1. Groups and their actions

Let G be a group. An (left) action of G on a set X is a map $G \times X \longrightarrow X$: $(g, x) \mapsto g \cdot x$ satisfying
(1) $1 \cdot x=x$;
(2) $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$.

We say then that X is a (left) G-set. An isomorphism of left G-sets $\phi: X_{1} \longrightarrow$ X_{2} is a bijection satisfying

$$
\phi(g \cdot x)=g \cdot \phi(x)
$$

for all $x \in X_{1}$.
The right actions are defined in a similar way, and are usually denoted $x \cdot g$ or x^{g}.

If X has some structure (e.g., topology, manifold, group, linear space), then we say that G preserves this structure if $x \mapsto g \cdot x$ is an automorphism of the structure (homeomorphism, diffeomorphism, automorphism, linearity). If G is a topological group, and X is a topological space, then the action is continuous if the $\operatorname{map} G \times X \longrightarrow X$ is continuous.

An action defines a natural homomorphism from G to the symmetric group $\operatorname{Symm}(X)$ of all permutations $X \longrightarrow X$. Namely, for every $g \in G$ the corresponding element of $\operatorname{Symm}(X)$ is the permutation $x \mapsto g \cdot x$.

The kernel of the action is the kernel of the homomorphism $G \longrightarrow \operatorname{Symm}(X)$, i.e., the subgroup of elements $g \in G$ such that $g \cdot x=x$ for all $x \in X$. The action is called faithful if its kernel is trivial.

We say that $x, y \in X$ belong to the same orbit if there exists $g \in G$ such that $g \cdot x=y$. It is easy to see that this is an equivalence relation. The action is said to be transitive if there is only one orbit.

For $x \in X$ the stabilizer of x in G is the subgroup $G_{x}=\{g \in G: g \cdot x=x\}$
If X is a topological space, then there are different weaker notions of (topological transitivity). An action is called topologically transitive if there exists $x \in X$ such that the orbit of x is dense. It is called minimal if every orbit is dense.

Proposition 1.1. If X is a complete separable metric space, then a G-action is topologically transitive if and only if for any two non-empty open subsets $U, V \subset X$ there exists $g \in G$ such that $g \cdot U \cap V \neq \emptyset$.

Proof. If there exists a dense orbit $G \cdot x$, then for any non-empty open subsets U, V there exist $g_{1}, g_{2} \in G$ such that $g_{1} \cdot x \in U$ and $g_{2} \cdot x \in V$. Then $g_{2} g_{1}^{-1} \cdot U \cap V \ni$ $g_{2} \cdot x$.

In the other direction, suppose that for any two open non-empty subsets U, V there exists $g \in G$ such that $g \cdot U \cap V \neq \emptyset$. Let $\left\{U_{i}\right\}_{i=1}^{\infty}$ be a countable basis of topology of X (which exists, since X is a separable metric space). Denote $V_{i}=\bigcup_{g \in G} g \cdot U_{i}$. Then V_{i} is dense and open. By Baire's category theorem, $Y=\cap_{i=1}^{\infty} V_{i}$ is co-meager, and hence non-empty. Let $x \in Y$. Then for every open set W there exists $U_{i} \subset W$. We have $x \in V_{i}$, hence there exists $g \in G$ such that $g \cdot x \in U_{i} \subset W$.

Example 1.1. Consider the circle \mathbb{R} / \mathbb{Z}, and the map $R_{\theta}: x \mapsto x+\theta$. Consider the action of the infinite cyclic group \mathbb{Z} generated by R_{θ}.

Proposition 1.2. For every $\alpha \in \mathbb{R} / \mathbb{Z}$ and every irrational $\theta \in \mathbb{R}$ the set $\alpha+n \theta$ $(\bmod 1)$ is dense in \mathbb{R} / \mathbb{Z}.

Proof. Denote by $\alpha \bmod 1$ the number $t \in[0,1)$ such that $\alpha-t \in \mathbb{Z}$.
Since $n \theta \bmod 1$ is infinite, for every N there exist $n_{1} \neq n_{2}$ and $k \in\{0,1, \ldots, N-$ $1\}$ such that $\left(n_{1} \theta-n_{2} \theta\right) \bmod 1 \in(k / N,(k+1) / N)$. Then $\left|\left(n_{1}-n_{2}\right) \theta\right| \bmod 1<$ $1 / N$. We have shown that for every $\epsilon>0$ there exists $n \in \mathbb{Z}$ such that $n \theta$ $\bmod 1<\epsilon$. Consider then the sequence $0, n \theta, 2 n \theta, \ldots$ of points of \mathbb{R} / \mathbb{Z}. It divides the circle into arcs of length less than ϵ. It follows that for every $\alpha \in \mathbb{R} / \mathbb{Z}$ there exists k such that $|\alpha-n k \theta| \bmod 1<\epsilon$. Consequently, the orbit $\{n \theta\}$ of 0 is dense in \mathbb{R} / \mathbb{Z}. Rotating the circle by α we see that orbit of α is dense in \mathbb{R} / \mathbb{Z}.

Example 1.2. Consider a finite alphabet A, and let $X=A^{\mathbb{Z}}$ be the topological space of all maps $w: \mathbb{Z} \longrightarrow A$ (with pointwise convergence, where A is discrete). Consider the shift map given by $s(w)(n)=w(n+1)$.

Proposition 1.3. The shift is topologically transitive but not minimal.
Proof. It is not minimal, since orbits of periodic sequences are finite. We can find a sequence w such that for any finite word v there exists i such that $w(i) w(i+1) \ldots w(i+k)=v$ for some i and k. Then the orbit of w is dense. One way to find such w is to list all possible finite words in a bi-infinite sequence (which is possible since the set of all finite words is countable). Another way is to write a sequence of independent random identically distributed letters (so that each letter has a non-zero probability). For a given word v and given number $i \in \mathbb{Z}$, probability that v is not equal to $w(i) w(i+1) \ldots w(i+|v|-1)$ is strictly less than one. It follows that probability that v is not a subword of a random infinite word w is zero. Consequently, with probability 1 a random infinite word $w \in A^{\mathbb{Z}}$ contains every finite subword, i.e., its orbit under the shift is dense.

