
8. Hyperbolic diffeomorphisms

Let M be a Riemannian manifold, and let M0 ⊂M be an open subset.

Definition 8.1. A compact set Λ ⊂ M such that f(Λ) = Λ is said to be
hyperbolic (we also say that f is hyperbolic on Λ) if the restriction of the tangent
bundle TM to Λ can be decomposed into a direct sum Es ⊕Eu of sub-bundles so
that there exist C > 0 and λ ∈ (0, 1) such that for every every n ≥ 0 we have

• ‖Dfn~v‖ ≤ Cλn‖~v‖ for all ~v ∈ Es;
• ‖Df−n~v‖ ≤ Cλn‖~v‖ for all ~v ∈ Eu.

8.1. Smale horseshoe. Let R = (0, 1) × (0, 1) ⊂ R2, and consider a diffeo-
morphism f : R −→ R2 mapping R to a “horseshoe” shown on Figure... We can
choose it in such a way that restriction of f to the sub-rectangle (0, 1)×(1/5, 2/5) is
given by f(x, y) = (x/5 + 1/5, 5y − 1) and restriction to (0, 1)× (3/5, 4/5) is given
by f(x, y) = (−x/5 + 4/5,−5y + 4).

Then f−1(R) is equal to R1 = (0, 1)× (1/5, 2/5)∪ (0, 1)× (3/5, 4/5), its image
is R−1 = (1/5, 2/5)× (0, 1) ∪ (3/5, 4/5)× (0, 1). The map f contracts the tangent
vectors to points of R−1 parallel to the x-axis by 5 and expands the tangent vectors
parallel to the y-axis. It follows that f restricted to the maximal f -invariant subset
of R is hyperbolic.

Let us try to understand what is the maximal f -invariant subset of R. Denote,
for n ∈ Z, by Rn the set of points (x, y) ∈ R such that fn(x, y) is defined. We have
seen that R1 = (0, 1)×(1/5, 2/5)∪(0, 1)×(3/5, 4/5). It follows from the definition of
f that Rn, for n ≥ 1 is a union of 2n rectangles of the form (0, 1)×(k/5n, (k+1)/5n),
where k ∈ 0, 1, . . . , 5n − 1 is a number that has only digits 1 and 3 in its base 5
expansion. Similarly, R−n, for n ≥ 1, is the union of the rectangles of the form
(k/5n, (k+1)/5n)×(0, 1) with the same condition on k. Consequently, the maximal
f -invariant set is the set of points (x, y) ∈ (0, 1) × (0, 1) such that in the base 5
expansions .a1a2 . . . of the coordinates x and y only the digits 1 and 3 appear.

Problem 8.1. Show that the action of f on its maximal invariant set is topo-
logically conjugate to the full shift {0, 1}Z.

The above construction is very flexible, and similar dynamical sets appear in
many situations.

8.2. Solenoid. The solenoid, described in 3.6 is an example of a hyperbolic
set. Let us give an explicit formula for a diffeomorphism hyperbolic on a solenoid.
Consider the torus obtained by rotating around the z-axis the circle C in the xz-
plane of radius 1/2 with center in (1, 0, 0). Let D be the interior part of the torus.
If a point with coordinates (u+ 1, 0, v) of the circle C is rotated around the z-axis
by θ, then we get a point with coordinates

x = (u+ 1) cos θ,

y = (u+ 1) sin θ,

z = v.

Let us use the coordinates (u, v, θ). The above formulas show us the relation be-
tween these coordinates and (x, y, z). The set D is the set of points satisfying
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u2 + v2 < 1/4. Consider the map f : D −→ D given by

f(u, v, θ) =

(
u+ cos θ

4
,
v + sin θ

4
, 2θ

)
,

or, in the usual coordinates:

f(x, y, z) =

A(x2 − y2)

4
,
Axy

2
,
z + y√

x2+y2

4

 ,

where A =
x2+y2+3

√
x2+y2+x

(x2+y2)3/2
It will wind the torus D twice around itself, see

Figure... It is not hard to prove that the action of f on S =
⋂

n≥0 f
n(D) is

topologically conjugate to the solenoid dynamical system described in 3.6, and
that f is hyperbolic on S. The set S is an example of an attractor : for every
neighborhood U of S we have

⋂
n≥1 f

n(U) = S.

8.3. Hénon maps. A Hénon map is given by

fa,b(x, y) = (1− ax2 + y, bx),

where (a, b) are some fixed parameters. Note that it is a homeomorphism, if b 6= 0,
since the inverse map is f−1

a,b (x, y) =
(
y
b ,−1 + a

b2 y
2 + x

)
.

We can consider it either as a map from R2 to itself, or as a map of C2 to
itself. In the latter case, a conjugate version is usually used. Namely, let φ(x, y) =
(−ax,−a

b y). Then φ◦ fa,b ◦φ−1(x, y) = φ(1−x2/a− b
ay,−

b
ax) = (−a+x2 + by, x).

Replacing −a by c we get a map

Hb,c(x, y) = (x2 + c+ by, x).

It was proved by ... that if z2 + c is a hyperbolic quadratic polynomial, and b is
sufficiently small non-zero number, then a restriction of Hb,c to a hyperbolic subset
of C2 is topologically conjugate to the natural extenstion of the action of z2 + c on
its Julia set.

9. Smale spaces

9.1. Spaces with local product structure.

Definition 9.1. A rectangle is a topological space R with a continuous binary
operation [·, ·] : R×R −→ R satisfying

(1) [x, x] = x;
(2) [x, [y, z]] = [x, z];
(3) [[x, y], z]] = [x, z].

If a space R is decomposend into a direct product R = A×B of spaces, then we
have a natural structure of a rectangle on it given by [(a1, b1), (a2, b2)] = (a1, b2).
Let us show that all rectangles are like this.

Write x ∼1 y if [x, y] = x. Note that [x, y] = x implies that [y, x] = [y, [x, y]] =
[y, y] = y, i.e, y ∼1 x. If x ∼1 y and z ∼1 y, then [x, z] = [x, [z, y]] = [x, y] = x, i.e.,
x ∼1 z. We have shown that ∼1 is an equivalence relation.

Write x ∼2 y if [x, y] = y. In the same way as above, we see that ∼2 is an
equivalence relation. Denote by Li(x) the ∼i equivalence class of x.
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Define P1 : R −→ L1(x) by P1(y) = [y, x]. Then [x, P1(y)] = [x, [y, x]] = x,
hence P1(y) ∈ L1(x). Similarly, the map P2(y) = [x, y] is a continuous map from
R to L2(x).

Define a map F : L1(x)×L2(x) −→ R by F (a, b) = [a, b]. We have F (P1(a), P2(a)) =
[[a, x], [x, a]] = [a, [x, a]] = a. Consequently, (P1, P2) : R −→ L1(x) × L2(x) is in-
verse to F , which implies that F is a homeomorphism. We have [F (a1, b1), F (a2, b2)] =
[[a1, b1], [a2, b2]] = [a1, b2] = F (a1, b2). Consequently, if we identify R with L1(x)×
L2(x), then [·, ·] is given by the usual formula [(a1, b1), (a2, b2)] = (a1, b2).

Definition 9.2. A atlas of a local product structure on a topological space X
is an open cover of X by rectangles (Ri, [·, ·]i) such that for every point x ∈ X and
for every pair of rectangles Ri, Rj there exists a neighborhood U of x such that
[a, b]1 = [a, b]2 for all a, b ∈ U such that the corresponding expressions are defined.

Two atlases of a local product structure on X define the same local product
structure on X if their union is also an atlas of a local product structure.

Note that the condition of the definition is vacuous if x does not belong to the
intersection of the closures of Ri and Rj .

If X is a space with a local product structure, then a rectangle on X is an open
subset R ⊂ X and a structure of rectangle [·, ·] on R such that if we add (R, [·, ·])
to an atlas defining the local product structure, then we get an atlas of the local
product structure.

9.2. Smale spaces.

Definition 9.3. A Smale space is a compact metrizable space X and a home-
omorphism f : X −→ X such that there exists an atlas U = {(Ri, [·, ·]i)} of a local
product structure on X , a metric d on X , and a number λ ∈ (0, 1), such that f
preserves the local product structure, and for every rectangle (Ri, [·, ·]i) we have

d(f(x), f(y)) ≤ λd(x, y), if y ∈ L1(x)

and
d(f−1(x), f−1(y) ≤ λd(x, y), if y ∈ L2(x).

Example 9.1. Every Anosov diffeomorphism is a Smale space...

Example 9.2. Natural extension of an expanding self-covering is a Smale space.
We can take the direct products U × ∂TU , where U is an open set of diameter less
than some sufficiently small δ, as rectangles...

9.3. Algebraic examples. Theorem of M. Shub and M. Gromov, general-
ized...

10. Holonomy groupoid of a Smale space

Definition of the holonomy pseudogroup, Arnold cat map example, equivalence
to circle rotation...

Fibonacci and Penrose tiling...
Ruelle groupoids, their full group, finitely presented extensions of iterated mon-

odromy group...
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