
4. Expanding dynamical systems

4.1. Metric definition.

Definition 4.1. Let X be a compact metric space. A map f : X −→ X is said
to be expanding if there exist ε > 0 and L > 1 such that d(f(x), f(y)) ≥ Ld(x, y)
for all x, y ∈ X such that d(x, y) < ε.

If X is a compact metrizable space, then a continuous map f : X −→ X is said
to be (topologically) expanding if there exists a metric such that f is expanding
with respect to it.

Lemma 4.1. Let f : X −→ X be such that fn is topologically expanding. Then
f is also topologically expanding.

Proof. Suppose that fn is expanding with respect to a metric d. Let ε and
L be as in Definition 4.1.

Consider the metric

dn(x, y) =

n−1∑
k=0

L−k/nd(fk(x), fk(y)).

Then

dn(f(x), f(y)) =

n∑
k=1

L−(k−1)/nd(fk(x), fk(y)) =

L−(n−1)/nd(fn(x), fn(y)) + L1/n
n−1∑
k=1

L−k/nd(fk(x), fk(y)) ≥

L−1+1/nLd(x, y) + L1/n
n−1∑
k=1

L−k/nd(fk(x), fk(y)) = L1/ndn(x, y).

It follows that f is also expanding. �

Example 4.1. Consider the circle R/Z, and for an integer k, |k| > 1, consider
the self-covering f : R/Z −→ R/Z given by f(x) = kx (mod 1). It is obviously
expanding.

Example 4.2. An endomorphism f : M −→ M of a Riemannian manifold is
called expanding if there exist C > 0 and L > 1 such that ‖Dfn~v‖ ≥ CLn‖~v‖ for
every tangent vector ~v. Note that, by Lemma 4.1, every expanding endomorphism
of a compact Riemannian manifold is an expanding self-covering.

4.2. Hyperbolic rational functions.
4.2.1. Some classical theorems of complex analysis.

Theorem 4.2 (Uniformization Theorem). Any simply connected Riemann sur-
face (i.e., a one dimensional smooth complex manifold) is conformally isomorphic
to exactly one of the following surfaces.

(1) The Riemann sphere Ĉ.
(2) The (Euclidean) plane C.
(3) the open unit disc D = {z ∈ C : |z| < 1}, or, equivalently, the upper half

plane H = {z ∈ C : =z > 0}.

22
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Theorem 4.3 (Schwarz Lemma). If f : D −→ D is holomorphic and f(0) = 0,
then |f ′(0)| ≤ 1. If |f ′(0)| = 1, then f is a rotation z 7→ cz about 0 (with |c| = 1).
If |f ′(z)| < 1, then |f(z)| < |z| for all z 6= 0.

As a corollary we get

Theorem 4.4 (Liouville Theorem). If f : C −→ C is holomorphic and bounded,
then it is constant.

The automorphism groups (i.e., groups of bi-holomorphic automorphisms) of
the simply connected Riemannian surfaces are as follows:

(1) Aut(Ĉ) is the group of all Möbius transformations z 7→ az+b
cz+d for a, b, c, d ∈

C such that

∣∣∣∣ a b
c d

∣∣∣∣ 6= 0, and is isomorphic to PSL(2,C).

(2) Aut(C) is the group of all affine transformations z 7→ az + b for a, b ∈ C,
a 6= 0.

(3) Aut(H) is the group of all transformations z 7→ az+b
cz+d , where a, b, c, d ∈

R are such that

∣∣∣∣ a b
c d

∣∣∣∣ > 0, and is isomorphic to PSL(2,R). Every

automorphism of D is of the form z 7→ eiθ z−a1−az , where θ ∈ R, |a| < 1.

If S is a connected Riemann surface, then its universal covering S̃ is one of

the simply connected surfaces Ĉ,C,D, and the fundamental group π1(S) acts on

S̃ by conformal automorphisms. We say that S is Euclidean or hyperbolic, if S̃ is
isomorphic to C or D, respectively.

Note that the action of π1(S) on S̃ is fixed point free. Since every non-identical
Möbius transformation has a fixed point, the only surface with universal covering

Ĉ is the sphere Ĉ itself.
Any transformation z 7→ az + b for a 6= 1 has a fixed point, hence in the Eu-

clidean case the fundamental group acts on the universal covering C by translations.
It is easy to see that this implies that a Euclidean surface is isomorphic either to
the cylinder C/Z, or to a torus C/Λ, where Λ is the subgroup of the additive group
of C generated by two non-zero complex numbers a, b such that a/b /∈ R. All the
other Riemann surfaces are hyperbolic.

It is a direct corollary of the Liouville theorem that every holomorphic map
from C to a hyperbolic surface is constant (since we can lift it to the universal
covering). In particular, every holomorphic map f : C −→ C such that C \ f(C)
has more than one point is constant (Picard’s Theorem).

Theorem 4.5 (Poincaré metric). There exists, up to multiplication by a con-
stant, unique Riemannian metric on D invariant under every conformal automor-

phism of D. It is given by ds = 2|dz|
1−|z|2 (the coefficient 2 is in order to have Gaussian

curvature equal to −1). Every orientation preserving isometry of D is a conformal
automorphism.

Every hyperbolic surface S has then a unique Poincaré metric coming from the

Poincaré metric on the universal covering S̃ ∼= D of S (since the fundamental group

π1(S) acts on S̃ by conformal automorphisms).
The following is a corollary of Schwarz Lemma.

Theorem 4.6 (Pick Theorem). Let f : S −→ S′ be a holomorphic map between
hyperbolic surfaces. Then exactly one of the following cases is taking place.
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(1) f is a conformal isomorphism and an isometry with respect to the Poincaré
metrics.

(2) f is a covering map and is a local isometry.
(3) f is strictly contracting, i.e., for every compact set K ⊂ S there is a

constant cK < 1 such that d(f(x), f(y)) ≤ ckd(x, y) for all x, y ∈ K.

4.2.2. Julia set.

Definition 4.2 (Compact-open topology). Let X be a locally compact space,
and let Y. Compact open topology on the space Map(X ,Y) of continuous maps
X −→ Y is given by the bases of neighborhoods of a map f : X −→ Y consisting
of sets

NK,ε(f) = {g ∈Map(X ,Y) : d(f(x), g(x)) < ε for all x ∈ K}
where K ⊂ X is compact and ε > 0.

In fact, the compact-open topology does not depend on the metric on Y. Con-
vergence in the compact-open topology is called uniform convergence on compact
subsets.

Definition 4.3. A set F of holomorphic functions from a Riemann surface S
to a compact Rieman surface T is called a normal family if its closure is compact
in Map(S, T ). In the case when T is not compact, we replace T by its one-point
compactification.

Thus, a family F ⊂ Hol(S, T ) is normal if every sequence fn of elements of
F has either a subsequence fnk

convergent uniformly on compact subsets, or a
subsequence fnk

converging to infinity uniformly on compact subsets (i.e., such
that for all compact K1 ⊂ S and K2 ⊂ S the intersection fnk

(K1) ∩K2 is empty
for all k big enough).

Every holomorphic map f : Ĉ −→ Ĉ is a rational function, i.e., a ratio of two
polynomials.

Definition 4.4. Let f : Ĉ −→ Ĉ be a rational function. The Fatou set of f

is the set of points z ∈ Ĉ such that there exists a neighborhood U of z such that

f◦n : U −→ Ĉ, for n ≥ 0, is normal. The complement of the Fatou set is called the
Julia set.

Some examples (some taken from a very good introductory book by J. Mil-
nor Dynamics in One Complex Variable, Annals of Mathematics Studies, No 160,
Princeton University Press 2006):

The Julia set J is totally invariant, i.e., f(J) = J = f−1(J). It is always
non-empty (unless f is a Möbius transformation) and compact. It can be equal to
the whole sphere.

4.2.3. Hyperbolic rational functions.

Definition 4.5. A rational function f is hyperbolic if it is expanding on its
Julia set.

A post-critical set of f is the set of all points of the form fn(c), where c is a
critical point of f , and n ≥ 1.

Theorem 4.7. Let f be a rational function of degree ≥ 2. Then the following
conditions are equivalent.
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Figure 10. A Cantor set z2 − 0.765 + 0.12i

Figure 11. A simple closed curve z2 + (0.99 + 0.14i)z

Figure 12. “Basilica” z2 − 1

(1) f is hyperbolic.
(2) Closure of the post-critical set of f is disjoint from its Julia set.
(3) Orbit of every critical point converges to an attracting cycle.
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Figure 13. “Rabbit and Airplane”

Figure 14. z2 + i

Figure 15. ((1 + i
√

3)/2 + z2)/(1− z2)

Sketch of the proof. It is easy to see that (3) implies (2), since basins of attraction
belong to the Fatou set. Let us show only that (2) implies (1) in the case when P

has more than two points. Then X = Ĉ \ P is a hyperbolic surface containing the
Julia set. Note that f(P ) ⊂ P , hence f−1(X ) ⊂ X . The map f : f−1(X ) −→ X is
a covering. Consider the Poincaré metrics on X and f−1(X ). The map f is a local
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Figure 16. A Sierpiński carpet

Figure 17. Herman rings

isometry with respect to these metrics. The inclusion map Id : f−1(X ) −→ X is
not a covering map, hence it is strictly contracting, see Theorem 4.6. It follows that
if we consider the restriction of the Poincaré metric of X onto the subset f−1(X ),
then the map f : f−1(X ) −→ X is expanding. Since the Julia set is compact and
contained in f−1(X ), the map f will be strictly expanding on the Julia set.

If closure of the post-critical set has less than three points, then they belong

to attracting cycles, and we can take X equal to Ĉ minus a small neighborhood of
P , and repeat the proof.

Let us show that (1) implies (2). Let W be a neighborhood of the Julia set
J such that f is expanding on W . Taking an ε-neighborhood of J in W , we get
an open neighborhood U of J such that f is expanding on U , and f−1(U) ⊂ U .
Then f−n(U) ⊂ U for all n ≥ 1. The set U does not contain critical points
of f , since f is not one-to-one, hence not expanding, on any neighborhood of a
critical point. If c is critical, and fn(c) ∈ U , then c ∈ f−n(U) ⊂ U , which is
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a contradiction. Consequently, U does not contain any post-critical points. This
implies that intersection of U with the closure of the post-critical set is empty.

The fact that (2) implies (3) follows from classification of components of the
Fatou set.

4.3. Problems. A cycle of a rational function f : Ĉ −→ Ĉ is a sequence
x0, x1, . . . , xn−1 such that f(xi) = xi+1 for all i = 0, . . . , n − 2, and f(xn−1) =
x0. Its multiplier is the derivative d

dz f
n(z)

∣∣
z=xi

= f ′(x0)f ′(x1) · · · f ′(xn−1). The

cycle is called attracting if its multiplier is less than one in absolute value. It is
superattracting if the multiplier is zero.

Problem 4.1. Find the set of values of c ∈ C such that z2 +c has an attracting
fixed point (i.e., a cycle of length 1).

Problem 4.2. Find the set of values of c ∈ C such that z2 +c has an attracting
cycle of length 2.

Problem 4.3. Consider the Tchebyshev polynomials Td(x) = cos(d arccosx).
Describe the Julia sets of Td for d ≥ 1.

Problem 4.4. Let C/Z[i] be the torus, and let A : C/Z[i] −→ C/Z[i] be the
map given by A(z) = (1 + i)z. Find the Julia set of A. Using the fact that any
holomorphic map f : C/Λ −→ C/Λ on a torus is induced by a linear map on C,
describe all possible Julia sets of holomorphic maps on the torus.

Problem 4.5. Consider the group G of all maps of the form z 7→ (−1)kz+a+ib,
where k ∈ {0, 1}, and a, b ∈ Z. Show that C/G is homeomorphic to a sphere.
Consider the map A(z) = (1 + i)z. Show that it induces a well defined map on the
sphere C/G. Since the group G and the map A act by holomorphic maps, there is a
well defined structure of a complex manifold on C/G, and A induces a holomorphic
map on C/G, hence is can be realized by a rational function. What is the Julia set
of this rational function?

4.4. Topological description of expanding maps.

Definition 4.6. Let f : X −→ X be a continuous map, where X is compact
Hausdorff. An expansion entourage U is a compact neighborhood of the diagonal
{(x, x) : x ∈ X} in X × X such that if (fn(x), fn(y)) ∈ U for all n ≥ 0, then
x = y.

If U is an expansion entourage, then U> = {(x, y) : (y, x) ∈ U} is also
an expansion entourage. Then U> ∩ U is a symmetric expansion entourage. It
follows that we may assume without loss of generality that expansion entourages
are symmetric.

Suppose that U is an expansion entourage for a map f : X −→ X . Denote then
by Un ⊂ X × X the set of pairs of points (x, y) such that (fk(x), fk(y)) ∈ U for
all k = 0, 1, . . . , n. In particular, U0 = U . Denote U−1 = X × X . By the definition
of an expansion neighborhood,

⋂
n≥0 Un is equal to the diagonal. It is easy to see

that Un are compact neighborhoods of the diagonal.

Lemma 4.8. For every neighborhood V of the diagonal, there exists n such
Un ⊂ V .
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Proof. It is enough to prove the lemma for open neighborhoods. Then X ×
X \ V is compact. By definition of the expansion entourage, open sets X ×X \Un,
for n ≥ 0, cover X ×X \V . Since X ×X \Un ⊇ X ×X \Un+1, it follows that there
exists n such that X × X \ Un ⊇ X × X \ V . �

For subsets A,B of X × X , denote by A ◦ B the set of pairs (x, y) such that
there exists z such that (x, z) ∈ A and (z, y) ∈ B. Note that A ◦ B is the image
of the closed subset D = {((x1, y1), (x2, y2)) : y1 = x2} of A × B under the map
((x1, y1), (x2, y2)) 7→ (x1, y2). If A and B are compact, then D is a closed subset of
a compact space A×B, hence D is compact, which implies that A ◦B is compact.

Lemma 4.9. There exists ∆ ∈ N such that Un+∆ ◦ Un+∆ ⊂ Un for all n ≥ 1.

Proof. Suppose that there is no ∆ such that U∆ ◦ U∆ ⊂ Int(U). Denote
Bk = (X 2 \ Int(U))∩ (Uk ◦Uk), for k ≥ 0. Then the sets Bk are closed non-empty,
and Bk+1 ⊂ Bk. It follows from compactness of X 2 that the intersection

⋂
k≥1Bk

is non-empty. Let (x, y) be such that (x, y) ∈ Bk for all k. Let Zk ⊂ X be the set
of points z such that (x, z) ∈ Uk and (z, y) ∈ Uk. Since Uk is closed, the set Zk is
closed. It is non-empty, by the choice of (x, y). We also have Zk+1 ⊂ Zk. It follows
that the intersection of all Zk is non-empty. Let z0 ∈

⋂
k≥1 Zk. Then (x, z0) ∈ Uk

for all k, hence x = z0, and (z0, y) ∈ Uk for all k, hence z0 = y, which implies
x = y, which is a contradiction.

We have shown that there exists ∆ such that U∆ ◦ U∆ ⊂ U . If (x, y) ∈
U∆+n ◦ U∆+n, then there exists z such that (x, z) ∈ U∆+n and (z, y) ∈ U∆+n.
Then (f i(x), f i(z)) ∈ U∆+n−i ⊆ U∆ and (f i(z), f i(y)) ∈ U∆+n−i ⊆ U∆ for all
i = 0, 1, . . . , n. It follows that (f i(x), f i(y)) ∈ U∆ ◦U∆ ⊂ U , hence (x, y) ∈ Un. We
have shown that Un+∆ ◦ Un+∆ ⊂ Un for all n ≥ 0. �

Definition 4.7. Denote, for (x, y) ∈ X 2, by `(x, y) the maximal value of n
such that (x, y) ∈ Un, and ∞ if x = y.

Lemma 4.9 is reformulated then as follows.

Proposition 4.10. There exists ∆ > 0 such that `(x, y) ≥ min(`(x, z), `(z, y))−
∆ for all x, y, z ∈ X .

Theorem 4.11. For all α > 0 small enough there exists a metric d on X and
C > 1 such that

C−1e−α`(x,y) ≤ d(x, y) ≤ Ce−α`(x,y)

for all x, y ∈ X . We say then that d is a metric of exponent α associated with the
entourage U .

Proof. One can use the following Frink’s metrization lemma, see Lemma 12
on page 185 in J. L. Kelley, General Topology.

Lemma 4.12. Let En, n ≥ 0, be a sequence of neighborhoods of the diagonal in
X × X such that

En+1 ◦ En+1 ◦ En+1 ⊂ En
for every n. Then there is a non-negative continuous real valued function d : X ×
X −→ R such that d satisfies the triangle inequality and

En ⊂ {(x, y) : d(x, y) < 2−n} ⊂ En−1

for every n ≥ 1.



30

Define En = U2∆n. Then En+1◦En+1◦En+1 = U2∆(n+1)◦U2∆(n+1)◦U2∆(n+1) ⊂
U2∆(n+1)−∆ ◦U2∆(n+1) ⊂ U2∆(n+1)−∆ ◦U2∆(n+1)−∆ ⊂ U2∆(n+1)−2∆ = U2∆n = En.

Let d be the function given by the Frink’s metrization lemma. Since Un are
symmetric, d(x, y) = d(y, x). Since

⋂
n≥1 Un is equal to the diagonal, d(x, y) = 0

implies that x = y, and hence d is a metric.
It satisfies

U2∆n ⊂ {(x, y) : d(x, y) < 2−n} ⊂ U2∆(n−1).

Consequently,

d(x, y) ≤ 2−b`(x,y)/2∆c < 2−`(x,y)/2∆+1

and
d(x, y) ≥ 2−b`(x,y)/2∆c−1 ≥ 2−`(x,y)/2∆−2.

It follows that for α = 2−1/2∆ we have
1

4
· α`(x,y) ≤ d(x, y) ≤ 2 · α`(x,y).

Which finishes the proof of the theorem. �

Let us give an independent and more explicit construction of the metric d
satisfying the conditions of Theorem 4.11.

Consider, for every n ∈ N the graph Γn with the set of vertices X in which two
points x, y are connected by an edge if (x, y) ∈ Un, i.e., if `(x, y) ≥ n. Let dn be
the combinatorial distance between the vertices of Γn.

Lemma 4.13. There exists α > 0 and C > 0 such that

dn(x, y) ≥ Ceα(n−`(x,y))

for all x, y ∈ X and n ∈ N.

Proof. Let ∆ be as in Proposition 4.10, and let us prove the lemma for α =
ln 2
∆ . If x0, x1, x2 is a path in Γn, then `(x0, x2) ≥ n−∆, hence x0, x2 is a path in

Γn−∆. It follows that dn−∆(x, y) ≤ 1
2 (dn(x, y) + 1), or

dn+∆(x, y) ≥ 2dn(x, y)− 1.

If `(x, y) = m, then dm+1(x, y) ≥ 2, and hence

dm+1+t∆(x, y) ≥ 2t + 1.

It follows that for every n and t = bn−`(x,y)−1
∆ c > n−`(x,y)−1

∆ − 1 we have

dn(x, y) > 2t > 2(n−`(x,y)−1−∆)/∆ = Ceα(n−`(x,y)),

where C = 2(−1−∆)/∆ and α = ln 2
∆ . �

We say that α > 0 is a lower exponent if there exists C > 0 such that α and C
satisfy the conditions of Lemma 4.13. If α is a lower exponent, then all numbers in
the interval (0, α) are lower exponents. Hence, the set of lower exponents is either
an interval (0, c) (including the case c = +∞) or an interval (0, c]. The number c
is called the critical lower exponent.

It is easy to see that if α is such that there exists a metric of exponent α, then
α is a lower exponent.

Let α be a lower exponent, and let β ∈ (0, α). Let us show that there ex-
ists a metric d of exponent β. Denote by dβ(x, y) the infimum of the number∑m
i=1 e

−β`(xi,xi+1) over all sequences x0 = x, x1, x2, . . . , xm = y. The function
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dβ obviously satisfies the triangle inequality, dβ(x, y) = dβ(y, x), and dβ(x, y) ≤
e−β`(x,y) for all x, y ∈ X . It remains to show that there exists C > 0 such that
Ce−β`(x,y) ≤ dβ(x, y). In other words, C is such that

(1) Ce−β`(x,y) ≤
m∑
i=1

e−β`(xi,xi+1)

for all sequences x0, x1, . . . , xm such that x = x0 and y = xm.
Let C0 ∈ (0, 1) be such that dn(x, y) ≥ C0e

−α(n−`(x,y)) for all x, y ∈ X and

n ∈ N. Let us prove inequality (1) for C = exp
(
β(lnC0−2α∆)

α−β

)
.

Lemma 4.14. Let x0, x1, . . . , xm be a sequence such that `(xi, xi+1) ≥ n for
all i = 0, 1, . . . ,m − 1. Let n0 ≤ n. Then there exists a sub-sequence y0 =
x0, y1, . . . , yt−1, yt = xm of the sequence xi such that

n0 − 2∆ ≤ `(yi, yi+1) < n0

for all i = 0, 1, . . . , t− 1.

Proof. Let us construct the subsequence yi by the following algorithm. Define
y0 = x0. Suppose we have defined yi = xr for r < m. Let s be the largest index
such that s > r and `(xr, xs) ≥ n0. Note that since `(xr, xr+1) ≥ n ≥ n0, such s
exists.

If s < m, then `(xr, xs+1) < n0, and

`(xr, xs+1) ≥ min{`(xr, xs), `(xs, xs+1)}−∆ ≥ min{n0, `(xs, xs+1)}−∆ = n0−∆.

Define then yi+1 = xs+1. We have

n0 − k ≤ `(yi, yi+1) < n0.

If s+ 1 = m, we stop and get our sequence y0, . . . , yt, for t = i+ 1.
If s = m, then `(xr, xm) = `(yi, xm) ≥ n0, and

`(yi−1, xm) ≥ min{`(yi−1, yi), `(yi, xm)} −∆ ≥ min{n0 −∆, n0} − k = n0 − 2∆

and

`(yi−1, xm) < n0,

since yi was defined and was not equal to xm. Then we redefine yi = xm and stop
the algorithm.

In all the other cases we repeat the procedure. It is easy to see that at the end
we get a sequence yi satisfying the conditions of the lemma. �

Let x0 = x, x1, . . . , xm = y be an arbitrary sequence of points of X. Let n0 be
the minimal value of `(xi, xi+1). Let y0 = x, y1, . . . , yt = y be a sub-sequence of
the sequence xi satisfying conditions of Lemma 4.14.

Suppose at first that

n0 < `(x, y) +
2α∆− lnC0

α− β
.

Remember that n0 = `(xi, xi+1) for some i, hence
m∑
i=1

e−β`(xi−1,xi) ≥ e−βn0 > exp

(
−β`(x, y)− β(2α∆− lnC0)

α− β

)
= Ce−β`(x,y),

and the statement is proved.
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Suppose now that n0 ≥ `(x, y) + 2αk−lnC0

α−β , which is equivalent to

(2) (α− β)n0 − (α− β)`(x, y)− 2α∆ + lnC0 ≥ 0.

If t = 1, then n0 − 2∆ ≤ `(x, y) < n0, hence

n0 ≤ `(x, y) + 2∆ = `(x, y) +
2α∆− 2β∆

α− β
< `(x, y) +

2α∆− lnC0

α− β
,

since lnC0 < 0 < 2β∆. But this contradicts our assumption.
Therefore t > 1, and the inductive assumption implies

m∑
i=1

e−β`(xi−1,xi) ≥
t−1∑
i=0

Ce−β`(yi,yi+1) > tCe−βn0 .

We have t ≥ dn0−2∆(x, y) ≥ C0e
α(n0−2∆−`(x,y)), hence

m∑
i=1

e−β`(xi−1,xi) ≥ C0Ce
−βn0+αn0−2α∆−α`(x,y) =

C exp (lnC0 − βn0 + αn0 − 2α∆− α`(x, y)) =

C exp (−β`(x, y) + (α− β)n0 − (α− β)`(x, y)− 2α∆ + lnC0) ≥ Ce−β`(x,y),

by (2). Which finishes the proof. �

We get the following characterization of topologically expanding maps.

Theorem 4.15. Let X be a compact Hausdorff space. A continuous map f :
X −→ X is topologically expanding if and only if there exists an expansion entourage
U ⊂ X × X .

Proof. Suppose that f : X −→ X is topologically expanding. Then there
exists a metric d and numbers ε > 0 and L > 1 such that d(f(x), f(y)) > Ld(x, y)
for all (x, y) ∈ X 2 such that d(x, y) ≤ ε. Then the set {(x, y) : d(x, y) ≤ ε} is an
expansion entourage.

Suppose now that U is an expansion entourage. Suppose that d is a metric
associated with U . Let C > 1 and α > 0 be such that

C−1e−α`(x,y) ≤ d(x, y) ≤ Ce−α`(x,y)

for all x, y ∈ X . Let k be a positive integer, and suppose that `(x, y) ≥ k. Then
`(fk(x), fk(y)) = `(x, y)− k, and

d(fk(x), fk(y))

d(x, y)
≤ C2e−αk.

It follows that for any integer k greater than lnC2

α we have d(fk(x), fk(y)) ≤
Ld(x, y), where L = C2e−αk < 1, for all (x, y) ∈ Uk. If ε < C−1e−αk, then
`(x, y) ≥ k for all x, y ∈ X such that d(x, y) ≤ ε. It follows that fk is expanding,
hence f is also expanding, by Lemma 4.1. �

Proposition 4.16. Let U and V be expansion entourages for a map f : X −→
X . Then the sets of lower exponents for U and V coincide. If dU and dV are
metrics associated with U and V of exponent α, then there exists C > 1 such that
C−1dU (x, y) ≤ dV (x, y) ≤ CdU (x, y) (the metrics are bi-Lipschitz equivalent).
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Proof. Let `U and `V be defined by U and V , respectively. By Lemma 4.8,
there exists k such that Uk ⊂ V , hence Un+k ⊂ Vn for all n ∈ N. It follows that
`V (x, y) ≥ `U (x, y) + k. The same arguments show that `U (x, y) ≥ `V (x, y) + k for
some k, i.e., that |`U (x, y)− `V (x, y)| is uniformly bounded. The statements of the
proposition easily follow from this fact. �

We see that for any expanding map f : X −→ X the critical lower exponent α
is well defined (i.e., depends only on the topological dynamical system (X , f)), and
for every β ∈ (0, α) the corresponding metric of exponent β is uniquely defined, up
to a bi-Lipschitz equivalence. Note that if d is a metric of exponent β, then any
metric bi-Lipschitz equivalent to d is also a metric of exponent β.

Problem 4.6. Find the critical lower exponents of the one-sided shift s :
{0, 1}N −→ {0, 1}N and the angle doubling map x 7→ 2x : R/Z −→ R/Z.
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