
2. Cayley and Schreier graphs

Let G be a group, and H ≤ G its subgroup. Then the set of left cosets G/H =
{gH : g ∈ G} is a left G-set with respect to the natural action g · hH = (gh)H.
Every transitive G-set is isomorphic to a G-set of the form G/H. More precisely:

Theorem 2.1. Let X be a transitive G-set. Choose a basepoint x0 ∈ X. Then
the map g · x0 7→ gGx0

is a well defined isomorphism X 7→ G/Gx0
of G-sets.

The proof is straightforward. As a corollary, we get that cardinality of a G-set
X is equal to the index of a stabilizer Gx in G.

Definition 2.1. An (oriented) graph Γ is given by the set V of its vertices,
the set E of its edges, and the maps α, ω : E −→ V . Here α(e) and ω(e) are the
beginning and end of the edge e.

A labeled graph is a graph together with a map λ : E −→ A, where A is a set
of labels. We consider sometimes the Cayley graph Γ(G,S) as labeled graph with
the natural labeling λ(s, g) = s.

Sometimes we also add an involution i : E −→ E satisfying α(i(e)) = ω(e) and
ω(i(e)) = α(e). In this case the graph is considered to be non-oriented.

Suppose that S is a finite generating set of G, and let X be a G-space. Then
graph of action is the graph with the set of vertices V = X, set of edges E = S×X,
beginning and end maps

α(s, x) = x, ω(s, x) = s · x,

and labeling λ(s, x) = s.
Note that the graph of the action completely determines the action of G on X.
Particular cases of graphs of actions have special names.

Definition 2.2. (Left) Cayley graph Γ(G,S) of G is the graph of the action
of G on itself by left multiplication.

For a subgroup H ≤ G the Schreier graph Γ(G/H,S) is the graph of the action
of G on the set of left cosets G/H.

Note that by Theorem 2.1, graph of every transitive action is isomorphic to the
Schreier graph Γ(G/Gx, S), where Gx is the stabilizer of a point x ∈ X. In view of
this, graphs of actions are often also called Schreier graphs.

If X is a topological space, then the set of edges S × X is also a topological
space (where S is discrete), and the structure maps α, ω, λ are continuous. Thus,
the graph of action is a topological graph.

We have a natural map p : Γ(G,S) −→ Γ(G/H,S) given by p(g) = gH. It is a
morphism of graphs, and is a covering, i.e., for every vertex v of Γ(G,S) the induced
maps p : α−1(v) −→ α−1(p(v)) and p : ω−1(v) −→ ω−1(p(v)) are bijections.

Note also that G acts on Γ(G,S) on the right: the map g 7→ gh is an automor-
phism of Γ(G,S) for every h ∈ G.

The Schreier graph Γ(G/H,S) is the quotient of Γ(G,S) by the right action of
H. If H is normal, then Γ(G/H,S) coincides with the Cayley graph of G/H.

2.1. Example: a virtually abelian group. Let G be the group of isometries
of Z2 with its natural action on R2. It is generated by translations and the group
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Figure 1. Fundamental domain of G

D4 of isometries of the square with vertices (±1,±1). One can check that it is also
generated by the following three elements:

a : (x, y) 7→ (x,−y), b : (x, y) 7→ (y, x), c : (x, y) 7→ (1− x, y).

The elements a, b, and c are reflections with respect to the lines x = 0, x = y,
and x = 1/2, respectively. These three lines form triangle ∆ with vertices (0, 0),
(1/2, 1/2), and (1/2, 0). It is easy to see that ∆ is a fundamental domain of the
action of G on R2: images g ·∆ for g ∈ G have disjoint interiors and tile the whole
plane R2, see Figure 1. Moreover, the action of G on the orbit of ∆ is free: only
the trivial element of G leaves ∆ invariant.

Let us describe the connected components of the graph of action of G on R2.
Suppose that (x, y) belongs to the interior of ∆. Then the stabilizer of (x, y) in G
is trivial, since g · (x, y) /∈ ∆ for all g 6= 1.

Since the action of G on the orbit of ∆ is free, the orbit of (x, y) is in a bijection
with the triangles g ·∆. Namely, for every triangle there exists exactly one element
of the orbit of (x, y) belonging to that triangle. A natural graph would be then the
adjacency graph, in which two vertices are connected by an edge if and only if the
corresponding triangles have a common side, see Figure 2.1. But this is not the
graph of the action.

On the other hand, if (x′, y′) is a point of the orbit of (x, y) belonging to one
of the three neighbors of ∆, then (x′, y′) is the image of (x, y) under the action of
the corresponding generator s ∈ {a, b, c}. Applying an arbitrary element g ∈ G,
we see that g · (x, y) and gs · (x, y) belong to neighboring triangles. It follows that
the adjacency graph coincides with the right Cayley graph of G. But left and right
Cayley graphs are isomorphic: the isomorphism is the map g 7→ g−1. We see that
the graph of the action on the orbit of a point with trivial stabilizer (i.e., the Cayley
graph) is isomorphic to the adjacency graph.
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Figure 2. Graphs of action for points with Z/2Z stabilizer

Figure 3. Graphs of action for points with dihedral stabilizer

If (x, y) belongs to the boundary of ∆, then the graph of the action is isomorphic
to the quotient of the Cayley graph by the action of its stabilizer. The latter is
either Z/2Z, or D4, or D2. See the corresponding graphs of action on Figures 2
and 3.
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2.2. Graphs of minimal actions. Let G be a finitely generated group acting
by homeomorphisms on a complete metric space X . For x ∈ X , denote by Γx the
graph of the action of G on the orbit G · x of x (defined with respect to a fixed
finite generating set S).

Definition 2.3. A point x ∈ X is called G-generic if for every g ∈ G either
g · x 6= x, or x belongs to the interior of the set of fixed points of g.

Note that for every g ∈ G the set of points that do not satisfy the conditions
of the definition (i.e., are such that g · x = x but x does not belong to the interior
of the set of fixed points of g) is a closed nowhere dense set. Consequently, by
Baire’s category theorem, the set of G-generic points is co-meager, in particular it
is non-empty.

Proposition 2.2. The set of G-generic points is G-invariant.

Proof. Let x be a G-generic point, and let h ∈ G be an arbitrary element.
Then the stabilizer Gh·x of h ·x is equal to hGxh

−1. For every g ∈ Gx there exists a
neighborhood U of x such that g acts trivially on U . But then hgh−1 acts trivially
on hU . It follows that every element of Gh·x acts trivially on a neighborhood of
h · x, i.e., that h · x is G-generic. �

Let Γ be a labeled graph. For a vertex v of Γ and R > 0 denote by Bv(R) the
ball of radius R with center in v, seen as a rooted labeled graph (with root v). In
particular, it means that whenever we are talking about morphisms between balls,
the morphisms are assumed to preserve the centers.

Definition 2.4. We say that a G-orbit G · x is locally contained in the orbit
G · y if for every vertex v ∈ Γx and every R > 0 there exists a vertex u ∈ Γy such
that the corresponding balls Bv(R) and Bu(R) are isomorphic.

Two orbits are said to be locally isomorphic if each is contained in the other
one.

It is not hard to show that the definition does not depend on the choice of the
generating set.

Proposition 2.3. Suppose that the action of G on X is minimal. Then orbit
of any G-generic point is locally contained in any other orbit. In particular, orbits
of G-generic points are all locally isomorphic to each other.

Proof. Let u ∈ X . The condition that the ball Bv(R) is isomorphic to Bu(R)
can be written as a system of equalities and inequalities of the form g · u = u
and g · u 6= u for a finite set of elements g ∈ G. Namely, for all pairs g1, g2 ∈ G of
elements of length less than R we must have g1 ·u = g2 ·u if and only if g1 ·v = g1 ·v.

If u is G-generic and g · u = u, then there exists an open neighborhood U of u
such that g ·v = v for all v ∈ U . For every u and g such that g ·u 6= u there exists a
neighborhood U of u such that g · v 6= v for all v ∈ U . It follows that there exists a
neighborhood UR of u such that if v ∈ UR, then Bv(R) and Bu(R) are isomorphic.

Since the action is minimal, for every v ∈ X there exists g ∈ G such that
g · v ∈ UR. �

Proposition 2.4. Suppose that X is compact, and the action is minimal. Let
x ∈ X be a G-generic point. Then for every R > 0 and y ∈ X there exists ∆ > 0
such that for every vertex u ∈ Γy there exists a vertex u′ ∈ Γy on distance less than
∆ from u such that Bu′(R) is isomorphic to Bx(R).
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In other words, the set of points u such that Bu(R) and Bv(R) are isomorphic
is a net in the graph of actions, so that it essentially “looks the same” everywhere.

Proof. Recall, that by the proof of Proposition 2.3, there exists a neighbor-
hood U of x such that for every v ∈ U the balls Bx(R) and Bv(R) are isomorphic.

Since the action is minimal, for every y ∈ X there exists gy ∈ G such that
gy ·y ∈ U . Then g−1y ·U cover the space X . Since X is compact, there exists a finite
sub-cover, i.e., a finite set of group elements g1, g2, . . . , gk such that gi ·U cover X .
Let ∆ be the maximal length of the elements gi. Then for every y ∈ X there exists
gi such that Bgi·y(R) and Bx(R) are isomorphic. The distance from y to gi · y is
not more than the length of gi, i.e., not more than ∆. �

2.3. Schreier graphs of the free group. Note that if H < G and N is a
normal subgroup of G such that N ≤ H, then the Schreier graphs Γ(G/H,S) and
Γ((G/N)/(H/N), S′) are isomorphic, where S′ is the image of the generating set S
in G/N . It follows that every Schreier graph is a Schreier graph of the free group.

On the other hand, we have the following obvious observation.

Proposition 2.5. Let Γ be a graph whose edges are labeled by elements of a
finite set S. Suppose that for every vertex v of Γ and for every s ∈ S there exists
exactly one arrow starting in v and labeled by s, and exactly one arrow ending in v
and labeled by s. Then Γ is isomorphic to the graph of an action of the free group
FS generated by S on the set of vertices of Γ.

Namely, for every s ∈ S and a vertex v, define s·v as the end of the edge starting
in v that is labeled by s. Then it follows from the conditions of Proposition 2.5
that v 7→ s · v is a permutation of the set of vertices. We get hence an action of FS

generated by these permutations. It is obvious that Γ is the graph of the action.
We say that this action is the action defined by the graph Γ.

For an arbitrary word g = s1s2 . . . sn ∈ FS , where si ∈ S ∪ S−1 the image g · v
is found in the following way. Find the path (sequence of edges) en, en−1, . . . e2, e1,
where v = α(en), ω(ei) = α(ei−1) for all i = 2, . . . , n, and λ(ei) = si. Here we
assume that every edge of Γ consists in two incarnations: e and i(e), satisfying
α(i(e)) = ω(e), ω(i(e)) = α(e), and λ(i(e)) = λ(e)−1. Then g · v = ω(e1).

In other words, in order to find g · v, one has to find a path starting at v on
which one reads g, the end of the path is g · v. (It is nicer for the right actions. . . )

The stabilizer of a vertex v consists of words that are read on paths starting
and ending in v. It is easy to see that the stabilizer of v is naturally identified with
the fundamental group π1(Γ, v). This implies the following.

Proposition 2.6. Let Γ be as in the previous proposition, and suppose that
it is connected. Then Γ is isomorphic to the Schreier graph of FS by a subgroup
isomorphic to the fundamental group of Γ.

We say that a graph Γ labeled by elements of a set S is well labeled if it satisfies
the conditions of Proposition 2.5.

Problem 2.1. Let Γ be an unlabeled oriented graph such that for every vertex
v the number of incoming arrows and the number of outgoing arrows are both equal
to some fixed number d. Prove that we can label edges of Γ by elements of a set
S, |S| = d, so that the obtained labeled graph is well labeled. Hint: prove this at
first for finite graphs, and then go to a limit.
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Figure 4. Graph Λw

One can use Schreier graphs to define groups. Suppose that Γ is a well labeled
graph. Then it defines an action of the free group FS , as above. The action may be
non-faithful, so it is natural to take the quotient G of FS by the kernel of the action.
The graph Γ will be also a Schreier graph of G, by the remark at the beginning of
the subsection. The group G is the group generated by the permutations v 7→ s · v.

Example 2.1. Let w = . . . a−1a0a1 . . . ∈ SZ be an infinite sequence of elements
of a finite set S. Suppose that ai 6= ai+1 for all i ∈ Z. Consider the graph Γw with
the set of vertices Z, where for every i we have an arrow from i to i + 1 and an
arrow from i + 1 to i both labeled by ai, and |S| − 2 loops at the vertex i labeled
by S \ {ai, ai−1}. Then Γw is well labeled, hence it defines an action of FS . Let Gw

be the corresponding group, i.e., quotient of FS by the kernel of the action.

Problem 2.2. Identify Gw for a random w, i.e., find a group G such that
Gw is isomorphic to G with probability 1, if the letters of w are found using the
following Markov chain: ai is chosen from the elements of the set S \ {ai−1} with
equal probability.

2.4. “Long range” graph. Let V = Z, S = {a, b}, and let w = x0x1 . . .,
xi ∈ {0, 1}, be an infinite sequence. Denote wk = x0 + 2x1 + 22x2 + · · · + 2kxk,
for k = 0, 1, . . .. Arrows labeled by a start in n and end in n + 1. Arrows labeled
by b start in wk + 2k(2n + 1) and end in wk + 2k(2n + 3) for k = 0, 1, 2, . . ., and
n ∈ Z. Additionally, if the sequence xi is eventually constant, then there will be
one vertex that is not connected to any other vertex by an arrow labeled by b. In
this case we add a loop labeled by b to this vertex. Denote the obtained graph by
Λw.

Another description of the graph Λw is as follows. We start with the Cayley
graph of Z with respect to the generating set {1}. The edges of this graph are
labeled by a. Then we connect every other vertex by b-labeled arrows, then among
the remaining vertices we connect every other vertex, and so on, see Figure 4. The
choice of vertices that are connected on each stage is done so that on the stage
number k (starting with k = 0) we are NOT connecting the vertex wk. At the end
we either connect all vertices by b-labeled arrows, or there will remain one vertex.
In the latter case we attach to it a loop.

Problem 2.3. Prove that all graphs Λw, for w not eventually constant, are
locally isomorphic (i.e., are locally contained in each other).
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Problem 2.4. The graph Λw is the graph of the action of a two-generated
group. Taking quotient by the kernel we get a group generated by two permutations
of Z:

a : n 7→ n+ 1, b : wk + 2k(2n+ 1) 7→ wk + 2k(2n+ 3).

Prove that this group does not depend on w.

Note that a2b−1 and ab−1a act non-trivially on disjoint sets, so that their
commutator [a2b−1, ab−1a] is trivial.

Let us interpret the sequences w as dyadic numbers, so that x0x1 . . . is inter-
preted as the sum

x0 + 2x1 + 22x2 + · · · .
Note that then eventually constant sequences are precisely the elements of Z.

Problem 2.5. Show that Γw1
and Γw2

are isomorphic as non-rooted trees if
and only if w1 − w2 ∈ Z.

2.5. Space of Schreier graphs. Let G be a countable group. The set 2G

of all subsets of G is naturally identified with the set of all functions G −→ {0, 1}
(their characteristic functions), and hence has a natural direct product topology.
Recall that a basis of topology consists of sets of the form

UC0,C1
= {A ⊂ G : C1 ⊂ A,C0 ∩A = ∅}

for finite sets C0, C1. In terms of maps G −→ {0, 1}, the set UC0,C1
consists of

functions f : G −→ {0, 1} such that f(x) = 0 for x ∈ C0, and f(x) = 1 for x ∈ C1.
It follows form Tykhonoff theorem that 2G is compact. It is easy to see that

UC0,C1 is closed (write its complement as union of the elements of the basis of topol-
ogy!), hence we get a basis of topology consisting of closed and open (clopen) sets.
By definition, this means that 2G is totally disconnected. In fact, it is homeomorphic
to the Cantor set.

Problem 2.6. Prove that the subset of 2G consisting of subgroups of G is
closed. Prove that the set of all normal subgroups of G is also closed.

We get hence a natural topology on the set of all subgroups of G and on the
set of all normal subgroups of G. The latter set is naturally identified with the set
of all quotients of G (with a marking defined by the epimorphism from G to the
quotient).

Both spaces (space of subgroups and the space of normal subgroups) are com-
pact and totally disconnected. Note that this does not mean that they are homeo-
morphic to the Cantor set, since we they may have isolated points.

Let FS be, as before, the free group generated by S. Then we get a bijection
between the set of all subgroups of FS and the set GS of all rooted well labeled
(by S) connected graphs Γ. Namely, given a subgroup H ≤ FS , the corresponding
graph is the Schreier graph Γ(FS/H, S) with the root 1 ·H. Given a well labeled
rooted graph (Γ, v) ∈ GS , the corresponding subgroup is π1(Γ, v), i.e., the subgroup
consisting of words that are read on loops starting and ending in v.

There is a straightforward way of describing the topology on the space of sub-
groups of FS using this identification.

Let (Γ1, v1), (Γ2, v2) ∈ GS . We say that distance between them is 1/(n+ 1), if
n is the biggest number such that Bv1(n) and Bv2(n) are isomorphic.
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Proposition 2.7. The defined notion of distance is an ultrametric on GS con-
sistent with the topology on the space of subgroups of FS.

Proof. A basis of topology on the space of subgroups of FS is the collection
of the sets of the form

VA0,A1 = {H ≤ FS : A0 ∩H = ∅, A1 ⊂ H}.
For every well labeled rooted graph (Γ, v) and every R > 0 the ball Bv(R) can
be completely described by a finite set of equations and inequalities of the form
g1 · v = g2 · v and g1 · v 6= g2 · v for some g1, g2 ∈ FS . These equations and
inequalities are equivalent to g−12 g1 · v = v and g−12 g1 · v 6= v. It follows that there
exist finite sets A0, A1 ⊂ FS such that for every subgroup L ∈ VA0,A1 the ball of
radius R in the Schreier graph Γ(FS/L, S) with center in 1 · L is isomorphic to
Bv(R).

Conversely, for every pair of finite sets A0, A1 ⊂ FS there exists R (equal to
the maximum of lengths of elements of A0 and A1) such that for every subgroup
H ≤ FS , if we know the ball of radius R with center in 1 ·H in the Schreier graph
Γ(FS/H, S), then we know whether H belongs to VA0,A1

or not. �

Problem 2.7. Show that the only isolated points of GS are finite graphs. This
will show that the set of infinite graphs is homeomorphic to the Cantor set. Equiva-
lently, the space of subgroups of infinite index in the free group FS is homeomorphic
to the Cantor set.

On the other hand, the set of normal subgroups of infinite index has isolated
points (e.g., infinite finitely presented simple groups).

Given a rooted graph (Γ, v) ∈ GS and an element g ∈ FS , denote g · (Γ, v)
the graph (Γ, g · v). It is easy to see that this defines an action of FS on GS by
homeomorphisms.

The orbit of (Γ, v) is equal to the set of rooted trees (Γ, u), where u runs through
the set of all vertices of Γ. Denote by Γ the closure of the orbit of (Γ, v). Note that
the map v 7→ (Γ, v) from the set of vertices of Γ to GS is not necessarily injective.
For example, if Γ is a Cayley graph of a group, then Γ is a single point.

For every (Γ, v) ∈ GS , the set Γ is FS-invariant.

Proposition 2.8. Let K be the kernel of the action of FS on the set of vertices
of Γ. Then K acts trivially on Γ. Consequently, the quotient FS/K acts on Γ.

Proof. The group K acts trivially on the orbit of (Γ, v), which is a dense
subset of Γ. Since the action is continuous, it is trivial on Γ. �

Proposition 2.9. Let (Γ, v) ∈ GS. The following conditions are equivalent.

(1) The action of FS on Γ is minimal.
(2) For every R > 0 and every vertex u of Γ there exists ∆ > 0 such that for

every vertex w of Γ there exists a vertex u′ such that d(w, u′) < ∆ and
the balls Bu(R) and Bu′(R) are isomorphic.

Proof. Implication (1)=⇒(2) is proved in the same way as Proposition 2.4.
Suppose that (2) is satisfied. Let (Γi, vi) ∈ Γ for i = 1, 2. It is enough to show

that for every R > 0 there exists a vertex u of (Γ2, v2) such that the ball Bu(R) ⊂ Γ2

is isomorphic to Bv1(R), since it will mean that the orbit of Γ2 intersects every
neighborhood of (Γ1, v1).
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Ball Bv1(R) is isomorphic to some ball Bv(R) of Γ. It follows from condition
(2) that there exists u ∈ Γ2 such that Bu(R) is isomorphic to Bv(R) ∼= Bv1(R). �

2.6. “Long range” graphs. Let Λw for w ∈ Z2 be as in Subsection 2.4

Problem 2.8. Show that the map w 7→ (Λw, 0) is continuous at every point
w ∈ Z2 \ Z and discontinuous for w ∈ Z.

Problem 2.9. Show that we can redefine Λw for w ∈ Z in such a way that the
map w 7→ (Λw, 0) is continuous and is a homeomorphism on its range.


	3. Dynamical systems

