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Definition

Notation

g = (g0, g1) g = σ(g0, g1)

g(0v) = 0g0(v)
g(1v) = 1g1(v)
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Definition

Notation

g = (g0, g1) g = σ(g0, g1)

g(0v) = 0g0(v) g(0v) = 1g0(v)
g(1v) = 1g1(v) g(1v) = 0g1(v)
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The Family Dw

Let w ∈ {0, 1}∞ and w = xw .
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Family Dw

The Family Dw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ,

βw = (αw , γw ) ,

γw =

{
(βw , 1) if x = 0,
(1, βw ) if x = 1.
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The Family Dw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ,

βw = (αw , γw ) ,

γw =

{
(βw , 1) if x = 0,
(1, βw ) if x = 1.

Let Dw = 〈αw , βw , γw 〉.
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Family Dw

The Family Dw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ,

βw = (αw , γw ) ,

γw =

{
(βw , 1) if x = 0,
(1, βw ) if x = 1.

Let Dw = 〈αw , βw , γw 〉.
D00... = IMG

(
z2 + i

)

D11... = G0101...
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Family Dw

The Family Dw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ,

βw = (αw , γw ) ,

γw =

{
(βw , 1) if x = 0,
(1, βw ) if x = 1.

Let Dw = 〈αw , βw , γw 〉.
D00... = IMG

(
z2 + i

)

D11... = G0101... (a Grigorchuk group).
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Family Dw

α11..., β11..., γ11...
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Family Dw

Proposition

Suppose that h0, h1, h2 are conjugate to αw , βw , γw in Aut(X ∗). Then

there exists a unique w ′ ∈ {0, 1}∞ such that h0, h1, h2 are simultaneously

conjugate to αw ′ , βw ′ , γw ′ .
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Suppose that h0, h1, h2 are conjugate to αw , βw , γw in Aut(X ∗). Then

there exists a unique w ′ ∈ {0, 1}∞ such that h0, h1, h2 are simultaneously

conjugate to αw ′ , βw ′ , γw ′ .

Corollary

For any w ∈ {0, 1}∞ the set of w ′ ∈ {0, 1}∞ such that Dw is conjugate

with Dw ′ is at most countable.
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Family Dw

Proposition

Suppose that h0, h1, h2 are conjugate to αw , βw , γw in Aut(X ∗). Then

there exists a unique w ′ ∈ {0, 1}∞ such that h0, h1, h2 are simultaneously

conjugate to αw ′ , βw ′ , γw ′ .

Corollary

For any w ∈ {0, 1}∞ the set of w ′ ∈ {0, 1}∞ such that Dw is conjugate

with Dw ′ is at most countable.

Theorem

Groups Dw1 and Dw2 are isomorphic if and only if they are conjugate in

Aut(X ∗).
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The Family Rw

Let w ∈ {0, 1}∞ and w = xw .
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Family Rw

The Family Rw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ (1, γw ) ,

βw =

{
(αw , 1) if x = 0,
(1, αw ) if x = 1,

γw = (1, βw ) .
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The Family Rw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ (1, γw ) ,

βw =

{
(αw , 1) if x = 0,
(1, αw ) if x = 1,

γw = (1, βw ) .

Let Rw = 〈αw , βw , γw 〉.
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Family Rw

The Family Rw

Let w ∈ {0, 1}∞ and w = xw .
Define

αw = σ (1, γw ) ,

βw =

{
(αw , 1) if x = 0,
(1, αw ) if x = 1,

γw = (1, βw ) .

Let Rw = 〈αw , βw , γw 〉.
R11... = IMG

(
z2 + (−0.1226 . . . + 0.7449 . . . i)

)
and

R00... = IMG
(
z2 − 1.7549 . . .

)
.
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The space of finitely generated groups

The Space of Finitely Generated Groups

Let Fn = 〈a1, a2, . . . , an | ∅〉.
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The Space of Finitely Generated Groups

Let Fn = 〈a1, a2, . . . , an | ∅〉.
The set Gn of quotients of Fn, i.e., the set of marked n-generated groups

Gn = {(G , a1, . . . , an) : 〈a1, . . . , an〉 = G}

has a natural topology.
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The space of finitely generated groups

The Space of Finitely Generated Groups

Let Fn = 〈a1, a2, . . . , an | ∅〉.
The set Gn of quotients of Fn, i.e., the set of marked n-generated groups

Gn = {(G , a1, . . . , an) : 〈a1, . . . , an〉 = G}

has a natural topology.
Two groups are close if their Cayley graphs coincide on a large ball.
It is induced from the direct product topology on 2Fn , if we identify a
group with the kernel of the canonical epimorphism.
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The space of finitely generated groups

The space Gn was used by R. Grigorchuk in his study of growth of groups
(1983).
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The space Gn was used by R. Grigorchuk in his study of growth of groups
(1983). He studied a Cantor set set {Gw} of 3-generated groups.

C. Champetier (2000) proved that the isomorphism relation on Gn is not
smooth and showed, using methods of A. Olshanskiy, that the closure of
the set of hyperbolic groups contains “exotic groups” (and is also a Cantor
set).
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The space of finitely generated groups

The space Gn was used by R. Grigorchuk in his study of growth of groups
(1983). He studied a Cantor set set {Gw} of 3-generated groups.

C. Champetier (2000) proved that the isomorphism relation on Gn is not
smooth and showed, using methods of A. Olshanskiy, that the closure of
the set of hyperbolic groups contains “exotic groups” (and is also a Cantor
set).

Y. Stadler and L. Guyot studied the set of limit points of B(m, n) as
n → ∞.
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The space of finitely generated groups

Theorem

The map {0, 1}∞ → G3

w 7→ (Rw , αw , βw , γw )

is a homeomorphic embedding.
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The space of finitely generated groups

Theorem

The map {0, 1}∞ → G3

w 7→ (Rw , αw , βw , γw )

is a homeomorphic embedding.

Let Ω ⊂ {0, 1}∞ be the set of sequences which have infinitely many zeros.

Then the map Ω → G3

w 7→ (Dw , αw , βw , γw )

is a homeomorphic embedding.
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The space of finitely generated groups

Theorem

Two groups Dw1 and Dw2 are isomorphic if and only if the sequences w1

and w2 are cofinal, i.e., if they are of the form w1 = v1u and w2 = v2u for

|v1| = |v2|.
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Two groups Dw1 and Dw2 are isomorphic if and only if the sequences w1

and w2 are cofinal, i.e., if they are of the form w1 = v1u and w2 = v2u for

|v1| = |v2|.
The isomorphism classes are dense and countable in the family

{Rw}w∈{0,1}∞ .
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The space of finitely generated groups

Theorem

Two groups Dw1 and Dw2 are isomorphic if and only if the sequences w1

and w2 are cofinal, i.e., if they are of the form w1 = v1u and w2 = v2u for

|v1| = |v2|.
The isomorphism classes are dense and countable in the family

{Rw}w∈{0,1}∞ .

Corollary

For any w1,w2 ∈ {0, 1}∞ and any finite set of relations and inequalities

between the generators of Rw1 there are generators of Rw2 such that the

same relations and inequalities hold.
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The space of finitely generated groups

Theorem

Let

Ri =
{[

βα2n+i

, γ
]
,
[
βα2n+1

, β
]
,
[
γα2n+1

, γ
]

: n ∈ Z

}

for i = 0, 1, and

ϕ0(α) = αβα−1, ϕ1(α) = β,
ϕ0(β) = γ, ϕ1(β) = γ,
ϕ0(γ) = α2, ϕ1(γ) = α2.

Then for every w = x1x2 . . . ∈ {0, 1}∞

∞⋃

n=1

ϕx1 ◦ ϕx2 ◦ · · · ◦ ϕxn−1(Rxn)

is a set of defining relations of Rw .
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Universal groups of the families

Universal Groups of the Families

Let D be the subgroup of
∏

w∈{0,1,2}∞ Dw generated by the “diagonal”
elements

(αw )w∈{0,1}∞ , (βw )w∈{0,1}∞ , (γw )w∈{0,1}∞ .
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Let D be the subgroup of
∏

w∈{0,1,2}∞ Dw generated by the “diagonal”
elements

(αw )w∈{0,1}∞ , (βw )w∈{0,1}∞ , (γw )w∈{0,1}∞ .

This group can be defined as

〈α, β, γ | ∅〉

/
⋂

w∈{0,1}∞

Nw ,

where Nw is the kernel of the epimorphism α 7→ αw , β 7→ βw , γ 7→ γw .
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Universal groups of the families

Universal Groups of the Families

Let D be the subgroup of
∏

w∈{0,1,2}∞ Dw generated by the “diagonal”
elements

(αw )w∈{0,1}∞ , (βw )w∈{0,1}∞ , (γw )w∈{0,1}∞ .

This group can be defined as

〈α, β, γ | ∅〉

/
⋂

w∈{0,1}∞

Nw ,

where Nw is the kernel of the epimorphism α 7→ αw , β 7→ βw , γ 7→ γw .
Let us call D the universal group of the family {Dw}.
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Universal groups of the families

The universal group D is also self-similar.
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Universal groups of the families

The universal group D is also self-similar. It is generated by

α = (1, 2)(3, 4)

β = (α, γ, α, γ)

γ = (β, 1, 1, β)
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Universal groups of the families

The universal group D is also self-similar. It is generated by

α = (1, 2)(3, 4)

β = (α, γ, α, γ)

γ = (β, 1, 1, β)

Identify 1 � (0, 0), 2 � (1, 0), 3 � (0, 1) and 4 � (1, 1).
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β = (α, γ, α, γ)
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Identify 1 � (0, 0), 2 � (1, 0), 3 � (0, 1) and 4 � (1, 1).
Then D acts only on the first coordinates of letters.
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Universal groups of the families

The universal group D is also self-similar. It is generated by

α = (1, 2)(3, 4)

β = (α, γ, α, γ)

γ = (β, 1, 1, β)

Identify 1 � (0, 0), 2 � (1, 0), 3 � (0, 1) and 4 � (1, 1).
Then D acts only on the first coordinates of letters.
Let Ty1y2... be the subtree consisting of the words
(x1, y1)(x2, y2) . . . (xn, yn).
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The universal group D is also self-similar. It is generated by

α = (1, 2)(3, 4)

β = (α, γ, α, γ)

γ = (β, 1, 1, β)

Identify 1 � (0, 0), 2 � (1, 0), 3 � (0, 1) and 4 � (1, 1).
Then D acts only on the first coordinates of letters.
Let Ty1y2... be the subtree consisting of the words
(x1, y1)(x2, y2) . . . (xn, yn).
The subtrees Tw are D-invariant.

V. Nekrashevych (Texas A&M) A Cantor set of groups May 6, 2006, Vanderbilt 14 / 25



Universal groups of the families

The universal group D is also self-similar. It is generated by

α = (1, 2)(3, 4)

β = (α, γ, α, γ)

γ = (β, 1, 1, β)

Identify 1 � (0, 0), 2 � (1, 0), 3 � (0, 1) and 4 � (1, 1).
Then D acts only on the first coordinates of letters.
Let Ty1y2... be the subtree consisting of the words
(x1, y1)(x2, y2) . . . (xn, yn).
The subtrees Tw are D-invariant.
Restriction of D onto Tw is Dw .
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Universal groups of the families
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Universal groups of the families

A bigger group

Let D̃ be the group generated by

α = (12)(34), a = (13)(24),
β = (α, γ, α, γ) , b = (aα, aα, c , c) ,
γ = (β, 1, 1, β) , c = (bβ, bβ, b, b) .
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Universal groups of the families

A bigger group

Let D̃ be the group generated by

α = (12)(34), a = (13)(24),
β = (α, γ, α, γ) , b = (aα, aα, c , c) ,
γ = (β, 1, 1, β) , c = (bβ, bβ, b, b) .

Note that the group D̃ permutes the subtrees Tw .
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Universal groups of the families

Proposition

The following relations hold.

αa = α, αb = α, αc = α,
βa = β, βb = β, βc = βγ ,
γa = γα, γb = γβ, γc = γ.
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Universal groups of the families

Proposition

The following relations hold.

αa = α, αb = α, αc = α,
βa = β, βb = β, βc = βγ ,
γa = γα, γb = γβ, γc = γ.

In particular, D C D̃.
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Universal groups of the families

The subgroup D C D̃ coincides with the set of elements acting trivially on
the second coordinates of letters
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Universal groups of the families

The subgroup D C D̃ coincides with the set of elements acting trivially on
the second coordinates of letters (i.e., leaving the subtrees Tw invariant).
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Universal groups of the families

The subgroup D C D̃ coincides with the set of elements acting trivially on
the second coordinates of letters (i.e., leaving the subtrees Tw invariant).
Hence, the quotient H = D̃/D acts naturally on the binary tree by the
action

a = σ, b = (a, c), c = (b, b).
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Universal groups of the families

The subgroup D C D̃ coincides with the set of elements acting trivially on
the second coordinates of letters (i.e., leaving the subtrees Tw invariant).
Hence, the quotient H = D̃/D acts naturally on the binary tree by the
action

a = σ, b = (a, c), c = (b, b).
a = (13)(24) b = (aα, aα, c , c) , c = (bβ, bβ, b, b) .
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Universal groups of the families

The subgroup D C D̃ coincides with the set of elements acting trivially on
the second coordinates of letters (i.e., leaving the subtrees Tw invariant).
Hence, the quotient H = D̃/D acts naturally on the binary tree by the
action

a = σ, b = (a, c), c = (b, b).
a = (13)(24) b = (aα, aα, c , c) , c = (bβ, bβ, b, b) .

The group D̃ permutes the subtrees Tw in the same way as H acts on
w ∈ {0, 1}∞.
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Universal groups of the families

The subgroup D C D̃ coincides with the set of elements acting trivially on
the second coordinates of letters (i.e., leaving the subtrees Tw invariant).
Hence, the quotient H = D̃/D acts naturally on the binary tree by the
action

a = σ, b = (a, c), c = (b, b).
a = (13)(24) b = (aα, aα, c , c) , c = (bβ, bβ, b, b) .

The group D̃ permutes the subtrees Tw in the same way as H acts on
w ∈ {0, 1}∞.
Consequently, if w1 and w2 belong to one H-orbit, then Dw1 and Dw2 are
isomorphic.
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Universal groups of the families

An overgroup of R

Let R̃ B R be generated by

α = σ (1, γ, 1, γ) , a = π (c , c , 1, 1) , I0 =
(
I2cγ−1, I2c , I2γ

−1, I2
)

β = (α, 1, 1, α) , b = (1, 1, a, a) , I1 = (I0, I0, I0, I0)

γ = (1, β, 1, β) , c =
(
1, β, bβ−1, b

)
, I2 = (I1, I1, I1, I1) ,

where σ = (12)(34) : (0, y) ↔ (1, y) and π = (13)(24) : (x , 0) ↔ (x , 1).
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Universal groups of the families

An overgroup of R

Let R̃ B R be generated by

α = σ (1, γ, 1, γ) , a = π (c , c , 1, 1) , I0 =
(
I2cγ−1, I2c , I2γ

−1, I2
)

β = (α, 1, 1, α) , b = (1, 1, a, a) , I1 = (I0, I0, I0, I0)

γ = (1, β, 1, β) , c =
(
1, β, bβ−1, b

)
, I2 = (I1, I1, I1, I1) ,

where σ = (12)(34) : (0, y) ↔ (1, y) and π = (13)(24) : (x , 0) ↔ (x , 1).
The group R̃ acts on the second coordinates as

a = σ(c , 1), b = (1, a), c = (1, b),

r0 = (r2c , r2), r1 = (r0, r0), r2 = (r1, r1).
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Dw as iterated monodromy groups

Dw as Iterated Monodromy Groups

Let Ci be planes and let Ai ,Bi ,Γi ∈ Ci . Let fi : Ci → Ci−1 by 2-fold
branched coverings such that
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Dw as iterated monodromy groups

Let us identify C0 with C.
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Dw as iterated monodromy groups

Let us identify C0 with C. Then there exist unique complex structures on
Ci such that fi are holomorphic (i.e., are polynomials).
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Let us identify C0 with C. Then there exist unique complex structures on
Ci such that fi are holomorphic (i.e., are polynomials).
We may assume that Ai and Bi coincide with 0 and 1, respectively.
Then position pi ∈ C of Γi parametrizes the complex structure on Ci .

fi is a quadratic polynomial such that
1 its critical value is 0,
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Dw as iterated monodromy groups

Let us identify C0 with C. Then there exist unique complex structures on
Ci such that fi are holomorphic (i.e., are polynomials).
We may assume that Ai and Bi coincide with 0 and 1, respectively.
Then position pi ∈ C of Γi parametrizes the complex structure on Ci .

fi is a quadratic polynomial such that
1 its critical value is 0,

2 fi(0) = 1,
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Then position pi ∈ C of Γi parametrizes the complex structure on Ci .

fi is a quadratic polynomial such that
1 its critical value is 0,

2 fi(0) = 1,

3 fi(1) = pi−1,
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1 its critical value is 0,

2 fi(0) = 1,
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4 and fi (pi ) = 1.
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Dw as iterated monodromy groups

Let us identify C0 with C. Then there exist unique complex structures on
Ci such that fi are holomorphic (i.e., are polynomials).
We may assume that Ai and Bi coincide with 0 and 1, respectively.
Then position pi ∈ C of Γi parametrizes the complex structure on Ci .

fi is a quadratic polynomial such that
1 its critical value is 0,

2 fi(0) = 1,

3 fi(1) = pi−1,

4 and fi (pi ) = 1.

We get fi = (az + 1)2 and api + 1 = −1,
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Dw as iterated monodromy groups

Let us identify C0 with C. Then there exist unique complex structures on
Ci such that fi are holomorphic (i.e., are polynomials).
We may assume that Ai and Bi coincide with 0 and 1, respectively.
Then position pi ∈ C of Γi parametrizes the complex structure on Ci .

fi is a quadratic polynomial such that
1 its critical value is 0,

2 fi(0) = 1,

3 fi(1) = pi−1,

4 and fi (pi ) = 1.

We get fi = (az + 1)2 and api + 1 = −1, hence fi(z) =
(
1 − 2z

pi

)2
,

pi−1 =
(
1 − 2

pi

)2
.
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Dw as iterated monodromy groups

We get thus a map
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Dw as iterated monodromy groups

We get thus a map

F :

(
z

p

)
7→



(
1 − 2z

pi

)2

(
1 − 2

pi

)2


 .
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
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
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IMG (F ) coincides with 〈ab, ac , α, β, γ〉 and
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Dw as iterated monodromy groups

We get thus a map

F :

(
z

p

)
7→



(
1 − 2z

pi

)2

(
1 − 2

pi

)2


 .

IMG (F ) coincides with 〈ab, ac , α, β, γ〉 and

IMG (F ) /D ∼= IMG

((
1 − 2

p

)2
)

.

V. Nekrashevych (Texas A&M) A Cantor set of groups May 6, 2006, Vanderbilt 22 / 25



Dw as iterated monodromy groups

The family Rw can be defined in the similar way, but starting from the
map (

z

p

)
7→

(
1 − z2

p2

1 − 1
p2

)
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