
5. Iterated monodromy groups

5.1. Expanding coverings. Let f : X −→ X be an expanding covering map.
Let ε > 0, L > 1, and a metric d on X are such that d(f(x), f(y)) ≥ Ld(x, y) for
all x, y ∈ X such that d(x, y) ≤ ε.

By definition, f : X −→ X is a covering map if for every x ∈ X there exists
an open neighborhood U of x that is evenly covered, i.e., such that f−1(U) can be
decomposed into a disjoint union f−1(U) = U1∪U2∪· · ·∪Um such that f : Ui −→ U
is a homeomorphism for every i. The decomposition is finite, since X is compact
(hence f−1(x) is compact for every x ∈ X ). Note that in general (if X is not
locally connected) the decomposition is not unique. But we can use the fact that
f is expanding to choose canonical decompositions for sets U of small diameter as
follows.

Since X is compact, there exists a finite cover U of X by open evenly covered
sets. Then, by Lebesgue’s lemma, there exists δ0 > 0 such that for every set B of
diameter less than δ0 there exists U ∈ U such that B ⊂ U . It follows that every set
of diameter less than δ0 is evenly covered.

Consider decompositions of f−1(U), for U ∈ U , into disjoint unions U =
U1 ∪ · · · ∪ Um such that f : Ui −→ U are homeomorphisms, and consider the
corresponding inverse maps f−1 : U −→ Ui. By continuity of these inverse maps,
there exists δ < δ0 such that for every set A of diameter less than δ the set f−1(A)
can be decomposed into a disjoint union of sets A1 ∪ · · · ∪ Am of sets of diameter
less than ε. Then the diameters of Ai will be less than L−1δ. Note that then
distance between any two different points of f−1(x) for x ∈ X is not less than ε.
Consequently, for any x1 ∈ Ai and x2 ∈ Aj for i 6= j we have d(x1, x2) > ε−2L−1δ.
If δ is small enough, then ε− 2L−1δ > δ, and we get the following.

Lemma 5.1. If δ is small enough, then for every set A ⊂ X of diameter less
than δ the set f−1(A) is decomposed in a unique way into a disjoint union f−1(A) =
A1 ∪ · · · ∪Am such that f : Ai −→ A are homeomorphisms, sets Ai have diameters
less than δ, and distance between any two points belonging to different sets Ai is
greater than δ.

We will call the setsAi the components of f−1(A). For n > 1, the components of
f−n(A) are defined inductively as components of f−1(Ai), where Ai is a component
of f−(n−1)(A). Note that since components of f−1(A) are of diameter less than
L−1δ < δ, we have a unique decomposition of f−n(A) into components. If A is
connected, then components of f−n(A) are its connected components.

Fix some δ > 0 satisfying the conditions of Lemma 5.1. Let U ⊂ X be a set
of diameter less than δ. Consider the rooted tree TU whose nth level is the set of
components of f−n(U), and in which a component A of f−n(U) is connected to the
component f(A) of f−(n−1)(U). The root is f−0(U) = {U}.

Similarly, for every x ∈ X , denote by Tx the tree whose levels are the sets
f−n(x), in which a vertex t ∈ f−n(x) is connected to the vertex f(t) ∈ f−(n−1)(x).
For every x ∈ U the trees Tx and TU are naturally isomorphic: the isomorphism
maps a vertex t ∈ f−n(x) of Tx to the unique component of f−n(U) containing t.

The boundary ∂Tx of the tree Tx is the inverse limit of the sets f−n(x) with
respect to the maps f : f−n(x) −→ f−(n−1)(x). In other words, it is the space of
all simple (i.e., without repetition) infinite paths in Tx starting at the root with the
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topology of coordinatewise convergence: two paths are close to each other if they
coincide on a long initial segment. The boundary ∂TU is defined in the same way.

Consider the natural extension f̂ : X̂ −→ X̂ of f : X −→ X . Let P : X̂ −→ X
be the natural projection map. For every set U ⊂ X of diameter less than δ
the set P−1(U) ⊂ X is naturally decomposed into the direct product U × ∂TU .

Namely, every point (x0, x1, . . .) ∈ X̂ is a point of ∂Tx0
. Let ξ ∈ ∂TU be the

image of this point under the natural isomorphism Tx0 −→ TU . The point ξ is the
unique sequense (U,U1, U2, . . .), where Un is the component of f−n(U) containing
xn. Then it is easy to see that the map (x0, x1, . . .) 7→ (x0, ξ) is a homeomorphism
P−1(U) −→ U × ∂TU .

Suppose that A,B ⊂ X are sets of diameters less than δ such that A ∩B 6= ∅.
Then for every component A1 of f−1(A) there exists a unique component B1 of
f−1(B) such that A1 ∩ B1 6= ∅ (if there is another such component B′1, then for
any points x1 ∈ B1∩A1 and x2 ∈ B′1∩A1 we have d(x1, x2) < δ, which contradicts
our choice of U). By induction, for every component An of f−n(A) there exists
a unique component Bn of f−n(B) such that An ∩ Bn 6= ∅. It follows that there
exists a unique map SA,B : TA −→ TB such that V ∩SA,B(V ) 6= ∅ for all vertices V
of TA. It is easy to see that it is an isomorphism of rooted trees. It is equal to the
composition of the natural homeomorphisms TA −→ Tx −→ TB for any x ∈ A∩B.

We will also denote by SA,B the induced homeomorphism ∂TA −→ ∂TB . It

describes the gluing rule between the pieces P−1(A) and P−1(B) of X̂ for the
decompositions P−1(A) = A× ∂TA and P−1(B) = B × ∂TB .

Lemma 5.2. If U1, U2, U3 be subset of diameter less than δ such that U1 ∩U2 ∩
U3 6= ∅, then SU2,U3

◦ SU1,U2
= SU1,U3

.

Proof. Choose a point x ∈ U1 ∩U2 ∩U3. Then SUi,Uj
is equal to the compo-

sition of the natural isomorphisms TUi −→ Tx −→ TUj . �

Let U be a finite set of subsets of X of diameter less than δ such that their
union is whole X . Recall that a nerve of the cover U is the simplicial complex with
the set of vertices equal to U in which a subset C ⊂ U is a simplex if and only if⋂
A∈C A is non-empty.

Let ΓU be the nerve of the cover U . For every edge (U1, U2) of ΓU we have the
isomorphism SU1,U2 : TU1 −→ TU2 . For every path γ = (U1, U2, . . . , Un), we get
isomorphisms SUi,Ui+1

. Their composition is an isomorhism Sγ : TU1
−→ TUn

.
It follows from Lemma 5.2 that paths homotopic in ΓU define equal isomor-

phisms. In particular, the map γ 7→ Sγ is a homormophism from π1(ΓU , V ) to
the automorphism group of TV . Let us denote the image of π1(ΓU , V ) under this
homomorphism by IMG (f,U , V ). Note that every isomorphism SU1,U2 induces an
isomorphism IMG (f,U , U1) −→ IMG (f,U , U2) (by conjugation). It follows that if
the nerve ΓU is connected (e.g., if X is connected), then the group IMG (f,U , V )
does not depend on V . We call the group IMG (f,U , V ) the iterated monodromy
group.

Lemma 5.3. Suppose that U1 and U2 are finite covers of X by sets of diameter
less than δ such that for every element A ∈ U1 there exists B ∈ U2 such that
A ⊂ B. Suppose that U1 ∈ U1 and U2 ∈ U2 are such that U1 ⊂ U2. Then
S−1
U2,U1

IMG (f,U1, U1)SU2,U1
≤ IMG (f,U2, U2).
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Proof. Consider the nerve ΓU1∪U2 . Then ΓUi are sub-complexes of ΓU1∪U2 .
Let (U1, A1, A2, . . . , An, U1) be a loop in ΓU1 . Let Bi ∈ U2 be such that Ai ⊂ Bi.
Then (U2, B1, B2, . . . , Bn, U2) is a loop in ΓU2 . Note that {Bi, Bi+1, Ai, Ai+1},
{U2, B1, U1, A1}, and {U2, Bn, U1, An} are simplices in ΓU1∪U2 . It follows that the
loop (U2, U1, A1, A2, . . . , An, U1, U2) is homotopic in ΓU1∪U2 to the loop (U2, B1, B2, . . . , Bn, U2),
which implies that the automorphisms of TU2

defined by them are equal. �

Lemma 5.4. Suppose that U1 and U2 are finite covers of X by sets of diameter
less than δ such that every element of U2 is connected and is equal to a union of
elements of U1. Then IMG (f,U2, U2) ≤ S−1

U2,U1
IMG (f,U1, U1)SU2,U1 .

Proof. Let γ = (B0 = U2, B1, B2, . . . , Bn−1, Bn = U2) be a loop in ΓU2 .
Choose xi ∈ Bi ∩ Bi+1 for i = 0, . . . , n − 1. Since each Bi is connected and equal
to a union of elements of U1, for every i there exists a path A1,i, A2,i, . . . , Aki,i in
ΓU1 such that Aj,i ⊂ Bi and xi−1 ∈ A1,i, xi ∈ Aki,i. Replacing in the loop γ the
vertex Bi by the path (A1,i, A2,i, . . . , Aki,i), we will get a loop in ΓU1 homotopic in
ΓU1∪U2 to γ. �

As a direct corollary of Lemmas 5.3 and 5.4 we get the following.

Proposition 5.5. Suppose that X is locally connected and connected, and let
U be a finite cover of X by open connected sets of diameter less than δ. Then
IMG (f,U , U) does not depend on U and U .

If IMG (f,U , U) does not depend on U and U , then we denote it IMG (f).

5.2. Iterated monodromy group for path-connected spaces. Suppose
that X is path connected and locally path connected. Let γ be a path starting at
t1 ∈ X and ending in t2 ∈ X . By uniqueness of lifts of paths by covering maps,
for every z ∈ f−1(t) there exists a unique path γz starting in z and such that
f(γz) = γ. Similarly, for every vertex z ∈ f−n(t) of the nth level of the tree Tt
there exists a unique path γz starting in z such that fn(γz) = γ. Let γ(z) be the
end of γz. Then the map z 7→ γ(z) is an isomorphism Tt1 −→ Tt2 . Let us denote it
by Sγ .

In particular, the map γ 7→ Sγ is a homomorphism from the fundamental
group π1(X , t) to the automorphism group of Tt. Its image is called the iterated
monodromy group of f : X −→ X . It is easy to see that it does not depend (up to
conjugacy of automorphism groups of rooted trees) on the choice of the basepoint
t.

Proposition 5.6. If the space X is path connected and locally path connected,
then our two definitions of iterated monodromy groups (using covers and using
paths) coincide.

5.3. Modelling expanding coverings by graphs. Let f : X −→ X be an
expanding covering, let ε > 0 and L > 1 be such that d(f(x), f(y)) ≥ Ld(x, y) for
all x, y ∈ X , d(x, y) < ε, and let δ be as in Lemma 5.1. We do not impose any
connectivity conditions on X in this subsection.

Let U be a finite cover of X by subsets of diameter less than δ. Denote by Un
the set of components of f−n(U) for U ∈ U . We also denote U0 = U .

Denote by Γn the nerve of the cover Un.
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The map f induces simplicial maps fn : Γn+1 −→ Γn by the rule that fn(U) =
f(U), where f(U) is the image of U as a set under the map f : X −→ X , i.e., U is
a component of f−1(fn(U)).

Lemma 5.7. The maps fn : Γn+1 −→ Γn are coverings.

Proof. For U ∈ Un, denote by NU the sub-complex of Γn equal to the union
of simplices containing U .

It is enough to show that f : NU −→ Nf(U) is an isomorphism for every
U ∈ Un+1. It is obviously a simplicial map.

Let us show that f : NU −→ Nf(U) is injective on the set of vertices adjacent
to U . Suppose that it is not, then there exist elements A,B,C ∈ Un+1 such that
A ∩ C and B ∩ C are non-empty, and f(A) = f(B). But then there exist x ∈ A
and y ∈ B such that d(x, y) < δ, which contradicts the conditions of Lemma 5.1.

For every simplex ∆ = {f(U), A1, A2, . . . , Ak} of Γn containing f(U) there ex-
ists a unique simplex ∆′ = {U,B1, B2, . . . , Bk} = {U, Sf(U),A1

(U), Sf(U),A2
(U), . . . , Sf(U),Ak

(Bk)}
of Γn+1 containing U such that f(∆′) = ∆. Consequently, f : NU −→ Nf(U) is an
isomorphism. �

Definition 5.1. We say that U is semi-Markovian if for every U ∈ U1 there
exists U ′ ∈ U such that U ⊂ U ′.

Lemma 5.8. There exists a finite semi-Markovian cover.

Proof. Let V be a cover of X by sets of diameter less than δ0. As before,
we denote by Vn the set of components of f−n(A) for A ∈ V. Define, for every
V ∈ V the sets V (n) inductively by the rule that V (0) = V , and V (n+1) is equal to
the union of V (n) and all elements W ∈ Vn+1 such that W ∩ V (n+1) 6= ∅. Define
V (∞) =

⋃
n≥1 V

(n), and let V(∞) = {V (∞) : V ∈ V}.
Diameter of V (n) is less than

2δ0(1 + L−1 + L−2 + · · ·+ L−n) < 2δ0/(1− L−1).

Consequently, diameter of V (∞) is not more than 2δ0/(1 − L−1). Assume that
δ0 < (1− L−1)δ/2. Then all elements of V(∞) have diameters less than δ.

It is easy to see that then (Vn)(∞) = (V(∞))n, and that if U ∈ V1 and V ∈ V
are such that U ∩ V 6= ∅, then U (∞) (as an element of V(∞)

1 ) is contained in V (∞),

which implies that V(∞) is semi-Markovian. �

Let U be a semi-Markovian cover. Choose for every U ∈ U1 an element ι(U) ∈
U0 such that U ⊂ ι(U). It is easy to see that ι is a simplicial map (that it sends
simplices to simplices).

Since U and ι(U) intersect, the map SU,ι(U) : TU −→ Tι(U) is defined. For

every n it defines a bijection between the set of components of f−n(U) and the set
of components of f−n(ι(U)). These sets are subsets of Un+1 and Un respectively,
and union of the maps SU,ι(U) for U ∈ U1 is a map from Un+1 to Un, which we will
denote ιn.

Equivalently, ιn(A) is the unique component of f−1(ιn−1(f(A))) containing A.
The map ιn is uniquely defined by the condition that if A is a component of

f−n(U) for U ∈ U1, then ιn(A) is the unique component of f−n(ι(U)) such that
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ιn(A) ⊃ A. It follows that ιn : Γn+1 −→ Γn is simplicial and that the diagram

(3)

Γn+2
ιn+1−→ Γn+1yfn+1

yfn
Γn+1

ιn−→ Γn

is commutative.
Let us show that the pair f0, ι0 : Γ1 −→ Γ0 uniquely determines the sequence

fn, ιn : Γn+1 −→ Γn.

Proposition 5.9. Let Γ̃n be the complex whose set of vertices is equal to the
set of sequences (v1, v2, . . . , vn) of vertices of Γ1 such that f0(vi) = ι0(vi−1). A set

{(v1i, v2i, . . . , vni)}i=1,...,k is a simplex of Γ̃n if {vj1, vj2, . . . , vjk} is a simplex for
every j = 1, . . . , n.

Then there exists isomorphisms φn : Γ̃n −→ Γn such that

fn(φn+1(v1, v2, . . . , vn+1)) = φn(v2, v3, . . . , vn+1)

and

ιn(φn+1(v1, v2, . . . , vn+1)) = φn(v1, v2, . . . , vn)

for all n ≥ 1.

Proof. Let us construct and prove properties of φn by induction. For n = 1

the graph Γ̃1 coincides with Γ1, so set φ1 to be equal to the identity map.
Suppose that φn is defined and satisfies the properties of the proposition. Let

(v1, v2, . . . , vn+1) be an arbitrary vertex of Γ̃n+1.
If n = 1, then we have v2 ⊂ f(v1), since (v1, v2) ∈ Γ1. For n > 1 we have

We have φn(v2, v3, . . . , vn+1) ⊂ f(φn(v1, v2, . . . , vn)), since φn−1(v2, v3, . . . , vn) =
ιn(φn(v2, v3, . . . , vn+1)) and f(φn(v1, v2, . . . , vn)) = φn−1(v2, v3, . . . , vn), by the in-
ductive hypothesis.

Consequently, for n = 1 there exists a unique component of f−1(v2) con-
tained in v1. We set φ2((v1, v2)) to be equal to this component. Similarly, for
n > 1 there exists a unique component of f−1(φn(v2, v3, . . . , vn+1)) contained in
φn(v1, v2, . . . , vn). We set φn+1(v1, v2, . . . , vn+1) to be equal to it.

Formally, in both cases we defined φn+1 by the rule
(4)
φn+1(v1, v2, . . . , vn+1) = Sfn−1(φn(v1,v2,...,vn)),φn(v2,v3,...,vn+1)(φn(v1, v2, . . . , vn)).

We get a map φn+1 : Γ̃n+1 −→ Γn+1 (between sets of vertices). Let us show
that it satisfies the conditions of the proposition and that it is an isomorphism of
simplicial complexes.

It follows directly from the definition that fn(φn+1(v1, v2, . . . , vn+1)) = φn(v2, v3, . . . , vn+1)),
as we defined φn+1(v1, v2, . . . , vn+1) as a component of f−1(φn(v2, v3, . . . , vn+1)).

The vertex ιn(φn+1(v1, v2, . . . , vn+1)) is, by definition, the component of f−1(ιn−1◦
f ◦ φn+1(v1, v2, . . . , vn+1)) containing φn+1(v1, v2, . . . , vn+1). We have ιn−1 ◦ f ◦
φn+1(v1, v2, . . . , vn+1) = ιn−1(φn(v2, v3, . . . , vn+1)) = φn−1(v2, v3, . . . , vn). Con-
sequently, ιn(φn+1(v1, v2, . . . , vn+1) is the component of f−1(φn−1(v2, v3, . . . , vn))
containing φn+1(v1, v2, . . . , vn+1). The set φn(v1, v2, . . . , vn) satisfies these condi-
tions, since f(φn(v1, v2, . . . , vn)) = φn−1(v2, . . . , vn), by the inductive assumption,
and φn(v1, v2, . . . , vn) ⊃ φn+1(v1, v2, . . . , vn+1), by the definition of φn+1. It follows
that ιn(φn+1(v1, v2, . . . , vn+1)) = φn(v1, v2, . . . , vn). The case n = 1 is similar.
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Let us show (also by induction) that φn+1 is simplicial. Suppose that

∆ = {(v1,i, v2,i, . . . , vn+1,i) : i = 1, . . . , k}

is a simplex of Γ̃n+1. Then {φn(v2,i, v3,i, . . . , vn+1,i)} and {φn(v1,i, v2,i, . . . , vn,i)}
are simplices of Γ̃n, since φn is simplicial. It means that

⋂
i=1,...,k φn(v2,i, v3,i, . . . , vn+1,i)

and
⋂
i=1,...,k φn(v1,i, v2,i, . . . , vn,i) are non-empty. Then it follows from the defini-

tion (4) of φn+1 and Lemma 5.2 that {φn+1(v1,i, v2,i, . . . , vn+1,i)}i=1,...,k is a simplex
of Γn+1. The case n = 1 is similar.

It remains to show that φn+1 has an inverse simplicial map. If n = 1, then it
is checked directly that the inverse map is φ−1

2 (v) = (ι(v), f(v)).
For every v ∈ Γn+1 we have fn−1(ιn(v)) = ιn−1(fn(v)), hence φ−1

n (ιn(v)) =
(v1, v2, . . . , vn) and φ−1

n (fn(v)) = (v2, v3, . . . , vn+1) for some vi ∈ Γ1. Define φ′n+1 =
(v1, v2, . . . , vn+1). It is checked then directly that φ′n+1 is the inverse of φn+1. It is
obvious that φ′n+1 �

Consider the sequence of complexes and morphisms:

Γ0
ι←− Γ1

ι1←− Γ2
ι2←− · · · ,

and let limι Γn be the inverse limit. It can be considered as a simplicial complex:
its set of vertices is the inverse limit of the sets of vertices of Γn; and its set of
simplices is the inverse limit of the sets of simplices of Γn. Note that both sets are
compact topologica spaces (homeomorphic to the Cantor sets, if the set of edges is
non-empty). As an abstract complex (without topology), the complex limι Γn has
uncountably many connected components.

A vertex of limι Γn is a sequence (V0, V1, V2, . . .) of vertices Vn ∈ Un of Γn such
that ιn(Vn+1) = Vn for all n. Then Vn+1 ⊂ Vn. Diamenter of Vn is less than L−nδ.
It follows that every sequence of points xn ∈ Vn is converging and the limit does
not depend on the choice of xn. Let us denote it by Φ(V0, V1, . . .).

Lemma 5.10. If vertices u, v of limι Γn are adjacent, then Φ(u) = Φ(v).

Proof. Let u = (A0, A1, . . .) and v = (B0, B1, . . .). If u and v are adjacent,
then An ∩ Bn 6= ∅, and we can choose xn ∈ An ∩ Bn. Then Φ(u) = Φ(v) =
limn→∞ xn. �

Lemma 5.11. The map Φ is onto.

Proof. Let x ∈ X be an arbitrary point. For every n there exists An ∈ Un
such that x ∈ An. Then x belongs to every element of the sequence ι0 ◦ ι1 ◦ · · · ◦
ιn−1(An), ι1 ◦ ι2 ◦ · · · ◦ ιn−1(An), . . . , ιn−1(An), An. Consider the sequence of such
sequences as n → ∞. Since every complex Γn is finite, we can find a convergent
sub-sequence, and its limit will be a vertex (A0, A1, . . .) of limι Γn such that x ∈ An
for all n. Then Φ(A0, A1, . . .) = x. �

Proposition 5.12. If elements of U are closed and u, v are vertices of limι Γn
such that Φ(u) = Φ(v), then u and v are adjacent.

If elements of U are open and Φ(u) = Φ(v), then there exists combinatorial
distance from u to v in the graph limι Γn is not more than 2.

Proof. If elements of U are closed (resp., open), then all elements of Un are
closed (resp., open).
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Let u = (A0, A1, . . .) and v = (B0, B1, . . .). Suppose that x = Φ(u) = Φ(v).
We have A0 ⊃ A1 ⊃ A2 ⊃ . . ., B0 ⊃ B1 ⊃ B2 ⊃ . . ., and x is an accumulation point
on both sequences. It follos that x is an accumulation point of each set An and Bn
for all n. If all An, Bn are closed, then this implies that u and v are adjacent.

Suppose that the covers Un are open. Then, by the proof of Lemma 5.11, there
exists a vertex (C0, C1, . . .) such that x ∈ Cn for all n. Since x belongs to the
closure of each set An and Bn, we have Cn ∩ An 6= ∅ and Cn ∩ Bn 6= ∅. It follows
that (C0, C1, . . .) is adjacent both to (A0, A1, . . .) and to (B0, B1, . . .). �

Lemma 5.13. The map Φ : limι Γn −→ X is continuous on the space of vertices
of limι.

Proof. Define a metric d on the set of vertices of limι Γn by the condition
that d((A0, A1, . . .), (B0, B1, . . .)) = 1

m+1 , where m is the minimal index such that
Am 6= Bm.

Suppose that v = (A0, A1, . . .) and u = (B0, B1, . . .), and d(v, u) = 1
m+1 . Then

Am = Bm, and Φ(A0, A1, . . .) and Φ(B0, B1, . . .) both belong to the closure of Am.
The closure of Am has diameter less than L−mδ, hence

d(Φ(v),Φ(u)) ≤ L−mδ = L1−1/d(v,u)δ,

which implies that Φ is continuous. �

Note that it follows from commutativity of the diagram (3) that if (A0, A1, . . .)
is a vertex of limι Γn, then (f(A1), f(A2), . . .) is also a vertex of limι Γn. Let
us denote f∞(A0, A1, . . .) = (f(A1), f(A2), . . .). It is easy to see that f∞ is a
continuous simplicial map.

Theorem 5.14. Suppose that the elements of the cover U are either all closed or
all open. Consider the space of connected components of the graph limι Γn with the
topology of the quotient of the space of vertices. Then there exists a homeomorphism
of the quotient space with X that conjugates f with the map induced by f∞.

In other words, the topological dynamical system (X , f) is uniquely (up to
topological conjugacy) determined by the pair of maps f, ι : Γ1 −→ Γ0. Note also
that we used only the 1-skeleta of Γ1 and Γ0.

Proof. The map Φ induces a continuous bijection between the space of con-
nected components and X . The equivalence relation of belonging to one component
is, by Proposition 5.12, equal to the relation of adjacency (if the elements of the
cover are closed) or to the relation of being on distance less or equal to 2 (if the
elements of the cover are open). In both cases the equivalence relation is a closed
subset of the direct square of the space of vertices. It follows that the space of con-
nected components is compact Hausdorff. But any continuous bijection between
compact Hausdorff spaces is a homeomorphism (since image of a closed, hence
compact, set is compact, hence closed). �

As an example, consider the angle doubling map f : R/Z −→ R/Z, f(x) = 2x.
Let U be the cover of the circle R/Z by the arcs [0, 1/4], [1/4, 1/2], [1/2, 3/4],
[3/4, 1]. Then Un consists of arcs of the form

[
k

2n+2 ,
k+1
2n+2

]
for k = 0, 1, . . . , 2n+2−1.

It follows that the graphs Γn are cycles of length 2n+2. There is only one choice for
the map ιn : Γn+1 −→ Γn, since an arc

[
k

2n+2 ,
k+1
2n+2

]
is contained in exactly one arc

of the form
[

l
2n+1 ,

l+1
2n+1

]
. Namely, l = k/2 if k is even and (k − 1)/2 if k is odd.
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Figure... illustrates the graphs Γn and the maps ιn. One can show that the
set of vertices of limιn Γn can be realized as a subset of the circle homeomorphic to
the Cantor set, so that edges of limιn Γn connect the endpoints of the components
of the complement of the Cantor set (i.e., “filling the gaps” in the Cantor set). It
follows that the space of connected components is homeomorphic to the circle.

5.4. Iterated monodromy group. Let f0, ι0 : Γ1 −→ Γ0 be a pair of sim-
plicial maps between simplicial complexes such that f is a covering map. As above,
this defines a sequence of complexes Γn and maps fn, ιn : Γn+1 −→ Γn.

Consider the sequence

Γ0
f0←− Γ1

f1←− Γ2
f2←− · · · .

For simplex (in particular a vertex) v we get the associated rooted tree Tv given by
the sequence

v
f0←− f−1

0 (v)
f1←− (f0 ◦ f1)−1 f2←− (f0 ◦ f1 ◦ f2)−1(v)

f2←− · · · ,

(the levels are the sets of the sequence, and two vertices are adjacent if one is the
image of the other and the corresponding map of the sequence).

Every oriented edge e = (v1, v2) defines an isomorphism Se : Tv1 −→ Tv2
uniquely defined by the condition that for every vertex u of Tv1 , {u, Se(u)} is an
edge of Te.

For every path γ = (e1, e2, . . . , en) in Γ0, i.e., for a sequence of edges of the
form ei = (vi−1, vi) for some sequence (v0, v1, . . . , vn) of vertices, the product

Sγ = SenSen−1
· · ·Se1

is an isomorphism from Tv0 to Tvn .
If {v1, v2, v3} is a simplex, then S(v2,v3) ◦ S(v1,v2) = S(v1,v3). Therefore, for any

two homotopic (rel. to their endpoints) paths γ1, γ2, we have Sγ1 = Sγ2 .

Definition 5.2. Let f0, ι0 : Γ1 −→ Γ0 be as above. Choose a vertex v of Γ0.
The iterated monodromy group IMG (f0, ι0, v) is the group of automorphisms of Tv
of the form Sγ , where γ runs through π1(Γ0, v).

The following is straightforward.

Proposition 5.15. Let f : X −→ X be an expanding covering map. Let U be
a semi-Markovian cover by sets of small diameter. Let Γ1 and Γ0 be the nerves of
U1 and U , let f : Γ1 −→ Γ0 be the map induces by f , and let ι : Γ1 −→ Γ0 be such
that ι(A) ⊃ A. Then IMG (f, ι, V ) is isomorphic (as a group acting on a rooted
tree) with IMG (f,U , V ).

5.5. General definition of a topological correspondence.

Definition 5.3. A topological correspondence (or topological automaton) is a
pair f, ι :M1 −→M0, where M1,M0 are topological spaces, f :M1 −→M0 is a
finite degree covering map, and ι :M1 −→M0 is continuous.

Example 5.1. Let f be a post-critically finite rational function. DefineM0 to
be the Riemann sphere minus the post-critical set, and let M1 = f−1(M0). Then
M1 ⊂M0, and we can take ι :M1 −→M0 to be the identical embedding.
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Let f, ι : M1 −→ M0 be a topological correspondence. Define Mn as the
subspace of Mn

1 consisting of all sequences (x1, x2, . . . , xn) such that

f(xi) = ι(xi+1)

for all i = 1, 2, . . . , n− 1. Define

fn(x1, x2, . . . , xn+1) = (x2, x3, . . . , xn+1)

ιn(x1, x2, . . . , xn+1) = (x1, x2, . . . , xn)

and f0 = f , ι0 = ι. It is easy to check that fn−1 ◦ ιn = ιn−1 ◦ fn for all n ≥ 1.
If ι :M1 −→M0 is the identical embedding, then points (x1, x2, . . . , xn) ∈Mn

satisfies f(xi) = xi+1, hence they are just orbits of length n of the partial map
f :M1 −→M0 and are uniquely determined by x1. It follows thatMn is naturally
homeomorphic to the domain of the nth iteration of the map f .

Lemma 5.16. The maps fn are coverings.

Proof. Let (x1, x2, . . . , xn) ∈ Mn. Let U be an evenly covered by f neigh-
borhood of ι(x1) ∈ M0. Let U1, U2, . . . , Ud be the decomposition of f−1(U) into
disjoint sets such that f : Ui −→ U is a homeomorphism.

Let W be the set of points (y1, y2, . . . , yn) ∈Mn such that ι(y1) ∈ U . It is open
in Mn. Let Wi, for i = 1, 2, . . . , d, be the set of points (y0, y1, . . . , yn) ∈ Mn+1

such that y0 ∈ Ui. Then the sets Wi are disjoint and open, and their union is
the set of points (y0, y1, . . . , yn) such that y0 ∈ f−1(U), i.e., the set of points
such that f(y0) ∈ U , or equivalently, the set of points such that ι(y1) ∈ U , since
f(y0) = ι(y1) for all points ofMn+1. It follows that

⋃
Wi is equal to f−1

n (W ). The
map fn : Wi −→W is continuous, and has continuous inverse given by

(y1, y2, . . . , yn) 7→ (y0, y1, y2, . . . , yn),

where y0 is defined by the conditions y0 ∈ Ui and f(y0) = ι(y1). �

Suppose that f, ι : M1 −→ M0 is a topological correspondence, and suppose
that M0 is path connected and locally path connected. For t ∈ M0 denote by Tt
the rooted tree given by the sequence

{t} f0←− f−1
0 (t)

f1←− (f0 ◦ f1)−1(t)
f2←− (f0 ◦ f1 ◦ f2)−1(t)

f3←− · · ·

If γ is a path inM0 from t1 to t2, then for every vertex v ∈ (f0◦f1◦· · ·◦fn)−1(t1)
of Tt1 there is a unique lift of γ by the covering map f0 ◦ f1 ◦ · · · ◦ fn starting at v.
Its end is a vertex Sγ(v) ∈ (f0 ◦f1 ◦ · · · ◦fn)−1(t2) of Tt2 . The map Sγ : Tt1 −→ Tt2
is an isomorphism of rooted graphs.

Definition 5.4. Let f, ι : M1 −→ M0 be a topological correspondence such
that M0 is locally path connected and path connected. Its iterated monodromy
group IMG (f, ι) is the group of all automorphisms Sγ of Tv, where γ runs through
π1(M0, v).

If f : X −→ X is a self-covering map, and ι : X −→ X is the identity map, then
the definition of IMG (f, ι) coincides with the definition of IMG (f) given in 5.2.
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5.6. Trees of words. Let X be a finite set (alphabet). Denote by X∗ =⋃
n≥0X

n the set of finite words over X, including the empty word ∅. We denote

X0 = {∅}. In other terms, X∗ is the free monoid generated by X.
The right Cayley graph of X∗ is the graph with the set of vertices X∗ in which

two vertices are connected by an edge if and only if they are of the form v and vx
for v ∈ X∗ and x ∈ X. The right Cayley graph is a rooted trees with the root ∅
and levels Xn. From now on we will consider X∗ as a rooted tree.

For every x ∈ X the map v 7→ xv is an isomorphism of X∗ with the sub-tree
of words starting with letter x.

Let now T be an abstract rooted tree, i.e., a tree with a marked vertex called
root. Then the nth level of the tree T is the set of vertices on distance n from the
root. For a vertex v of T we denote by Tv the sub-graph spanned by all vertices
u such that the path from the root to u passes through v. It is a rooted tree with
the root v. If v belongs to the kth level of T , then the nth level of the tree Tv is a
subset of the (n+ k)th level of the tree T .

Suppose that for every vertex x of the first level of the tree T we have found an
isomorphism Sx : T −→ Tx. Then the monoid H generated by the transformations
Sx is free. If v is the root of T , then the map λ : g 7→ g(v) is an isomorphism from
the right Cayley graph of H to T . Taking X equal to the set of maps Sx for x in
the first level of the tree T , we get an isomorphism λ : X∗ −→ T .

5.7. Computation of the iterated monodromy groups. Let f0, ι0 :M1 −→
M0 be a topological correspondence. Assume that M0 is path connected and lo-
cally path connected. Choose t ∈M0 and consider the iterated monodromy group
IMG (f, ι) acting on Tt.

The set f−1
0 (t) is the first level of the tree Tt. Let X be a finite set of cardinality

deg f = |f−1
0 (t)|. For every x ∈ X choose a path `x inM0 starting in t and ending

in ι(Λ(x)). It will define an isomorphism S`x : Tt −→ Tι(Λ(x)).

The union of the maps ιn : (f1 ◦ · · · ◦ fn)−1(z) −→ (f0 ◦ f1 ◦ · · · ◦ fn)−1(t) is an
isomorphism ι∗ : TΛ(x) −→ Tι(Λ(x)), where TΛ(x) is the subtree

TΛ(x) = {Λ(x)} ∪ f−1
1 (z) ∪ (f1 ◦ f2)−1(Λ(x)) ∪ · · ·

of Tt.
We get isomorphisms ι−1

∗ ◦ S`x : Tt −→ TΛ(x) ⊂ Tt. Then, as in the previous

subsection, the isomorphisms ι−1
∗ ◦ S`x : Tt −→ TΛ(x) define an isomorphism Λ :

X∗ −→ Tt of rooted trees. It is defined inductively by the rule

Λ(xv) = ι−1
∗ ◦ S`x(Λ(v))

for x ∈ X and v ∈ X∗. Equivalently,

Λ(x1x2 . . . xn) = ι−1
∗ ◦ S`x1

◦ ι−1
∗ ◦ S`x2

◦ · · · ◦ ι−1
∗ ◦ S`x1

(t).

Let us conjugate the action of the iterated monodromy group on Tt to an action
on the tree X∗ by the isomorphism Λ. Namely, we set, for every γ ∈ π1(M0, t) and
v ∈ X∗:

γ(v) = Λ−1γΛ(v).

Proposition 5.17. Let x ∈ X, v ∈ X∗, and γ ∈ π1(M0, t). Let γx be the lift
of γ by f starting in Λ(x). Let Λ(y) be the end of γx. Then we have

γ(xv) = y(`−1
y ι(γx)`x)(v).
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Figure 18. Computation of the iterated monodromy group

See Figure 18. Here and in the sequel we multiply paths as maps: in a product
γ1γ2 the path γ2 is passed before γ1.

Proof. Consider the composition (ι−1
∗ S`y )−1Sγ(ι−1

∗ S`x) : Tt −→ Tt. It is

equal to the composition of ι−1
∗ S`x : Tt −→ TΛ(x) with the restriction of Sγ to an

isomorphism S′γ : TΛ(x) −→ TΛ(y) and with the isomorphism (ι−1
∗ S`y )−1 : TΛ(y) −→

Tt. The restriction S′γ is defined by taking lifts of the path γx ⊂ M1 by the

coverings f1, f2, . . .. Applying ι∗, we see that ι∗S
′
γι
−1
∗ : Tι(Λ(x)) −→ Tι(Λ(y)) is equal

to Sι(γx). Therefore,

(ι−1
∗ S`y )−1Sγ(ι−1

∗ S`x) = S−1
`y
ι∗S
′
γι
−1
∗ S`x = S`−1

y
Sι(γx)S`x = S`−1

y ι(γx)`x
.

Moving everything to X∗ using Λ, we get that S−1
y γSx (where Sx(v) = xv)

is equal to (`−1
y ι(γx)`x). In other words, appending x to the beginning of a word,

acting by γ, and then erazing y is equivalent to acting by (`−1
y ι(γx)`x). �

5.8. Examples.
5.8.1. Angle doubling. Consider the angle doubling map f : x 7→ 2x (mod 1)

on R/Z. Take t = 0 as the basepoint, X = {0, 1}. Then f−1(0) = {0, 1/2}. Set
Λ(0) = 0, Λ(1) = 1/2. Choose `0 to be the trivial (constant) path at 0, and `1 to
be the image of the segment [0, 1/2].

The group π1(R/Z, 0) is generated by the loop a equal to the image of the
positively oriented loop [0, 1] ⊂ R/Z. Then lifts of a are the paths γ0 = [0, 1/2] and
γ1 = [1/2, 1]. We get

a(0w) = 1(`−1
1 γ0`0)(w) = 1w,

a(1w) = 0(`−1
0 γ1`1)(w) = 0a(w),

since `−1
1 γ0`0 = [0, 1/2]−1[0, 1/2] is trivial, and `−1

0 γ1`1 = [1/2, 1][0, 1/2] = [0, 1] =
a. See Figure 19.

5.8.2. z2 − 1. Consider the polynomial z2 − 1. It has two critical points: ∞
and 0. Infinity is a fixed point, and the orbit of 0 is

0 7→ −1 7→ 0.

Consequently, z2−1 is post-critically finite, and we can takeM0 = C\{0,−1},
M1 = f−1(M0) = C \ {0, 1,−1}, and ι the identical inclusion.

Let us take t to be the fixed point t = 1−
√

5
2 . Then f−1(t) = {t,−t}. The

fundamental group π1(M0) is freely generated by loops around the punctures 0
and −1. Let us take the generators a and b shown on the top part of Figure 20.
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Figure 19. IMG
(
z2
)

Figure 20. Computation of IMG
(
z2 − 1

)
Take X = {0, 1}, Λ(0) = t, Λ(1) = −t. Let `0 be the trivial path at t, and let `1 be
the path from t to −t shown on the two lower parts of Figure 20.

Lower parts of Figure 20 show the lifts of a and b by f . We get

a(0w) = 1b(w), a(1w) = 0w

and

b(0w) = 0a(w), b(1w) = 1w.

5.8.3. −z3/2+3z/2. Let f(z) = − z
3

2 + 3z
2 . Its critical points are (together with

∞) the solutions of the equation −3z2/2 + 3/2 = 0, i.e., z = ±1. We have f(1) = 1
and f(−1) = −1. Hence all critical points are fixed, and f is post-critically finite.
Its Julia set is shown on Figure 21.

Choose t = 0. Then f−1(0) = {0,
√

3,−
√

3}. Take X = {0, 1, 2}, Λ(0) =

0,Λ(1) =
√

3,Λ(2) = −
√

3. Let `0 be the trivial path at 0, and let `1 and `2
connect 0 to

√
3 and −

√
3 as it is shown on the bottom part of Figure 22.

The fundamental group π1(M0, 0) forM0 = C \ {1,−1}, is generated by loops
a and b going around 1 and −1 in positive direction, as it is shown of the bottom
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Figure 21. Julia set of −z3/2 + 3z/2

Figure 22. Computation of IMG
(
−z3/2 + 3z/2

)
part of Figure 22. The top part of the figure shows the lifts of a and b by f . We
conclude that

a(0w) = 1w, a(1w) = 0a(w), a(2w) = 2w,

and
b(0w) = 2w, b(1w) = 1w, b(2w) = 0b(w).

Problem 5.1. Compute iterated monodromy groups of the following post-
critically finite complex polynomials and rational functions:

(1) z2 − 2;
(2) z2 + i;
(3) z2 + c for every c such that 0 belongs to a cycle of length 3: 0 7→ c 7→

c2 + c 7→ 0.
(4) z2 − 16

27z ;
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(5)
(

2−z
z

)2
.

Problem 5.2. Describe the iterated monodromy groups of the Tchebyshev
polynomials.
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