
3. Dynamical systems

A topological dynamical system is an action of a semigroup G on a topological
space X by continuous maps. Similarly, dynamical systems in other categories (e.g.,
on spaces with a measure, or on a manifold) are defined.

Example 3.1. If G is the additive semigroup N, then the dynamical system
is determined by the action of the generator. Thus such dynamical systems study
iterations of a single continuous map f : X −→ X .

Example 3.2. If G is the infinite cyclic group Z, then the dynamical system
studies iterations (both forward and backward) of a homeomorphism f : X −→ X .

Actions of (R,+) are called flows. If it is a smooth action on a manifold, then it
is uniquely determined by the corresponding vector field of velocities, and therefore
study of such flows is equivalent to the study of (autonomous) ODE.

3.1. Full shift and subshifts. Let G be a countable semigroup, and let A be
a finite set, |A| ≥ 2. Consider the direct product space AG of all maps φ : G −→ A.
Its topology is given by the basis of open sets of the form

Uf = {φ : G −→ A : φ|D = f},

where f : D −→ A is a map defined on a finite subset D ⊂ G. Note that Uf are
also closed. The space AG is homeomorphic to the Cantor set.

For example, if G = N, then AG is the space of all sequences a1a2 . . . of elements
of A.

The semigroup G acts on AG by the rule:

(g · φ)(x) = φ(xg).

(For the right action the rule is (φ · g)(x) = φ(gx).)

Example 3.3. For AZ the action of the generator s of Z is given by

s(a1a2 . . .) = a2a3 . . . .

Definition 3.1. The described dynamical system is called the full shift on
the semigroup G over the alphabet A. Its closed G-invariant subsets are called
subshifts.

Any closed subset of AG is given by representing its complement as a union
of the sets of the form Uf . In other words, it is given by a list of “prohibited”
restrictions {fi : Di −→ G}i∈I , so that a function φ belongs to the set if and only
if φ|Di 6= fi for every i ∈ I.

Therefore, a closed G-invariant subset S of AG can be defined by a list of
prohibited restrictions {fi : Di −→ G}i∈I so that φ ∈ S if and only if φ|Di·g 6= g ·fi
for all i ∈ I and g ∈ G. We call the set {fi}i∈I the set of forbidden patterns defining
the subshift S.

For example, a Z-invariant closed subset S of AZ is defined by a set P of finite
words such that an infinite sequence w belongs to S if and only if no subword of w
belongs to P .

Definition 3.2. A shift of finite type is a subshift of AG defined by a finite
set of forbidden patterns.
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Problem 3.1. Consider the shift of finite type F ⊂ {0, 1}N of all sequences
a1a2 . . . such that aiai+1 6= 11 for every i. Let un be the number of possible
beginnings of length n of elements of F . Find limn→∞ n

√
un.

3.2. Subshifts of AZ. The points of the space AZ are usually represented by
bi-infinite sequences . . . w(−1)w(0)w(1) . . .. The generator of the Z-shift acts on it
by the rule

s(w)(n) = w(n+ 1),

i.e., by shifting the sequence to the left.
A sub-shift is, by definition, a closed Z-invariant subset of AZ. Every sub-shift

can be defined by a set of prohibited words P ⊂ A∗, where A∗ denotes the set of all
finite words over the alphabet A.

Namely, the subshift defined by P is the set XP of sequences w ∈ AZ such that
w(i)w(i+ 1) . . . w(i+ k) /∈ P for all i ∈ Z and k ≥ 0.

The language of a subshift X is the set LX ⊂ A∗ of all finite subwords of
elements of X . Complexity of the subshift is the function

pX (n) = |{v ∈ An : v ∈ LX }.

Proposition 3.1. If pX (n) = pX (n+ 1), then pX (m) = pX (n) for all m ≥ n.

Proof. If pX (n) = pX (n + 1), then for every word v ∈ LX of length n there
exists only one letter x1 ∈ A such that vx1 ∈ LX . Considering the suffix of length
n of vx1, we conclude that there exists only one letter x2 such that vx1x2 ∈ LX .
Repeating this argument m− n times we get that v can be extended to a word of
length m belonging to LX in a unique way, which implies that pX (m) = pX (n). �

Corollary 3.2. If X is infinite, then pX (n) ≥ n+ 1 for all n.

Proof. If pX (n) is bounded, then it is eventually constant (as pX (n) is always
non-decreasing). Then sufficiently long finite words belonging to LX will have
unique finite extensions to both sides, hence an infinite sequence w ∈ X can be
uniquely determined by a sufficiently long finite subword. This implies that X is
finite if pX (n) is bounded.

If pX (n) is unbounded, then by the last proposition pX (n + 1) > p(n) for
every n. We have pX (1) ≥ 2, since otherwise X has only one possible element.
Consequently, pX (n) ≥ n+ 1 for all n. �

3.3. Example: Sturmian subshifts. Let us describe a class of subshifst
with the lowest possible complexity p(n) = n+ 1.

Let θ ∈ (0, 1) be an irrational number. Consider the corresponding rotation
Rθ : x 7→ x + θ (mod 1) of the circle R/Z. Divide the circle into two arcs: [0, θ]
and [θ, 1]. For x ∈ R/Z not belonging to the orbit {nθ}n∈Z of 0, define its itinerary
as the sequence Iθ(x) ∈ {0, 1}Z given by

Iθ(x)(n) =

{
0 if Rnθ (x) ∈ [0, θ];
1 if Rnθ (x) ∈ [θ, 1].

If x belongs to the Rθ-orbit of 0, then there exists n such that x+ nθ = 0, and we
have an ambiguity for the two coordinates Iθ(x)(n) and Iθ(x)(n+ 1) of Iθ(x). We
define therefore two itineraries of x: Iθ(x+0) with Iθ(x)(n)Iθ(x)(n + 1) = 01 and
Iθ(x−0) with Iθ(x)(n)Iθ(x)(n+ 1) = 10. The remaining coordinates of Iθ(x+0) and
Iθ(x−0) are defined by the original rule, since there is no ambiguity for them.
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Denote by Xθ the set of all itineraries Iθ(x) and Iθ(x±0) for a given θ.
Let Sθ be the set [0, 1] in which every element x ∈ (0, 1) belonging to the Rθ-

orbit of 0 is replaced by two copies: x+0 and x−0. We identify 0+0 and 0−0 with the
endpoints 0 and 1, respectively. The set Sθ has a natural ordering coming from the
usual order of real numbers and the natural agreement x−0 < x+0. Consider the
order topology on Sθ, i.e., the topology with the basis of open sets equal to the set of
all open intervals (a, b) = {x ∈ Sθ : a < x < b}. Note that for x, y ∈ {Rnθ (0)}n∈Z,
x < y, the open interval (x−0, y+0) is equal to the interval [x+0, y−0], and since the
set {Rnθ (0)}n∈Z is dense in R/Z, the set of intervals of the form [x+0, y−0] is a basis
of topology. Such intervals are also closed, since their complements are equal to
[0, x+0) ∪ (y−0, 1].

The rotation Rθ is naturally lifted to a homeomorphism of Sθ by the rule
Rθ(x+0) = Rθ(x)+0 and Rθ(x−0) = Rθ(x)−0. Then the itinerary Iθ(x) for x ∈ Sθ
is non-ambiguously given by the rule

Iθ(x)(n) =

{
0 if Rnθ (x) ∈ [0, θ−0];
1 if Rnθ (x) ∈ [θ+0, 1].

It follows directly from the definitions that the set Xθ of all itineraries Iθ(x),
x ∈ Sθ is shift-invariant, since s(Iθ(x)) = Iθ(Rθ(x)).

For every n ∈ Z the points nθ and (n+ 1)θ subdivide the circle R/Z into two
arcs with ends nθ±0 and (n+ 1)θ±0. If we know to which of these arcs the point x
belongs, we know the nth letter Iθ(x)(n) of the itinerary. It follows that in order
to know the subword Iθ(x)(0)Iθ(x)(1) . . . Iθ(x)(n− 1) of the itinerary, it is enough
to know which of the arcs into which the points 0, θ, 2θ, . . . , nθ divide the circle x
belongs to. This implies that complexity pXθ (n) is equal to the number of these
arcs, i.e., to n+ 1.

Proposition 3.3. The map Iθ : Sθ −→ Xθ is a homeomorphism.

Proof. The arguments of the paragraph preceding the proposition show that
for every cylindrical set Uv = {w ∈ Xθ : w(0)w(1) . . . w(n−1) = v} the set I−1θ (Uv)
is either empty or one of the n+1 arcs into which the points 0, θ, 2θ, . . . , nθ subdivide
the circle, i.e., it is of the form [iθ+0, jθ−0], where i, j ∈ {0, 1, . . . , n} are such that
there is no k ∈ {0, 1, . . . , n} \ {i, j} such that kθ±0 are between iθ+0 and jθ−0.
This proves that Iθ is continuous. It easily follows from the fact that the orbit of 0
under Rθ is dense that Iθ is one-to-one. Since the set of arcs I−1θ (Uv) is a basis of

topology of Sθ, the inverse map I−1θ : Xθ −→ Sθ is also continuous. �

In particular, Xθ is compact, hence closed in {0, 1}Z.

3.4. Markovian shifts. If a shift of finite type X ⊂ AZ is defined by a set of
prohibited words P such that P ⊂ A2, then it is called a topological Markov shift.
A topological Markov shift can be defined by the complement A2 \ P of the set of
prohibited words, which we will call the set of allowed transitions.

Every shift of finite type can be realized as a topological Markov shift in the
following way.

Definition 3.3. Let f : X −→ X and g : Y −→ Y be continuous maps (seen
as dynamical systems). A semiconjugacy φ : X −→ Y is a continuous map such
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that the diagram

X f−→ Xyφ yφ
Y g−→ Y

is commutative. In general, if X and Y are topological spaces with actions of a
semigroup G, then φ : X −→ Y is a semi-conjugacy if for all g ∈ G and x ∈ X we
have φ(g · x) = g · φ(x).

If a semiconjugacy φ is a homeomorphism, then it is called a conjugacy. Two
dynamical systems are said to be topologically conjugate if there exists a conjugacy
between them.

Let X ⊂ AZ
1 and Y ⊂ AZ

2 be subshifts, and suppose that φ : X −→ Y is a
semi-conjugacy.

For every x ∈ A2 the set φ−1({w ∈ Y : w(0) = x}) is open in X , hence there

exists k > 0 and a finite set B ⊂ A2k+1
1 such that

φ−1({w ∈ Y : w(0) = x}) =
⋃
v∈B
{w ∈ X : w(−k)w(−k+1) . . . w(k−1)w(k) = v}.

It follows that there exists k and a map ψ : A2k+1
1 −→ A2 such that for every

w ∈ X we have

φ(w)(0) = ψ(w(−k)w(−k + 1) . . . w(k − 1)w(k)).

Since φ is a semi-conjugacy, this implies that for every n ∈ Z

φ(w)(n) = ψ(w(n− k)w(n− k + 1) . . . w(n+ k − 1)w(n+ k)).

In other words, in order to know the nth coordinate of φ(w), one has to look through
the window [n − k, . . . , n + k] at w and apply the same rule for all n. Such maps
are called block codes.

As a consequence of the above arguments, we get the following relation between
complexities of semi-conjugated subshifts.

Lemma 3.4. Suppose that φ : X −→ Y is a surjective semi-conjugacy of sub-
shifts. Then there exists k such that pY(n) ≤ pX (n+ k) for all n.

As an example, consider the “identity” block code:

κk : AZ −→ (A2k+1)Z

given by

κk(w)(n) = w(n− k)w(n− k + 1) . . . w(n+ k + 1)w(n+ k).

The block code κ∗k : (A2k+1)Z −→ AZ given by

κ∗k(w)(n) = an, if w(n) = an−kan−k+1 . . . an+k−1an+k

obviously satisfies κ∗k ◦κk = Id. It follows that κk is a homeomorphism from AZ to
κk(AZ).

It is easy to see that κk(AZ) is a Markov subshift of (A2k+1)Z defined by the
set of allowed transitions {(xv)(vy) : v ∈ A2k, x, y ∈ A}.

The following is straightforward.
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Proposition 3.5. Let X ⊂ AZ be a shift of finite type defined by a finite set
P of prohibited words. If k is such that 2k + 1 is larger than the length of every
element of P , then κk(X ) is a topological Markov shift. In particular, every shift
of finite type is topologically conjugate to a topological Markov shift.

Let X ⊂ AZ be a topological Markov shift. Consider the graph Γ with the set
of vertices A, in which we have an arrow from x to y if and only if xy belongs to the
set of allowed transitions. Then X coincides with the set of all bi-infinite oriented
paths in Γ (seen as sequences of vertices).

Proposition 3.6. Let M be the adjacency matrix of Γ. Then pX (n) is equal to
the sum of entries of Mn. In particular, pX (n) is a linear combination of exponen-
tial functions multiplied by polynomials, and has either exponential or polynomial
growth rate.

If pX (n) has polynomial growth, then all simple cycles (i.e., cycles without self-
intersections) in Γ are disjoint. The cycles of Γ can be connected in a “cascade”,
i.e., we have a partial order on the cycles, where a cycle C1 is “below” a cycle C2

if there is an oriented path from a vertex of C2 to a vertex of C1. Define depth of
Γ as the largest size of a chain in this partially ordered set of cycles.

Proposition 3.7. If complexity of X is polynomial, then the degree of polyno-
mial growth of pX is equal to the depth of Γ minus one. The space X is in this case
countable, and Cantor-Bendixson rank of X is equal to the depth of Γ.

Here Cantor-Bendixson rank of X is defined in the following way. Denote
X (0) = X , and define inductively X (α+1) as the set of limit points (i.e., non-isolated
points) of X (α). Define for limit ordinals λ the set X (λ) as the intersection of all
sets X (α) for α < λ. Then Cantor-Bendixson rank of X is the smallest ordinal α
such that X (α+1) = X (α). If X is a countable Hausdorff compact space, then we
have X (α) = ∅ for α equal to the Cantor-Bendixson rank.

For example, if depth of Γ is 1, then there are no cycles connected by an oriented
path, and X is a finite set.

We see, for example, that Sturmian shifts are not of finite type, since their
complexity is n+ 1, but they are uncountable.

3.5. Angle doubling map. Consider the circle R/Z. Define f : R/Z −→
R/Z by f(x) = 2x. We call it angle doubling map. It is a degree 2 covering map.

Definition 3.4. For a dynamical system F : X −→ X a point x ∈ X is called
periodic if there exists n such that Fn(x) = x. It is called pre-periodic if it is not
periodic, but there exists k such that F k(x) is periodic.

A point has finite (forward) orbit if and only if it is either periodic or pre-
periodic. If F is one-to-one, then there are no pre-periodic points.

The following is straightforward.

Proposition 3.8. A point x ∈ R/Z has finite orbit for the angle doubling map
if and only if it is rational. If it has odd denominator (when written as a fraction
in lowest terms), then it is periodic. Otherwise it is pre-periodic. In particular the
sets of periodic and of pre-periodic points are dense in R/Z.
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Consider the map φ : {0, 1}N −→ R/Z given by

φ(a1a2 . . .) =

∞∑
n≥1

an
2n
.

Proposition 3.9. The map φ is surjective. For x ∈ R/Z the set φ−1(x) con-
sists either of one or two elements. In the latter case x is of the form m

2k
for m, k ∈

{0, 1, 2, . . .}, and φ−1(x) consists of sequences of the form a1a2 . . . ak−101111 . . .
and a1a2 . . . ak−110000 . . ., or of the form 0000 . . . and 1111 . . . (if x = 0).

Definition 3.5. Let φ : X −→ Y be a semi-conjugacy between two spaces on
which a semigroup G acts. Its kernel is the space Eφ = {(x1, x2) ∈ X 2 : φ(x1) =
φ(x2)} together with the action g · (x1, x2) = (g · x1, g · x2).

It follows directly from the definition of a semi-conjugacy that the space Eφ is
G-invariant. Note also that it is closed. In particular, if the space X is compact,
then Eφ is also compact.

We have a natural identification (a conjugacy) of the direct product AG ×AG
with the shift (A2)G. Namely, any pair of functions (f1, f2) ∈ AG × AG can be
written as one function (f1, f2) : G −→ A2 by the rule (f1, f2)(g) = (f1(g), f2(g)).
It follows that if φ : X −→ Y is a semi-conjugacy such that X is a subshift of AG,
then Eφ is a subshift of (A2)G.

Definition 3.6. A topological dynamical system (Y, G) is finitely presented if
there exists a shift of finite type X ⊂ AG and a surjective sem-conjugacy φ : X −→
Y such that Eφ ⊂ (A2)G is a shift of finite type.

Proposition 3.10. Let φ : {0, 1}N −→ R/Z be the semi-conjugacy φ(a1a2 . . .) =∑∞
n=1

an
2n of the shift with the angle doubling map. Then Eφ is a shift of finite type.

Proof. It is easy to check that Eφ is defined by the following set of 12 prohib-
ited sub-words. Here we write elements of {0, 1}2 as columns.(

0
1

)(
x
x

)
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0

)(
x
x

)
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x
x

)(
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)(
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(
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)(
1
0

)
,(
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0

)(
0
1

)(
1
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)
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(
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1

)(
1
0

)(
0
1

)
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1
0

)(
1
0

)(
0
1

)
,

(
0
1

)(
0
1

)(
1
0

)
,

where x = 0, 1. �

3.6. Smale’s solenoid. Let f : X −→ X be a continuous map. Consider the
sequence

X f←− X f←− X f←− · · ·
and let X̂ be its inverse limit, i.e., the subspace of X Z consisting of sequences

(x1, x2, . . .) such that f(xn+1) = xn. Then the map f̂ : X̂ −→ X̂ given by

f̂(x1, x2, . . .) = (f(x1), f(x2), . . .) is a homeomorphism. Its inverse is the map

(x1, x2, . . .) 7→ (x2, x3, . . .). The dynamical system (X̂ , f̂) is called the natural ex-
tension of the dynamical system (X , f).



18

The natural extension of the angle doubling map is called the Smale’s solenoid.
If (x1, x2, . . .) ∈ (R/Z)N is a point of the solenoid, then the binary representa-

tions of xi are of the form

(.a1a2 . . . , .a0a1a2 . . . , .a−1a0a1a2 . . . , . . .).

It is natural, therefore, to represent the point (x1, x2, . . .) by the bi-infinite binary
number

. . . a−1a0.a1a2 . . . .

The natural extension of the map x 7→ 2x is then represented by the shift

. . . a−1a0.a1a2 . . . 7→ . . . a0a1.a2a3 . . . .

It also follows directly from the properties of the binary numeration system on
R/Z that two different sequences represent the same point of the solenoid if and
only if they are of the form . . . an−1an011111 . . . and . . . an−1an100000 . . ., or they
are . . . 0000000 . . . and . . . 1111111 . . .. We see that the set of pairs of sequences
representing the same point of the solenoid is a two-sided shift of finite type (over
the alphabet {0, 1}2) given by the same set of prohibited words as the one-sided
shift in Proposition 3.10.

Recall that the ring of dyadic integers Z2 is the completion of Z with respect
to the norm ‖n‖ = 2k, where k is the non-negative integer such that n is divisible
by 2k. It is the ring of formal infinite series of the form

∞∑
k=0

ak2k, ak ∈ {0, 1}

with natural operations (coming from the arithmetic rules of adding and multiplying
integers in the binary numeration system). The map

∑∞
k=0 ak2k 7→ (a0, a1, . . .) is

a homeomorphism of Z2 with the Cantor set {0, 1}N.
It follows from the described representation of the points of solenoid by binary

sequences that the solenoid is naturally homeomorphic with the quotient of Z2×R
by the action (x, y) 7→ (x − n, y + n) of Z. In other words, it is the quotient of
the group Z2 ⊕ R by the subgroup of all elements of the form (−n, n) for n ∈ Z.
Note that this shows that the solenoid is an abelian group, which also follows from
the fact that it is the inverse limit of the groups R/Z with respect to the group
homomorphism x 7→ 2x.

Consider D = Z2 × [0, 1] ⊂ Z2 × R. This set is a fundamental region for the
Z-action: the images of D under the action of Z cover the whole space Z2×R, and
have disjoint interiors. It follows that the solenoid is obtained from Z2 × [0, 1] by
making identifications

(x, 1) 7→ (x+ 1, 0).

We have proved the following description of the solenoid.

Proposition 3.11. The solenoid is homeomorphic to the mapping torus of the
map x 7→ x + 1 on Z2. It is connected, but has uncountably many path connected
components. Each path connected component is dense.

The statement about path connected components follows from the fact that
the map x 7→ x + 1 on Z2 is a minimal dynamical system (which in turn follows
just from the fact that Z is dense in Z2). Connectivity of the solenoid follows from
density of its path connected components, or from the fact that it is inverse limit
of connected spaces.
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Figure 5. A Markov partition

Figure 6. Image of the partition

The original Smale’s construction of the solenoid realizes it as an attractor of
a diffeomorphism of an open subset of R3, as follows.

Consider a torus in R3 (say, obtained by rotating the circle (x − 2)2 + y2 =
1 around the z-axis). Let U be the open region inside the torus. Consider a
“skinny” torus U1 inside U winding twice, as it is shown on Figure... Let f be a
diffeomorphism f : U1 −→ U which is expanding in the longitudinal direction of
the torus, and contracting in the planes of the rotated circle. Denote Un = fn(U).
Then Un+1 ⊂ Un and S =

⋂
n≥1 Un is homeomorphic to the solenoid. Moreover,

the action of f on S is topologically conjugate to the natural extension of the angle
doubling map.

3.7. Arnold’s Cat Map. Consider the map f : R2/Z2 −→ R2/Z2 induced by

the linear transformation of R2 with the matrix A =

(
2 1
1 1

)
. Since detA = 1,

the map f is a homeomorphism (and an automorphism of the group R2/Z2).
The eigenvalues of A are satisfy λ2 − 3λ + 1 = 0, hence they are equal to

λ = 3+
√
5

2 and λ−1 = 3−
√
5

2 . Note that λ > 1 and 0 < λ−1 < 1. The eigenvectors

of A are

(
1

−1+
√
5

2

)
and

(
1−
√
5

2
1

)
. Note that they are orthogonal (since A is

symmetric).
Consider the following partition (see Figure 5) of the torus R2/Z2 into two

squares (red and blue) with sides parallel to the eigenvectors of A:
Their images under the action of A are shown on Figures 6 and 7.
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Figure 7. Image of the partition

Figure 8. Markov partition

If R ⊂ R2 is a rectangle with sides parallel to the eigenspaces of A such that
the quotient map R2 −→ R2/Z2 restricted to R is injective, then we also the image
of R in the torus an A-rectangle. If R is an A-rectangle, and x ∈ R, then we
denote by Ws(x,R) the maximal segment inside R containing x and parallel to
the contracting eigenspace (i.e., to the eigenspace of the eigenvalue λ < 1), and by
Wu(x,R) we denote the maximal segment inside R containing x and parallel to the
expanding eigenspace.

Definition 3.7. Let R be a finite set of A-rectangles R ⊂ R2/Z2 satisfying
the following conditions:

(1) The interiors of the rectangles R ∈ R are disjoint, and union of their
closures is the whole torus.

(2) If x belongs to the interior of R1 ∈ R and f(x) belongs to the interior of
R2 ∈ R, then

f(Ws(x,R1)) ⊂Ws(f(x), R2)

and
Wu(f(x), R2) ⊂ f(Wu(x,R1)).

Then the set R is called a Markov partition.

For example, the set R consisting of the two rectangles shown on Figure 5 is a
Markov partition, which follows from Figure 7.

Let R be a Markov partition. Then for every R ∈ R the intersections of the
form f(R) ∩ Ri for Ri ∈ R subdivide the rectangle f(R) into a finite number of
disjoint sub-rectangles, by cutting the expanding direction into pieces. For each of
these sub-rectangles R′ and x ∈ R′ we have Ws(x,R) = Ws(x,R

′), see Figure 8.
Note that an intersection f(R) ∩Ri can consist of several sub-rectangles of f(R).

Consider an oriented graph with the vertices identified with the elements of R
and an edge from R to Ri for every rectangular piece of a non-empty intersection
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Figure 9. Structural graph

f(R) ∩ Ri (of open rectangles). Let us call this graph the structural graph of
the Markov partition. For an edge e of the structural graph, denote by Re the
corresponding (closed) piece of an intersection f(R1) ∩ R2 for Ri ∈ R (so that R1

and R2 correspond to the beginning and end of the edge e).
For example, the structural graph of the Markov partition from Figure 5 is

shown on Figure 9. Note that its adjacency matrix is equal to A =

(
2 1
1 1

)
.

Consider the space M of all bi-infinite paths in the structural graph. It is
obviously a topological Markov shift (in particular, it is a shift of finite type).
It follows from the adjacency matrix of the graph that complexity of this shift
is equal to a function of the form C1λ

n + C2λ
−n, hence entropy of the shift is

limn→∞
log pM(n)

n = log λ.

Proposition 3.12. For every infinite path w = . . . e−1e0e1 . . . in the structural
graph of the Markov partition there exists exactly one point φ(w) ∈ R2/Z2 such that
An(φ(w)) ∈ Ren for all n ∈ Z. The map φ :M −→ R2/Z2 is a semi-conjugacy of
the shift with (R2/Z2, A).

We will prove later a general result implying that the constructed semi-conjugacy
is a finite presentation (i.e., that its kernel Eφ is a shift of finite type).
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