\{0,1,2\} \infty} \mathcal{D}_{w}$ generated by the "diagonal" elements

$$
\left(\alpha_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\beta_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\gamma_{w}\right)_{w \in\{0,1\}^{\infty}} .
$$

Universal Groups of the Families

Let \mathcal{D} be the subgroup of $\prod_{w \in\{0,1,2\} \infty} \mathcal{D}_{w}$ generated by the "diagonal" elements

$$
\left(\alpha_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\beta_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\gamma_{w}\right)_{w \in\{0,1\}^{\infty}} .
$$

This group can be defined as

$$
\langle\alpha, \beta, \gamma \mid \emptyset\rangle / \bigcap_{w \in\{0,1\}^{\infty}} N_{w},
$$

where N_{w} is the kernel of the epimorphism $\alpha \mapsto \alpha_{w}, \beta \mapsto \beta_{w}, \gamma \mapsto \gamma_{w}$.

Universal Groups of the Families

Let \mathcal{D} be the subgroup of $\prod_{w \in\{0,1,2\} \infty} \mathcal{D}_{w}$ generated by the "diagonal" elements

$$
\left(\alpha_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\beta_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\gamma_{w}\right)_{w \in\{0,1\}^{\infty}} .
$$

This group can be defined as

$$
\langle\alpha, \beta, \gamma \mid \emptyset\rangle / \bigcap_{w \in\{0,1\}^{\infty}} N_{w}
$$

where N_{w} is the kernel of the epimorphism $\alpha \mapsto \alpha_{w}, \beta \mapsto \beta_{w}, \gamma \mapsto \gamma_{w}$. Let us call \mathcal{D} the universal group of the family $\left\{\mathcal{D}_{w}\right\}$.

The universal group \mathcal{D} is also self-similar.

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

Identify $1 \leftrightarrows(0,0), 2 \leftrightarrows(1,0), 3 \leftrightarrows(0,1)$ and $4 \leftrightarrows(1,1)$

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

Identify $1 \leftrightarrows(0,0), 2 \leftrightarrows(1,0), 3 \leftrightarrows(0,1)$ and $4 \leftrightarrows(1,1)$.
Then \mathcal{D} acts only on the first coordinates of letters.

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

Identify $1 \leftrightarrows(0,0), 2 \leftrightarrows(1,0), 3 \leftrightarrows(0,1)$ and $4 \leftrightarrows(1,1)$.
Then \mathcal{D} acts only on the first coordinates of letters.
Let $T_{y_{1} y_{2} \ldots}$ be the subtree consisting of the words $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$.

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

Identify $1 \leftrightarrows(0,0), 2 \leftrightarrows(1,0), 3 \leftrightarrows(0,1)$ and $4 \leftrightarrows(1,1)$.
Then \mathcal{D} acts only on the first coordinates of letters.
Let $T_{y_{1} y_{2} \ldots}$ be the subtree consisting of the words
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$.
The subtrees T_{w} are \mathcal{D}-invariant.

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

Identify $1 \leftrightarrows(0,0), 2 \leftrightarrows(1,0), 3 \leftrightarrows(0,1)$ and $4 \leftrightarrows(1,1)$.
Then \mathcal{D} acts only on the first coordinates of letters.
Let $T_{y_{1} y_{2} \ldots}$ be the subtree consisting of the words
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$.
The subtrees T_{w} are \mathcal{D}-invariant.
Restriction of \mathcal{D} onto T_{w} is \mathcal{D}_{w}.

A bigger group

Let $\widetilde{\mathcal{D}}$ be the group generated by

$$
\begin{array}{ll}
\alpha=(12)(34), & a=(13)(24), \\
\beta=(\alpha, \gamma, \alpha, \gamma), & b=(a \alpha, a \alpha, c, c), \\
\gamma=(\beta, 1,1, \beta), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

A bigger group

Let $\widetilde{\mathcal{D}}$ be the group generated by

$$
\begin{array}{ll}
\alpha=(12)(34), & a=(13)(24), \\
\beta=(\alpha, \gamma, \alpha, \gamma), & b=(a \alpha, a \alpha, c, c), \\
\gamma=(\beta, 1,1, \beta), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

Note that the group $\widetilde{\mathcal{D}}$ permutes the subtrees T_{w}.

Proposition

The following relations hold.

$$
\begin{array}{lll}
\alpha^{a}=\alpha, & \alpha^{b}=\alpha, & \alpha^{c}=\alpha \\
\beta^{a}=\beta, & \beta^{b}=\beta, & \beta^{c}=\beta^{\gamma} \\
\gamma^{a}=\gamma^{\alpha}, & \gamma^{b}=\gamma^{\beta}, & \gamma^{c}=\gamma
\end{array}
$$

Proposition

The following relations hold.

$$
\begin{array}{lll}
\alpha^{a}=\alpha, & \alpha^{b}=\alpha, & \alpha^{c}=\alpha \\
\beta^{a}=\beta, & \beta^{b}=\beta, & \beta^{c}=\beta^{\gamma} \\
\gamma^{a}=\gamma^{\alpha}, & \gamma^{b}=\gamma^{\beta}, & \gamma^{c}=\gamma
\end{array}
$$

In particular, $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$.

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_{w} invariant).

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_{w} invariant). Hence, the quotient $H=\mathcal{D} / \mathcal{D}$ acts naturally on the binary tree by the action

$$
a=\sigma, \quad b=(a, c), \quad c=(b, b)
$$

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_{w} invariant). Hence, the quotient $H=\widetilde{\mathcal{D}} / \mathcal{D}$ acts naturally on the binary tree by the action

$$
\begin{array}{ccc}
a=\sigma, & b=(a, c), & c=(b, b) . \\
a=(13)(24) & b=(a \alpha, a \alpha, c, c), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_{w} invariant). Hence, the quotient $H=\widetilde{\mathcal{D}} / \mathcal{D}$ acts naturally on the binary tree by the action

$$
\begin{array}{ccc}
a=\sigma, & b=(a, c), & c=(b, b) . \\
a=(13)(24) & b=(a \alpha, a \alpha, c, c), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

The group $\widetilde{\mathcal{D}}$ permutes the subtrees T_{w} in the same way as H acts on $w \in\{0,1\}^{\infty}$.

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_{w} invariant). Hence, the quotient $H=\widetilde{\mathcal{D}} / \mathcal{D}$ acts naturally on the binary tree by the action

$$
\begin{array}{ccc}
a=\sigma, & b=(a, c), & c=(b, b) . \\
a=(13)(24) & b=(a \alpha, a \alpha, c, c), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

The group $\widetilde{\mathcal{D}}$ permutes the subtrees T_{w} in the same way as H acts on $w \in\{0,1\}^{\infty}$.
Consequently, if w_{1} and w_{2} belong to one H-orbit, then $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic.

An overgroup of \mathcal{R}

Let $\widetilde{\mathcal{R}} \triangleright \mathcal{R}$ be generated by

$$
\begin{aligned}
& \alpha=\sigma(1, \gamma, 1, \gamma), \quad a=\pi(c, c, 1,1), \quad I_{0}=\left(I_{2} c \gamma^{-1}, I_{2} c, I_{2} \gamma^{-1}, I_{2}\right) \\
& \beta=(\alpha, 1,1, \alpha), \quad b=(1,1, a, a), \quad I_{1}=\left(I_{0}, I_{0}, I_{0}, I_{0}\right) \\
& \gamma=(1, \beta, 1, \beta), \quad c=\left(1, \beta, b \beta^{-1}, b\right), \quad I_{2}=\left(I_{1}, I_{1}, l_{1}, l_{1}\right), \\
& \text { where } \sigma=(12)(34):(0, y) \leftrightarrow(1, y) \text { and } \pi=(13)(24):(x, 0) \leftrightarrow(x, 1) \text {. }
\end{aligned}
$$

An overgroup of \mathcal{R}

Let $\widetilde{\mathcal{R}} \triangleright \mathcal{R}$ be generated by

$$
\begin{array}{lll}
\alpha=\sigma(1, \gamma, 1, \gamma), & a=\pi(c, c, 1,1), & I_{0}=\left(I_{2} c \gamma^{-1}, I_{2} c, I_{2} \gamma^{-1}, I_{2}\right) \\
\beta=(\alpha, 1,1, \alpha), & b=(1,1, a, a), & I_{1}=\left(I_{0}, I_{0}, I_{0}, I_{0}\right) \\
\gamma=(1, \beta, 1, \beta), & c=\left(1, \beta, b \beta^{-1}, b\right), & I_{2}=\left(I_{1}, I_{1}, I_{1}, I_{1}\right),
\end{array}
$$

where $\sigma=(12)(34):(0, y) \leftrightarrow(1, y)$ and $\pi=(13)(24):(x, 0) \leftrightarrow(x, 1)$.
The group $\widetilde{\mathcal{R}}$ acts on the second coordinates as

$$
\begin{gathered}
a=\sigma(c, 1), b=(1, a), c=(1, b), \\
r_{0}=\left(r_{2} c, r_{2}\right), r_{1}=\left(r_{0}, r_{0}\right), r_{2}=\left(r_{1}, r_{1}\right)
\end{gathered}
$$

\mathcal{D}_{w} as Iterated Monodromy Groups

Let C_{i} be planes and let $\mathrm{A}_{i}, \mathrm{~B}_{i}, \Gamma_{i} \in C_{i}$. Let $f_{i}: C_{i} \rightarrow C_{i-1}$ by 2 -fold branched coverings such that

\mathcal{D}_{w} as Iterated Monodromy Groups

Let C_{i} be planes and let $\mathrm{A}_{i}, \mathrm{~B}_{i}, \Gamma_{i} \in C_{i}$. Let $f_{i}: C_{i} \rightarrow C_{i-1}$ by 2 -fold branched coverings such that

\mathcal{D}_{w} as Iterated Monodromy Groups

Let C_{i} be planes and let $\mathrm{A}_{i}, \mathrm{~B}_{i}, \Gamma_{i} \in C_{i}$. Let $f_{i}: C_{i} \rightarrow C_{i-1}$ by 2 -fold branched coverings such that

Let us identify C_{0} with \mathbb{C}.

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials).

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively.

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}. f_{i} is a quadratic polynomial such that

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}. f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,
(3) $f_{i}(1)=p_{i-1}$,

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,
(3) $f_{i}(1)=p_{i-1}$,
(3) and $f_{i}\left(p_{i}\right)=1$.

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,
(3) $f_{i}(1)=p_{i-1}$,
(9) and $f_{i}\left(p_{i}\right)=1$.

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials). We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,
(3) $f_{i}(1)=p_{i-1}$,
(3) and $f_{i}\left(p_{i}\right)=1$.

We get $f_{i}=(a z+1)^{2}$ and $a p_{i}+1=-1$,

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials).
We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,
(3) $f_{i}(1)=p_{i-1}$,
(9) and $f_{i}\left(p_{i}\right)=1$.

We get $f_{i}=(a z+1)^{2}$ and $a p_{i}+1=-1$, hence $f_{i}(z)=\left(1-\frac{2 z}{p_{i}}\right)^{2}$, $p_{i-1}=\left(1-\frac{2}{p_{i}}\right)^{2}$.

We get thus a map

We get thus a map

$$
F:\binom{z}{p} \mapsto\binom{\left(1-\frac{2 z}{p_{i}}\right)^{2}}{\left(1-\frac{2}{p_{i}}\right)^{2}} .
$$

We get thus a map

$$
F:\binom{z}{p} \mapsto\binom{\left(1-\frac{2 z}{p_{i}}\right)^{2}}{\left(1-\frac{2}{p_{i}}\right)^{2}} .
$$

$\operatorname{IMG}(F)$ coincides with $\langle a b, a c, \alpha, \beta, \gamma\rangle$ and

We get thus a map

$$
F:\binom{z}{p} \mapsto\binom{\left(1-\frac{2 z}{p_{i}}\right)^{2}}{\left(1-\frac{2}{p_{i}}\right)^{2}} .
$$

IMG (F) coincides with $\langle a b, a c, \alpha, \beta, \gamma\rangle$ and
$\operatorname{IMG}(F) / \mathcal{D} \cong \operatorname{IMG}\left(\left(1-\frac{2}{p}\right)^{2}\right)$.

The family \mathcal{R}_{w} can be defined in the similar way, but starting from the map

$$
\binom{z}{p} \mapsto\binom{1-\frac{z^{2}}{p^{2}}}{1-\frac{1}{p^{2}}}
$$

