
6. Self-similar groups

6.1. Definition.

Definition 6.1. Let G be a group acting faithfully on the tree X∗ (the right
Cayley graph of the free monoid). We say that it is self-similar if for every x ∈ X
and g ∈ G there are y ∈ X and h ∈ G such that

g(xw) = yh(w)

for all w ∈ X∗.

We have seen (in Proposition 5.17) that IMG (f, ι) can be always realized as a
self-similar group.

Definition 6.2. The self-similar actions of IMG (f, ι) defined in Proposition 5.17
are called standard.

Let us try to understand better self-similar groups as algebraic object.
It follows from the definition that for every v ∈ X∗ and g ∈ G there exists an

element h ∈ G such that
g(vw) = g(v)h(w)

for all w ∈ X∗. We will denote h by g|v, and call it section of g in v. The section
is uniquely defined, since we assume that the action of G on X∗ is faithful.

We have the following properties of the section, which follow directly from the
definition:

(5) g|v1v2 = g|v1 |v2
for all g ∈ G and v1, v2 ∈ X∗, and

(6) (g1g2)|v = g1|g2(v)g2|v
for all g1, g2 ∈ G and v ∈ X∗.

Every element g ∈ G acts as a permutation on the first level X ⊂ X∗ of the
tree. Denote by σg ∈ Symm (X) the corresponding permutation. Then y = σg(x)
in the conditions of Definition 6.1.

We have also the function X −→ G : x 7→ g|x, i.e., an element of the direct
product GX . We get hence a map from G to the set Symm (X) × GX mapping g
to the pair (σg, f), where f(x) = g|x. Consider the set Symm (X) × GX with the
structure of the semidirect product Symm (X) n GX of the group Symm (X) and
the direct power GX . The group structure is given by the multiplication rule

σ1f1 · σ2f2 = σ1σ2f
′
1f2,

where f ′1 ∈ GX is given by f ′1(x) = f1(σ2(x)).
Let us identify X with {1, 2, . . . , d} for d = |X|. Then elements of Symm (X)n

GX are written as sequences σ(g1, g2, . . . , gd) for σ ∈ Symm (d) and gi ∈ G. The
multiplication rule is

(7) σ1(g1, g2, . . . , gd)σ2(h1, h2, . . . , hd) = σ1σ2(gσ2(1)h1, gσ2(2)h2, . . . , gσ2(d)hd).

Lemma 6.1. Let G be a self-similar group. The map

G −→ Symm (X) nGX : g 7→ σg · f,
where f(x) = g|x, is a homomorphism of groups.

Proof. It is easy to see that (7) agrees with (6). �

48
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The group Symm (X) nGX is the wreath product G o Symm (X) of Symm (X)
and G, according to the standard definition of (permutational) wreath products.

Definition 6.3. We call the homomorphism from Lemma 6.1 the wreath re-
cursion associated with the self-similar group.

Note that the wreath recursion is an injective homomorphism. The wreath
recursion G −→ Symm (X)nGX uniquely determines the action of G on X∗. The
wreath recursion is a compact way of writing the recurrent definitions of action of
elements of self-similar group on words.

Example 6.1. We have seen that the generator a of the iterated monodromy
group of the angle doubling map acts by the rule

a(0w) = 1w, a(1w) = 0a(w).

We write this definition in terms of the wreath recursion as

ψ(a) = σ(1, a),

where σ = (01) is the transposition, and 1 in (1, a) denotes the identity element of
the group.

Example 6.2. The group IMG
(
z2 − 1

)
, as computed in 5.8.2 is generated by

a = σ(b, 1), b = (a, 1).

Note that we usually omit the identity element of Symm (d) when writing elements
of the wreath product.

The wreath recursion can be used to find relations between elements of IMG
(
z2 − 1

)
.

For example, we have the following equalities:

ψ(a−1ba) = (b−1, 1)σ(a, 1)σ(b, 1) = (b−1, 1)(1, a)(b, 1) = (1, a),

which implies

ψ([a−1ba, b]) = ([1, a], [a, 1]) = (1, 1),

hence [a−1ba, b] = 1, as the homomorphism ψ is injective.

Proposition 6.2. Let ψ1, ψ2 : G −→ Symm (d) nGd be the wreath recursions
on G = IMG (f, ι) associated with two standard actions. Then there exists an
element h ∈ Symm (d) nGd such that ψ1(g) = h−1ψ2(g)h for all g ∈ G.

Proof. Denote X = {1, 2, . . . , d}. Let Λ : X −→ f−1(t) and `x, and Λ̃ :

X −→ f−1(t) and ˜̀
x be two bijections and connecting paths. Let ψ and ψ̃ be the

corresponding wreath recursions.
Denote, for z ∈ f−1(t), by γz the lift of γ ∈ π1(M0, t) by f starting in z. By

Proposition 5.17, the wreath recursions are given by

ψ(γ) = σγ(g1, g2, . . . , gd), ψ̃(γ) = σ̃γ(g̃1, g̃2, . . . , g̃d),

where σγ(x) is the end of γΛ(x), σ̃γ(x) is the end of γΛ̃(x), and

gx = `−1
σγ(x)γΛ(x)`x, g̃x = ˜̀−1

σ̃γ(x)γΛ̃(x)
˜̀
x.

Let ρ : X −→ X be the permutation ρ = Λ̃−1 ◦ Λ. Then Λ̃(ρ(x)) = Λ(x) for all
x ∈ X.
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Choose x ∈ X, and denote z = Λ(x) = Λ̃(ρ(x)), x̃ = ρ(x). Then Λ(σγ(x)) =

Λ̃(σ̃γ(ρ(x))) is the end of γz. It follows that ρσγ = σ̃γρ, i.e., that σγ = ρ−1σ̃γρ. We
also have

(8) gx = `−1
σγ(x)γz`x = `−1

σγ(x)
˜̀̃
σγ(x̃) · ˜̀−1

σ̃γ(x̃)γz
˜̀̃
x · ˜̀−1

x̃ `x = `−1
σγ(x)

˜̀̃
σγ(x̃) · g̃x̃ · ˜̀−1

x̃ `x.

Note that since Λ(x) = Λ̃(x̃) = z and Λ(σγ(x)) = Λ̃(σ̃γ(x̃)) is the end of γz, the

paths ˜̀−1
x̃ `x and `−1

σγ(x)
˜̀̃
σγ(x̃) are elements of π1(M0, t). Denote for all x ∈ X:

hx = ˜̀−1
ρ(x)`x.

Then `−1
σγ(x)

˜̀̃
σγ(x̃) =

(
˜̀−1
σ̃γ(x̃)`σγ(x)

)−1

=
(

˜̀−1
ρ(σγ(x))`σγ(x)

)−1

= h−1
σγ(x), and (8) be-

comes

gx = h−1
σγ(x)g̃ρ(x)hx,

which implies (using σγ = ρ−1σ̃γρ)

σγ(g1, g2, . . . , gd) = (ρ(h1, h2, . . . , hd))
−1σ̃γ(g̃1, g̃2, . . . , g̃d)ρ(h1, h2, . . . , hd).

�

Proposition 6.3. Let ψ : G −→ Symm (d) n Gd be a wreath recursion. Let

h ∈ Symm (d)nGd, and consider the wreath recursion ψ̃ equal to composition of ψ
with the inner automorphism defined by h:

ψ̃(g) = h−1ψ(g)h.

Then the actions of G on X∗ defined by ψ and ψ̃ are conjugate.

Proof. Let h = π(h1, h2, . . . , hd). Define an automorphism α of the tree X∗

by the recursive formula

α(xw) = π(x)hx ◦ α(w)

for all x ∈ X and w ∈ X∗.
Then

α−1(yv) = π−1(y)α−1h−1
π−1(y)(v)

for all y ∈ X and v ∈ X∗. (Just apply the definition of α for y = π(x) and
v = hxα(w).) u = hx(v)

Suppose that ψ(g) = σ(g1, g2, . . . , gd). Then

gα(xw) = g(π(x)hxα(w)) = σπ(x)g|π(x)hxα(w),

hence

α−1gα(xw) = π−1σπ(x)α−1h−1
π−1σπ(x)gπ(x)hxα(w).

It follows that the elements of α−1Gα satisfy the wreath recursion

α−1gα 7→
π−1σπ(α−1hπ−1σπ(1)gπ(1)h1α, . . . , α

−1hπ−1σπ(d)gπ(d)hdα) =

(α, . . . , α)−1
(
π(h1, . . . , hd))

−1σ(g1, g2, . . . , gd)π(h1, . . . , hd)
)

(α, . . . , α),

hence the action of G defined by the wreath recursion g 7→ h−1ψ(g)h coincides with
the action of α−1Gα. �
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Definition 6.4. We say that two self-similar groups G1, G2 acting on X∗1
and X∗2 are equivalent if there exists an isomorphism φ : G1 −→ G2 and a bijec-

tion F : X1 −→ X2 such that if ψi : Gi −→ Symm (Xi) n GXii are the wreath
recursions associated with the self-similar groups, then there exists an element
h ∈ Symm (X2)nGX2

2 such that h−1 ·ψ2(φ(g)) ·h = φ̃(ψ1(g)) for all g ∈ G1, where

φ̃ : Symm (X1) n GX1
1 −→ Symm (X2) n GX2

2 is the natural isomorphism induced
by the bijection F : X1 −→ X2 and the isomorphism φ : G1 −→ G2.

For example, standard actions of the same iterated monodromy group are pair-
wise equivalent.

Example 6.3. Self-similar actions of Z equivalent to the action generated by
the binary adding machine ψ(a) = σ(1, a) come from binary numeration actions
with non-standard sets of digits. For example, let us conjugate ψ(a) = σ(1, a) by
(1, a):

ψ′(a) = (1, a−1)σ(1, a)(1, a) = σ(a−1, a2).

It describes adding 1 to binary integers

n = a0 + 2a1 + 22a2 + 23a3 + · · ·

where ai ∈ {0, 3}. Namely, if n is even, then n = 0 + 2a1 + 22a2 + 23a3 + · · · , and

n+ 1 = 3 + 2(−1 + a1 + 2a2 + 22a3 + · · · ),

hence we carry −1 when we add 1. If n is odd, then n = 3+2a1 +22a2 +23a3 + · · · ,
so that

n+ 1 = 0 + 2(2 + a1 + 2a2 + 22a3 + · · · ),
hence we carry 2 when we add 1. This agrees with the recursion a = σ(a−1, a2).

6.2. Homotopy invariance of iterated monodromy groups.

Theorem 6.4. Let f, ι : M1 −→ M0 and f ′, ι′ : M′1 −→ M′0 be topological
correspondences such that M0, M1, M′0, and M′1 are locally path connected and
path connected. Let φ1 : M′1 −→ M1 and φ0 : M′0 −→ M0 be continuous maps
such that the diagrams

M′1
φ1−→ M1yf ′ yf

M′0
φ0−→ M0

M′1
φ1−→ M1yι′ yι

M′0
φ0−→ M0

are commutative up to homotopy (i.e., the corresponding compositions are homo-
topic rather than equal). Suppose that φ0,∗ : π1(M′0) −→ π1(M0) is surjective and
deg f = deg f ′. Then the homomorphism φ0,∗ induces an isomorphism of the groups
IMG (f ′, ι′) and IMG (f, ι) implementing an equivalence of self-similar groups.

In the general case (when we do not assume that deg f = deg f ′ and that φ0,∗
is onto) the maps φ1 and φ0,∗ will induce a map between the alphabets and a
homomorphism of groups that agree with the corresponding wreath recursions, i.e.,
they induce a morphism of self-similar groups. But in general this morphism will
be neither injective nor surjective neither on the alphabets nor on the groups.

Proof. Let us show at first that we can always assume that the first diagram
is commutative (not just up to homotopy).
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Lemma 6.5. There exists a continuous map φ̃1 :M′1 −→M1 homotopic to φ1

such that the diagram

M′1
φ̃1−→ M1yf ′ yf

M′0
φ0−→ M0

is commutative.

Proof. There exists a homotopy H :M′1× [0, 1] −→M0 such that H(x, 0) =
f ◦ φ1(x) and H(x, 1) = φ0 ◦ f ′(x) for all x ∈ M′1. Then by the Homotopy Lifting
Theorem, we can lift the homotopy H by the covering f : M1 −→ M0 to get a
homotopy H̃ :M′1 × [0, 1] −→M1 satisfying

H̃(x, 0) = φ1(x), f(H̃(x, 1)) = φ0 ◦ f ′(x).

Then φ̃1(x) = H̃(x, 1) satisfies the conditions of the lemma. �

We will assume therefore, that the first diagram in Theorem 6.4 is commutative.
Let X be such that |X| = deg f = deg f ′. Choose t′ ∈ M′0, and a bijection

Λ′ : X −→ (f ′)−1(t′). Choose a collection of paths `′x from t to ι′(Λ′(x)). Consider
the corresponding standard action of IMG (f ′, ι′) on X∗.

Let t = ι0(t′). Since the first diagram is commutative, we have φ1((f ′)−1(t′)) ⊂
f−1(t). Since we assume that the spaces M′1 and M1 are path-connected, the
natural actions of π1(M′0, t′) and π1(M0, t) on (f ′)−1(t′) and f−1(t) are transitive.
Suppose that φ1 : (f ′)−1(t′) −→ f−1(t) is not onto. Then there exists an element
γ ∈ π1(M0, t) and a lift δ of γ by f such that δ starts in φ1((f ′)−1(t′)) and
ends outside of it. But then γ can not belong to φ0,∗(π1(M′0, t′)), which is a
contradiction.

It follows that φ1 : (f ′)−1(t′) −→ f−1(t) is a bijection, since we assume that
deg f = deg f ′. Let Λ = φ1 ◦ Λ′.

Let H : M′1 × [0, 1] −→ M0 be the homotopy such that H(x, 0) = φ0 ◦
ι′(x) and H(x, 1) = ι ◦ φ1(x) for all x ∈ M′1. For x ∈ X, consider the points
ι′(Λ′(x)) and ι(Λ(x)). We have ι ◦ Λ(x) = ι ◦ φ1 ◦ Λ′(x) = H(Λ′(x), 1). Hence,
δx(t) = H(Λ′(x), t) : [0, 1] −→ M0 is a path from φ0(ι′(Λ(x))) to ι(Λ(x)). Set
`x = δxφ0(`′x), i.e., continue the path φ0(`′x) by δ. Consider the standard action of
IMG (f, ι) constructed using the chosen Λ, `x, t.

Let us show that the defined standard actions of the iterated monodromy groups
coincide. Let γ′ ∈ π1(M′0, t′), and let γ = φ0(γ′) be the corresponding element of
π1(M0, t). Let x ∈ X, and let γ′x be the lift of γ by f ′ starting at Λ′(x). Let y ∈ X
be such that Λ′(y) is the end of γ′x. By commutativity of the diagram with f and
f ′, we get that the path φ1(γ′x) starts at Λ(x), ends in Λ(y), and is a lift of γ by
f . Let us denote γx = φ1(γ′x). Then H(·, t) ◦ γ is a homotopy from φ0(ι′(γ′x)) to
ι ◦ φ1(γ′x) = ι(γx). It follows that the loops φ0((`′y)−1ι′(γ′x)`′x) and `−1

y ι(γx)`x are
homotopic.

Consequently, the action of the elements γ′ on X∗ coincides with the action of
the elements φ0(γ′). Since φ0,∗ is surjective, this implies that the set of automor-
phisms of the tree X∗ defined by the elements of π1(M′0) coincides with the set of
automorphisms defined by the elements of π1(M0). �

As an example of application of Theorem 6.4, consider the following interpre-
tation of standard actions of IMG (f, ι). Let f, ι : M1 −→ M0 be a topological
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correspondence such thatM0,M1 are path connected and locally path connected.
Let S be a generating set of π1(M0, t). Consider a bouquet of circles Γ0, where the
set of circles is in a bijection with the elements of S. Let φ0 : Γ0 −→ M0 be the
natural map such that the image of a circle of Γ0 is the corresponding element of
the generating set S, where the common point of the circles is mapped to t. Lift
φ0 by the covering f :M1 −→M0, i.e., close the pull-back diagram

Γ1
φ1−→ M1yf ′ yf

Γ0
φ0−→ M0

The graph Γ1 is the lift of the graph φ0(Γ0) by f . In particular, its vertices are in
a bijection (by φ1) with the points of f−1(t), and its edges correspond to lifts of
the generators γ ∈ S by f .

See, for example, Figure... where a graph Γ0 for f(z) = z2 − 1 is shown...
Consider now the map ι : φ1(Γ1) −→M0. Since π1(M0, t) is generated by S,

the map ι : φ1(Γ1) −→ M0 is homotopic to a map defined on graphs Γ1 −→ Γ0,
i.e., there exists a cellular map ι′ : Γ1 −→ Γ0 such that the diagram

Γ1
φ1−→ M1yι′ yι

Γ0
φ0−→ Γ1.

Namely, choose connecting paths `z from t to ι(z) for each z ∈ f−1(t). For every
edge e of Γ1 connect the images of the endpoints of e under ι ◦ φ1 with t by the
paths ez. The obtained loop is an element of π1(M0, t), hence is homotopic to the
image by φ0 of a path in Γ0. Choose such a path, and map e to it by ι′. It is easy
to see that defined ι′ : Γ1 −→ Γ0 will satisfy our conditions.

For example ...

Problem 6.1. Let M be a compact metric space. Let U be a cover of M by
open sets, and let Γ be the (geometric realization of the) nerve of the covering.
Show that there exists a continuous map φ :M −→ Γ such that if A is the set of
all elements of U containing x ∈M, then φ(x) is contained in the simplex A. Hint:
use a partition of unity subordinate to U .

Problem 6.2. Let f :M −→M be an expanding covering map. Let U be a
semi-markovian cover of M by small open sets. Let U1 be the set of components
of f−1(U) for U ∈ U , and let Γ0,Γ1 be the nerves of U and U1, respectively. Let
f0, ι0 : Γ1 −→ Γ0 be the topological correspondence as constructed in 5.3. Show
that there exist maps φ0 :M−→ Γ0 and φ1 :M−→ Γ1 such that the diagram

M φ1−→ Γ1yf yf0
M φ0−→ Γ0

and ι0 ◦ φ1 :M−→ Γ0 is homotopic to φ0 :M−→ Γ0.
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6.3. Contracting self-similar groups.

Definition 6.5. Let G be a self-similar group acting on X∗. It is said to be
contracting if there exists a finite subset N ⊂ G such that for every g ∈ G there
exists n ∈ N such that g|v ∈ N for all v ∈ X∗ such that |v| ≥ n.

Note that if the action is contracting, then for every g ∈ G the set {g|v : v ∈
X∗} of all sections of g is finite.

Proposition 6.6. If the group G is contracting, then the set

N = ∪g∈G ∩n≥1 {g|v : v ∈ X∗, |v| ≥ n}

is the smallest set satisfying the conditions of Definition 6.5.

We call the smallest set N satisfying the conditions of Definition 6.5 the nucleus
of the group.

If G is a contracting finitely generated group, then it has a finite generating set
S such that S = S−1, and for every g ∈ G and v ∈ X∗ we have g|v ∈ S (just add
all sections g|v of all elements of any symmetric finite generating set of G). Note
that then S contains the nucleus.

Proposition 6.7. Let G be a self-similar group acting on X∗. Suppose that
G is finitely generated, let l(g) denote the length of g ∈ G with respect to a fixed
generating set, and let

ρ = lim sup
n→∞

n

√
lim sup
l(g)→∞

max
v∈Xn

l(g|v)
l(g)

.

Then ρ does not depend on the choice of the generating set, and the action is
contracting if and only if ρ < 1.

We call the number ρ the contraction coefficient of G.

Proof. Let S = S−1 be a finite generating set such that g|v ∈ S for every
g ∈ S and v ∈ X∗. There exists n1 such that (g1g2)|v ∈ N ⊂ S for all g1, g2 ∈ S
and v ∈ X∗, |v| ≥ n1. Then for every product g1g2 . . . g2n of length 2n of elements
of S, and for every v ∈ X∗, |v| ≥ n1, the section

(g1g2 . . . g2n)|v = (g1g2)|g3g4...g2n(v)(g3g4)|g5g6...g2n(v) · · · (g1g2)|v
is a product of at most n elements of S. Similarly, for every product g1g2 . . . g2n+1

the section (g1g2 . . . g2n+1)|v is a product of length at most n + 1 for every word
v ∈ X∗ of length at least n1. It follows that

l(g|v) ≤
l(g) + 1

2

for all g ∈ G and v ∈ X∗ of length at least n1. This implies

ρ ≤ n1
√

1/2.

Conversely, suppose that ρ < 1. Let ρ1 be such that ρ < ρ1 < 1. Then there

exists n1 such that n

√
lim supl(g)→∞maxv∈Xn

l(g|v)
l(g) < ρ1 for all n ≥ n1. Hence,

there exists m1 such that l(g|v)
l(g) < ρn1

1 for all v ∈ Xn1 and all g ∈ G such that

l(g) ≥ m1. It follows that l(g|v) < ρn1
1 l(g) +m1 for all g ∈ G and all v ∈ Xn1 .
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Let g ∈ G and v ∈ X∗ be arbitrary. Write v = v1v2 . . . vku, where |u| < n1 and
|vi| = n1 for all i. Then

l(g|v1v2...vk) < ρn1
1 l(g|v1v2...vk−1

) +m1 <

ρ2n1
1 l(g|v1v2...vk−2

) + ρn1
1 m1 +m1 < . . . <

ρkn1
1 l(g) + ρ

(k−1)n1

1 m1 + · · ·+ ρn−1
1 m1 +m1.

If k is big enough, then ρkn1
1 l(g) < 1, and l(g|v1v2...vk) is less than 1 + m1

1−ρn1
1

. It

follows that the set of sections in words of length < n1 of elements of G of length
at most 1 + m1

1−ρn1
1

satisfies the conditions of Definition 6.5. �

From now on we will write recursive definitions of elements of self-similar groups
just g = σ(g1, g2, . . . , gd), instead of ψ(g) = σ(g1, g2, . . . , gd).

Example 6.4. For the adding machine a = σ(1, a) we have a2 = (a, a), hence
a2n = (an, an), and a2n+1 = σ(an, an+1). It follows that ρ = 1/2.

Example 6.5. Consider the group generated by a = σ(1, a) and b = (a, b).
Then a and b have infinite order (a is the adding machine, hence has infinite order;
and bn = (an, bn) 6= (1, 1) for all n, hence b also has infinite order). It follows that
the group G = 〈a, b〉 is not contracting, since bn|11 . . . 1︸ ︷︷ ︸

k times

= bn for all n, k ∈ N.

Problem 6.3. Let G = 〈a, b〉 be as in Example 6.5. Describe the components
of the Schreier graph of the action of G on XN.

Problem 6.4. Let G be as in Example 6.5. Show that for every g ∈ G there
exists n such that g|v ∈ N for every v ∈ X∗ of length |v| ≥ n, where

N = {an, bn, abn, bna−1, abna−1 : n ∈ Z}.

Proposition 6.8. Suppose that the action of G on X∗ is contracting with
contraction coefficient ρ. Then the growth γ(r) = Bw(r) of the Schreier graphs of
the action of G on the boundary XN of X∗ satisfies

lim sup
r→∞

log γ(r)

log r
≤ log |X|
− log ρ

.

Proof. Let S = S−1 be a generating set such that g|v ∈ S for all g ∈ S and
v ∈ X∗. As in the proof of Proposition 6.7, let ρ1 be such that 1 > ρ1 > ρ. Let

n1 and m1 be such that l(g|v) < ρ
|v|
1 l(g) for all v ∈ Xn1 and g ∈ G such that

l(g) ≥ m1.
Let w = x1x2 . . . ∈ XN, and consider the ball Bw(r) in the Schreier graph of

the action of G on XN. It consists of all elements of the form g(w) for g ∈ G such
that l(g) ≤ r.

Consider the map

y1y2 . . . 7→ (y1y2 . . . yn1
, yn1+1yn1+2 . . .)

from XN to Xn1 × XN. It is obviously a bijection. It maps every ball Bx1x2...(r)
injectively into the direct product of Xn1 with the ball Bxn1+1xn1+2...(ρ

n1
1 r + m1).

It follows that the growth function γw(r) satisfies

γw(r) ≤ |X|n1γw′(ρ
n1
1 r +m1),
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where w′ is the shift of w by n1 positions.

Let k =
⌈

log r
−n1 log ρ1

⌉
. Then ρkn1

1 r ≤ 1, and we get (for d = |X|)

γw(r) ≤ dkn1γw′(1+ρ
(k−1)n1

1 m1+ρ
(k−2)n1

1 m1+· · · ρn1
1 m1+m1) ≤ dkn1γw′

(
1 +m1

1

1− ρn1
1

)
,

where w′ is some shift of w. There is a uniform constant C1 (not depending on w′)

bounding from above γw′
(

1 +m1
1

1−ρn1
1

)
. We get

γw(r) ≤ C1d
( log r
−n1 log ρ1

+1)n1 = (C1d
n1)r

log d
− log ρ1 .

It follows that for every ε > 0 there exists C > 0 such that

γw(r) ≤ Cr
log d
− log ρ+ε

for all w ∈ XN and r > 0. �

Corollary 6.9. The contraction coefficient of an infinite contracting group
satisfies

ρ ≥ 1/|X|.

Proof. Let G be a contracting group acting on X∗. One can show that either
the size of orbits of the action of G on X∗ are bounded and then the group G is
finite, or there exists an infinite G-orbit on the boundary XN of the tree X∗.

But if orbit of w ∈ XN is infinite, then |Bw(r)| ≥ r, hence 1 ≤ lim supr→∞
log |Bw(r)|

log r ≤
log |X|
− log ρ ≤

log |X|
− log ρ , which implies that ρ ≥ 1/|X|. �

Not much is known about contracting self-similar groups. Let us list some of
the properties without proofs, and formulate some open problems.

Theorem 6.10. Let G be a contracting finitely generated self-similar group
acting on X∗. If ρ is its contraction coefficient, then for every ε > 0 there exists
an algorithm solving the word problem in G of polynomial complexity of degree

≤ log |X|
− log ρ + ε.

Contracting groups are usually infinitely presented, except for some virtually
nilpotent examples. It is an open question if a finitely presented contracting group
is virtually nilpotent.

Theorem 6.11. A contracting group has no non-abelian free subgroups.

It is not known if all contracting groups are amenable.

6.4. Contracting topological correspondences.

Definition 6.6. Let f, ι :M1 −→M0 be a topological correspondence, where
M1,M0 are compact metrizable spaces. We say that it is contracting if there exist
metrics d1 and d0 on M1, M0, respectively, and ε > 0, ρ < 1, such that

d0(f(x), f(y)) = d1(x, y), d0(ι(x), ι(y)) ≤ ρd1(x, y),

for all x, y ∈M1 such that d1(x, y) < ε.
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Example 6.6. Let f be a hyperbolic complex rational function. Then the
closure P of the post-critical set of f is disjoint from the Julia set, and the identical

embedding ι : M1 −→ M0, for M0 = Ĉ \ P and M1 = f−1(M0), is expanding
with respect to the Poincaré metrics on the corresponding domains. The function
f is a local isometry. Expansion is non-uniform, but restricting the Poincaré metric
to compact neighborhoods of the Julia set, we will get a contracting topological
correspondence.

Proposition 6.12. Let f :M −→M be an expanding covering map, and let
ι : M −→ M be the identity map. Then the correspondence f, ι : M −→ M is
contracting.

Proof. Let d be a metric onM, and ε > 0, L > 1, be such that d(f(x), f(y)) ≥
Ld(x, y) for all x, y ∈ M such that d(x, y) < ε. Suppose that δ > 0 satisfies the
conditions of Lemma 5.1. Let U be an open cover of M by sets of diameter less
than δ, and let U1 be the set of components of f−1(U) for U ∈ U .

Let d0 = d, and let d1(x, y) be equal to the infimum of values of d(f(x1), f(x2))+
d(f(x3), f(x4)) + · · · + d(f(xn−1), f(xn)) over all sequences x1, x2, . . . , xn, where
x1 = x, xn = y, and d(xi, xi+1) < ε for every i. The function d1 is obviously
symmetric and it satisfies the triangle inequality.

We have

d(f(x1), f(x2)) + d(f(x3), f(x4)) + · · ·+ d(f(xn−1), f(xn)) ≥
L(d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn)) ≥ Ld(x1, xn),

which implies
d1(x, y) ≥ Ld(x, y)

for all x, y ∈ M, which implies that d1 is a metric, and the identity map ι :
(M, d1) −→ (M, d) is expanding.

We have d1(x, y) ≥ d(f(x), f(y)) for all x, y ∈ X . If d(x, y) < ε, then x1 = x
and x2 = y is a sequence satisfying the conditions of the definition of d1, hence we
have d1(x, y) ≤ d(f(x), f(y)), hence d1(x, y) = d(f(x), f(y)) for all x, y ∈ M such
that d(x, y) < ε. It implies that f is a local isometry, and that d1 and d define the
same topology on M. �

Let f, ι :M1 −→M0 be a contracting topological correspondence. Let d0, d1, ε,
and ρ be as in the definition of a contracting correspondence. Let δ be a number
in the interval (0, ε) such that for every subset U ⊂ M0 of diameter less than δ
there is a decomposition f−1(U) = U1 ∪ U2 ∪ · · · ∪ Um such that f : Ui −→ U
are homeomorphisms and any two points belonging to different components Ui, Uj
are on distance more than δ. Note that f : Ui −→ U are isometries, and that
ι : Ui −→ ι(Ui) are uniform contractions. As in the case of expanding maps, we
call Ui the components of f−1(U).

Let A ⊂ M0 be a subset of diameter less than δ. Similarly to the case of
expanding coverings, we can construct the tree of preimages TA. Namely, the
root of TA corresponds to A, the first level L1 of TA consists of the components of
f−1(A), and if Ln−1 is the (n−1)-st level, then the nth level consists of components
of f−1(ι(B)) for B ∈ Ln−1. We connect each of the components of f−1(ι(B)) to B
by an edge.

For every vertex B ∈ Ln we have a unique sequence B1, B2, . . . , Bn = B such
thatB1 is a component of f−1(A), andBi+1 is a component of f−1(ι(Bi)). It follows
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that we can identify Bn with the set B̃n = {(xn, xn−1, . . . , x1) : xi ∈ Bi, f(xi) =
ι(xi−1)} ⊂ Mn (in the sense that (xn, xn−1, . . . , x1) 7→ xn is a homeomorphism

form B̃n to Bn). Hence, the tree TA is the tree of preimages of A under the
covering maps

M0
f←−M1

f1←−M2
f2←− · · · .

If A,B are two subsets of M0 of diameter less than δ such that A ∩ B 6= ∅,
then there exists a unique isomorphism of rooted trees SA,B : TA −→ TB , defined
in the same way as for expanding coverings.

Consequently, we can define iterated monodromy groups of contracting topo-
logical correspondences using covers by small sets in the same way as we defined
iterated monodromy groups of expanding covering maps. This definition will agree
with the definition using paths.

The standard actions of the iterated monodromy groups of expanding topo-
logical correspondences also can be defined using covers by small sets, which is
essentially the usual definition using paths, if we pass to the nerve of the cover.

Theorem 6.13. Let f, ι : M1 −→ M0 be a contracting topological correspon-
dence. Suppose that M0 is connected. Then IMG (f, ι) is a contracting group (with
respect to any standard self-similar action).

Proof. Let us prove the theorem for the path connected and locally path
connected space. The general case, using covers by small sets, is very similar,
but notationally a bit more cumbersome (one has replace paths by chains of small
subsets).

Let U be a finite cover of M0 by open sets of diameters less than δ. Let δ0 be
the Lebesgue’s number of U , i.e., such that for every subset A of diameter less than
δ0 there exists U ∈ U such that A ⊂ U .

We say that a path γ in M0 is K-small, where K is a positive real number, if
γ can be split into product of paths γ = γ1γ2 . . . γm such that sum of diameters of
the images of γi is not more than K and diameter of each γi is less than ε0.

Lemma 6.14. For every K > 0 the set of elements Sγ of IMG (f, ι) defined by
K-small loops is finite.

Proof. If γ is K-small, then we can split in into a product γ1γ2 . . . γn such
that length of each γi is less than ε0, the sum of diameters is not more than K,
and no two neighboring paths γi, γi+1 both have diameter less than ε0/2. Then
n ≤ 4K/ε0.

Find for every γi an element Ai ∈ U such that the image of γi is contained
in Ai. Then Sγ = SA1,A2

SA2,A3
· · ·SAn−1,An . We see that Sγ is a composition of

not more then 4K/ε0 elements of the form SA,B for A,B ∈ U . It follows that the
number of possible values of Sγ is finite. �

Note that for every path γ : [0, 1] −→ M0 there is K such that γ is K-small.
If γ1 is K1-small, and γ2 is K2-small, then γ1γ2 is K1 +K2-small. If γ is K-small,
and γ′ is a lift of γ by f , then ι(γ) is ρK-small.

Let C be such that every connecting path `x is C-small. Suppose that γ ∈
π1(M, t) is K-small. Then it follows from Proposition 5.17 that the section γ|x
of the corresponding element of IMG (f, ι), for every x ∈ X, is defined by a loop
which is (2C + ρK)-small. Consequently, any section in a word of length n is
(2C + 2Cρ+ 2Cρ2 + · · ·+ 2Cρn−1 + ρnK)-small. For all n sufficiently big we have
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ρnK < 1. Hence, for all n sufficiently big the sections of γ in words of length

more than n are all defined by loops that are
(

1 + 2C
1−ρ

)
-small. This implies, by

Lemma 6.14, that IMG (f, ι) is contracting. �

Example 6.7. Consider the polynomial f(z) = −z3/2 + 3z/2, discussed in ...
Let Γ0 be the graph consisting of two circles in C going around 1 and −1 as it is
shown on Figure... Let Γ1 be the preimage of Γ0 by f , shown on Figure... We have
a covering map f : Γ1 −→ Γ0. For map ι : Γ1 −→ Γ0 homotopic in C \ {1,−1}
to the identical embedding Γ1 −→ C, the iterated monodromy group IMG (f, ι) is
equivalent as a self-similar group to IMG

(
−z3/2 + 3z/2

)
. Let us endow Γ0 with a

length metric such that the circles have length 1. Lift this metric to Γ1 by f . Then
the semicircles of Γ1 have length 1, and the loops ... have length 1 each. Let us
map the cycles of Γ1 going around 1 and −1 to the corresponding circles of Γ0 by a
map dividing all distances by 2, and contract the extra circles to points. Then ι is
homotopic to the identical embedding and is contracting with ρ = 1/2. It follows
that IMG

(
−z3/2 + 3z/2

)
is contracting.

One can show that contraction coefficient ρ in the definition of a contracting
topological correspondence is an upper bound on the contraction coefficient of its
iterated monodromy group. It follows that in the last example the contraction
coefficient of IMG (f) is not more than 1/2. On the other hand, it is easy to see from
the recursive definition of the generators a and b of IMG (f) that a2n = (an, an, 1),
which implies that the contraction coefficient is not less than 1/2, i.e., it is equal
to 1/2.

6.5. Absence of free subgroups.

Lemma 6.15. Let F be a free non-abelian group and let

φ : F −→ G1 ×G2 × · · · ×Gn
be a homomorphism to a direct product of groups. If for every i the composition of
φ with the projection G1 ×G2 × · · · ×Gn −→ Gi has non-trivial kernel, then φ has
non-trivial kernel.

Proof. It is enough to prove the lemma for n = 2. Let r1, r2 ∈ F be non-
trivial elements such that φ(r1) = (g1, 1) and φ(r2) = (1, g2) for some gi ∈ Gi. Then
φ([r1, r2]) = (1, 1), hence [r1, r2] is an element of the kernel of φ. If [r1, r2] 6= 1,
then we are done. Suppose that [r1, r2] = 1. Then r1 and r2 belong to one cyclic
subgroup of F , i.e., there exist r ∈ F and n1, n2 ∈ Z such that ri = rni . But then
rn2
1 = rn1

2 = rn1n2 = (gn2
1 , 1) = (1, gn1

2 ) is a non-trivial element of the kernel of
φ. �

Lemma 6.16. Let F be a free non-abelian subgroup, and let H < F be a cyclic
subgroup. Then there exists a free non-abelian subgroup F̃ ≤ F such that F̃ ∩H is
trivial.

Proof. One can find a subgroup of F freely generated by the generator h of
H and two other elements g1, g2 ∈ F . Then we can take F̃ = 〈g1, g2〉. �

Definition 6.7. Let G be a group acting by homeomorphisms on a space X .
A germ (or a G-germ) is equivalence class of a pair (g, x) ∈ G×X , where two pairs
(g1, x1) and (g2, x2) are equivalent if x1 = x2 and there exists a neighborhood U of
x1 such that g1|U = g2|U .
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Note that if (g1, x1) and (g2, x2) are germs such that g2(x2) = x1, then the
germ (g1g2, x2) depends only on (g1, x1) and (g2, x2). We write (g1g2, x2) =
(g1, x1)(g2, x2), and thus get a partially defined multiplication on the set of all
G-germs. This multiplication behaves almost as multiplication in a group, except
that it is not everywhere defined (and there is a unit (1, x) for every x ∈ X ). But
the set of all germs (g, x) such that g(x) = x is a group, which we will denote G(x).

The group G(x) is the quotient of the stabilizer Gx of x ∈ X in G by the
subgroup of elements h ∈ G such that there exists a neighborhood Uh of x such
that h acts trivially on Uh.

Theorem 6.17. Let G be a group acting faithfully on a locally finite rooted tree
T . Then one (or more) of the statements following holds.

(1) G has no free non-abelian subgroups.
(2) There exists a free non-abelian subgroup F ≤ G and a point w ∈ ∂T such

that the stabilizer Fw is trivial.
(3) There exists a point w ∈ ∂T and a free non-abelian subgroup of G(w).

Proof. Suppose that theorem is not true. Then there exists a group G with
a free subgroup F , for every w ∈ ∂T the group G(w) has no free subgroup, and for

every free subgroup F̃ ≤ G and every w ∈ ∂T the stabilizer F̃w is non-trivial.
For every w ∈ ∂T the stabilizer Fw is non-cyclic, since otherwise, using Lemma 6.16,

we can find a free subgroup F̃ of F such that F̃w = F̃ ∩Fw is trivial, which is impos-
sible by our assumption. The group G(w) has no free subgroups, hence the natural
homomorphism Fw −→ G(w) has non-trivial kernel. Hence there exists a vertex vw
on the path w, and an element gw ∈ F acting trivially on the subtree Tvw .

We get a cover of ∂T by open subsets ∂Tvw such that there exist non-trivial
elements gw acting trivially on ∂Tvw . Let us find a finite sub-cover {∂Tv : v ∈ V },
where V is a finite set of vertices of T . Note that we can assume that this cover
is by disjoint sets. For every v ∈ V there exists non-trivial elements of F acting
trivially on Tv.

Let FV be the intersection of the stabilizers of elements of V in F . It is a
subgroup of finite index in F . We know that for every v ∈ V there exists a non-
trivial, hence infinite, subgroup Hv ≤ F acting trivially on Tv. Its intersection with
FV will have finite index in Hv, hence will be also infinite.

We have an injective homomorphism FV −→
∏
v∈V Aut(Tv) coming from re-

stricting the action of FV onto each tree Tv. But its projection onto any factor
Aut(Tv) has non-trivial kernel, which is a contradiction, by Lemma 6.15. �

Definition 6.8. Let G be a group acting by homeomorphisms on a topological
space X , and let S = S−1 be a generating set of G. For x ∈ X , the graph of germs
Γx is the graph with the set of vertices equal to the set of germs (g, x) for g ∈ G, in
which two vertices (g1, x) and (g2, x) are connected by an edge if and only if there
exists s ∈ S such that (sg1, x) = (g2, x).

Problem 6.5. Show that (g, x) 7→ g(x) is a covering map from the graph of
germs to the Schreier graph of the action of G on the orbit of x.

Theorem 6.18. Contracting groups have no free non-abelian subgroups.

Proof. One can prove, exactly in the same way as Proposition 6.8, that graphs
of germs of the action of a contracting group on the boundary XN of the tree X∗
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have polynomial growth. This rules out cases (2) and (3) of Theorem 6.17, since
the graph of the action on the orbit is covered by the graph of germs, while the
Cayley graph of G(w) is contained in the graph of germs. In fact, it is easy to see
that G(w) is finite. �
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