8. Hyperbolic diffeomorphisms

Let M be a Riemannian manifold, and let My C M be an open subset.

DEFINITION 8.1. A compact set A C M such that f(A) = A is said to be
hyperbolic (we also say that f is hyperbolic on A) if the restriction of the tangent
bundle T M to A can be decomposed into a direct sum E® @& E* of sub-bundles so
that there exist C' > 0 and A € (0,1) such that for every every n > 0 we have

o |Df 5| < CA™||7| for all 7 € E¥;
o |[Df~"¥|| < CA"||U| for all T € E™.

8.1. Smale horseshoe. Let R = (0,1) x (0,1) C R2, and consider a diffeo-
morphism f : R — R? mapping R to a “horseshoe” shown on Figure... We can
choose it in such a way that restriction of f to the sub-rectangle (0,1)x (1/5,2/5) is
given by f(z,y) = (z/5+ 1/5,5y — 1) and restriction to (0,1) x (3/5,4/5) is given
by f(z,y) = (—2/5+4/5, =5y + 4).

Then f~(R) is equal to Ry = (0,1) x (1/5,2/5)U(0,1) x (3/5,4/5), its image
is Ry =(1/5,2/5) x (0,1) U (3/5,4/5) x (0,1). The map f contracts the tangent
vectors to points of R_; parallel to the z-axis by 5 and expands the tangent vectors
parallel to the y-axis. It follows that f restricted to the maximal f-invariant subset
of R is hyperbolic.

Let us try to understand what is the maximal f-invariant subset of R. Denote,
for n € Z, by R, the set of points (z,y) € R such that f™(z,y) is defined. We have
seen that Ry = (0,1)x(1/5,2/5)U(0,1)x(3/5,4/5). It follows from the definition of
f that R, for n > 1 is a union of 2" rectangles of the form (0,1) x (k/5", (k+1)/5™),
where k € 0,1,...,5™ — 1 is a number that has only digits 1 and 3 in its base 5
expansion. Similarly, R_,, for n > 1, is the union of the rectangles of the form
(k/5™, (k+1)/5™) % (0,1) with the same condition on k. Consequently, the maximal
f-invariant set is the set of points (z,y) € (0,1) x (0,1) such that in the base 5
expansions .aias ... of the coordinates = and y only the digits 1 and 3 appear.

PROBLEM 8.1. Show that the action of f on its maximal invariant set is topo-
logically conjugate to the full shift {0, 1}Z.

The above construction is very flexible, and similar dynamical sets appear in
many situations.

8.2. Solenoid. The solenoid, described in [3.6] is an example of a hyperbolic
set. Let us give an explicit formula for a diffeomorphism hyperbolic on a solenoid.
Consider the torus obtained by rotating around the z-axis the circle C in the zz-
plane of radius 1/2 with center in (1,0, 0). Let D be the interior part of the torus.
If a point with coordinates (u + 1,0, v) of the circle C is rotated around the z-axis
by 6, then we get a point with coordinates

= (u+1)cosb,
= (u+1)sind,
z = .
Let us use the coordinates (u,v,6). The above formulas show us the relation be-

tween these coordinates and (x,y,z). The set D is the set of points satisfying
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u? +v? < 1/4. Consider the map f: D — D given by

f(u,v,&):(

or, in the usual coordinates:

u+0089’v—|—81n9,29 7
4 4

y
A —y?) Awy ° 1 Jore
4 97 4 ’

f(x,y,z) =

2 2 2 2
where A = = +y(x—gj_yf)32y ** Tt will wind the torus D twice around itself, see

Figure... It is not hard to prove that the action of f on S = (), -, f"(D) is
topologically conjugate to the solenoid dynamical system described in [3.6] and

that f is hyperbolic on S. The set S is an example of an attractor: for every
neighborhood U of S we have (1,5, f"(U) = S.

8.3. Hénon maps. A Hénon map is given by

fa,b(x7y) = (1 - axQ + y,bl’),

where (a,b) are some fixed parameters. Note that it is a homeomorphism, if b # 0,
since the inverse map is fa_g(ac,y) = (%, -1+ b%y2 + :17)

We can consider it either as a map from R? to itself, or as a map of C? to
itself. In the latter case, a conjugate version is usually used. Namely, let ¢(z,y) =
(7[1‘%3 7%y)' Then ¢O fa,b Od)il(xa y) = ¢(1 - 1.2/& - 32/; 7233) = (7CL+3’J2 + by7 ZL’)
Replacing —a by ¢ we get a map

Hyo(z,y) = (2 + c + by, z).

It was proved by ... that if 22 4 ¢ is a hyperbolic quadratic polynomial, and b is
sufficiently small non-zero number, then a restriction of Hy . to a hyperbolic subset
of C? is topologically conjugate to the natural extenstion of the action of 22 + ¢ on
its Julia set.

9. Smale spaces

9.1. Spaces with local product structure.

DEFINITION 9.1. A rectangle is a topological space R with a continuous binary
operation [-,-] : R X R — R satisfying
(1) [z,2] = =z;
(2) [z, [y, 2l] = [z, 2];
(3) [lz,y], 2]l = [z, 2].

If a space R is decomposend into a direct product R = A x B of spaces, then we
have a natural structure of a rectangle on it given by [(a1,b1), (ag,b2)] = (a1, b2).
Let us show that all rectangles are like this.

Write & ~1 y if [z,y] = x. Note that [z,y] = x implies that [y, z] = [y, [z,y]] =

[y,y] =y, i.e, y ~1 x. f & ~1 y and z ~q g, then [z, 2] = [z, [z,y]] = [z, y] = =, i.e.,
x ~1 z. We have shown that ~; is an equivalence relation.
Write © ~o y if [z,y] = y. In the same way as above, we see that ~g is an

equivalence relation. Denote by L;(z) the ~; equivalence class of x.
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Define P : R — Li(z) by Pi(y) = [y,2]. Then [z, Pi(y)] = [z, [y,2]] = =,
hence P;(y) € Ly(z). Similarly, the map Pa(y) = [z,y] is a continuous map from

R to La(x).
Define amap F' : Li(x)x Ly(x) — Rby F(a,b) = [a,b]. We have F(P;(a), P2(a)) =
[la, ], [x,a]] = [a,[x,a]] = a. Consequently, (P, P) : R — Lq(z) x La(x) is in-

verse to F', which implies that F' is a homeomorphism. We have [F(a1,b1), F(ag,b2)] =
[[a1,b1], [az, b2]] = [a1,b2] = F(ay,bs). Consequently, if we identify R with Ly (z) x
Lo(x), then [-,-] is given by the usual formula [(a1,b1), (a2, b2)] = (a1, b2).

DEFINITION 9.2. A atlas of a local product structure on a topological space X
is an open cover of X' by rectangles (R;, [+, ];) such that for every point x € X and
for every pair of rectangles R;, R; there exists a neighborhood U of z such that
[a,b]; = [a,b]s for all a,b € U such that the corresponding expressions are defined.

Two atlases of a local product structure on X define the same local product
structure on X if their union is also an atlas of a local product structure.

Note that the condition of the definition is vacuous if x does not belong to the
intersection of the closures of R; and R;.

If X is a space with a local product structure, then a rectangle on X' is an open
subset R C X and a structure of rectangle [-, -] on R such that if we add (R, [-,])
to an atlas defining the local product structure, then we get an atlas of the local
product structure.

9.2. Smale spaces.

DEFINITION 9.3. A Smale space is a compact metrizable space X and a home-
omorphism f: X — X such that there exists an atlas U = {(R;,[-,];)} of a local
product structure on X, a metric d on X, and a number A € (0,1), such that f
preserves the local product structure, and for every rectangle (R;, [, ];) we have

d(f(l'),f(y)) < )\d(l‘,y), ify ELl(!L‘)
and
d(f~(2), f7H(y) < Md(z,y), if y € La(2).
ExXAMPLE 9.1. Every Anosov diffeomorphism is a Smale space...

ExXAMPLE 9.2. Natural extension of an expanding self-covering is a Smale space.
We can take the direct products U x 0Ty, where U is an open set of diameter less
than some sufficiently small §, as rectangles...

9.3. Algebraic examples. Theorem of M. Shub and M. Gromov, general-
ized...

10. Holonomy groupoid of a Smale space

Definition of the holonomy pseudogroup, Arnold cat map example, equivalence
to circle rotation...

Fibonacci and Penrose tiling...

Ruelle groupoids, their full group, finitely presented extensions of iterated mon-
odromy group...
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