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Chapter 1

Dynamical systems

A topological dynamical system H y X is an action of a semigroup H on a
topolgical space X by continuous transformations.

Classically, X is the phase space, the semigroup H represents time, and
the action describes time evolution of the system. Accordingly, the acting
semigroup is typically a subsemigroup of the additive group of real numbers
(e.g., the semigroup of non-negative reals, the group of integers, or the
semigroup of natural numbers).

The subsequent chapters of the book will mostely deal with more “ex-
otic” groups. But even in such cases, the groups often will be associated
in a natural way to classical dynamical systems. The first section of this
chapter is a short overview of well known examples of dynamical systems.
It introduces concepts that will be developed and generalized in the later
parts of the book. The subsequent sections deal with more specialized top-
ics in dynamical systems: subshifts, minimal homeomorphisms of Cantor
sets, basic notions of hyperbolic dynamics, symbolic encoding of dynamical
systems, and basic facts of holomorphic dynamics.

1.1. Introduction by examples

1.1.1. Irrational rotation. Consider the circle R{Z of real numbers mod-
ulo 1. It can be naturally identified with the complex unit circle T � C by
the map x ÞÑ e2πix.

The circle R{Z is a group with respect to the addition. The above
identification of R{Z with the unit circle is an isomorphism of the additive
group R{Z with the multiplicative group T .

1



2 1. Dynamical systems

Suppose that θ P R{Z is irrational. Consider the corresponding rotation

Rθ : x ÞÑ x� θ.

It is a homeomorphism of the circle, hence it generates an action of the
infinite cyclic group Z by homeomorphisms. It is given by pn, xq ÞÑ nθ � x
for n P Z and x P R{Z.

The central topic of topological dynamics is the study of topological
properties of the orbits of a dynamical system H y X , i.e., the sets of the
form Hx � thx : h P Hu for x P X . For example, we may be interested in
the cases when Hx is finite (or compact for a topological semigroup H), or
in properties of the closure of Hx, etc.. If G is a group acting on a space X
by homeomorphisms, then it naturally defines the orbit equivalence relation
on X . It is given by

x � y ðñ Dg P G : gpxq � y.

The orbits of the action are the equivalence classes of this relation.

It is natural to consider then the set GzX (or X {G for right actions)
of orbits of the action. We introduce on it the smallest (coarsest) topology
(i.e., topology with smallest set of open sets) for which the natural map
X ÝÑ GzX is continuous. In other words, a subset A � GzX is open if and
only if its full preimage in X is open.

The space GzX is frequently non-Hausdorff. For example, the following
classical theorem of Kronecker [Kro84] implies that in the case of the ir-
rational rotation Rθ the space of orbits of the action of Z on the circle has
trivial topology (i.e., the only open sets are the empty set and the whole
space).

Theorem 1.1.1. Every orbit tx� nθ : n P Zu is dense in R{Z.

Proof. Denote, for a real number x, by fracpxq the fractional part of x, i.e.,
the unique number from the interval r0, 1q such that a� fracpaq P Z.

It is enough to prove that the orbit of 0 is dense in R{Z, since the orbit
of an arbitrary point α P R{Z is obtained from the orbit of 0 by the rotation
Rα.

Consider an arbitrary positive integerN , and the arcs r0, 1{Nq, r1{N, 2{Nq,
. . . rpN � 1q{N, 1q of the circle R{Z. Since the orbit tfracpnθq : n P Zu is
infinite, there exist integers n1   n2 such that fracpn1θq and fracpn2θq be-
long to the same arc. Then fracp|pn1 � n2qθ|q   1{N . This proves that for
every ε ¡ 0 there exists nε P Z such that fracpnεθq   ε. Then the difference
between consecutive entries of the sequence 0, fracpnεθq, fracp2nεθq, . . . is less
than ε, hence for every α P R{Z there exists k such that fracp|α�knεθ|q   ε.
Consequently, the orbit of 0 is dense in R{Z. �
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Definition 1.1.2. An action H y X is minimal if every H-orbit Hx is
dense in X .

It is easy to see that a group action Gy X is minimal if and only if the
space GzX is antidiscrete.

Minimality is one of possible notions of irreducibility of topological dy-
namical systems, as the following lemma shows. (It also explains the origin
of the term “minimal”, which referred to minimal invariant closed subsets.)

Lemma 1.1.3. A system H y X is minimal if and the only closed subsets
Y � X such that hpYq � Y for every h P H are X and the empty set.

Proof. If H y X is not minimal, then there exists x P X such that the
orbit Hx is not dense. Then its closure Y � Hx satisfies hpYq � Y for all
h P H, and is not equal neither to X nor to H.

In the other direction, if Y is H-invariant and closed, then for every
x P Y the closure of the orbit Hx is contained in Y. So, if Y is non-emtpy
and different from X , then no H orbit of a point of Y is dense in X . �

The circle is the quotient of R by the natural action of Z, and the rotation
Rθ is lifted to the action on R of the transformation x ÞÑ x� θ. The orbits
of the irrational rotation are therefore equal to the images under the natural
quotient map R ÝÑ R{Z of the orbits of the action Z2 y R generated by
the transformations x ÞÑ x� 1 and x ÞÑ x� θ.

Consider the natural action Z2 y R2 generated by the transformations

a : px, yq ÞÑ px� 1, yq, b : px, yq ÞÑ px, y � 1q,
and consider the projection P : R2 ÝÑ R given by P px, yq � x � θy. We
have P pap~vqq � P p~vq � 1 and P pbp~vqq � P p~vq � θ. In other words, the map
P projects the natural action Z2 y R2 to the action Z2 y R generated by
x ÞÑ x� 1 and x ÞÑ x� θ.

Denote by Q the composition of P with the natural quotient R ÝÑ R{Z.
The orbits of the rotation Rθ ü R{Z are the Q-images of the sets of the form
Z2�v � R2. The segment r0, 1q � R is a natural fundamental domain of the
quotient map R ÝÑ R{Z, and we can consider the part of Z2 � v projected
by P to r0, 1q. Every point of the Rθ-orbit of α P R{Z is represented then
by exactly one point of the set P�1pr0, 1qq X pZ2 � vq for v P Q�1pαq.

See Figure 1.1, where an orbit of a point under a rotation is represented
in this way. The grid is the set Z2 � v for some v P R2. The transformation
P is the projection onto the horizontal coordinate axis along lines parallel
to the slanted lines shown on the picture. The strip between the slanted
lines is the set P�1pr0, 1qq. The points of the grid inside the strip represent
the points of the orbit of the rotation. The segments connecting neighboring
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Figure 1.1. Irrational rotation

points of the orbit represent the action of Rθ. Let θ P r0, 1q (which we always
can assume). Then for x P r0, 1q the point Rθpxq is represented either by
x � θ or by x � θ � 1 in r0, 1q. Therefore, on Figure 1.1, we move from
the point representing x to the point representing Rθpxq either by adding
p0, 1q or by adding p�1, 1q. One can see these two cases as two types of
edges of the broken line inside the strip on Figure 1.1: the vertical edges
(corresponding to adding p0, 1q) and the diagonal edges (corresponding to
adding p�1, 1q).

We can record the shape of the broken line by writing a two-sided infinite
sequence

. . . dvvdvdvvdvdvvdvdvvd . . . ,

where d stands for “diagonal” and v for “vertical”. More formally, let xn be
the point of r0, 1q representing Rnθ pxq (i.e., xn � fracpx � nθq). Define the
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Figure 1.2. Angle doubling

sequence panqnPZ by the rule

an �
"
v if xn�1 � xn � θ,
d if xn�1 � xn � θ � 1.

We will study such sequences and their generalizations in subsequent
sections of the book (see 1.2.5 and 3.5.2, for example). A multi-dimensional
generalization of these sequences are quasi-crystals (see...) and, more gen-
erally, Cayley graphs of groupoids (see...).

1.1.2. Angle doubling map and one-sided shift. Consider the map
f : x ÞÑ 2x pmod 1q on the circle R{Z. If we identify the circle R{Z with
the complex unit circle by the map x ÞÑ e2πix, then f becomes z ÞÑ z2.

The map f ü R{Z is a degree two covering. Every point x P R{Z has
two preimages: x{2 and px� 1q{2. Accordingly, as a dynamical system, we
consider it to be an action of the semigroup of non-negative integers. In
particular, the orbit of x is, by definition, the set tfnpxqun�0,1,2,.... Here f0

is the identity map.

If x is a rational number, then f does not increase the denominator of
x (it either does not change it or divides it by 2). Since we always can
represent points of R{Z by points of r0, 1q, it follows that the f -orbits of
rational points of R{Z are finite. Conversely, if x P R{Z has finite orbit,
then there exist positive integers m   n such that 2mx � 2nx pmod 1q,
which implies that x is rational.

If x has a finite orbit under the action of a map f , then either x belongs
to a cycle (is periodic) and f acts on the orbit of x as a cyclic permutation,
or it is pre-periodic and the orbit contains two points of the form y{2 and
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py�1q{2 mapped by f to the same point. In the first case there exists a non-
negative integer n such that fnpxq � x. The smallest such n is called the
period or the length of the cycle. We have then that 2nx � x pmod 1q, hence
x � m

2n�1 , so that x is a fraction with an odd denominator. Conversely, if

x � p
q for p, q P N, where q is odd, then the orbit of x is finite and can not

be pre-periodic, since for every rational y one of the fractions y{2, py� 1q{2
has an even denominator. It follows that x belongs to an f -cycle if and only
if x is rational and has an odd denominator.

In the pre-perodic case there exist smallest n ¡ 0 such that fnpxq belongs
to a cycle (i.e., has an odd denominator). We call this n the pre-period of
x. Then x is of the form p

2nq , where p and q are odd.

Let us represent the points of R{Z by their binary expansions. Namely,
a point x P R{Z is represented by a sequence .a1a2a3 . . . of zeros and ones
so that

x �
8̧

k�1

ak
2k

pmod 1q.

Denote by t0, 1uω the set of all infinite sequences of zeros and ones, and de-
note by Φ : t0, 1uω ÝÑ R{Z the natural map given by the binary numeration
system:

Φpa1a2 . . .q �
8̧

k�1

ak
2k

pmod 1q.

It is well known that the binary representation of real numbers is al-
most one-to-one, i.e., Φ : t0, 1uω ÝÑ R{Z is almost a bijection. The only
ambiguity is

(1.1) .a1a2 . . . an10000 . . . � .a1a2 . . . an01111 . . . .

The space t0, 1uω comes with a natural direct product topology. It is
defined by the basis of open sets consisting of all sets of the form

Ca1a2...an � tx1x2 . . . P t0, 1uω : x1x2 . . . xn � a1a2 . . . anu,
called sometimes cylindrical sets. Note that the sets ΦpCa1a2...anq are closed
intervals of the form

�
m
2k
, m�1

2k

�
for k ¥ 0 and 0 ¤ m ¤ 2k � 1.

A natural metric on t0, 1uω is given by dpw1, w2q � 2�n, where n is the
maximal length of a common beginning of w1 and w2. It is easy to see that
we have |Φpw1q�Φpw2q| ¤ dpw1, w2q, hence the map Φ is continuous. As we
have seen above, Φ�1pxq consists of one or two sequences, and all instances
when Φ�1pxq has two elements are described by (1.1). Namely, |Φ�1pxq| � 2
if and only if x is of the form m

2n for some natural numbers m and n.
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If Φpa1a2a3 . . .q � x, then fpxq � Φpa2a3a4 . . .q. We get what is called a
semiconjugacy implemented by Φ between two dynamical systems: f ü R{Z
and the shift map s : a1a2a3 . . . ÞÑ a2a3a4 . . . on t0, 1uω.

Definition 1.1.4. Let H y X and H y Y be two actions of the same
semigroup on topological spaces. A semiconjugacy from the first topological
dynamical system to the second one is a continuous map Φ : X ÝÑ Y such
that Φphxq � hΦpxq for all h P H and x P X . If, additionally, Φ is a
homeomorphism, then we say that it is a (topological) conjugacy.

In our case, the statement that Φ is a semiconjugacy is equivalent to the
statement that the diagram

t0, 1uω sÝÑ t0, 1uω���Φ

���Φ

R{Z fÝÑ R{Z
commutes. The dynamical system s ü t0, 1uω is called the one-sided shift.

This semiconjugacy can be used to prove many facts about the angle
doubling map. For example, consider the following description of typical
orbits of f ü R{Z.

Proposition 1.1.5. The set of points x P R{Z such that the orbit of x under
f is dense is of full measure and co-meager in R{Z.

Recall that a set is called co-meager (or residual) if it is equal to in-
tersection of a countable collection of open dense sets. By Bair Category
Theorem ... such sets are non-empty for locally compact Hausdorff spaces
and for complete metric spaces. In these cases the notion of a co-meager set
is a topological version of the notion of a set of full measure.

Proof. Consider the uniform Bernoulli measure µ on t0, 1uω. It is uniquely
determined by the condition µpCa1a2...anq � 1

2n . Note that the length of

the subinterval ΦpCa1a2...anq � r0, 1s is also equal to 1
2n . It follows that

Φ : t0, 1uω ÝÑ R{Z maps the Bernoulli measure on t0, 1uω to the Lebesgue
measure on R{Z. In fact, Φ is an isomorphism of the corresponding measure
spaces, since it is a bijection modulo a set of measure zero.

Let w P t0, 1uω. If the orbit of w with respect to the shift action is dense
in t0, 1uω, then its Φ-image is dense in R{Z. The orbit of w is dense if and
only if every finite word v P t0, 1u� appears as a subword in w. Equivalently,
if the orbit is not dense, then there exists a finite word v P t0, 1u� that does
not appear in w. Let Pv � t0, 1uω be the set of sequences w P t0, 1uω not
containing v as a subword. The set Pv is obviously closed.
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If a finite word u contains v, then Cu X Pv � H. For every n the num-
ber of words u P t0, 1un|v| not containing v as a subword is not more than

p2|v| � 1qn. It follows that the measure of Pv is not more than p2|v|�1qn
2|v|n

��
2|v|�1

2|v|

	n
Ñ 0 as n Ñ 8. Consequently, Pv has measure zero. It follows

that the set of points w with non-dense orbits has measure zero, as a count-
able union

�
vPt0,1u� Pv of sets of measure zero. Consequently, the set of

points w P t0, 1u� with dense orbit has measure one, which implies the same
statement about R{Z.

Note also that Pv has empty interior, since it has measure zero. Conse-
quently, Pv is a closed nowhere dense set, and hence

�
vPt0,1u� Pv is meager.

The set ΦpPvq is also closed as a continuous image of a compact set. Sup-
pose that ΦpPvq has non-empty interior. Then Φ�1pΦpPvqq has non-empty
interior. But for any subset A � t0, 1uω, the set Φ�1pΦpAqq is contained
in the union of A with the countable set of sequences eventually equal to
000 . . . or to 111 . . . (since this is the set of points where Φ is not one-to-one).
It follows that Φ�1pΦpPvqq is contained in a union of a countable set with
a nowhere dense closed set, hence it can not contain an open subset. Con-
sequently, ΦpPvq is closed and nowhere dense, and hence is meager, which
implies that the set

�
vPt0,1u� ΦpPvq is meager. �

A particular corollary of Proposition 1.1.5 is that there exists a point x P
R{Z with a dense f -orbit. Existence of a dense orbit is another irreducibility
notion for topological dynamical systems, weaker than minimality. We call
it (in the case of group actions) topological transitivity. We will see later
(Proposition 2.1.17) that a group action G y X on a second-countable
completely metrizable space is topologically transitive if and only if every
two non-empty open subsets of the space of orbits GzX have non-empty
intersection.

The angle doubling map f ü R{Z is very far from being minimal. Since
the set of rational numbers with odd denominator is dense in R, we have
the following property.

Proposition 1.1.6. The union of all finite cycles under the angle doubling
map is dense in R{Z.

Density of the union of finite cycles is usually one of the ingredients of
different definitions of “chaos”, see [LY75, Dev89, AH03].

1.1.3. Horseshoe and two-sided shift. Let S be a stadium-shaped re-
gion of R2 formed by a square and two half-discs shown on the left hand
side part of Figure 1.3. Let Q be the square, and denote by D1, D2 the left
and the right half-discs, as it is shown on the figure.
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Figure 1.3. The horseshoe

Consider a continuous map F ü S mapping S to the horseshoe shaped
region shown on the right hand side part of Figure 1.3. We assume that F
acts on D1 as an affine map of the form x ÞÑ λx � v1 for some λ P p0, 1{2q
and v1 P R2, and on D2 as an affine map of the form x ÞÑ �λx� v2 for the
same value of λ and for some v2 P R2.

We also assume that F pQqXQ is a disjoint union of two rectangles, and
that the restriction of F onto the preimages of these rectangles are affine
maps of the form px, yq ÞÑ pLx, λyq � w1 and px, yq ÞÑ p�Lx,�λyq � w2 for
some w1, w2 P R2. It is not very important how F acts on the rest of S. It is
not hard to see, though, that we can choose F so that it is a diffeomorphism
from S to F pSq.

Note that F ü D1 is a contraction, and has a unique fixed point p �
1

1�λv1 such that Fnpxq Ñ p as n Ñ 8 for all x P D1. We also have

F pD2q � D1, hence Fnpxq Ñ p as nÑ8 for all x P D2.

It follows that Fnpxq Ñ p for n Ñ 8 unless Fnpxq P Q for all n ¥ 0.
Consider the set F�npQq of points x P S such that Fnpxq P Q. We define
F�0pQq � Q. The set F�1pQq is equal to the union of the two vertical
rectangles V1 and V2 equal to the preimages of the two rectangles forming
F pQq X Q, see the top part of Figure 1.4. The map F acts on V1 and
V2 by affine transformations with the linear parts px, yq ÞÑ pLx, λyq and
px, yq ÞÑ p�Lx,�λyq, respectively.

The set F�2pQq is equal to F�1pF�1pQq XF pQqq. The horseshoe F pQq
intersects with the two rectangles forming F�1pQq in four rectangles (see
the second row of Figure 1.4). Their preimages under F are four vertical
rectangles (i.e., direct products of four segments in the horizontal side of Q
with the full vertical side of Q).

Continuing this way, we conclude that F�npQq is equal to a union of
2n vertical rectangles, and that each rectangle of F�npQq contains two rect-

angles of F�pn�1qpQq. See, for example, the third row of Figure 1.4, where
F�3pQq is described.
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Figure 1.4. Sets F�npQq

If the side of Q has length 1, then the width of the rectangles forming
F�npQq is equal to λn. It follows that the set

�
n¥0 F

�npQq of points that
stay in Q under positive iterations of F is a direct product of a horizontal
Cantor set with the vertical side of the square Q. Its connected components
are vertical subsegments of the square Q.

We can label the rectangles of F�npQq by sequences of symbols T,B,
where T and B stand for the top and the bottom rectangles of F pQq X Q,
respectively. Namely, if x P F�npQq, then the itinerary X1X2 . . . Xn of x
is given by the condition that Xk � T (resp., Xk � B) if F kpxq belongs to
the top (resp., bottom) rectangle of F pQq XQ. Then the set of points with
a given itinerary X1X2 . . . Xn is one of the rectangles of F�npQq. The two

rectangles of F�pn�1qpQq contained in the rectangle of points with itineraries
X1X2 . . . Xn are the rectangles of points with the itineraries X1X2 . . . XnT
and X1X2 . . . XnB. It follows that

�
n¥0 F

�npQq is naturally homeomorphic
to the direct product of tT,Buω with r0, 1s, where a set tX1X2 . . .u�r0, 1s for
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Figure 1.5. Ranges of iterations

X1X2 . . . P tT,Buω is identified with the vertical subsegment of Q consisting
of all points x P Q such that for every n ¥ 1 the point Fnpxq belongs to the
rectangle Xn of F pQq XQ.

The set
�
n¥0 F

�npQq is the set of points x such that Fnpxq P Q for
all n ¥ 0. Note, however, that the map F is not surjective on this set,
i.e., there are points that do not have preimages under F . Let us describe
the sets FnpQq X Q. They are shown on Figure 1.5, for n � 1, 2, 3, inside
the left-hand side squares. The right-hand side of the figure shows their
images under F . We obviously have Fnpxq X Q � F pFn�1pxq X Qq X Q.
Similarly to the case of the sets Qn, we see that FnpQq X Q consists of 2n

horizontal rectangles of width L�n. Each rectangle of FnpQq XQ is labeled
by itineraries X1X2 . . . Xn P tT,Bun of its points under the map F�1. Each
rectangle X1X2 . . . Xn of FnpQq XQ contains two rectangles TX1X2 . . . Xn

and BX1X2 . . . Xn of Fn�1pQq XQ.
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The intersection
�
n¥1 F

npQq X Q is the direct product of a vertical
Cantor set with the horizontal side of the square. The Cantor set is naturally
identified with the space tT,Bu�ω of left-infinite sequences . . . X2X1 over
the alphabet tT,Bu.

Let us denote W� � �
n¥1 F

�npQq, and W� � �
n¥1 F

npQq X Q. The
set W� is a Cantor set of vertical segments in the square Q. The set W� is
a Cantor set of horizontal segments. We have F pW�q �W� and F pW�q �
W�. The set W� is equal to the set of points x P S such that Fnpxq P Q for
all n ¥ 1, i.e., precisely to the set of points such that Fnpxq does not converge
to the fixed point p. Note that if x P W�, then Fnpxq P �n

k�1 F
kpQq X Q,

which implies that the distance from Fnpxq to W� converges to zero as
n Ñ 8. Note also that Fnpxq P W� for all n ¥ 1. Consequently, the
distance from Fnpxq to W� XW� converges to zero. The map F acts as a
homeomorphism on W �W �XW�.

We see that either Fnpxq converges to the fixed point p (if x R W�) or
the distance from Fnpxq to W goes to zero. It follows that W is an attractor.

Definition 1.1.7. Let f ü X be a continuous map, where X is compact. A
compact set C � X is called an attractor if there exists an open set U � C
such that C � �

n¥1 f
npUq.

Recall that the vertical lines forming W� are labeled by right-infinite
sequences X0X1 . . . of the symbols tT,Bu, while the horizontal lines forming
W� are labeled by the left-infinite sequences . . . X�2X�1 over the same set
of symbols. Every horizontal segment intersects every vertical segment in
exactly one point of W ; and, conversely, every point of W is the intersection
point of a horizontal and a vertical segment. We see that the points of W
can be labeled by bi-infinite sequence . . . X�2X�1X0X1 . . .. The sequence
. . . X�2X�1X0X1 . . . is the itinerary of the corresponding point x in the sense
that Fnpxq belongs to the rectangle labeled by Xn for every n P Z. It is easy
to see that this correspondence between the points and their itineraries is a
homeomorphism.

It also follows directly from the definition that this homeomorphism
conjugates the action of F on W with the two-sided shift s given by

sp. . . X�2X�1X0X1 . . .q � . . . Y�2Y�1Y0Y1 . . . , where Yn � Xn�1.

Note that the map F acts in a neighborhood of every point of W as
an affine transformation with linear part px, yq ÞÑ pLx, λyq or px, yq ÞÑ
p�Lx,�λyq, i.e., it locally expands the horizontal and contracts the vertical
directions of the square Q. This is an example of a system belonging to the
class of hyperbolic dynamical systems, which is the subject of Section 1.4.
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Figure 1.6. Inverse limit of angle doubling maps

For a finite alphabet X, the two-sided full shift is the dynamical system
Z y XZ, where the generator of Z acts by the homeomorphism sppxnqnPZq �
pynqnPZ, where yn � xn�1. Let us introduce on XZ the metric

dppxnq, pynqq � 2�k,

where k is the maximal non-negative integer such that x�kxk�1 . . . xk�1xk �
y�ky�k�1 . . . yk�1yk. Note that this metric agrees with the direct product
topology on XZ.

Let w � pxnq be an arbitrary point of XZ. Denote by W�pwq the set
of points pynq of XZ such that . . . x�2x�1 � . . . y�2y�1. The set W�pwq is
naturally homeomorphic to Xω, where the homeomorphism W�pwq ÝÑ Xω

erases the negative coordinates. Similarly, denote by W�pwq the set of points
pynq P XZ such that the non-negative coordinates of pynq and pxnq coincide.
The set W�pwq is naturally homeomorphic to the space X�ω of the left-
infinite sequences . . . y�2y�1. The space XZ is naturally homeomorphic to
the direct product X�ω�Xω, where the homeomorphism X�ω�Xω ÝÑ XZ

concatenates the corresponding sequences. Consequently, we have a natural
decomposition of XZ into the direct product W�pwq �W�pwq.

Note that if w1, w2 P W�pwq, then dpsnpw1q, snpw2qq Ñ 0 as n Ñ 8 for
any metric onXZ. Similarly, if w1, w2 PW�pwq, then dps�npw1q, s�npw2qq Ñ
0 as nÑ8.

1.1.4. Smale-Williams solenoid and the adding machine. Consider
the backwards sequence

R{Z fÐÝ R{Z fÐÝ R{Z fÐÝ R{Z fÐÝ � � �
of the angle doubling maps f : x ÞÑ 2x pmod 1q from 1.1.2, see Figure 1.6.

Let S be the inverse limit of this sequence. By definition, it is the set
of sequences px1, x2, . . .q of points of R{Z such that fpxn�1q � xn for all n.
The topology is induced from the direct product topology on pR{Zqω. Note
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that the map pfpx1, x2, . . .q � pfpx1q, fpx2q, . . .q
is a well defined homeomorphism of S, where the inverse homeomorphism
is the shift px1, x2, . . .q ÞÑ px2, x3, . . .q.
Definition 1.1.8. Let f ü X be a continuous map. Its natural extension

is the homeomorphism pf induced by f on the inverse limit of the sequence

X fÐÝ X fÐÝ X fÐÝ � � �

The natural extension of the angle doubling map is called the Smale-
Williams solenoid, see [Sma67] page 788. Note that S is a compact abelian
topological group, since the map x ÞÑ 2x is an endomorphism of the com-
pact abelian group R{Z, and S is the inverse limit with respect to these
endomorphisms.

Let us extend the symbolic representation of the angle doubling map
described in 1.1.2 to the solenoid. Let ξ � px1, x2, . . .q be a point of S. If
.b1b2 . . . is a binary representation of xn, then the binary representation of
xn�1 � fpx1q is .b2b3 . . .. It follows that the coordinates of ξ are encoded by
sequences of the form

p.a1a2 . . . , .a0a1a2 . . . , .a�1a0a1a2 . . . , . . .q.
It is natural then to represent ξ by the bi-infinite binary sequence

. . . a�2a�1a0.a1a2 . . . ,

where .a�n�2a�n�3 . . . is the binary sequence representing xn P R{Z.

We have the same description of the identification of the sequences rep-
resenting the same point of the solenoid as in the case of the circle. Namely,
two binary sequences panqnPZ and pbnqnPZ represent the same point of S
if and only if they are either equal to each other, equal to 000 . . . and
111 . . ., or are of the form . . . an�1an10000 . . . and . . . an�1an01111 . . . for
some n P Z. One can show that the quotient of t0, 1uZ by this identification
rule is homeomorphic to S, and that the map on S induced by the two-sided
shift s ü t0, 1uZ is topologically conjugate to the natural extension of the
angle doubling map.

Let ξ be a point of S represented by a binary sequence . . . a�2a�1a0.a1a2 . . ..
Let us call the sequences . . . a�2a�1a0 and .a1a2 . . . the integral and frac-
tional parts of ξ, respectively. The identification rule for representation of
points of S allows us to identify the fractional part with a point of the real
interval r0, 1s via the natural map

.a1a2 . . . ÞÑ
8̧

i�0

ai2
�i.
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Figure 1.7. The solenoid as a mapping torus

The integral part of ξ is naturally identified with a dyadic integer via

. . . a�2a�1a0 �
8̧

i�0

a�i2i P Z2.

Note that the integral and the fractional parts of ξ P S are uniquely
defined, except for the points which can have fractional parts 0 or 1. Then a
point can have fractional part 1 and integral part a P Z2, or fractional part
0 and integral part a� 1 P Z2.

It follows that S can be constructed by taking the direct product Z2 �
r0, 1s, and then identifying every point pa, 1q with pa� 1, 0q. See Figure 1.7
for a schematical representation of this construction.

In other words, the solenoid S is the mapping torus of the transformation
a ÞÑ a� 1 of the ring Z2 of dyadic integers.

Definition 1.1.9. Let f ü X be a homeomorphism. Its mapping torus is
the quotient of the space X � r0, 1s by the identification px, 1q � pfpxq, 0q.

The transformation τ : a ÞÑ a� 1 of Z2 is called the adding machine or
odometer. Its action on the binary sequences is given by the classical rule
of adding one to a binary integer:

τp. . . a2a1a0q �
"

. . . a2a11 if a0 � 0;
τp. . . a2a1q0 if a0 � 1.
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Proposition 1.1.10. The odometer is a minimal homeomorphism of Z2.

See Definition 1.1.2 for the definition of a minimal action.

Proof. The group Z2 is the inverse limit (as a topological group) of the
groups Z{2nZ with respect to the natural epimorphisms 1�2n�1Z ÞÑ 1�2nZ.
The odometer is the inverse limit of the maps k ÞÑ k � 1 acting on each
Z{2nZ. These maps are transitive cycles on Z{2nZ, and every orbit of the
action of the odometer on Z2 is mapped to these transitive cycles, which
implies that every orbit is dense. �

As a corollary we get the following topological property of the solenoid.

Proposition 1.1.11. Every path connected component of S is dense. In
particular, S is connected but has uncountably many path connected compo-
nents.

Note that pf multiplies the fractional parts by 2, which is a locally ex-
panding map on r0, 1s. It is also multiplying the integer parts by 2, which
is a contracting map on Z2. We see that, similarly for the two-sided shift,
neighborhoods of points of the solenoid are decomposed into a direct product
of an expanding and contracting directions of the dynamical system (i.e., is
also a hyperbolic dynamical system, similarly to the two-sided shift).

The solenoid can be also realized as an attractor of a diffeomorphism,
see [Sma67, page 788] or [BS02, Section 1.9.]. Consider the region R inside
a torus in R3 obtained by rotating a disc D around a line in its plane not
intersecting D. We call the images of D under the rotations meridional
discs of R. Let F ü R be a map extendable to a diffeomorphism on a
neighborhood of R such that F pRq is the region inside a torus winding
twice around R, as it is shown on Figure 1.8. We assume that F maps
every meridional disc of R to a smaller disc contained in a meridional disc
of R. We also assume that F uniformly contracts the distances inside the
meridional discs, and that it uniformly expands the distances in the direction
perpendicular to the meridional discs.

More explicitly, let us introduce a local coordinate system px, y, θq in-
side the torus, where x, y, for x2 � y2   1 are the Cartesian coordinates in
the disc D, and θ P p0, 2πq is the angle of rotation of the disc D around
the axis of the torus. We can define then F , for example, as F px, y, θq ��
x
4 � cos t

2 , y4 � sin t
2 , 2θ

�
. One can show then that the intersection of the

ranges of Fn is homeomorphic to the solenoid, and that the restriction of F
onto the intersection is topologically conjugate to the natural extension of
the angle doubling map.
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Figure 1.8. Solenoid map

Figure 1.9. Arnold’s cat

1.1.5. Anosov diffeomorphisms. Another classical example of a hyper-
bolic dynamical system is a hyperbolic automorphism of a torus, known in
the literature as “Arnod’s cat map”.
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Figure 1.10. Markov condition

Consider the map f ü R2{Z2 induced by the linear transformation of

R2 with the matrix A �
�

2 1
1 1



. Since detA � 1, the map f is a

homeomorphism (and an automorphism of the group R2{Z2).

The characteristic polynomial of A is λ2 � 3λ � 1 � 0, hence its eigen-

values are λ � 3�?5
2 and λ�1 � 3�?5

2 . Note that λ ¡ 1 and 0   λ�1   1.

The eigenvectors of A are ~v1 �
�

1
�1�?5

2

�
and ~v2 �

�
1�?5

2
1

�
. Note that

they are orthogonal (A is symmetric).

An A-rectangle is a rectangle R � R2 with the sides parallel to the
eigenvectors of A such that the quotient map R2 ÝÑ R2{Z2 restricted to
the interior of R is injective. The images of A-rectangles in R2{Z2 are also
called A-rectangles. If R is an A-rectangle, and x P R, then we denote by
Wspx,Rq the maximal segment inside R containing x and parallel to the
contracting eigenspace (i.e., to the eigenspace of the eigenvalue λ�1   1),
and by Wupx,Rq we denote the maximal segment inside R containing x and
parallel to the expanding eigenspace.

Definition 1.1.12. Let R be a finite set of A-rectangles R � R2{Z2 satis-
fying the following conditions:

(1) The interiors of the rectangles R P R are disjoint, and union of
their closures is the whole torus.

(2) If x belongs to the interior of R1 P R and fpxq belongs to the
interior of R2 P R, then

ApWspx,R1qq �WspApxq, R2q
and

WupApxq, R2q � ApWupx,R1qq.
Then the set R is called a Markov partition of Aü R2{Z2.

For example, we can construct a Markov partition of A ü R2{Z2 in
the following way. Consider the square formed by the lines parallel to the
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Figure 1.11. Markov partition

eigenvectors with one vertex p0, 1q, and one side containing p0, 0q. Consider
all its translations by the elements of Z2 � R2. See the left-hand side of
Figure 1.11, where they are shown blue. The components of the part of R2

not covered by these squares are also squares. Their sides are parallel to
the eigenvectors of A and form one Z2-orbit (red on Figure 1.11). Consider
the images of the two constructed Z2-orbits of squares in the torus. We
get a partition of the torus R2{Z2 into two squares with sides parallel to
the eigenvectors of A. Their images under the action of A are shown on
the right-hand half of Figure 1.11. It is easy to check that the constructed
partition of the torus satisfies the conditions of Definition 1.1.12.

Let R be a Markov partition of A ü R2{Z2. Then for every R P R the
intersections of the form ApRqXRi for Ri P R subdivide the rectangle ApRq
into a finite number of disjoint sub-rectangles, by cutting the expanding
direction into pieces. For each of these sub-rectangles R1 and x P R1 we have
Wspx,Rq �Wspx,R1q, see Figure 1.10. Note that an intersection ApRqXRi
can consist of several sub-rectangles of ApRq.

Consider the oriented graph with the vertices identified with the elements
of R and an edge from R to Ri for every rectangular piece of a non-empty
intersection ApRq X Ri. Let us call this graph the structural graph of the
Markov partition. For an edge e of the structural graph, denote by Re
the corresponding (closed) piece of an intersection ApR1q X R2 for Ri P R
(so that R1 and R2 correspond to the beginning and end of the edge e,
respectively).

For example, the structural graph of the Markov partition from Fig-
ure 1.11 is shown on Figure 1.12.
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Figure 1.12. Structural graph

Denote by M the set of all bi-infinite paths in the structural graph. It
is a subshift, i.e., a closed shift-invariant subset of the full shift Eω, where
E is the set of edges of the graph.

Proposition 1.1.13. For every infinite path w � . . . e�1e0e1 . . . PM there
exists exactly one point φpwq P R2{Z2 such that Anpφpwqq P Ren for all
n P Z. The map φ : M ÝÑ R2{Z2 is a surjective semi-conjugacy from the
subshift s ü M to Aü R2{Z2.

Proof. Let . . . a�1a0a1 . . . P M. It follows from the definition of the map
φ that the image of the cylindrical set Ca0a1...an � t. . . e�1e0e1 . . . : ei �
ai, i � 0, 1, . . . , nu is equal to the rectangle Ra0XA�1pRa1qXA�2pRa2qX. . .X
A�npRanq. It follows that φpCa0a1...anq is a rectangle R such that the side
Wspx,Rq is equal to the side Wspx,Ra0q, and the side Wupx,Rq has length
not more than Kλ�n, where K is the maximum length of the sides Wupx,Riq
for all rectangles Ri of the Markov partition. It follows that φpCa0a1...anq,
n ¥ 0, is a descending sequence of compact rectangles such that one side
(parallel to the contracting direction) stays the same, while the length of the
other side (parallel to the expanding direction) is exponentially decreasing.

Similarly, the set φpt. . . e�1e0e1 . . . : ei � ai, i � 0,�1, . . . ,�nuq is a
subrectangle R of Ra0 such Wupx,Rq is equal to the side Wupx,Ra0q, while
the contracting sides Wspx,Rq form a nested sequence of subintervals of
Wspx,Ra0q of exponentially decreasing lengths.

It follows that for every finite path a�na�n�1 . . . an�1an in the structural
graph the set φpt. . . e�1e0e1 . . . : ei � ai,�n ¤ i ¤ nuq is a rectangle with
length both sides less than Kλ�n for some fixed K ¡ 0 and for λ ¡ 1.
This implies that φ is continuous. It is easy to check that it is onto and a
semi-conjugacy. �

The encoding of points of the torus by bi-infinite sequences is analogous
to the encodings of the systems considered in 1.1.3 and 1.1.4. In fact, they
are examples of a general construction, which will be studied in 1.4.11.
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1.2. Subshifts

1.2.1. Definition and examples. Let H be a semigroup, and let X be a
finite alphabet. We always assume that |X| ¥ 2. Consider the space XH

with the topology of the direct product of discrete sets. In other terms, XH

is the set of all maps f : H ÝÑ X, and the topology is defined by the basis
of open cylindrical sets:

Cf0:AÝÑX � tf : H ÝÑ X : f |A � f0u,
where A runs through the set of all finite subsets of H, and f0 runs through
the set of all maps A ÝÑ X.

Note that Cf0:AÝÑX is also closed, since it is equal to the complement of

the union of the sets of the form Cf :AÝÑX for all f P XA such that f � f0.

If H is the semigroup N of non-negative integers, we we represent the ele-
ments f P XN as sequences x0x1x2 . . . � fp0qfp1qfp2q . . .. Similarly, for H �
Z, we write the elements of XZ as bi-infinite sequences . . . x�2x�1 . x0x1 . . .,
where xn is the value of the element at n. We denote by a dot the place
between the coordinates number -1 and 0.

It follows directly from the definitions that for every element h P H the
map

f ÞÑ h � f,
where h � f is defined by

h � fpxq � fpxhq,
is a (left) action of H on XH by continuous maps. We call the dynamical
system H y XH the (full) H-shift.

For example, the action of the generator 1 of N on XN is given in terms
of sequences by

x0x1 . . . ÞÑ x1x2 . . . ,

while the action of the generator 1 of Z on XZ is given by

. . . x�2x�1 . x0x1 . . . ÞÑ . . . x�1x0 . x1x2 . . . .

These maps are called the (full) one-sided and two-sided shifts, respectively.

Definition 1.2.1. An H-subshift is a dynamical system H y X , where
X is a closed H-invariant subset of the full shift space XH . Here a subset
Y � X is said to be H-invariant if hY � Y for every h P H.

One way to define a subshift is to take an arbitrary closed subset F � X ,
and consider the intersection

�
hPH hF . Another standard way is choose an

element f of XH and take the closure of the H-orbit th � f : h P Hu.
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Definition 1.2.2. Let X � XZ be a Z-subshift. Its language is the set WX
of all finite words v � a0a1 . . . an such that there exists pxnqnPZ P X such
that xi � ai for all i � 0, 1, . . . , n.

The following is straightforward.

Proposition 1.2.3. Let WX be the language of a subshift X � XZ. A
sequence pxnqnPZ belongs to X if and only if xnxn�1 . . . xm belongs to WX
for all n ¤ m.

The following is a classical fact (see, for example [MH38, Theorem 7.2]).
We say that a subshift is minimal if the Z-action on it is minimal, i.e., if
all orbits of the shift are dense in it, see Definition 1.1.2. Note that in this
context the word “minimal” has the usual sense: a subshift is minimal if
and only if it does not contain a proper non-empty subshift.

Proposition 1.2.4. Let w P XZ. The closure of the orbit tsnpwq : n P Zu
of w in XZ is a minimal subshift if and only if for every finite subword v of
w there exists R ¡ 0 such that every subword of w of length R contains v as
a subword.

In other words, the closure of the orbit of w is a minimal subshift if and
only if every finite subword of w appears in w infinitely often with gaps of
uniformly bounded length.

Proof. Let C be the closure of the orbit of w. Suppose that s ü C is
minimal, and let v be a subword of w of length m. Then for every w1 P C
there exists n P Z such that snpw1q belongs to the cylindrical set Cv �
t. . . x�1x0x1 . . . P C : x1x2 . . . xm � vu, as the shift orbit of w1 is dense
in C. In other words, the sets of the form snpCvq for n P Z cover C. But
C is compact, so there exists a finite cover sn1pCvq, sn2pCvq, . . . , snkpCvq of
C. It follows that for every n P Z there exists ni such that sn�nipwq P Cv.
This exactly means that the word v appears in w on a uniformly bounded
distance from any place in w.

The converse statement (if every finite subword of w appears in w with
uniformly bounded gaps, then the closure of the orbit of w is a minimal
shift) is straightforward, and is left as an exercise. �

1.2.2. Expansive actions.

Definition 1.2.5. An action of a semigroup H on a metric space X is said
to be expansive if there exists δ ¡ 0 such that if for all g P H we have
dpgpxq, gpyqq   δ then x � y.

The definition of expansivity of an action does not depend on the metric
if X is compact. Namely, we have the following equivalent definition.
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Definition 1.2.6. Let X be a compact space. A neighborhood U � X �X
of the diagonal tpx, xq : x P X u is called an expansion entourage for an
action H y X if pgpxq, gpyqq P U for all g P H implies x � y.

Here U denotes the closure of U in X � X . It is easy to check that an
action H y X on a compact metric space X is expansive if and only if it
has an expansion entourage.

Let U be a closed expansion entourage for an action of H on a compact
space X . For a finite subset A � H, denote by UA the set of pairs px, yq P
X � X such that phpxq, hpyqq P U for all h P A. In other words,

UA �
£
hPA

h�1pUq,

where H acts on X 2 diagonally.

Lemma 1.2.7. For every neighborhood of the diagonal W � X � X there
exists a finite set A � H such that UA �W .

Proof. It is enough to prove the lemma for the case when W is open. Then
X 2 rW is compact, and for every px, yq P X 2 rW there exists h P H such
that phpxq, hpyqq R U . The set X 2 r h�1pUq is open, so we have an open
cover of X 2 rW by sets of the form X 2 r h�1pUq. There exists a finite
subcover, and its union is equal to X 2 r UA for some finite A � H. It
follows that UA �W . �

Expansive dynamical systems are chaotic in the sense that they exhibit
sensitive dependence on the “initial conditions”. Namely, however small is
the distance between the initial positions of two points x, y, as soon as x � y
there exists a moment g P H such that the distance between gpxq and gpyq is
at least δ. This and similar conditions are ingredients of various definitions
of chaos, see [LY75, Dev89, AH03].

Example 1.2.8. An action by isometries is obviously not expansive. In
particular, a rotation of the circle and the odometer (see its definition before
Proposition 1.1.10) are examples of non-expansive action.

Example 1.2.9. The two-sided shift, the solenoid, and the Arnold’s Cat
map are expansive. This follows from the corresponding local direct product
decomposition into expanding and contracting directions. Namely, any two
sufficiently close points x, y belong to one rectangle of such a decomposition.
If x � y, then either their projections onto the expanding side or the pro-
jections onto the contracting side of the rectangle are different. Then the
distance between the corresponding projections of the points fnpxq, fnpyq
will grow exponentially (if it is small) for positive or negative values of n,
respectively. This proves that fnpxq and fnpyq can not be close to each
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other for all n P Z. We will study this approach and this proof in more
detail in 1.4.7.

The following description of expansive actions is a classical result, see....

Theorem 1.2.10. An action H y X of a semigroup H on a compact
totally disconnected space X is expansive if and only if the dynamical system
H y X is topologically conjugate to an H-subshift.

Proof. Let δ be as in Definition 1.2.5. Consider a finite partition U of X
into clopen sets of diameters less than δ. For a point x P X , define its
itinerary as the map Ix : H ÞÑ U given by the rule

hpxq P Ixphq.
The map x ÞÑ Ix is a continuous map from X to HU , since it is locally
constant on each coordinate. It follows that its range is a compact subset
of HU . We have ghpxq P Ixpghq and ghpxq P Ihpxqpgq. It follows that
h � Ixpgq � Ixpghq � Ihpxqpgq, so that h � Ix � Ihpxq, i.e., that the map

I� : X ÝÑ HU is H-equivariant.

The map x ÞÑ Ix is also injective, since Ix � Iy implies that the distance
from hpxq to hpyq is less than δ for every h P H. It follows that x ÞÑ Ix is a
homeomorphism from X to its images, since every injective continuous map
from a compact space to a Hausdorff space is a homeomorphism onto the
image. �

1.2.3. Shifts of finite type. Let P � tCfi:AiÝÑXuiPI be a collection of

cylindrical subsets of XH . Consider now the set of all sequences w P XH

such that configurations fi : Ai ÝÑ X do not appear in any shifts of w.
Namely, consider the set XP of elements w P XH such that h � w|Ai � fi
for all i P I. We say that XP is the shift defined by the set of prohibited
configurations P. Note that XP is closed and H-invariant, i.e., that it is
a subshift. Every subshift can be defined by some collection of prohibited
configurations.

Definition 1.2.11. A subshift X � XH is a shift of finite type if there exists
a finite set of prohibited configurations defining X .

In particular, a Z or N-shift X is defined by a finite collection A � X� of
finite prohibited words. A sequence w belongs to the corresponding subshift
if and only if no subword of w belongs to A.

Note that a subset of XH is a union of a finite number of cylindrical
sets if and only if it is clopen. It follows that a subshift X � XH is of
finite type if and only if there exists a clopen set U such that X � XH r�
hPH h

�1pUq, where h�1pUq denotes the full preimage of U under the action
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of h. Replacing U by V � XH r U , we get another definition of shifts of
finite type.

Lemma 1.2.12. A subshift X � XH is of finite type if and only if there
exists a clopen set U such that X � �

hPH h
�1pUq.

More generally, we adopt the following definition.

Definition 1.2.13. Let X � XH be a subfshift. A subshift X1 � X is of
relative finite type in X if there exists a clopen subset U � X such that
X1 �

�
hPH h

�1pUq.

Let G be a group, and let X be a finite alphabet. For a finite subset
B � G, consider the alphabet XB and the map βB : XG ÝÑ pXBqG given by
the equality

βBpfqpgq � pg � fq|B.
Proposition 1.2.14. The map βB is a G-equivariant homeomorphic em-
bedding.

Proof. We have

βBph � fqpgq � ppghq � fq|B � βBpfqpghq � h � βBpfqpgq,
hence βB is G-equivariant.

Choose an element g0 P B. Then the value of βBpfqpg�1
0 gq as a function

B ÝÑ G on the point g0 is equal to fpgq. It follows that f P XG can be
reconstructed from βBpfq, i.e., that βB is injective. It is obviously continu-
ous and the spaces XG and pXBqG are compact and Hausdorff, hence βB is
a homeomorphic embedding. �

Definition 1.2.15. The map βB : XG ÝÑ pXBqG is called the block map
(or sliding block code) with the window B.

For example, in the case G � Z, it is natural to consider a window of
the form t0, 1, . . . , n� 1u. Then XB is the set of words of length n, and the
block map transforms a sequence . . . x�1.x0x1 . . . over the alphabet X to the
sequence

. . . px�1x0 . . . xn�2q.px0x1 . . . xn�1qpx1x2 . . . xnq . . .
over the alphabet Xn. It is easy to see that the block map is a shift-
equivariant homeomorphic embedding.

Let G be a group generated by a finite set S. Choose for every gener-
ator s P S a set As � X2 of pairs of letters, and define the corresponding
topological Markov shift as the set of all G-sequences f P XG such that

pfpgq, fpsgqq P As
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Figure 1.13. Fibonacci s.f.t.

for every g P G and s P S. It is easy to see that this is a shift of finite type.

For example, if G � Z, then it is natural to consider S � t1u, and then
the corresponding topological Markov shifts are given by a set A � X2 of
allowed transitions. A sequence pxnqnPZ belongs to the corresponding shift
if and only if xnxn�1 P A for all n P Z. One can represent the set A by an
|A| � |A| transition matrix. Its entries ax,y are indexed by the letters x, y of
X, and we have

ax,y �
"

1 if xy P A,
0 otherwise.

Example 1.2.16. Consider the subshift of t0, 1uZ defined by the set of
allowed transitions t00, 01u. In other words, a sequence belongs to F if
and only if it does not contain 11 as a subword. Then transition matrix is�

1 1
1 0



.

Another way of representing topological Markov shifts is to use graphs
with the set of vertices X, where we have an arrow from x to y if and only
if xy P A. Then the subshift is the set of all bi-infinite sequences that can
be read along bi-infinite paths in the graph.

Example 1.2.17. The subshift from Example 1.2.16 is described by the
graph shown on Figure 1.13.

Example 1.2.18. Consider the graph shown on Figure 1.12. The cor-
responding topological Markov chain describes the subshift encoding the
Arnold’s Cat map, see Proposition 1.1.13.

Proposition 1.2.19. Let G be a group with a finite generating set S � S�1.
For every shift of finite type X � XG there exists a block map conjugating
X with a topological Markov shift.

Proof. Let tfi : Ai ÝÑ Xumi�1 be a finite set of prohibited configurations
defining X . Let R be such that

�m
i�1Ai � pS Y t1uqR. Denote B � pS Y

t1uqR.

We can define X by a set of prohibited configurations f : B ÝÑ X
defined on B. Equivalently, we can find a finite subset Y � XB of maps
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B ÞÑ X such that f P XG belongs to X if and only if for every g P G the
restriction of g � f to B belongs to Y.

Consider the block map βB with the window B. For an element f P YG

and g P G we will denote by fg the function fg : gB ÝÑ X given by
fgphq � fpgqpg�1hq (check...), where fpgq : B ÝÑ X is the element of Y
corresponding to g P G (i.e., the value of f P YG at g).

An element f P YG belongs to βBpX q if and only if for every pair g1, g2 P
G we have fg1phq � fg2phq for every h P g1B X g2B. In other words, f P YG

belongs to βBpX q if and only if the functions fg1 and fg2 agree on the
intersection of their domains.

Consider the topological Markov S shift consisting of all sequences f P
YG given by the condition that fg and fsg agree on the intersection gBXsgB
of their domains, where g P G and s P S. Let us show that S coincides with
βBpX q.

The inclusion βBpX q � S is obvious. Suppose that f P S. We have to
prove that for any g1, g2, h P G we have fg1phq � fg2phq whenever both sides
of the equality are defined. By G-equivariance, it is enough to prove this
statement for the case h � 1. We have 1 P g1B X g2B if and only if g1 and
g2 are on distance at most R from 1. Consequently, it is enough to prove
that fg1p1q � fg2p1q for every g1, g2 P B, i.e., that fgp1q � f1p1q for every
g P B. Write g as a product of at most R generators g � s1s2 � � � sn. Then,
by definition of S, we have

f1p1q � fsnp1q � fsn�1snp1q � . . . � fs1s2���snp1q,
which finishes the proof. �

1.2.4. Substitutional subshifts. Let X be a finite alphabet. Denote by
X� the free monoid generated by X, i.e., the set of all finite words x1x2 . . . xn
over the alphabet X, including the empty word ∅. It is a semigroup (monoid)
with respect to the operation of concatenation. We say that v is a subword
of w P X� if there exist v1, v2 P X� such that w � v1vv2. If x P X is a letter,
then we sometimes say that x appears in w if x is a subword of w. The
notion of a sub-word of an infinite word (sequence) is defined analogously.

A substitution is an endomorphism σ : X� ÝÑ X� of the monoid. It is
defined by the values σpxq P X� on the elements of X. Namely, for every
word x1x2 . . . xn we have σpx1x2 . . . xnq � σpx1qσpx2q . . . σpxnq.

If w � . . . x�2x�1 . x0x1 . . . is an element of XZ, and σ : X� ÝÑ X� is a
substitution, then we denote by σpwq the infinite word

. . . σpx�2qσpx�1q . σpx0qσpx1q . . . ,
where dot, as before, denotes the place between the coordinates number �1
and 0.
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Definition 1.2.20. The substitutional subshift generated by σ : X� ÝÑ X�

is the set of all bi-infinite words w P XZ such that for every finite subword v
of w there exists x P X and n P N such that v is a subword of σnpxq.

In other words, the language of the subshift generated by σ is the set of
all subwords of words of the form σnpxq for x P X.

Note that in order for the substitutional subshift to exist, the length of
the word φnpxq must go to infinity for some letter x P X. Another (probably
more common in the literature) definition of the substitutional subshift is
to choose a particular x P X such that the length of σnpxq goes to infinity
and to consider the set of all bi-infinite sequences w such that every finite
subword of w is a subword of σnpxq for some n.

Note that if F is the substitutional subshift generated by σ : X� ÝÑ X�,
then F is σ-invariant, i.e., σpFq � F . The range σpFq is usually not equal
to F , but if m is the maximum of the lengths of the words σpxq, x P X, then�m�1
k�0 skpσpFqq � F , where s is the shift.

Example 1.2.21. Let X � t0, 1u, and define an endomorphism σ : X� ÝÑ
X� by

σp0q � 01, σp1q � 10.

The corresponding substitutional shift is called the Thue-Morse subshift.
The first letter of σp0q is 0. It follows by induction that the word σn�1p0q
begins with σnp0q for every n. Therefore, the sequence σnp0q naturally
converges to one right-infinite sequence

01101001100101101001011001101001 . . . .

This particular sequence is called the Thue-Morse sequence. It is easy to
see that an infinite sequence belongs to the Thue-Morse subshift if and
only if all its finite subwords are subwords of the Thue-Morse sequence.
Thue-Morse sequence was defined independently by E. Prohuet [Pro51],
A. Thue [Thu12], and M. Morse [Mor21]. E. Prouhet implicitly discov-
ered the sequence as a solution of a particular case of Prouhet-Tarry-Escott
problem, see Exercise 1.16. A. Thue considered it as an example of an in-
finite cube-free sequence, see Exercise 1.16. M. Morse gave it, essentially
as an example of a minimal infinite subshift. See ... [literature] for more
properties of the Thue-Morse sequence

Example 1.2.22. Consider now the substitution

σp0q � 01, σp1q � 0.

Here too the word σnp0q is a beginning of σn�1p0q, and in the limit we get
an infinite sequence

0100101001001010010100100101001001 . . .
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called the Fibonacci word. The corresponding subshift consisting of all bi-
infinite sequences whose finite subwords are subwords of the Fibonacci word
is called the Fibonacci substitutional subshift (not to be confused with the
Fibonacci shift of finite type from Example 1.2.16).

Note that in general the set of finite subwords of the subshift Fσ gener-
ated by a substitution σ : X� ÝÑ X� may be strictly smaller that the set of
all finite subwords of the words of the form σnpxq for x P X. For example,
if σ : t0, 1u� ÝÑ t0, 1u� is given by σp0q � 10, σp1q � 1, then Fσ consists of
one sequence . . . 111 . . ..

Proposition 1.2.23. Let Fσ be the subshift generated by the a substitution
σ : X ÝÑ X�. Then the following conditions are equivalent.

(1) For every x P X there exists w P Fσ such that x appears in w.

(2) The set of finite subwords of elements of Fσ is the same as the set
of subwords of the words of the form σnpxq for x P X and n ¥ 0.

(3) For every x P X there exists n ¥ 1 and y P X such that σnpyq �
v1xv2 for some non-empty words v1, v2 P X�.

Proof. Let us show that (1) implies (2). Let v be a subword of σnpxq.
There exists w P Fσ containing x. Then σnpwq P Fσ and it contains σnpxq,
hence it contains v.

We obviously have that (2) implies (1), since every letter x is equal to
σ0pxq, by definition.

Let us show that (3) implies (1). Let x1 � x P X be an arbitrary
letter. Then, there exists n1 and x2 P X such that x1 is appears strictly
inside σn1px2q. Inductively, there exists xk�1 P X and nk ¥ 1 such that xk
appears strictly inside σnkpxk�1q. Choosing a convergent subsequence of the
sequence of the words σn1�n2�����nkpxk�1q we can find a bi-infinite sequence
w P Fσ containing x.

Conversely, if (1) is satisfied, then for every x P X there exist letters
a, b P X such that axb is a subword of some sequence w P Fσ. Then, by
definition of Fσ there exists y P X and n ¥ 1 such that axb is a subword of
σnpyq. �

Proposition 1.2.24. Let σ : X� ÝÑ X� be a substitution, and let pFσ, sq be
the subshift generated by it. Then the following two conditions are equivalent.

(1) There exists N ¥ 1 such that for every pair of letters x, y P X the
letter y appears in σN pxq.

(2) The dynamical system pFσ, sq is minimal, for every letter x P X
there exists w P Fσ containing x, and the length of σnpxq goes to
infinity for every x P X.
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Substitutions satisfying condition (1) of Proposition 1.2.24 are called
primitive.

references...

Proof. Let us prove the implication (1)ùñ(2). Let N be as in (1). Then
for every x P X the word σN pxq contains all letters of the alphabet X, hence

the length of σN pxq is at least |X| ¡ 1. It follows that the length of σN
kpxq

is at least |X|k for every k ¥ 1. Consequently, the length of σkpxq goes to
infinity. It is also easy to see that if (1) is satisfied, then the condition (3)
of Proposition 1.2.23 is satisfied, hence every letter of X appears in some
element of Fσ.

It remains to show that Fσ is minimal. Suppose that L is larger than
the length of every word of the form σN pxq for x P X, and let w P Fσ be
arbitrary. A shift of w belongs to σN pFσq. It follows that every subword
of w of length L contains a subword of the form σN pxq for some x P X.
Consequently, every subword of w of length L contains every letter of X. It
follows that for all n ¥ 1, x P X, w P Fσ the word σnpxq is a subword of w,
which implies that the subshift Fσ is minimal by Proposition 1.2.4.

Let us show that (2) implies (1). Assume that (2) is satisfied. Then for
every sequence w P Fσ, every x P X, and every k P Z there exists n P Z such
that |k�n| ¤M and wpnq � x. In other words, every letter appears in every
word w P Fσ with bounded gaps. By the conditions of the proposition, there
exists N such that the lengths of σN pxq are bigger than M for all x P X.
Then σN pxq will contain every letter y P X for every x P X. �

If Fσ is minimal, but a letter x P X does not appear in a sequence w P Fσ,
then the letter x does not appear in any sequence w P Fσ. It follows that
there exists n such that x does not appear in any word σnpyq, y P X. Then
Fσ is generated by the restriction of σ to the monoid pX r txuq�. In other
words, the condition that every letter appears in some element of the subshift
is not restrictive if we want to describe all minimal substitutional subshifts.

Here are some examples of minimial substitutional shifts not satisfying
the other condition of the Proposition 1.2.24 (that the length of σnpxq always
goes to infinity).

Example 1.2.25. Let X � t0, 1, 2u, and consider the substitution

σp0q � 021, σp1q � 10, σp2q � 2.

Then the length of σnpxq goes to infinity if and only if x � 2. It is easy to see
that the subshift generated by σ is the set of all bi-infinite sequences obtained
from the sequence belonging to the Thue-Morse subshift by inserting a 2
after every 0.



1.2. Subshifts 31

Example 1.2.26. Consider the Chacon substitution

σp0q � 0010, σp1q � 1.

Denote bn � σnp0q. In particular, b0 � 0 and b1 � 0010 � b0b01b0. It
follows by induction that bn�1 � σpbnq � σpbn�1bn�11bn�1q � bnbn1bn. The
recurrent formula bn�1 � bnbn1bn implies that the subshift generated by the
Chacon substitution is minimal.

The last example is actually conjugate to a subshift generated by a
primitive substitution. Namely, consider the substitution

ϕp0q � 0012, ϕp1q � 12, ϕp2q � 012.

It is primitive, so it generates a minimal subshift. Define vn � ϕnp0q, and
let v1n be the word vn in which the first symbol 0 is replaced by 2.

Let us show by induction that vn�1 � vnvn1v1n. It is true for n � 0.
Suppose that it is true for n, let us show it for n � 1. We have vn�2 �
ϕpvnqϕpvnq12ϕpv1nq. The word ϕpv1nq is obtained from ϕpvnq by replacing
the initial 0012 by 012. It follows that 2ϕpv1nq is obtained from ϕpvnq by
replacing the initial 0012 by 2012, i.e., it is obtained from ϕpvnq by replacing
the initial 0 by 2. Consequently, 2ϕpv1nq � v1n�1, and vn�2 � vn�1vn�11v1n�1.

We see that if σ is the Chacon substitution from Example 1.2.26, then
σnp0q is obtained from ϕnp0q by replacing all symbols 2 by 0. In the other
direction, it is easy to prove by induction that ϕnp0q is obtained from σnp0q
by replacing every subword 10 of σnp0q by 12. It follows that the subshifts
generated by σ and ϕ are topologically conjugate. For more on the Chacon
substitution, see [Fer02].

On the other hand, up to topological conjugacy, the class of minimal
substitutional subshifts coincides with the class of subshifts generated by
primitive substitutions.

Proposition 1.2.27. Let X � XZ be a substitutional subshift. If it is
minimal, then there exists a finite alphabet Y and a primitive substitution
φ : Y ÝÑ Y� such that the subshift Fφ generated by φ and the subshift X
are topologically conjugate.

Proof. We may assume that every letter x P X belongs to the language of
X , i.e., appears in some element of X . Otherwise, we can remove all such
letters from the alphabet, and replace σ by an iterate, so that the removed
letters do not appear in the values of σ on the remaining letters.

Since X is minimal, every letter x P X appears in every element of X
with uniformly bounded gaps between consecutive appearances, see Propo-
sition 1.2.4. Let x0 P X be such that the length of σnpx0q goes to infinity.
Then there exists N ¡ 0 such that every word of length N in the language
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WX of X contains x0. It follows that for every word v P WX the length of
σnpvq goes to infinity. Let Y be the set of elements of WX of length N . For
every x1x2 . . . xN P Y � X�, compute σpx1x2 . . . xN q � a1a2 . . . am P X�, and
let σpx1q � a1a2 . . . ak. Consider the word

φpvq � pa1a2 . . . aN qpa2a3 . . . aN�1q . . . pakak�1 . . . ak�N�1q P Y�.

Note that k� n� 1 ¤ N , since a1a2 . . . am � a1a2 . . . akσpx2x3 . . . xN q. It is
good to imagine x1x2 . . . xn P Y as a copy of the letter x1 P X decorated by
the “future” word x2 . . . xn. Then φ becomes the substitution induced by σ
on the decorated version of the alphabet. It is easy to prove by induction
that φnpvq for v P Y is defined using σn by the same rule as φ was defined
using σ. It follows that Fφ is obtained from X by conjugating by the block
map with window on width N . Note that the length of φnpyq goes to infinity
for every y P Y, and every letter y P Y is contained in every element of Fφ.
Proposition 1.2.24 shows that φ is primitive. �

1.2.5. Complexity and entropy.

Definition 1.2.28. Let F be a subshift, and let WF be its language. The
complexity function of F is

pF pnq � |tv PWF : |v| � nu|,
where |v| denotes the length of v.

The complexity functions is sometimes called the factor complexity,
block growth, or subword complexity. It was introduced by G. Hedlund and
M. Morse in [MH38]. See [CN10] for an overview of the main results on
this subject.

Proposition 1.2.29. The function pF pnq is non-decreasing. Moreover, if
pF pnq � pF pn� 1q for some n, then pF pnq is bounded, and F is finite.

We have pF pn �mq ¤ pF pnqpF pmq for all n,m ¥ 1. The limit of the

sequence log pF pnq
n exists and is equal to its infimum.

Proof. Every word v P WF of length n can be continued, by adding one
letter to its end, to a word v1 P WF of length n � 1. If v1 � v2, then their
continuations v11, v

1
2 are also different. It follows that v ÞÑ v1 (for any choices

of the continuations v1) is a one-to-one map from the set of words of length n
to the set of words of length n�1 of the language WF . If pF pnq � pF pn�1q,
then this map is a bijection. It follows that every word x1x2 . . . xn PWF has
a unique continuation x1x2 . . . xnxn�1 to a word of length n � 1 belonging
to WF . Then the word x2x3 . . . xn�1 also has a unique continuation, which
implies that every word of length n has a unique continuation to a word
of length n � 2. By induction, we get that for every m ¡ n every word
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v P WF is a prefix of a unique word w P WF of length m. Consequently,
pF pmq � pF pnq for every m ¡ n, and pF is bounded.

Every word v P WF of length n�m can be split into a prefix of length
n and a suffix of length m, so pF pn � mq ¤ pF pnqpF pmq. The statement
about the limit follows from the classical Fekete’s lemma [Fek23] and [PS72,
Problem 98] applied to log pF pnq. �

Proposition 1.2.30. Let F1 and F2 be topologically conjugate subshifts.
Then there exists c ¡ 1 such that we have

pF1pn� cq ¤ pF2pnq ¤ pF1pn� cq
for all n ¡ c.

Proof. Let Xi be the alphabet such that Fi � XZ
i . Suppose that v P X2n�1

i

is a word of odd length 2n � 1, and denote by Cv,i the set all sequences
pxnqnPZ P Fi such that x�nx�n�1 . . . xn�1xn � v. Let Φ : F1 ÝÑ F2 be
a topological conjugacy. Then for every sequence w � pxnqnPZ P Fi the
intersection

�
n¥0Cx�nx�n�1...xn�1xn,i is equal to twu. Consequently, there

exists k such that ΦpCx�kx�k�1...xk�1xk,1q � Cy0,2 for some letter y0 P X2. It
follows from compactness of F1 that there exists K ¥ 0 such that for every
word v P X2K�1

1 there exists yv P X2 such that ΦpCv,1q � Cyv ,2. Then we
have that Φ is given by the “centered” block map:

ΦppxnqnPZqpnq � yxn�Kxn�K�1...xn�K�1xn�K .

For every n ¡ 2K � 1, the constructed block map defines a surjective map
from the set of words of length n of the language of F1 to the set of words
of length n� 2K of the language of F2:

x1x2 . . . xn ÞÑ yx1x2...x2K�1yx2x3...x2K�2 . . . yxn�2Kxn�2K�1...xn .

It follows that pF2pn� 2Kq ¤ pF1pnq. �

As a corollary of Proposition 1.2.30 we get that the limit limnÑ8
log pF pnq

n
(which exists by Proposition 1.2.29) depends only on the topological conju-
gacy class of the subshift. It is called the entropy of the subshift.

Example 1.2.31. Let F � XZ be a topological Markov shift with the
transition matrix A. Then, for all n ¥ 2, the complexity pF pnq is equal
to the sum of the entries of the matrix An�1. The entropy of F is equal
therefore to the logarithm of the spectral radius of A.

Example 1.2.32. If F is the Fibonacci shift of finite type from Exam-
ple 1.2.16, then pF pnq is the Fibonacci sequence 2, 3, 5, 8, . . .. It follows that
the entropy is equal to the logarithm of the golden mean.
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Entropy is an important invariant of dynamical systems and a classical
subject originating from the work of Shannon on information theory. The
notion defined above is a particular case of topological entropy .... more on
history ... literature...

The following theorem was proved in [Gri73]. See a short proof in [CN10,
Theorem 4.4.4].

Theorem 1.2.33. For every h ¡ 0 and every integer k such that h   log k
there exists a minimal subshift F � t1, 2, . . . , kuZ of entropy h.

Substitutional dynamical systems, on the other hand, are examples of
subshifts of zero entropy.

Theorem 1.2.34. Let F be a minimal substitutional subshift. Then there
exists C ¡ 1 such that pFσpnq ¤ Cn for all n ¥ 1.

Proof. It follows from Propositions 1.2.27 and 1.2.30 that we may assume
that F � Fσ is generated by a primitive substitution σ : X ÝÑ X�.

Moreover, we may assume that for every x P X the word σpxq contains
all letters of the alphabet (otherwise, replace σ by a high enough iterate).
Then for every x, y P X and k ¥ 1 we have

|σkpxq| ¤ |σk�1pyq|,
since σkpxq is a subword of σk�1pyq.

Let M � maxxPX |σpxq|. We have then |σk�1pxq| ¤ M |σkpxq| for all
x P X and k ¥ 1. It follows that

|σkpxq| ¤M |σkpyq|
for all k ¥ 1 and x, y P X.

Let n ¥ 1, and let k be the smallest integer such that n ¤ |σkpxq| for all
x P X. Then there exists x1 P X such that |σk�1px1q|   n. Then, for every
x P X, we have

|σkpxq| ¤M |σk�1pxq| ¤M2|σk�1px1q|  M2n.

Suppose that v P WFσ has length n. Let pxnqnPZ P Fσ be such that v
is a subword of . . . σkpx�2qσkpx�1q.σkpx0qσkpx1q . . .. Since all words σkpxq
are of length at least n, there exists a word xixi�1 of length 2 such that v
is a subword of σkpxixi�1q. The length of σkpxixi�1q is strictly less than
2M2n, hence σkpxixi�1q has not more than 2M2n � n subwords of length
n. It follows that pFσpnq ¤ pFσp2qp2M2 � 1qn, so the Theorem is valid for
C � pFσp2qp2M2 � 1q. �

See a similar proof of Theorem 1.2.34 (for the case of a primitive sub-
stitution) using Perron-Frobenius theorem in [Que87, Proposition V.19].
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Minimal systems of various subexponential complexity have been con-
structed in the literature. For example, the following is a result of J. Goyon,
see [Fer99, p. 149].

Theorem 1.2.35. Let φ : N ÝÑ N be such that there exist r, h ¡ 1 such
that for all k ¥ 1 we have φprk�1q ¤ hφprkq. Then there exists a minimal
subshift F and positive constants C1, C2 such that

C1nφpnq ¤ pF pnq ¤ C2nφpnq
for all n ¥ 1.

For example, there exist minimal subshifts whose complexities are of
the form nα0plog nqα1plog lognqα2 � � � plog log . . . log nqαk for any α0 ¡ 0 and
α1, α2, . . . , αk P R.

The sequences used in the proofs of Theorems 1.2.35 and 1.2.33 belong
to the class of Toeplitz sequences. A sequence w P XZ is Toeplitz if for every
n P Z there exists q P N such that wpn� kqq is constant for all k P Z. Note
that it follows directly from Proposition 1.2.4 that the closure of the orbit
of any Toeplitz sequence is a minimal subshift.

It was also shown, see [Fer99, p. 149], that for any 1   α   β there exists

a minimal subshift F such that lim infnÑ8
pF pnq
nα � 0 and lim supnÑ8

pF pnq
nβ

�
�8. More on different complexity functions of minimal subshifts, see [Fer99]
and [CN10].

Proposition 1.2.36. Let F � XZ be a subshift. If pF pnq ¤ n for some n,
then pF is bounded.

Proof. Suppose that pF pnq ¤ n. By Proposition 1.2.29, the function pF
is non-degreasing. We have pF p1q ¡ 1. Consequently, there exists k ¤
n � 1 such that pF pkq � pF pk � 1q. But this implies, also according to
Proposition 1.2.29, that pF is bounded. �

It follows that the smallest possible unbounded complexity is ppnq �
n� 1. It is realized by the subshifts from the following class.

Proposition 1.2.37. Let θ P p0, 1q be an irrational number, and consider
the rotation Rθ : x ÞÑ x� θ of R{Z. For x P R{Z, denote by Ix P t0, 1uZ the
sequence given by the condition

Ixpnq �
"

0 if Rnpxq P r0, 1� θq;
1 if Rnpxq P r1� θ, 1q,

where we identify the circle R{Z with r0, 1q in the natural way. Let Xθ be
the closures of the set of sequences Ix for x P r0, 1q.

Then the complexity of Xθ satisfies pXθpnq � n� 1.
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The sequences Ix are precisely the sequences considered in 1.1.1, where
0 corresponds to the symbol v, and 1 corresponds to d.

Proof. A word v � a1a2 . . . an belongs to WFθ if and only if there exists
a number x P r0, 1q such that Ixpiq � ai for i � 1, 2, . . . , n. The set of
such points x (for a given v) is an arc of R{Z into which the points 0, 1 �
θ � R�1p0q, R�2p0q, . . . , R�np0q subdivide R{Z. The number of such arcs is
equal to n� 1. �

In fact, the converse to Proposition 1.2.37 is also true, see Theorem 1.3.38.

1.3. Minimal Cantor systems

We describe in this section theory of minimal Z-actions on the Cantor set
via Vershik-Bratteli diagrams. This theory was developed in [HPS92] and
found important applications for the theory of orbit equivalence in [GPS95].
For a more detailed exposition, see the book [...]. See also ... Our interest
in the subject comes primarily from the fact that minimal Cantor systems
provide an interesting class of amenable groups, see... and the literature
therein. Moreover, one of the main classes of groups that will be studied in
this book can be seen as a direct generalizations of the model of minimal
Z-actions via Vershik-Bratteli diagrams, see... A special class of stationary
Vershik-Bratteli diagrams provide interesting examples of groups generated
by finite automata and are closely related to hyperbolic dynamical systems.

1.3.1. Examples of minimal homeomorphisms of the Cantor set.

1.3.1.1. Odometers. We have seen (Proposition 1.1.10) that the transfor-
mations a ÞÑ a � 1 of the ring of dyadic integers Z2 is a minimal home-
omorphism. A straightforward generalization of this construction is the
transformation x ÞÑ x� 1 for an aribtrary profinite completion of Z. More
explicitly, consider a sequence of integers greater than one

d1, d2, d3, . . . ,

and the inverse limit pZd1d2... of the cyclic groups

Z{d1ZÐÝ Z{d1d2ZÐÝ Z{d1d2d3ZÐÝ � � �
with respect to the natural epimorphisms r�d1d2 � � � dnZ ÞÑ r�d1d2 � � � dn�1Z.

The elements of pZd1d2... are uniquely represented as formal expressions

(1.2) r1 � r2 � d1 � r3 � d1d2 � r4 � d1d2d3 � � � � ,
where ri P t0, 1, . . . , di�1u. Namely, the formal expression (1.2) corresponds
to the element of the inverse limit given by the sequence

pr1, r1� r2 �d1, r1� r2 �d1� r3 �d1d2, . . .q P pZ{d1Z,Z{d1d2Z,Z{d1d2d3Z, . . .q.
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The transformation x ÞÑ x� 1 can be interpreted as a procedure of adding
one to the series (1.2), and then rewriting it in the same form. Namely, if
r1 P t0, 1, . . . , d1�2u, then we just replace r1 by r1�1. Otherwise, if r1 � d1,
we replace r1 by 0, and then change the sequence r2, r3, . . ., by adding one
to the formal series

r2 � r3 � d2 � r4 � d2d3 � � � �
using the same rule (i.e., replacing r2 by r2�1 if r2 P t0, 1, . . . , d2�2u, etc.).

It is easy to see that the same arguments as in the proof of Proposi-

tion 1.1.10 show that the transformation x ÞÑ x� 1 of pZd1d2... is a minimal
homeomorphism.

1.3.1.2. Irrational rotation. Let us show how one can construct a minimal
homeomorphism of a Cantor set from an irrational rotation of the circle.
This construction is called sometimes the Denjoy homeomorphism, see...

Let Rθ : x ÞÑ x � θ for θ P R r Q be an irrational rotation of R{Z,
see 1.1.1. Consider the orbit O � tfracpnθq : n P Zu of 0 under Rθ.
We represent the points of R{Z by points of r0, 1q (by their fractional parts
fracpxq). Let us replace every point α P O r t0u by two copies α � 0 and
α � 0. We replace 0 P O also by two copies: 0 and 1 (playing the role of
0 � 0 and 0 � 0, respectively). Consider the obtained set with the natural
order: α � 0   α � 0; and if α, β P r0, 1s are such that α   β, then every
copy of α is less than every copy of β. Denote by Xθ the obtained ordered
set.

Consider the order topology on Xθ: a basis of topology is the set of all
intervals of the form pα, βq, r0, αq, or pα, 1s. We have a natural continuous
surjective map Φ : Xθ ÞÑ R{Z mapping each copy of α P r0, 1q to its image
in R{Z. The map Φ is at most 2-to-1.

One can show that Xθ is homeomorphic to the Cantor set (Exercise 1.19).

It is easy to see that R̃θpα � 0q � Rθpαq � 0, R̃θpα � 0q � Rθpαq � 0, and

R̃θpαq � Rθpαq defines a minimal homeomorphism R̃θ of Xθ. It acts on Xθ
as an interval exchange transformation: it moves r0, 1� θ � 0s to rθ � 0, 1s
and r1 � θ � 0, 1s to r0, θ � 0s by parallel translations. The map Φ is a

semiconjugacy from R̃θ y Xθ to Rθ y R{Z.

Proposition 1.3.1. The homeomorphism R̃θ generates an expansive action
of Z.

Recall that the homeomorphism Rθ ü R{Z is not expansive, as it is an
isometry.

Proof. It is enough to show that for any two points x, y P Xθ such that
x   y and y � x   1{2 there exists n such that R̃θpxq and R̃θpyq belong to
different intervals r0, θ � 0s and rθ � 0, 1s. But this follows from minimality
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of Rθ y R{Z. Namely, if Φpxq � Φpyq, then there exists n P Z such that
nθ P pΦpxq,Φpyqq, and then θ belongs to the shorter arc of the circle R{Z
with the endpoints R�n�1

θ pΦpxqq and R�n�1
θ pΦpyqq, which implies that θ

separates the points R�n�1
θ pxq and R�n�1

θ pΦpyqq. If Φpxq � Φpyq, then
Φpxq and Φpyq belong to the Rθ-orbit of 0, so there exists n such that

R̃θpxq � θ � 0 and R̃θpyq � θ � 0. �

In fact, it is easy to check that the system R̃θ ü Xθ is topologically
conjugate to the subshift Xθ described in Proposition 1.2.37.

1.3.1.3. Minimal subshifts. We have seen many example of minimal Can-
tor dynamical systems in Section 1.2, in particular, the ones generated by
primitive substitutions.

Another important class of minimal subshifts are the Toeplitz subshifts,
i.e., subshifts equal to the closure of the set of shifts of a Toeplitz sequence.
A sequence pxnqnPZ P XZ is Toeplitz if for every n P Z there exists a positive
integer q such that xn�qk � xn for all k P Z. The closure of the Z-orbit of
a Toeplitz sequence under the shift is called a Toeplitz subshift. It easily
follows from Proposition 1.2.4 that every Toeplitz subshift is minimal.

Any Toeplitz pxnqnPZ P XZ sequence can be constructed in the following
way. Let � be a symbol not contained in X, and denote by X� � X Y t�u.
Suppose that w1, w2 P XZ� are periodic sequences, and suppose that symbols
� appear in w1. Denote then by Tw1pw2q the sequence obtained from w1

by replacing consecutive symbols � of w1 by the sequence w2 (so that, for
example, the coordinate number 0 of w2 is placed in the first non-negative
coordinate of w1 equal to �). If p1 and p2 are periods of w1 and w2, then
Tw1pw2q is a periodic sequence of period p1p2.

Let w1, w2, . . . P XZ� be non-constant periodic sequences with periods
p1, p2, . . . such that � appears in every sequence wi. Suppose that for infin-
itely many values of n the symbol � does not appear on the zeroth coordinate
of wn. Then the sequence Tw1pTw2pTw3p. . . Twn�1pwnq . . .qqq converges to a

Toeplitz sequence w P XZ.

Example 1.3.2. Consider the Feigenbaum substitution φ : 0 ÞÑ 11, 1 ÞÑ 10,
and let X be the subshift generated by it. Since the words φpxq for x P t0, 1u
are of length two and both start with 1, for every sequence pxnqnPZ P X we
either have x2n � 1 or x2n�1 � 1 for all n P Z. If we eraze this con-
stant 1 subsequence, the sequence that remains is obtained from a sequence
pynqnPZ P X by changing 0 to 1 and 1 to 0. It follows that every sequence
in X is the limit of the sequence Tw1pTw2p. . . Twn�1pTwnq . . .qq, where wn for
odd n is one of the two sequences of the form . . . � 1 � 1 � 1 � . . ., and for even
n is one of the two sequences of the form . . . � 0 � 0 � 0 � . . ..
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The following characterization of Toeplitz shifts shows a relation between
Toeplitz subshifts and odometers similar to the relation between Denjoy
systems and irrational rotations of the circle.

Theorem 1.3.3 (Downarowicz, Lacroix). A minimal subshift f ü X is
Toeplitz if and only if there exists a generalized odometer f 1 ü X 1 and a
surjective semiconjugacy π : X ÝÑ X 1 such that |π�1pxq| � 1 for some
x P X 1.

1.3.2. Rokhlin-Kakutani towers.

Lemma 1.3.4. Let f ü X be a minimal homeomorphism of a compact
topological space. For every open set U � X and every x P X there exist
integers n� ¡ 0 and n� ¤ 0 such that tfn�pxq, fn�pxqu � U .

Proof. By minimality, the sets fnpUq, for n P Z, cover X . By compactness,
there exists a finite set n1, n2, . . . , nk P Z such that the sets fnipUq cover X .
Applying f�maxni to this cover, we get a cover tfmipUqui�1,...,k where all
the numbers mi are non-positive. Similarly, applying f�minni�1, we get a
cover tfmipUqui�1,...,k where all the numbers mi are positive. �

Let τ ü X be a minimal homeomorphism of a compact totally discon-
nected metrizable space.

A Rokhlin-Kakutani partition is a collection of finite sequences

pC1, τpC1q, τpC1q, . . . , τk1�1pC1qq,
pC2, τpC2q, τpC2q, . . . , τk2�1pC2qq,

...

pCm, τpCmq, τpCmq, . . . , τkm�1pCmqq
of clopen subsets of X such that tτ ipCjq : 0 ¤ i   kiu is a parition of X ,

and τkipCiq �
�m
j�1Cj . Each sequence

pCi, τpCiq, τ2pCiq, . . . , τki�1pCiqq
is called a tower of the partition. The set

�m
i�1Ci is called the base of the

partition, and the set Ci is called the base of the corresponding tower.

See Figure 1.14 where the action of τ on a Rokhlin-Kakutani partition
is shown schematically.

Proposition 1.3.5. For every finite clopen partition P of X and every
clopen subset C � X there exists a Rokhlin-Kakutani parition subordinate
to P with the base equal to C.
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Figure 1.14. A Rokhlin-Kakutani partition

Proof. By Lemma 1.3.4, for every x P X there exists a positive integer n�
and a non-positive integer n� such that τn�pxq, τn� P C. Let n�pxq and
n�pxq be the smallest and the largest of such numbers, respectively. They
are the first return times to C of the dynamical system.

Note that for every k P N the set of points tx P X : n�pxq � ku is equal
to

τ�kpCqr
¤

1¤i k
τ�ipCq.

Similarly, the set tx P X : n�pxq � �ku is equal to

τkpCqr
¤

0¤i k
τ ipCq.

Note that since C is clopen and τ is a homeomorphism, these sets are clopen.
It follows that the functions n�pxq and n�pxq are locally constant, i.e.,
continuous. Consequently, the map x ÞÑ pn�pxq, n�pxqq is locally constant,
hence its set of values is finite (as X is compact).

Denote by

Ci,j � tx P X : n�pxq � �i, n�pxq � ju
its level sets. They form a finite clopen partition of X .

Note that C is equal to the set of points x P X such that n�pxq � 0. It
follows that C is partitioned into a finite collection of disjoint sets

C0,k1 , C0,k2 , , . . . , C0,km

for some positive integers ki.
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Figure 1.15. A Bratteli diagram

For every ki and 1 ¤ l   ki we obviously have

τ lpC0,kiq � Cl,ki�l,

since the first moment in the future when points of τ lpC0,kiq come back to
C, by definition, is ki � l (as the first positive return time to C of points of
C0,ki is ki); and the first time in the past when points of τ lpC0,kiq are in C
is �l. It follows that the sets Ci,j form a Rokhlin-Kakutani partition with
base C and towers

C0,ki , C1,ki�1, C2,ki�2, , . . . , Cki�1,1.

For a point x P C0,ki consider the itinerary pP0, P1, . . . , Pki�1q of x with

respect to P, i.e., a sequence of elements of P such that τ lpxq P Pl for 0 ¤ l ¤
ki � 1. Since P is finite, the set of all itineraries pP0, P1, . . . , Pki�1q is finite,
hence C0,ki is partitioned into a finite set of clopen subsets A1, A2, . . . , AMi

such that all points one set Aj have the same itineraries. Let us split the
tower into Mi towers

Aj , τpAjq, τ2pAjq, . . . , τki�1pAjq.
Then each element of the tower is a subset of an element of P. The union
of all such towers (for all towers of the partition tCi,ju) will be a Rokhlin-
Kakutani partition subordinate to P and with the base equal to C. �

1.3.3. Bratteli diagrams. A Bratteli diagram B consists of sequences
pV1, V2, . . .q and pE1, E2, . . .q of finite sets and sequences of maps sn : En ÝÑ
Vn, rn : En ÝÑ Vn�1. The sets V � �

n¥1 Vn and E � �
n¥1En are the sets

of vertices and edges of the diagram, respectively. An edge e P En connects
the vertices snpeq P Vn and rnpeq P Vn�1. See Figure 1.15 where a beginning
of a Bratteli diagram is shown.

We assume that the maps sn and rn are surjective (though more general
Bratteli diagrams are also sometimes considered in the literature). We will
sometimes denote s � sn and r � rn when the domains of the corresponding
maps are clear from the context.
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Let us enumerate each set Vn, i.e., identify it with t1, 2, . . . , |Vn|u. The
the Bratteli diagram is determined then by the sequence of matrices An �
pmijq1¤i¤|Vn�1|,1¤j¤|Vn|, where mij is the number of edges connecting i P
Vn�1 to j P Vn. For example, if we enumerate the vertices of the levels of
the diagram shown on Figure 1.15 from left to right, then we have

A1 �
�

2 0 1
0 1 0



, A2 �

�� 1 0
1 1
0 1

�
, A3 �
�

1 3 0
0 0 1



.

A (finite or infinite) path in the diagram B is a (finite or infinite) se-
quence pe1, e2, . . .q, where en P En and rnpenq � sn�1pen�1q for all n. If
pe1, e2, . . . , enq is a finite path, then its length is n. Additionally, a path of
length 0 is a vertex of V1. We will also sometimes consider paths from Vi to
Vj for arbitrary i   j, but then we explicitly specify that the path begins in
a vertex of Vi.

It is easy to see that the number of paths from i P V1 to j P Vn is equal
to the entry in the ith column and jth row of the matrix A1A2 � � �An�1.

We denote by PnpBq the set of paths of length n (from V1 to Vn). The set
of all infinite paths PpBq is a closed subset of the direct product E1�E2�� � � ,
and we consider it as a topological space with the induced topology. The
space PpBq is compact, totally disconnected, and metrizable.

We say that a path pe1, e2, . . . , enq P PnpBq starts in s1pe1q and ends in
rnpenq. The multiplicity of a vertex v P Vn is the number of paths γ P PnpBq
ending in v. We denote it mpvq.

If B � ppVnq8n�1, pEnq8n�1, s, rq is a Bratteli diagram, then we denote by 9B
the diagram ppVnq8n�0, pEnq8n�0, s, rq obtained by adding one level of vertices
V0 consisting of one vertex and one level of edges E0 such that r : E0 ÝÑ V1

is a bijection.

Definition 1.3.6. Let B � ppVnq8n�0, pEnq8n�0, s, rq be a Bratteli diagram.
Let k0 � 0   k1   k2   . . . be an increasing sequence of integers. The tele-
scoping of B defined by the sequence is the diagram ppV 1

nq8n�0, pE1
nq8n�0, s, rq,

where V 1
n � Vkn , E1

n is the set of paths in B from Vkn to Vkn�1 , and s, r are
the beginning and the end of the paths, respectively.

We write B1 � B2 (and call the diagrams B1 and B2 equivalent) if one

can transform 9B1 by a sequence of telescopings and operations inverse to
telescoping to a diagram isomorphic to 9B2. We will see later that B1 � B2

if and only if there exists a diagram B such that a telescoping of 9B is a
telescoping of 9B1 and another telescoping of 9B is a telescoping of 9B2.

Example 1.3.7. Let B1 be the diagram with one vertex and two edges
on every level. Let B2 be the diagram with two vertices on each level and
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Figure 1.16. Equivalence of diagrams

complete bipartite graphs of edges on each level. Then they are equivalent,
see Figure 1.16, where telescopings of the diagram B shown in the middle
are isomorphic to the diagram 9B1 shown on the left and to the diagram 9B2

shown on the right.

Bratteli diagrams were introduced by O. Bratteli in [Bra72] to describe
approximately finite C�-algebras (i.e., direct limits of finitely dimensional
C�-algebras). They can be used to describe inductive limits of direct prod-
ucts of various algebraic structures with respect to block-diagonal embed-
dings.

Example 1.3.8. Consider for every level n of the diagram B the direct sum
An �

À
vPVnMmpvq�mpvqpkq of the algebras of mpvq �mpvq-matrices over a

field k. For every vertex v P Vn consider the set of edges e P En�1 ending in
v. Then the algebra Mmpvq�mpvqpkq contains a sub-algebra of block-diagonal
matrices isomorphic to

À
ePr�1pvqMmpspeqq�mpspeqqpkq. We get hence a block-

diagonal embeddings An�1 ãÑ An, and the corresponding inductive limit
MBpkq, defined by the diagram. We can also consider the inductive limit
in the category of C�-algebras, in the case k � C, which was the original
motivation of [Bra72].
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Example 1.3.9. Let G be a group. For every n ¥ 1, let Gn be the direct
product

±
vPVn G

mpvq. For every v P Vn the group Gmpvq is isomorphic to±
ePr�1pvqG

mpspeqq, where the direct factors are labeled by paths of length

n. We have natural block-diagonal embeddings Gn�1 ãÑ Gn mapping the
factor corresponding to a path γ diagonally to the factors corresponding to
its continuations. The inductive limit of these maps is naturally isomorphic
to the group of all continuous (i.e., locally constant) maps PpBq ÝÑ G with
pointwise multiplication, where G has discrete topology.

Example 1.3.10. Consider the direct sums Gn of the symmetric groups
Smpvq for v P Vn. Each group Smpvq acts by permutations on the set of
all paths γ P PnpBq ending in v. Then the permutation group Smpvq nat-
urally contains an isomorphic copy of the direct sum of the permutation
groups Smpspeqq for all e P r�1pvq. We get hence block-diagonal embeddings
Gn�1 ãÑ Gn and the direct limit of finite groups, defined by the diagram.
Similarly, one can take direct sums of the alternating groups Ampvq and the
corresponding embeddings and direct limit. See 5.2.3 for more about these
constructions.

Example 1.3.11. Let B be a Bratteli diagram defined by the sequence of
matrices A1, A2, . . .. Consider the sequence of abelian groups

Z|V1| A1ÝÑ Z|V2| A2ÝÑ Z|V3| A3ÝÑ � � � .
Its direct limit is called the dimension group of the diagram. Its positive

cone is the union of the images of the subsemigroups Z|Vn|� � Z|Vn| in the
direct limit (where Z� is the semigroup of non-negative integers).

Note that in all the above examples B1 � B2 implies for each of Exam-
ples 1.3.8–1.3.11 that the direct limits defined by the diagrams B1 and B2

are isomorphic.

1.3.4. Vershik-Bratteli diagrams.

Definition 1.3.12. A Vershik-Bratteli diagram (or an ordered diagram) is
a Bratteli diagram together with a linear order on each set r�1pvq. An edge
e is called minimal (resp. maximal) if it is minimal (resp. maximal) in the
set r�1prpeqq. A path is said to be minimal (resp. maximal) if it consists of
minimal (resp. maximal) edges only.

An ordering of the edges of a Vershik-Bratteli diagram B � ppViq, pEiq, psiq, priqq
defines a natural lexicographic order on the sets of path between Vi and Vj
for every pair i   j and on the set PpBq of infinite paths in B.

Namely, two finite paths pe1, e2, . . . , enq, pf1, f2, . . . , fnq are comparable
if and only if rpenq � rpfnq. Then pe1, e2, . . . , enq   pf1, f2, . . . , fnq if ek   fk
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for the largest index k such that ek � fk. Note that then rpekq � rpfkq, so
ek and fk are comparable. In particular, a telescoping of a Vershik-Bratteli
diagram is again a Vershik-Bratteli diagram with respect to the lexicographic
order on the contracted paths (which become edges of the telescoping, see
Definition 1.3.6).

Similarly, two infinite paths pe1, e2, . . .q are comparable if and only if they
are co-final, i.e., if en � fn for all n big enough. Then we have pe1, e2, . . .q  
pf1, f2, . . .q if ek   fk for the largest index k such that ek � fk.

The adic transformation (or the Vershik map) is defined on the set of
non-maximal paths in PpBq and maps a path γ � pe1, e2, . . .q to the next
path in the lexicographic order (i.e., to the smallest path among the paths
bigger that γ). It is computed in the following way. Find the first in-
dex n such that the edge en is non-maximal. Let e1n be the next edge
in r�1

n prnpenqq, and let pe11, e12, . . . , e1n�1q be the minimal path such that
rn�1pe1n�1q � snpe1nq (it exists and is unique, since for every vertex v there

exists a unique minimal edge e P r�1pvq). It is easy to see that the path
pe11, e12, . . . , e1n�1, e

1
n, en�1, en�2, . . .q is the minimal path among the paths

bigger than γ in the lexicographic order. See Figure 1.17, where the arrows
show the ordering of the edges, and point from a smaller edge to the bigger
one. The map τ changes the highlighted red beginning of a path to the black
path. (check the colors...)

The adic transformation is defined on the set of non-maximal paths, and
its set of values is the set of non-minimal paths. Note that the inverse of
the adic transformation is the adic transformation of the Vershik-Bratteli
diagram obtained from B by reverting the ordering of the edges.

The adic transformation is continuous on the set of non-maximal paths,
since it changes in every non-maximal path pe1, e2, . . .q only the finite be-
ginning pe1, e2, . . . , enq, where en is the first non-maximal edge in the path.
However, it may not have a continuous extension to the whole space PpBq.

Consider, for example, the Vershik-Bratteli diagram shown on the right-
hand side of Figure 1.25. Let us label the vertices of each level by 0 and
1 so that 0 is on the left-hand side, and denote paths in the diagram by
the sequence of vertices through which it passes (in this case this notation
is non-ambiguous). It has two minimal paths 010101 . . . and 101010 . . .,
and one maximal path 1111 . . .. The adic transformation can not be ex-
tended continuously to the whole space of paths. Namely, it maps a sequence
w � 111 . . . 101v either to 0101 . . . 011v or to 1010 . . . 011v depending on the
parity of the number of the leading ones in w, so it can not be continuously
defined at 111 . . ..

Another example is given by the diagram shown on the right-hands side
half of Figure 1.19. In this case there are two maximal and two minimal
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Figure 1.17. Adic transformation

infinite paths, but there is no continuous extension of the adic transformation
to the whole space of paths.

Definition 1.3.13. We say that a Vershik-Bratteli diagram B is properly
ordered if it has a unique maximal and a unique minimal paths in PpBq.
Proposition 1.3.14. Suppose that a Vershik-Bratteli diagram B is prop-
erly ordered. Let γmax and γmin be the maximal and the minimal paths,
respectively. Then the extension of the adic transformation τ given by
τpγmaxq � γmin is a homeomorphism.

We will also call the extension of the adic transformation τ given in
Proposition 1.3.14 the adic homeomorphism.

Proof. Since changing the ordering to the opposite one changes the adic
transformation to the inverse, it is enough to prove that the defined extension
of the adic transformation is continuous. The transformation is continuous
at non-maximal paths, hence it is enough to prove that τ is continuous at
γmax.

Let γi be a sequence of non-maximal infinite paths converging to γmax.
It is enough to prove that we always have limiÑ8 τpγiq � γmin. Let αi be
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the longest common prefix of γi and γmax. Let ni be the length of αi. We
have ni Ñ 8 as i Ñ 8. By the definition of τ , the beginning of τpγiq of
length ni is a finite minimal path (i.e., a finite path consisting of minimal
edges only). It follows that the limit limiÑ8 γi is a minimal infinite path,
hence it is equal to γmin. �

Definition 1.3.15. We say that a Bratteli diagram B is simple if for every
level Vn there exists m ¡ n such that for every pair v P Vn and u P Vm there
exists a path pen, en�1, . . . , em�1q in B starting in v and ending in u.

Proposition 1.3.16. Let B be a properly ordered Vershik-Bratteli diagram,
and let τ ü PpBq be the corresponding adic homeomorphism. There exists
a unique closed non-empty subset Y � PpBq such that τ ü Y is a minimal
homeomorphism. If B is simple, then τ ü PpBq is minimal, i.e., Y � PpBq.

Proof. Let γ P PpBq be an arbitrary path, and consider a finite beginning
α of γ. By the definition of the adic transformation, there exists k ¥ 0 such
that τkpγq begins by the maximal path in the lexicographic order among
the paths ending in the same vertex as α. It follows that the forward orbit
τnpγq for n ¥ 0 contains arbitrarily long prefixes that are maximal paths
(it is possible that one of such prefixes is the whole path γmax). It follows
from the uniqueness of the maximal path that γmax belongs in the closure of
the τ -orbit of γ. Consequently, closure of the τ -orbit of γmax is the unique
closed non-empty subset Y � PpBq such that τ ü Y is minimal.

If B is simple, then for any infinite path γ and for any finite path α there
exists a finite path β such that αβ ends in a vertex of γ. It follows that
there exists a path γ1 P PpBq starting with α that has a common infinite
suffix with γ. Then γ1 and γ belong to the same τ -orbit. This shows that
the τ -orbit of γ intersects every open subset of PpBq, i.e., that every τ -orbit
is dense. �

Example 1.3.17. Let d1, d2, . . . be a sequence of integers greater than 1.
Consider the associated odometer x ÞÑ x�1 acting on the inverse limit of the
cyclic groups Z{d1d2 � � � dnZ, see 1.3.1.1. It follows from the description of
the action of the odometer on the set of infinite formal series (1.2) that it is
topologically conjugate to the adic homeomorphism defined by the Vershik-
Bratteli diagram B such that |Vn| � 1 and |En| � dn. A particular case, for
2 � d1 � d2 � . . ., was considered in 1.1.4.

1.3.5. Diagrams associated with sequences of Rokhlin-Kakutani
partitions. Let τ ü X be a minimal homeomorphism of a Cantor set. If
R1 and R2 are Rokhlin-Kakutani partitions, then we write R1   R2 if the
base of R1 is contained in the base of R2, and R2 is a refinement of R1 (i.e.,
every element of R2 is a subset of an element of R1).
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Consider a sequence of Rokhlin-Kakutani paritions R1,R2, . . . with bases
B1, B2, . . . such that R1   R2   . . .. We assume that the base B1 is equal
to X , i.e., that all towers of R1 are of length 1.

We are going to associate a Vershik-Bratteli diagram B with the sequence
Rn. Take the nth level set of vertices Vn equal to the set of towers of Rn.
(In particular, V1 is the set of elements of R1.)

Let pC, τpCq, . . . , τk�1pCqq be a tower of Rn�1. Then C � Bn�1 is a
subset of an element C 1 of Rn, and C 1 � Bn. Each of the elements of the
tower is also contained in an element of Rn. It follows that the tower is
naturally split into segments

pC0 � CC, τpCq, . . . , τ l1�1pCqq,
pC1 � τ l1pCq, τ l1�1pCq, . . . , τ l1�l2�1pCqq,
pC2 � τ l1�l2pCq, τ l1�l2�1pCq, . . . , τ l1�l2�l3�1pCqq,
...

pCs�1 � τ l1�l2�����ls�1pCq, τ l1�l2�����ls�1�1qpCq, . . . , τ l1�l2����ls�1pCqq,
such that for each segment

pCi, τpCiq, . . . τ li�1�1pCiqq
there exists a (necessarily unique) tower vi � pCi, τpCiq, . . . , τli�1pCiqq of
Rn such that

τ l1�l2�����li�1�jpCq � τ jpCiq.
In other words, the towers of Rn�1 are split into disjoint unions of restric-
tions of towers of Rn. Let us connect the vertex of Vn�1 corresponding to
the tower pC, τpCq, . . . , τk�1pCqq of Rn�1 to the vertices corresponding to
the towers vi in the natural order of their appearance in the above list of
segments. Note that vi are not necessarily pairwise different, so we may
get multiple edges. Then each edge connecting a tower pA, τpAq, . . . , τkpAqq
of Rn�1 to a tower pB, τpBq, . . . , τ lpBqq of Rn is in a bijective correspon-
dence with a segment pτ ipAq, τ i�1pAq, . . . , τ i�lpAqq of the first tower such
that τ ipAq � B. We say that this segment corresponds to the edge.

We call the constructed Vershik-Bratteli diagram B the diagram associ-
ated with the sequence pRnqn�1,2,....

See Figure 1.18, where an example of a pair Rn   Rn�1 of Rokhlin-
Kakutani partitions and the corresponding level of the Vershik-Bratteli di-
agram are shown. Bigger boxes represent elements of Rn. Black and gray
rectangles depict elements of the partitions Rn�1 and Rn, respectively, be-
longing to their bases. The towers and the corresponding vertices of the
Vershik-Bratteli diagram are labeled by letters vi and ui are placed near the
elements belonging to the bases.
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Figure 1.18. Refinement of a Rokhlin-Kakutani partition

Proposition 1.3.18. Let B be the Vershik-Bratteli diagram associated with
a sequence R1   R2   . . .. Then there is a unique sequence of bijec-
tions φn : PnpBq ÝÑ Rn such that φnpe1, e2, . . . , enq P Rn is a subset of
φn�1pe1, e2, . . . , en�1q (of φ0pspe1qq for n � 1), and an element of the seg-
ment en of the tower rpenq.
Proof. Let e P En be an edge of B. Then speq is a tower of Rn, and rpeq
is a tower of Rn�1. The tower rpeq contains a segment (determined by e)
A, τpAq, . . . , τ l�1pAq such that the tower speq is of the formA1, τpA1q, . . . , τ�1pA1q
for some A1 P Rn such that A � A1. We see that for every element C 1 of the
tower speq there is a unique element C of the tower rpeq such that C � C 1

and C belongs to the segment fo rpeq corresponding to the edge e. The proof
of the proposition now follows by induction. �

The following proposition is also proved by induction on n. We leave it
as an exercise.

Proposition 1.3.19. Two paths γ1, γ2 P PnpBq are comparable if and only
if φnpγ1q and φnpγ2q belong to the same tower of Rn. If γ2 is the smallest
path bigger than γ1, then τpφnpγ1qq � φnpγ2q.

In particular, a path γ P PnpBqq is minimal (resp. maximal) if and only
if φnpγq (resp. τpφnpγqq) is contained in the base of Rn.

The following theorem is a result of [HPS92]...

Theorem 1.3.20 (R.H. Herman, I.F. Putnam, C.F. Skau). Let τ ü X be a
minimal homeomorphism of a Cantor set. Then it is topologically conjugate
to the adic homeomorphism of a simple properly ordered Vershik-Bratteli
diagram.

Proof. Let f ü X be a minimal homeomorphism of a Cantor set. Choose a
metric d on X compatible with the topology. Take an arbitrary point x0 P X .
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Let R0 be an arbitrary finite partition of X into non-empty clopen subsets
(e.g., tX u), seen as a Rokhlin-Kakutani partition with the base X . Let Pn
be a sequence of finite clopen partitions such that maximum Dn of diameters
of elements of Pn converges to zero. Let Cn P Pn be the element containing
x0. Construct recursively Rn as a Rokhlin-Kakutani partition subordinate
to Rn�1 and Pn with the base a subset of Cn, see Proposition 1.3.5. We get a
sequence R0   R1   . . .. Let B be the associated Vershik-Bratteli diagram.
Let φn : PnpBq ÝÑ Rn be the bijections described in Proposition 1.3.18.
Then for every infinite path γ � pe1, e2, . . .q P PpBq we get a decreasing
sequence of sets φnpe1, e2, . . . , enq P Rn. Their intersection is non-empty
by compactness, and of diameter zero, since the diameter of every element
of Rn is less than Dn. It follows that they intersect in one point, which
we will denote φpγq. If γ1 and γ2 agree on a beginning of length n, then
dpφpγ1q, φpγ2qq ¤ Dn, which implies that φ : PpBq ÝÑ X is continuous.
For every x P X and n the point x belongs to a single element of Rn, and,
by Proposition 1.3.18, this element is equal to φnpe1, e2, . . . , enq for some
γ � pe1, e2, . . .q P PpBq not depending on n. It follows that φ is onto. It is
also easy to see that it is one-to-one, hence a homeomorphism.

The intersection of the bases of Rn is non-empty (since the base of
Rn�1 is non-empty and contained in the base of Rn) and contained in Cn.
It follows that the intersection of the bases is x0. It follows that the minimal
path in B is unique and its image under φ is x0 (see the characterization
of the minimal path in Proposition 1.3.18). Similarly, the intersection of
the images of the bases under f�1 is equal to tf�1px0qu. In particular, the
minimal and the maximal paths in B are unique. Proposition 1.3.18 shows
now that φ conjugates the adic homeomorphism with f . �

In fact, the proof of Theorem 1.3.20 shows if τ ü X is a minimal system,
and x P X , then there exists a Vershik-Bratteli diagram B and a homeomor-
phism φ : PpBq ÝÑ X satisfying the conditions of the theorem and such
that φ maps the minimal path to x.

In fact, we have the following characterization of the Vershik-Bratteli
models of minimal Cantor systems.

Theorem 1.3.21. Let B1 and B2 be properly ordered Vershik-Bratteli dia-
grams, and let τi be the adic homeomorphism of PpBiq. Then the Vershik-
Bratteli diagrams Bi are equivalent if and only if there exists a homeomor-
phism φ : PpB1q ÝÑ PpB2q mapping the minimal, resp. maximal, path of B1

to the minimal, resp. maximal, path of B2 and conjugating the corresponding
adic transformations.

reference...
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Proof. (A sketch.) Telescoping a Vershik-Bratteli diagram does not change
the space of its paths and the lexicographic order on them, therefore it does
not change the corresponding adic transformation. It follows that equiv-
alent Vershik-Bratteli diagrams have topologically conjugate adic transfor-
mations.

In the other direction, it is easy to see that if R0   R1   R2   . . . is
an increasing sequence of Rokhlin-Kakutani partitions with the associated
Vershik-Bratteli diagram B, then the diagram associated with a subsequence
R0   Rn1   Rn2   . . . is a telescoping of the diagram B. Suppose that
R0   R1   R2   . . . and R0   R1

1   R1
2   are two sequences of Rokhlin-

Kakutani partitions for a given minimal system f ü X such that the maxi-
mal diameters of the elements of the partitions go to zero in both sequences,
and x0 P X is contained in the bases of all partitions Rn and R1

n.

Then it is easy to prove (using Lebesgue lemma) that for every n there
exists m such that Rn   R1

m and R1
n   Rm. It follows that there exists a

sequence n1   n2   n3   . . . such that R0   R1
n1

  Rn2   R1
n3

  . . .. This
shows that the associated Vershik-Bratteli diagrams of the sequences pRnq
and pRnq1 are equivalent. �

1.3.6. Kakutani equivalence. Let f ü X be a minimal homeomorphism
of a Cantor set, and let Y � X be a non-empty clopen subset. Then for
every x P Y there exists n ¡ 0 such that fnpxq P Y, see Lemma 1.3.4.
Let nx be the smallest such number. Then fY : x ÞÑ fnxpxq is called the
first return map to Y. Since x ÞÑ nx is locally constant, it is continuous.
The inverse map is the map x ÞÑ fmxpxq, where mx is the smallest positive
integer such that f�mxpxq P Y. Since the orbits of the first return map
are intersections of the f -orbits with Y, the first return map fY ü Y is a
minimal homeomorphism.

Definition 1.3.22. Two minimal Cantor dynamical systems f1 ü X1 and
f2 ü X2 are said to be Kakutani equivalent if there exist non-empty clopen
subsets Yi � Xi such that first return maps to pf1qY1 ü Y1 and pf2qY2 ü Y2

are topologically conjugate.

Proposition 1.3.23. The Kakutani equivalence is an equivalence relation.

Proof. The Kakutani equivalence is obviously reflexive and symmetric. Let
us show that it is transitive. Suppose that f1 ü X1 is Kakutani equivalent
to f2 ü X2, and f2 ü X2 is equivalent to f3 ü X3. Then there exist
non-empty clopen subsets Y1 � X1, Y2 � X2, Z2 � X2, Z3 � X3 such that
pf1qY1 ü Y1 is topologically conjugate to pf2qY2 ü Y2 and pf2qZ2 ü Z2 is
topologically conjugate to pf3qZ3 ü Z3.
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There exists m such that U � fmpZ2q X Y2 is non-empty. Then the
conjugacy φ1 : Y1 ÝÑ Y2 between pf1qY1 ü pf2qY2 restricts to a topological
conjugacy of pf1qφ�1pUq ü φ�1pUq with pf2qU ü U . The map f�m : X2 ÝÑ
X2 is a conjugacy of f2 ü X2 with itself, which induces a conjugacy of
pf2qU ü U with pf2qf�mpUq ü f�mpUq. Note that f�mpUq � Z2, and then
the conjugacy φ2 : Z2 ÞÑ Z3 of pf2qZ2 ü Z2 with pf3qZ3 ü Z3 will induce a
conjugacy of pf2qf�mpUq ü f�mpUq with pf3qφ2pf�mpUqq ü φ2pf�mpUqq. It

follows that pf1qU ü U and pf3qφ2pf�mpUqq ü φ2pf�mpUqq are topologically
conjugate, hence f1 and f3 are Kakutani equivalent. �

Example 1.3.24. Consider the Denjoy homeomorphism R̃θ ü Xθ described
in 1.3.1.2. Let a, b P r0, 1s be elements of the orbit of 0 under the rotation
Rθ. Suppose that a   b, and let ra � 0, b � 0s be the corresponding clopen
subset of Xtheta. We will sometimes denote such subsets just ra, bs, when
it does not lead to confusion. Let n be the smallest positive integer such
that c � fracpb� nθq P pa, bq. Then the first return map pR̃θqra,bs maps the
interval rb�c�a, bs to ra, cs and the interval ra, b�c�as to rc, bs by parallel
translations. If we identify ra, bs with r0, 1s by the affine transformation

x ÞÑ x�a
b�a , then we get the transformation swapping

�
b�c
b�a , 1

�
with

�
0, b�cb�a

�
,

i.e., the rotation by the angle b�c
b�a . Note that b�c

b�a is of the form kθ�l
mθ�n for

some k, l,m, n P Z, since a, b, c belong to the orbit of 0 under the rotation by
θ. We will give a complete description of the Kakutani equivalence classes
of the homeomorphisms R̃θ later.

Proposition 1.3.25. Let B1 and B2 are properly ordered Vershik-Bratteli
diagrams. The associated adic transformations are Kakutani equivalent if
and only if the diagrams B1 and B2 are equivalent to Vershik-Bratteli dia-
grams B11 and B12 that differ from each other on a finite number of levels.

Proof. Let R1   R2   . . . be a sequence of Rokhlin-Kakutani partitions,
and let B be the associated Vershik-Bratteli diagram, as in in 1.3.2. Let R1

n

for n ¥ 2 be the partition of the base of R2 consisting of the elements of
Rn contain in it. Then R1

2   R1
3   . . . is a sequence of Rokhlin-Kakutani

partitions of the first return map to the base of R2. It is also easy to check
that the Vershik-Bratteli diagram associated with the sequence pR1

nqn¥2 is
obtained by deleting the first level of the diagram B. It follows that remov-
ing a finite number of initial levels of a Vershik-Bratteli diagram does not
change the Kakutani class of the associated adic homeomorphism. Conse-
quenlty, any finite change in the Vershik-Bratteli diagram does not change
the Kakutani class of the adic transformation, since any such a change can
be erased by deleting a finite number of levels. This proves the “if” direction
of the proposition.
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Let f ü X be a minimal homeomorphism, let Y � X be a non-empty
clopen subset, and let R0   R1   R2   . . . be a sequence of Rokhlin-
Kakutani partitions of f ü X separating the points of X , so that the adic
transformation on the associated Vershik-Bratteli diagram is naturally con-
jugate to f ü X . We assume that R0 � tX u. We may also assume that
the base of R1 is contained in Y and every element of R1 is either contained
in Y or disjoint with it. Then the same conditions will be satisfied for all
Rn, n ¥ 1 (by the definition of the relation “ ” on Rokhlin-Kakutani par-
titions). Denote by R1

n, for n ¥ 1, the partition of Y equal to set of the
elements of Rn that are contained in Y. It is checked directly that R1

n is a
Rokhlin-Kakutani partition of the first return map fY ü Y, so that we get
sequence of Rokhlin-Kakutani partitions

tX u   R1   R2   R3   . . .

and

tYu   R1
1   R1

2   R1
3   . . .

of the sysetms f ü X and fY ü Y, respectively. Both sequences separates
the points of the corresponding spaces, so the associated Vershik-Bratteli di-
agrams model the corresponding dynamical systems. These Vershik-Bratteli
diagrams differ only on the first level. This proves the “only if” direction of
the proposition. �

1.3.7. Vershik-Bratteli diagrams as sequences of substitutions. Ev-
ery level pVn, En, Vn�1q of a Vershik-Bratteli diagram naturally defines a ho-
momorphism of monoids φn : V �

n�1 ÝÑ V �
n . Namely, if v P Vn�1, and if

pe1, e2, . . . , emq is the set r�1pvq listed according to the ordering of En, then
we set φnpvq � spe1qspe2q . . . spemq.

Conversely, every sequence of monoid homomorphisms

(1.3) V �
1

φ1ÐÝ V �
2

φ2ÐÝ V �
3

φ3ÐÝ � � �
is naturally encoded by the Vershik-Bratteli diagram with the sets of ver-
tices V1, V2, . . ., where for every vertex v P Vn�1 the set r�1pvq of edges
ending in v has |φpvq| elements e1   e2   . . .   e|φpvq|, and φpvq �
spe1qspe2q . . . spe|φpvq|q. Telescoping of a Vershik-Bratteli diagram corresponds
in this interpretation to compositions of the homomorphisms, i.e., replacing
the sequence (1.3) of monoids by a subsequence (containing V �

1 ) connected
by the corresponding compositions of morphisms.

Definition 1.3.26. Consider a sequence

X�1
φ1ÐÝ X�2

φ2ÐÝ X�3
φ3ÐÝ � � �
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of substitutions. The subshift generated by it is the subshift F � XZ
1 of

all sequences pxnqnPZ such that for every finite subword v � xnxn�1 . . . xm
there exists k and x P Xk such that v is a subword of φ1 � φ2 � � � � � φkpxq.

If the diagram is stationary, i.e., if all sequences Vn, En, sn, rn and the
ordering are constant, then the sequence φn is also constant. Conversely,
the Vershik-Bratteli diagram associated with a constant sequence pφ, φ, . . .q
of endomorphisms φ : X� ÝÑ X� is stationary.

For example, the stationary Vershik-Bratteli diagram on the left-hand
side part of Figure 1.25 is associated with the substitution

σp0q � 01, σp1q � 011,

if we label the vertices of a level of the diagram by 0 and 1 from left to right.

Let B be a Vershik-Bratteli diagram, and consider the corresponding
sequence φn : V �

n�1 ÝÑ V �
n of monoid homomorphisms. For every v P

Vn the set of paths ending in v is in a natural bijective order-preserving
correspondence with the letters of the word φ1 � φ2 � � � � � φn�1pvq. Let
γ � pe1, e2, . . .q be an infinite path in B. Denote wnpγq � xk1xk1�1 . . . xk2 �
φ1 �φ2 � � � � �φnprpenqq, where the numbering of the letters is by consecutive
integers such that x0 is the letter corresponding to the path pe1, e2, . . . , enq.
Then wn�1pγq is obtained from wnpγq by appending letters to the beginning
and/or to the end of wnpγq. It follows that in the limit we get a word w8pγq
associated with the path γ. The adic transformation acts as the shift on
the associated words. Note that if γ is a minimal path, then w8pγq is of
the form x0x1 . . .. If γ is maximal, then w8pγq is of the form . . . x�1x0. In
general, the word w8pγq may be finite.

Different paths γ may produce the same words. For example, if Vn � txu
and |En| � 2 for every n, then infinitely many paths in the diagram will be
associated with the word . . . xxxx . . .. The remaining paths will be associ-
ated with one-sided sequences xxxx . . . and . . . xxxx. In order to recover the
path γ from the word w8pγq, we have to remember the “production process”
of the words wn and position of the zeroth coordinate. For example, in the
last example, we can put brackets around subwords equal to the images of
the single letters x P Vn under compositions of the homomorphisms. Such
a bracketing may be still not enough for some Vershik-Bratteli diagrams,
for example, if images of the different letters are equal. (Take, for exam-
ple, the Vershik-Bratteli diagram of the constant sequence of substitutions
σpaq � ab, σpbq � ab.)

The problem of uniqueness of the path γ for a word w8pγq is called
recognizability, see [Ku03, Section 4.3].

Example 1.3.27. Let σ : 0 ÞÑ 01, σ : 1 ÞÑ 10 be the Thue-Morse substi-
tution. Note that if w � pxnqnPZ is an element of the subshift generated
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by it, and xnxn�1 � 00 or xnxn�1 � 11, then we know that xn�1xn and
xn�1xn�2 are images of letters under σ. After that the preimage of w is
uniquely determined. Note that we always can find such an index n, since
otherwise the word w is of the form . . . abababab . . ., which does not belong
to the Thue-Morse subshift. Consequently, the word w uniquely determines
the corresponding path in the Vershik-Bratteli diagram of the substitution.

Example 1.3.28. Similarly, consider the Fibonacci substitution σp0q � 01,
σp1q � 0, and let Sσ be the subshift generated by it. Then in every word
w P Sσ every letter 1 is preceded by 0, and the corresponding subword 01 is
the image of a letter 0. The remaining letters 0 are the images of 1, so that
the sequence w is uniquely decomposed into a concatenation of σ-images of
letters of a sequence w1 P Sσ.

In fact, the above examples are fairly typical. Namely, we have the
following result of Mossé, see [Ku03, Theorem 4.36].

Theorem 1.3.29. Let σ : X ÝÑ X� be a primitive aperiodic substitution.
Then it is recognizalbe, i.e., every sequence w in the subshift Fσ gener-
ated by σ can be uniquely decomposed into a concatenation of subwords
. . . σpy�1qσpy0qσpy1q . . . for a word . . . y�1y0y1 . . . P Fσ.

Here we call a substitution σ : X ÝÑ X� is periodic if it generates a finite
subshift, i.e., if every element of the subshift generated by σ is a periodic
sequence. Otherwise, it is called aperiodic.

Let σ : X ÝÑ X� be a primitive substitution generating a subshift Fσ,
and let Bσ be the stationary Vershik-Bratteli diagram defined by the con-
stant sequence σ. As described above, every path γ of Bσ defines an infinite
sequence w8pγq. Let us assume for a moment that Fσ is infinite, i.e., that
σ is aperiodic. Then Fσ is a minimal subshift, hence it can be defined by
a properly ordered Vershik-Bratteli diagram. Note that Bσ is not properly
ordered in general. Moreover, minimal and maximal paths of Bσ define one-
sided sequences, and it is possible that they can be extended to elements of
Fσ in many ways, so some paths of Bσ will correspond to several elements
of Fσ.

Example 1.3.30. The left-hand side part of Figure 1.19 shows the Vershik-
Bratteli diagrams associated with the Fibonacci substitution 0 ÞÑ 01, 1 ÞÑ 0
(see Example 1.2.22)

Note that the diagram has one minimal path (passing through the ver-
tices 0, 0, 0, 0, . . .) and two maximal paths (passing through the vertices
1, 0, 1, 0, . . . and 0, 1, 0, 1, . . .). The corresponding words w8pγq are the right-
infinite limit 01001010 . . . of σnp0q, the left-infinite limit . . . 01001010 of
σ2np0q, and the left-infinite limit . . . 01001001 of σ2np1q, respectively. Note
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Figure 1.19. Vershik-Bratteli diagrams of Fibonacci and Thue-Morse substitutions

that concatenations of the right-infinite word with both left-infinite words
belong to the subshift Fσ generated by σ. It follows that the minimal path
in the Vershik-Bratteli diagram represents two different points of Fσ.

Proposition 1.3.31. The Vershik-Bratteli diagram Bσ associated with a
substitution σ : X ÝÑ X� is properly ordered if and only if there exists k ¥ 1
and letters x0, x1 P X such that for every x P X the words σkpxq starts with
x0 and ends with x1.

Proof. Consider the map α : X ÝÑ X mapping x to the first letter of σpxq.
Note that αkpxq is equal to the first letter of σkpxq.

The orbit of every letter x P X under the iterations of α is eventually
periodic, i.e., there exist m,n such that αmpxq � αm�npxq. Note that if x
belongs to a cycle, i.e., if x � αnpxq for some n ¥ 1, then there exists a
minimal path starting in x and in every letter of the sequence αipxq, i ¥ 1.
Since there exists only one minimal path, we must have x � αpxq. Similarly,
there can be only one point of X belonging to an α-cycle, and it is an α-
fixed point. Denote it by x0. Then for every x P X there exists n such that
αnpxq � x0. Denoting by k the maximal value of such numbers n, we will
get that the first letter of σkpxq is x0 for all x P X. The same argument
proves the statement for the last letter.

Conversely, if σ satisfies the conditions of the proposition, then it is easy
to see that there exist unique minimal (resp. maximal) path corresponding
to the first (resp. last) letters of the words σnpx0q (resp. σnpx1q). The same
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argument shows that there exists k such that the last letters of σkpxq are
equal for all x P X. �

There is a simple algorithm described in [DHS99] producing a properly
ordered stationary Vershik-Bratteli diagram B starting from a proper substi-
tution σ, such that the adic transformation on B is topologically conjugate
with the subshift generated by σ. Here we extend the notion of a stationary
Vershik-Bratteli diagram by allowing the first level to be different from the
subsequent levels. Namely, we adopt the following definition.

Definition 1.3.32. A stationary Vershik-Bratteli diagram is the diagram
associated with an eventually constant sequence of substitutions.

Let σ : X ÝÑ X� be a primitive aperiodic substitution, and let Fσ be
the subshift generated by σ. After replacing σ by some iterate σn, we may
assume that there exists a word ξ � . . . x�2x�1.x0x1 . . . P Fσ such that

. . . x�2x�1.x0x1 . . . � . . . σpx�2qσpx�1q.σpx0qσpx1q . . . .
Since the subshift Fσ is minimal, the subword x�1x0 appears in ξ in-

finitely many times with uniformly bounded gaps between consecutive oc-
currences. More formally, we say that k P Z is an occurrence of x�1x0 in
a word pynqnPZ if yk�1 � x�1 and yk � x0. Two occurrences k1   k2 are
consecutive if there is no occurrence k such that k1   k   k2. It follows
from Proposition 1.2.4 that there exists a uniform upper bound on k2 � k1

for any consecutive occurrences of x�1x0 in any element of Fσ.

If k1   k2 are consecutive occurrences of x�1x0 in pxnqnPZ, then we call
the word xk1xk1�1 . . . xk2�1 the return word for x�1x0. Let Rx�1x0 be the
set of all return words. It is finite, since the length of the return words is
uniformly bounded. By minimality of Fσ, every sequence pynqnPZ P Fσ can
be uniquely decomposed into a concatenation of elements of Rx�1x0 : just
cut pynqnPZ inside every subword yk�1yk � x�1x0.

Suppose that w P Rx�1x0 . Then x�1wx0 belongs to the language of
Fσ, the first letter of w is x0, the last letter of w is x�1. It follows that
σpx�1wx0q � σpx�1qσpwqσpx0q also belongs to the language of Fσ. The
first letter of σpwq and σpx0q is x0, the last letter of σpwq and σpx�1q is
x�1. It follows that if we cut σpwq at every occurrence of x�1x0, we will
decompose σpwq into a product of elements of Rx�1x0 .

We have proved that the sub-semigroup of X� generated by Rx�1x0 is
σ-invariant. It follows that the restriction of σ to this semigroup is a sub-
stitution, which we will denote by φ : Rx�1x0 ÝÑ R�

x�1x0 .

Let w0, w1 P Rx�1x0 be the prefix of x0x1 . . . and a the suffix of . . . x�2x�1,
respectively. The words . . . x�2x�1 and x0x1 . . . are σ-invariants and are lim-
its of the words σnpx�1q and σnpx0q for nÑ8. Since every word w P Rx�1x0
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starts with x0 and ends with x�1, there exists k such that σkpwq starts with
w0 and ends with w1. It follows by Proposition 1.3.31 that the Vershik-
Bratteli diagram of φ is properly ordered. Let us add on top of this diagram
one more level associated with the substitution φ0 : Rx�1x0 ÝÑ X� mapping
every word w P Rx�1x0 to itself (but as an element of X�). We get a station-
ary Vershik-Bratteli diagram such that its adic transformation is topolog-
ically conjugate to Fσ. This diagram is equivalent to the Vershik-Bratteli
diagram obtained from the diagram associated with φ, φ, φ, . . . by adding
one vertex on the top level and connecting it to each vertex w P Rx�1x0 by
|w| edges.

Example 1.3.33. Let us consider the Fibonacci substitution

σp0q � 01, σp1q � 0.

Let us pass to the second iterate σ2p0q � 010, σ2p1q � 01, and consider the
corresponding σ2-invariant sequence

. . . 01001001.01001010 . . .

We have R10 � tw0 � 01, w1 � 001u, and

σ2p01q � 01|001 � w0w1

σ2p001q � 01|001|001 � w0w1w1.

We get the substitution

φ : w0 ÞÑ w0w1, w1 ÞÑ w0w1w1.

It follows that the subshift generated by the Fibonacci substitution is
conjugate to the adic transformation shown on the left-hand side part of
Figure 1.20. Note that it is equivalent to the diagram shown on the right-
hands side part of the same figure. Both diagrams are properly ordered.

1.3.8. Thue-Morse subshift. The Thue-Morse subshift τ ü T is gener-
ated by the substitution

σp0q � 01, σp1q � 10,

see Example 1.2.21. The associated Vershik-Bratteli diagram is shown on
the right-hand side of Figure 1.19. Note that this diagram has two minimal
paths, corresponding to two infinite to the right limits of the words σnp0q
and σnp1q, respectively:

w0 � 0110100110010110 . . . , w1 � 1001011001101001 . . . .

They are represented on the Vershik-Bratteli diagram by the paths consist-
ing of vertical edges only.
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Figure 1.20. Vershik-Bratteli diagrams of the Fibonacci subshift

Similarly, it has two maximal paths, coresponding to two infinite to the
left limits:

w�
0 � . . . 0110100110010110, w�

1 � . . . 1001011001101001.

They are represented by the paths consisting of diagonal edges only. Note
that σpw0q � w0, σpw1q � w1, σpw�

0 q � w�
1 , and σpw�

1 q � w�
0 .

For every word w P T there is a unique path in the Vershik-Bratteli
diagram producing w (or a one-sided infinite subword of w containing wp0q)
as an inductive limit of words σnpxq, x P ta, bu, in the way described in 1.3.7,
see Example 1.3.27.

All four concatenations w�
0 w0, w

�
0 w1, w

�
1 w0, w

�
1 w1 belong to the subshift

generated by σ. It follows that each of the maximal and minimal paths in the
Vershik-Bratteli diagram represents two points of the subshift. Moreover,
the adic transformation from the set of non-maximal paths to the set of
non-minimal paths does not admit a continuous extension to the space of
all paths.

Non-existence of a continuous extension can be easily corrected by “col-
laring”, i.e., applying a sliding block map (see Definition 1.2.15) to the
substitution. Let us use the block map

. . . x�1 . x0x1 . . . ÞÑ . . . px�2x�1q . px�1x0qpx0x1q . . . .
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Figure 1.21. A continuous diagram of the Thue-Morse subshift

We will write the symbol xy of the block code as xy in order to stress that
it replaces letter y in the original sequence. Applying σ to two-letter words:

σp00q � 01 � 01, σp11q � 10 � 10,
σp10q � 10 � 01, σp01q � 01 � 10

we see that the substitution induced on the block code is

σp00q � 10 10, σp11q � 01 10,

σp10q � 00 01, σp01q � 11 10.

The Vershik-Bratteli diagram of this substitution is shown on Figure 1.21,
where minimal edges are red and maximal edges are black. Note that we
have four minimal and four maximal edges, but this time the corresponding
one-sided infinite paths are matched to each other in a unique way, since
each letter xi of the code remembers the previous letter of the original se-
quence w P T � t0, 1uZ, and the sequence w0, w1 start with different letters.
Every path in this diagram corresponds to a unique point of the subshift.

Let us show how to construct a properly ordered Vershik-Bratteli dia-
gram for the Thue-Morse subshift, using the return words, as it is described
in the previous subsection. Since the substitution σ does not have fixed
points on T , we will need to consider its second interation

σ2p0q � 0110, σ2p1q � 1001.
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Figure 1.22. A well ordered Bratteli-Vershik diagram of the Thue-
Morse subshift

Let us use the sequence w�
0 .w0 as our fixed point, and consider the set

of return words R00. We have

w0 � 011010|0110|01011010|010110|011010|0110| . . .
We get R00 � t011010, 0110, 01011010, 010110u. Let us index them in the
order of their first appearance in wa:

v1 � 011010, v2 � 0110, v3 � 01011010, v4 � 010110.

We have

σ2pv1q � 011010|0110|01011010|010110 � v1v2v3v4,

σ2pv2q � 011010|0110|010110 � v1v2v4,

σ2pv3q � 011010|01011010|0110|01011010|010110 � v1v3v2v3v4,

σ2pv4q � 011010|01011010|0110|010110 � v1v3v2v4.

The associated Vershik-Bratteli diagram is rather messy to draw. In-
stead, let us decompose the substitution φ � σ2|R�

00
into a composition

φ � φ2 � φ1 of two substitutions

φ1pv1q � x1y1, φ1pv2q � x1y2,

φ1pv3q � x2y1, φ1pv4q � x2y2,

and

φ2px1q � v1v2, φ2px2q � v1v3v2,

φ2py1q � v3v4, φ2py2q � v4.

We get then the diagram shown on Figure 1.22 (except for the first
level...).
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Recall that the Vershik-Bratteli diagram of the odometer is the diagram
consisting of one vertex and two edges on each level. Let us denote the edges
by 0 and 1 with the ordering 0   1. Then the adic transformation will be
the usual binary adding machine action.

We have a natural semiconjugacy π : T ÝÑ t0, 1uω from the Thue-
Morse subshift to the binary odometer. Namely, let w P T , and let γ �
pe1, e2, . . .q be the corresponding path in the Vershik-Bratteli diagram of the
substitution. Then πpe1, e2, . . .q � x1x2 . . ., where xi � 0 if ei is minimal,
and xi � 1 if ei is maximal. It follows directly from the definition of the
adic transformation that π is a semiconjugacy.

Proposition 1.3.34. If the sequence w P t0, 1uω is not eventually constant,
then π�1pwq consists of two elements. Otherwise it consists of four elements.

Proof. It is easy to see from the structure of the Vershik-Bratteli diagram
of the substitution σ that for every w P t0, 1uω there are exactly two paths
in the diagram (one starting in a and one starting in b) such that every
w P T corresponding to these paths is mapped by π to w. The statement
about the size of π�1pwq follows now from our analysis of the relation of the
diagram with T . �

1.3.9. Vershik-Bratteli diagrams of irrational rotations. As an ex-
ample of application of Theorem 1.3.20, let us find Vershik-Bratteli diagrams
realizing the minimal homeomorphisms R̃θ ü Xθ of the Cantor set defined
in 1.3.1.2.

Let θ P p0, 1q be an irrational number. Consider the continued fraction
expansion

(1.4) θ � 1

a1 �
1

a2 �
1

a3 �
1

. . .

.

The positive integers ai are found by the following recurrent rule. Set θ1 � θ,
and then

an � tθ�1
n u, θn�1 � θ�1

n � an.

Note that the last equality is equivalent to θn � 1
an�θn�1

.

Let us change the recurrent rule by setting

(1.5) bn � tθ�1
n u, θn�1 � 1� pθ�1

n � bnq,
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so that we have θn � 1
bn�1�θn�1

, and

θ � 1

b1 � 1� � 1

b2 � 1� � 1

b3 � 1� � 1

. . .

.

The expansions (1.5) are called negative-regular continued fractions.

We could also make different choices between θn�1 � θ�1
n � an and

θn�1 � 1 � pθ�1
n � anq. Such generalized continued fractions are called

semi-regular continued fractions, see [Per54, Chapter V], where they are
called halbregelmäßige. An algorithm transforming semi-regular continued
fractions to the classical expansion (1.4) is described in [Per54, V.40]. In
the particular case of the sequence pbnq from (1.5) we get the following.

Proposition 1.3.35. The sequence pb1, b2, . . .q is equal to

a1, 1, 1, . . . , 1loooomoooon
a2 � 1 times

, a3 � 1, 1, 1, . . . , 1loooomoooon
a4 � 1 times

, a5 � 1, 1, 1, . . . , 1loooomoooon
a6 � 1 times

, a7 � 1, . . . .

In particular, infinitely many entries of the sequence bn greater than 1.

Note that the negative-regular continued fraction (1.5) with the constant
sequence bn � 1 is equal to 1.

Proof. If
1

a3 �
1

a4 �
1

. . .

� ξ, then
1

a3 � 1� 1

a4 �
1

. . .

� 1

1�1
ξ

� ξ
ξ�1 . Conse-

quently, the proposition will follow from the identity

(1.6)
1

a1 �
1

a2 � ξ

� 1

a1 � 1� 1

2� 1

2� . . .
1

2� 1

1� 1
ξ

,

where 2 appears a2 � 1 times on the right-hand side.
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It is easy to prove by induction on n that

1

2� 1

2� . . .
1

2� x

� n� pn� 1qx
pn� 1q � nx

,

where 2 appears n times on the left-hand side.

Consequently, if x � 1

1�1
ξ

, the right-hand side of (1.6) is equal to

1

a1 � 1� a2�1�pa2�2qx
a2�pa2�1qx

� 1

a1 � 1�x
a2�pa2�1qx

.

Substitution x � ξ
ξ�1 into 1�x

a2�pa2�1qx gives

1� ξ
ξ�1

a2 � pa2 � 1q ξ
ξ�1

� 1

a2pξ � 1q � pa2 � 1qξ �
1

a2 � ξ
,

which finishes the proof. �

Theorem 1.3.36. Let θ P p0, 1q be an irrational number, and let pb1, b2, . . .q
be the sequences of positive integers such that

θ � 1

b1 � 1� 1

b2 � 1� 1

b3 � 1� 1

. . .

.

Define the substitutions

ψkp0q � 0k1, ψkp1q � 0k�11.

Then the dynamical system R̃θ ü Xθ is topologically conjugate to the sub-
stitutional system generated by the sequence

ψb1 , ψb2 , ψb3 , . . .

and to the adic transformation on the associated Vershik-Bratteli diagram.

The Vershik-Bratteli diagram of the substitution ψ3 is shown on the
left-hand side of Figure 1.23.

Proof. Let R1 be the partition r0, 1�θs, r1�θ, 1s of the Cantor set Xθ seen
as Rokhlin-Kakutani partitions with base equal to the whole space Xθ. (We
will drop �0 and �0 from the interval notation, since it will be always clear
what are the intervals.)
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Figure 1.23. Vershik-Bratteli diagrams of a rotation

Figure 1.24. Rokhlin-Kakutani partition of a rotation

Let us construct a Rokhlin-Kakutani partition subordinate to R1 with
the base r0, θs. Let a � b1 �

X
1
θ

\
. If x P r0, 1�aθs, then the smallest positive

integer n such that Rnpxq P r0, θs is equal to a�1, while for x P r1�aθ, θs it is
a. The first return map maps r0, 1�aθs to rpa�1qθ�1, 1�aθ�pa�1qθ�1s �
rpa � 1qθ � 1, θs, and maps r1 � aθ, θs to r0, pa � 1qθ � 1s. Hence the first
return map swaps the intervals r0, 1�aθs and r1�aθ, θs. We define therefore
R2 as the Rokhlin-Kakutani partition with the base r0, θs and two towers:

Tr0,1�aθs � tr0, 1� aθs, Rpr0, 1� aθsq, R2pr0, 1� aθs, . . . Rapr0, 1� aθsqu
and

Tr1�aθ,θs � tr1� aθ, θs, Rpr1� aθ, θsq, . . . , Ra�1pr1� aθ, θsqu,
see Figure 1.24, where the intervals of the first tower are black, and the
intervals from the second tower are red.

The interval r0, 1� θs P R1 is equal to the union of the following 2a� 1
elements of R2:

r0, 1� aθs YRpr0, 1� aθsq Y � � � YRa�1pr0, 1� aθsqY
r1� aθ, θs YRpr1� aθ, θsq Y � � �Ra�2pr1� aθ, θsq �
r0, 1� aθs Y rθ, 1� pa� 1qθs Y � � � Y rpa� 1qθ, 1� θsY

r1� aθ, θs Y r1� pa� 1qθ, 2θs Y � � � r1� 2θ, pa� 1qθs.
The interval r1�θ, 1s P R1 is equal to the union of the following two elements
of R2:

Ra�1pr1� aθ, θsq YRapr0, 1� aθsq � r1� θ, aθs Y raθ, 1s.
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In other words, r1� θ, 1s is the union of the two last elements of the towers,
while r0, 1 � θs is the union of all the remaining elements. See Figure 1.24
where these decompositions are shown.

We see that the level of the Vershik-Bratteli diagram associated with
the pair R1 and R2 has a edges Tr0,1�aθs P V2 to tr0, 1� θsu P V1, one edge
connecting Tr0,1�aθs to tr1� θ, 1su P V1, a�1 edges connecting Tr1�aθ,θs P V2

to tr0, 1 � θsu, and one edge connecting Tr1�aθ,θs to tr1 � θ, 1su. The edge
connecting a vertex of V2 to tr1�θ, 1su is greater (comes later in the ordering
of the diagram) than the edges connecting it to tr0, 1� θsu.

In other words, it is the diagram of the substitution

ψa : 0 ÞÑ 0a1, 1 ÞÑ 0a�11,

if we label the towers r0, 1� θs and Tr0,1�aθs by 0, and the towers r1� θ, 1s
and Tr1�aθ,θs by 1.

We can identify the base r0, θs of R2 with the interval r0, 1s by the trans-
formation x ÞÑ x{θ. Then the partition r0, 1� aθs, r1� aθ, θs is transformed
to the partition r0, θ�1�as, rθ�1�a, 1s, and the first return map swaps these
intervals, i.e., is a rotation by θ1 � 1� pθ�1 � aq.

(Note that if we identify the base r0, θs with the interval r0, 1s by the
transformation x ÞÑ 1 � x{θ, then the first return map is a rotation by
θ1 � θ�1 � a.)

We apply our procedure again to the rotation by θ1. We will get a
sequence Rn of Rokhlin-Kakutani partitions such that its Vershik-Bratteli
diagram is the diagram associated with the sequence

ψb1 , ψb2 , ψb3 , . . . .

The bases of the partitions pRnq are the segments r0, θns, where θn are
defined by the condition θn � 1

an�1� 1
θn�1

. Consequently, the intersection of

the bases consists of 0 only. As the length of the towers grow to infinity, for
every m there exists n such that images of r0, 1� anθns under R̃kθ belong to
Rn for all k � 0, 1, . . . ,m. It follows that any two points t� 0, t� 0, where
t is in the forward orbit of 0 under Rθ are separated by some partition Rn.

The union of the top elements of the towers of Rn is the interval r1 �
θn, 1s, and intersection of these intervals is t1u. By the same argument as
above, this shows that any two points t�0, t�0, where t is in the backward
orbit of 0 under Rθ are separated by some partition Rn.

It follows that adic transformation of the Vershi-Bratteli diagram of pRnq
is topologically conjugate to R̃θ. �

Definition 1.3.37. We say that a subshift F � XZ is Sturmian if pF pnq �
n� 1 for all n ¥ 0, where pF is the complexity function, see...
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Note that since pF p1q � 2, we may assume that |X| � 2.

Theorem 1.3.38 (Hedlund-Morse). Suppose that a subshift F � t0, 1uZ is
minimal and satisfies pF pnq � n � 1 for all n ¥ 1. Then there exists an
irrational number θ such that F � Fθ.

Reference from Hedlund-Morse...

For the countable case, see...

Proof. Denote by Wn the set of words of length n belonging to WF . Con-
sider the map vx ÞÑ v from the Wn�1 to Wn. It is surjective, and since
|Wn�1| � n � 2 and |Wn| � n � 1, there exists one word wn P Wn (which
we will call special) that has two preimages. All the other words v P Wn

have one preimage. Conversely, if for every n ¥ 1 there exists exactly one
word wn P Wn with two preimages and all the other words have only one
preimage, then |Wn�1| � |Wn| � 1, and |Wn| � n� 1 for all n.

If wn P WF is the special word, i.e., if wn0, wn1 P WF , then every its
suffix of wn is also special. Since there is only one special word of every
length, it follows that special words are suffixes of one left-infinite word
w8 � . . . x2x1x0 P X�ω. We will call it the left-infinite special word.

Let k ¥ 0 be the smallest number such that 10k1 belongs to WF . If the
word 0k�1 does not belong to WF , then there are exactly k letters 0 between
any two consecutive 1s. But then F is finite. Note also that no element of
F contains an infinite string of 0s, since this would contradict minimality.
It follows that the words 0k�110k and 0k10k�1 belong to WF . Consequently,
all the words of the form 0i10k�1�i for i � 0, 1, . . . , k� 1 belong to WF . We
also have 10k1 P WF . This is already a list of k � 3 words in WF of length
k � 2. It follows that there are no other words of length k � 2 in WF . In
particular 0k�2 RWF , i.e., the number of zeros between any two consecutive
ones is either k or k � 1.

Consequently, every element of F can be written as a concatenation of
the words 0k1 and 0k�11. Consider now the subshift F 1 over the alphabet
t0k1, 0k�11u consisting of sequences obtained by factoring sequences w P F
into concatenations of subwords 10k and 10k�1.

Let us show that the obtained subshift F 1 is also Sturmian. It is enough
to show that for every n there exists a unique word v PWF 1 of length n such
that v � p0k1q, v � p0k�11q P F 1. Let us show at first the existence. Let w8
be the left-infinite special word for F . Then w80 and w81 are subwords of
elements of F . It follows that 10k is a suffix of w8, and w8 can be factored
into a concatenation . . . a3a20

k, where ai P t0k1, 0k�11u. But then both
. . . a3a20

k1 and . . . a3a20
k�11 are subwords of elements of F 1, hence . . . a3a2
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is a left-infinite special word of F 1. For every n the suffix of length n of this
word will be special for F 1.

In order to prove the uniqueness, it is enough to show that if v1, v2 P F 1

are such that tv1p0k1q, v1p0k�11q, v2p0k1q, v2p0k�11qu �WF 1 , then one of the
words v1, v2 is a suffix of the other. Note that vip0k�11q PWF 1 implies that
vi0

k�1 P WF , so that we have that tv10
k1, v110

k�1, v20
k1, v20

k�1u � WF ,
i.e., that v10

k and v20
k are special words for F . But we know that all special

words of F are suffixes of the unique left-infinite special word. It follows
that one of the words v1, v2 is a suffix of the other.

We see that F 1 is also a Sturmian minimal subshift (minimality of F 1

follows directly from the minimality of F by Proposition 1.2.4). Let us
relabel the letters of the alphabet t0k�11, 0k1u by the letters 0, 1 using the
substitution

ψk�1 : 0 ÞÑ 0k�11, 1 ÞÑ 0k1.

Note that this is the same substitution as in Theorem 1.3.36. We will identify
then F 1 with a Sturmian subshift of t0, 1uZ.

Continue the above construction with F replaced by the new F 1 �
t0, 1uZ. We will get a sequence of positive integers k1, k2, . . ., a sequence
of subshifts Fn, and a sequence of substitutions

ψkn�1 : 0 ÞÑ 0kn�11, 1 ÞÑ 0kn1.

The elements of Fn are obtained from the elements of Fn�1 by applying ψkn
(and then taking all shifts).

Let B be the Vershik-Bratteli diagram associated with the obtained se-
quence ψkn�1, and let us show that every path in B corresponds to exactly
one element of F . It is enough to check the minimal and the maximal paths.

But ψ1 is the substitution 0 ÞÑ 01, 1 ÞÑ 1 generating the subshift con-
sisting of the constant 1 sequence. Consequently, the sequence kn is not
eventually equal to zero, since then F would be finite.

It follows that the only minimal path is the unique path passing through
the vertices 0 P Vn. The corresponding right-infinite sequence is limit of the
words ψk1�1�ψk2�1�� � �ψkn�1p0q. Note ψkn�1p0q that it begins with 0kn�11,
which has a unique allowed extension to the left 10kn�11, since kn� 1 is the
maximal allowed number of zeros between two consecutive ones in Fn. It
follows that in every element of F the word ψk1�1 � ψk2�1 � � � �ψkn�1p0q is
preceded by ψk1�1 � ψk2�1 � � � �ψkn�1�1p1q. The length of this word goes
to infinity, since kn is not eventually zero. Consequently, the right-infinite
sequence corresponding to the minimal path has a unique extension to an
element of F .

Let us show that the maximal path corresponds to a unique element of
F . It is enough to prove this statement for any Fn. It follows that we may
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assume that k1 � 0. The only maximal path is the path passing through the
vertices 1 P Vn. The corresponding left-infinite sequence is the left-infinite
limit of the words ψk1�1�ψk2�1�� � �ψkn�1p1q. Then 1 is the last letter of this
word, and then the only possible one-letter continuation is 10, as k1 ¡ 0.
The proof is finished in the same way as for the case of the minimal path.
This shows that the diagram B models the subshift F . Theorem 1.3.36
shows (together with its proof, as we have to check that the encodings by 0

and 1 agree) that F coincides with the system R̃θ ü Xθ for

θ � 1

k1 � 2� 1

k2 � 2� 1

k3 � 2� 1

. . .

.

�

We want to consider now the classical continued fractions...

Let
ψk�1 : 0 ÞÑ 0k�11, 1 ÞÑ 0k1,

be the substitution from Theorem 1.3.36. Define also the substitutions

φk�1 : 0 ÞÑ 0k1, 1 ÞÑ 0k�11.

Proposition 1.3.39. The subshift generated by the sequence

φk1�1, φk2�1, φk3�1, . . .

coincides with the subshift generated by the sequence

ψk1�1, ψ
k2
1 , ψk3�2, ψ

k4
1 , ψk5�2, ψ

k6
1 , ψk7�2, . . .

See Definition 1.3.26 of subshifts generated by sequences of substitutions.

Proof. Denote
η : 0 ÞÑ 0, 1 ÞÑ 01.

Then ψk�2 � η�ψk�1. Let us compare now φk1�1�φk2�1 with ψk1�1�ψk21 �η.
We have

φk1�1 � φk2�1p0q � φk1�1p0k21q � p0k11qk20k1�11

and
ψk1�1 � ψk21 � ηp0q � ψk1�1p01k2q � 0k1�11p0k11qk2 .

We have

φk1�1 � φk2�1p1q � φk1�1p0k1�11q � p0k11qk1�10k1�11

and

ψk1�1 � ψk2 � ηp1q � ψk1�1 � ψk2p01q � ψk1�1p01k2�1q � 0k1�11p0k11qk2�1.
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It follows that application of φk1�1�φk2�1 to a bi-infinite word produces,
up to a shift, the same word as application of ψk1�1 � ψk2 � ηpuq � 0k1�1v.
It follows that the subshift generated by the sequence

φk1�1, φk2�1, φk3�1, . . .

is the same as the subshift generated by the sequence

ψk1�1, ψ
k2 , η, ψk3�1, ψ

k4 , η, . . . .

The last sequence is equivalent to

ψk1�1, ψ
k2 , ψk3�2, ψ

k4 , ψk5�2, . . . .

�

Theorem 1.3.40. Let θ P p0, 1q be an irrational number, and let pa1, a2, . . .q
be the sequence of positive integers such that

θ � 1

a1 �
1

a2 �
1

a3 �
1

. . .

.

Define the substitutions

φkp0q � 0k�11, φkp1q � 0k1.

Then the dynamical system R̃θ ü Xθ is topologically conjugate to the
system generated by the sequence

φa1 , φa2 , φa3 , . . . .

If infinitely many of the values of ai are greater than 1, then it is also
topologically conjugate to the adic transformation of the Vershiki-Bratteli
diagram associated with the above sequence.

Example 1.3.41. Let ϕ � 1�?5
2 be the golden mean, and consider the

rotation by ϕ � ϕ� 1�1�?5
2 pmod 1q.

The inverse rotation is by θ � 1� ϕ � 3�?5
2 . We have

θ�1 � 2

3�?
5
� 6� 2

?
5

4
� 3�?

5

2
,

hence a1 � 2, and

θ2 � 3� 3�?
5

2
� 3�?

5

2
� θ.
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Figure 1.25. Two Vershik-Bratteli diagrams of the golden mean rotation

It follows that

θ � 1� ϕ � 1

2� 1� 1

2� 1� 1

2� 1� 1

. . .

It is also well known that

ϕ � 1

1� 1

1� 1

1� 1

. . .

Consequently, the rotation by ϕ can be described by the Vershik-Bratteli
diagrams shown on Figure 1.25. The left-hand side part is obtained by
changing to the opposite the ordering of the edges of the diagram associated
with the sequence pRnq for the rotation by θ � 1�ϕ, while the right-hands
side part shows the diagram associated with the sequence pR1

nq for ϕ. We
have highlighted the minimal edges. Note that there are two minimal paths
in the right-hand side diagram.

1.3.10. Linearly repetitive systems. By Proposition 1.2.4, if pF , sq is a
minimal subshift, then for every finite word v P WF there exists Nv such
that for every w P F there exists 0 ¤ k ¤ Nv � 1 such that the subword
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w1p1qw1p2q . . . w1p|v|q of w1 � skpwq is equal to v. Denote by RF pnq the
maximum of Nv for all words v of length at most n.

Definition 1.3.42. We say that a subshift F is linearly repetitive if there
exists C ¡ 1 such that RF pnq ¤ Cn for all n ¥ 1.

The following is straightforward.

Proposition 1.3.43. Suppose that F 1 � pXkqZ is the image of a minimal
subshift F � XZ under a sliding block map. Then

RF 1pnq � RF pn� kq
for all n ¥ 1. In particular, F is linearly repetitive if and only if so is F 1.

Theorem 1.3.44. Minimal substitutional subshifts are linearly repetitive.

Proof. It is shown in the proof of Proposition 1.2.27 that the image of every
minimal substitutional subshift under some sliding block map is generated
by a primitive substitution. It follows then from Proposition 1.3.43 that it
is enough to consider only the case of a subshift F generated by a primitive
substitution σ : X ÝÑ X�.

It was shown in the proof of Theorem 1.2.34 that there exists a constant
C, depending only on F , such that for every n ¡ 1 there exists k such that
for every x P X we have n ¤ |σkpxq| ¤ Cn. Then every word v P WF of
length n is a subword of a word of the form σkpxyq for xy PWF . It follows
that RF pnq ¤ RF p2q � Cn. �

See another proof in [DL06, Theorem 1], where this theorem was proved
for the first time.

More generally, we have the following characterization of linearly repet-
itive subshifts, see [Dur03].

Theorem 1.3.45. A subshift is linearly repetitive if and only if it is topo-
logically conjugate to the subshift generated by a sequence of substitutions

X�1
σ1ÐÝ X�2

σ2ÐÝ X�3
σ3ÐÝ � � �

such that

(1) the set tσn : n � 1, 2, . . .u is finite;

(2) there exists s such that for every x P Xn and y P Xn�s�1 the letter
x appears in the word σn � σn�1 � � � � � σn�spyq;

(3) there exist an, bn P Xn such that for every x P Xn�1 the word σnpxq
begins with an and ends with bn.
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Denote by pF pnq the complexity of the subshift F , i.e., the number
of subwords of length n in elements of F . We have an obvious estimate
pF pnq ¤ RF pnq, since every word v PWF of length n appears as a subword
of every the word u PWF of length n�RF pnq�1. On the other hand, RF pnq
can grow much faster than pF pnq. For example, RF can grow arbitrarily
fast even for Sturmian sequences. Namely, we have the following theorem,
see ...

Theorem 1.3.46. Let Xθ � t0, 1uZ be the Sturmian shift defined by an
irrational number θ P p0, 1q, as in Proposition 1.2.37, and let a1, a2, . . . be
the terms of the continued fraction expansion of θ (the partial quotients).
Then Xθ is linearly repetitive if and only if an is bounded (i.e., if θ is of
bounded type).

Proof. (Sketch) Let φai be as in Theorem 1.3.40. Consider the matrix

Bn �
�
b00 b01
b10 b11



, where bxy is the number of letters x in the word φa1 �

φa2 � � � � � φanpyq. We have B0 �
�

1 0
0 1



. It follows from the definition

of the morphism φai that

Bn�1 � Bn �
�
an�1 � 1 an�1

1 1



.

Consequently,

Bn �
�
a1 � 1 a1

1 1


�
a2 � 1 a2

1 1



� � �
�
an � 1 an

1 1



.

Denote by pn, qn the numerator and the denominator of the fraction
1

a1 �
1

a2 �
1

. . . � 1

an

, respectively. We have then

pn�1 � an�1pn � pn�1, qn�1 � an�1qn � qn�1.

It is easy to check by induction that then

Bn �
�
qn � pn qn � pn � qn�1 � pn�1

pn pn � pn�1



.

In particular, the lengths of φa1 �φa2 � � � � �φanp0q and φa1 �φa2 � � � � �φanp1q
are qn and qn � qn�1, respectively.
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Let rn � qn
qn�1

. Then r1 � a1, and we have

rn�1 � an�1qn � qn�1

qn
� an�1 � 1

rn
,

so that

rn � an �
1

an�1 �
1

an�2 �
1

. . . � 1

a1

,

which implies an ¤ rn ¤ an � 1. We have

|φa1 � φa2 � � � � � φanp1q|
|φa1 � φa2 � � � � � φanp0q|

� qn � qn�1

qn
� 1� 1

rn

and
||φa1 � φa2 � � � � � φanp0q|
||φa1 � φa2 � � � � � φan�1p0q|

� qn
qn�1

� rn.

It follows that these ratios are uniformly bounded away from zero and in-
finity if and only if an is bounded from above. If this is the case, then the
proofs Theorems 1.2.34 and 1.3.44 can be repeated for Xθ, which will show
the “if” direction.

For the “only if” direction it is enough to notice that the word between
two neighboring occurrences of φa1 � φa2 � � � � � φanp1q is either φa1 � φa2 �
� � � � φanp0an�1�1q or φa1 � φa2 � � � � � φanp0an�1q, which shows that

RXθpqn � qn�1q ¥ qn � qn�1 � an�1qn � qn � qn�1.

We have

qn � qn�1

qn � qn�1
� 1� rn�1

1� r�1
n

� 1� an�1 � r�1
n

1� r�1
n

¥ 1� an�1

2
,

as rn ¥ 1 and the expression is increasing with rn. It follows that if the

sequence an is not bounded from above, then so is
RXθ pnq

n . �

1.4. Hyperbolic dynamics

General discussion.. Expanding maps are very well understood and have rich
analytic and algebraic structure. See, for instance [Haisinki-Pilgrim...] and...
One of the main subjects of Chapter 5 is the algebraic theory of expand-
ing maps, where we will establish a functorial bijection between expanding
covering maps and a class of groups (more precisely groups bisets...)... The
case of hyperbolic homeomorphisms (Ruelle-Smale spaces) is much less un-
derstood, and many questions that are relatively easy in the expanding case
are wide open in the case of homeomorphisms....
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1.4.1. Expanding maps: definitions and examples.

Definition 1.4.1. Let X be a compact space. A map f ü X is expanding
if it generates an expansive action of the semigroup N, i.e., if there exists a
neighborhood U � X � X of the diagonal such that pfkpxq, fkpyqq P U for
all k ¥ 0 implies x � y.

Definition 1.4.2. We say that a map f ü X on a compact metric space
is metrically expanding if there exist ε ¡ 0, L ¡ 1 such that if x, y P X are
such that dpx, yq   ε then dpfpxq, fpyqq ¥ Ldpx, yq.

It is obvious that every metrically expanding map is expanding.

Example 1.4.3. Consider the circle R{Z and the self-covering f ü R{Z
given by fpxq � kx pmod 1q, for an integer k, |k| ¡ 1. It is metrically
expanding, for example with L � |k| and ε � 1{|k|.

It is easier in some cases to show that an iteration of a map is metrically
expanding. A simple change of the metric shows that then the map itself
expanding.

Lemma 1.4.4. Suppose that f ü X is a map on a metric space pX , dq such
that fn ü X is metrically expanding for some n ¥ 1. Then there exists a
metric d1 on X such that f ü X is metrically expanding with respect to d1.

Proof. Suppose that fn is expanding with respect to a metric d. Let ε and
L be as in Definition 1.4.2 for fn.

Consider the metric

d1px, yq �
n�1̧

k�0

L�k{ndpfkpxq, fkpyqq.

Then

d1pfpxq, fpyqq �
ņ

k�1

L�pk�1q{ndpfkpxq, fkpyqq �

L�pn�1q{ndpfnpxq, fnpyqq � L1{n
n�1̧

k�1

L�k{ndpfkpxq, fkpyqq ¥

L�1�1{nLdpx, yq � L1{n
n�1̧

k�1

L�k{ndpfkpxq, fkpyqq � L1{nd1px, yq.

It follows that f is expanding with respect to d1. �

Example 1.4.5. An endomorphism f ü M of a Riemannian manifold is
called expanding if there exist C ¡ 0 and L ¡ 1 such that }Dfn~v} ¥ CLn}~v}
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for every tangent vector ~v. It follows from Lemma 1.4.4 that every ex-
panding endomorphism of a compact Riemannian manifold is an expanding
self-covering.

Expanding endomorphisms of Riemannian manifolds were studied by
M. Shub in [Shu69, Shu70, Hir70]. One of applications of M. Gromov’s
theorem on groups of polynomial growth is showing that all expanding en-
domorphisms of compact Riemannian manifolds are generalizations of Ex-
amle 1.4.3, see [Gro81]. Namely, they are all topologically conjugate to
endomorphisms of infra-nil-manifolds. Here a manifold M is an infra-nil-
manifold if there exists a nilpotent connected Lie group L and a subgroup
G   L o AutpLq such that G acts freely and properly on L, and M is dif-
feomorphic to L{G. If F ü L is an expanding automorphism such that
FGF�1   G, then F induces an expanding endomorphism of L{G � M .
We will revisit this result in ...

Example 1.4.6. We get many more examples of expanding self-coverings
f ü X , if we do not require X to be a manifold. A big class of examples
is provided by holomorphic dynamics. Namely, every hyperbolic complex
rational function is expanding on its Julia set, see 1.5.3.

Example 1.4.7. Let s ü XN be the one-sided shift. Consider the metric
dpw1, w2q � 2�n, where n is the largest non-negative integer such that the
beginnings of length n of w1 and w2 coincide. Then s is expanding for ε � 1{2
and L � 2. In particular, every one-sided subshift F � XN is expanding.
This shows that the class of all expanding maps is very big (for example,
there exists uncountably many conjugacy classes of one-sided shifts). On
the other hand, we will see later that the class of expanding self-coverings is
much more rigid. In particular, it contains only countably many topological
conjugacy classes, see...

1.4.2. Natural log-scale. Let f ü X be a map, where X is compact. If
U � X � X is an expansion entourage for f ü X , then U� � tpx, yq :
py, xq P Uu is also an expansion entourage. Then U� X U is a symmetric
expansion entourage. It follows that we may assume without loss of gener-
ality that expansion entourages are symmetric. We will also assume that
they are closed.

Suppose that U is an expansion entourage for a map f ü X . Denote

Un �
n£
k�0

f�kpUq.

In other words, Un is the set pairs of points px, yq such that pfkpxq, fkpyqq P
U for all k � 0, 1, . . . , n. In particular, U0 � U . Denote U�1 � X � X . By
the definition of an expansion entourage,

�
n¥0 Un is equal to the diagonal.
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The following is a particular case of Lemma 1.2.7.

Lemma 1.4.8. For every neighborhood V of the diagonal, there exists n
such Un � V .

For subsets A,B of X � X , denote by A �B the set of pairs px, yq such
that there exists z such that px, zq P A and pz, yq P B. Note that A � B is
the image of the closed subset D � tppx1, y1q, px2, y2qq : y1 � x2u of A�B
under the map ppx1, y1q, px2, y2qq ÞÑ px1, y2q. If A and B are compact, then
D is a closed subset of a compact space A�B, hence D is compact, which
implies that A �B is compact.

Lemma 1.4.9. There exists ∆ P N such that Un�∆ � Un�∆ � Un for all
n ¥ 1.

Proof. Suppose that there is no ∆ such that U∆ � U∆ � IntpUq. Denote
Bk � pX 2 r IntpUqq X pUk � Ukq, for k ¥ 0. Then the sets Bk are closed
non-empty, and Bk�1 � Bk. It follows from compactness of X 2 that the
intersection

�
k¥1Bk is non-empty. Let px, yq be such that px, yq P Bk for

all k. Let Zk � X be the set of points z such that px, zq P Uk and pz, yq P Uk.
Since Uk is closed, the set Zk is closed. It is non-empty, by the choice of
px, yq. We also have Zk�1 � Zk. It follows that the intersection of all Zk
is non-empty. Let z0 P

�
k¥1 Zk. Then px, z0q P Uk for all k, hence x � z0,

and pz0, yq P Uk for all k, hence z0 � y, which implies x � y, which is a
contradiction.

We have shown that there exists ∆ such that U∆ � U∆ � U . If px, yq P
U∆�n �U∆�n, then there exists z such that px, zq P U∆�n and pz, yq P U∆�n.
Then pf ipxq, f ipzqq P U∆�n�i � U∆ and pf ipzq, f ipyqq P U∆�n�i � U∆ for
all i � 0, 1, . . . , n. It follows that pf ipxq, f ipyqq P U∆ � U∆ � U , hence
px, yq P Un. We have shown that Un�∆ � Un�∆ � Un for all n ¥ 0. �

Definition 1.4.10. Denote, for px, yq P X 2, by `px, yq the maximal value
of n such that px, yq P Un, and 8 if x � y.

Lemma 1.4.9 is reformulated then as follows.

Proposition 1.4.11. There exists ∆ ¡ 0 such that

`px, yq ¥ minp`px, zq, `pz, yqq �∆

for all x, y, z P X .

The function `px, yq measures “closeness” of points of X . The closer
points x and y are, the bigger is the value of `px, yq. We will transform this
function into a metric in the next subsection.
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1.4.3. Log-scales and associated metrics. Generalizing Propositin 1.4.11,
we adopt the following definition.

Definition 1.4.12. A log-scale on a set X is a map ` : X �X Ñ RY t8u
satisfying the following conditions.

(1) `px, yq � `py, xq for all x, y P X;

(2) `px, yq � 8 if and only if x � y;

(3) there exists ∆ ¡ 0 such that `px, yq ¥ minp`px, zq, `pz, yqq � ∆ for
all x, y, z P X.

We say that a metric d on X is associated with the log-scale ` if there
exist constants α ¡ 0, c ¡ 1, such that

c�1e�α`px,yq ¤ dpx, yq ¤ ce�α`px,yq.

The number α is called the exponent of the metric.

It is easy to check that if d is any metric onX, then `px, yq � � log dpx, yq
is a log-scale such that d is associated with `.

With this connection between log-scales and metrics in mind, we give
the following definition.

Definition 1.4.13. We say that two log-scales `1, `2 on X are bi-Lipschitz
equivalent if

sup
x,yPX,x�y

|`1px, yq � `2px, yq|   8.

Theorem 1.4.14. Let ` be a log-scale on a set X. Then there exists αc P
p0,8s such that for every α P p0, αcq there exists a metric d on X of exponent
α associated with `, and for every α ¡ αc such a metric does not exist.

Proof. Consider, for every n P N the graph Γn with the set of vertices X
in which two points x, y are connected by an edge if `px, yq ¥ n. Let dn be
the combinatorial distance between the vertices of Γn.

Lemma 1.4.15. There exists α ¡ 0 and C ¡ 0 such that

dnpx, yq ¥ Ceαpn�`px,yqq

for all x, y P X and n P N.

Proof. Let ∆ be as in Proposition 1.4.11, and let us prove the lemma for
α � ln 2

∆ . If x0, x1, x2 is a path in Γn, then `px0, x2q ¥ n�∆, hence x0, x2 is

a path in Γn�∆. It follows that dn�∆px, yq ¤ 1
2pdnpx, yq � 1q, or

dn�∆px, yq ¥ 2dnpx, yq � 1.

If `px, yq � m, then dm�1px, yq ¥ 2, and hence

dm�1�t∆px, yq ¥ 2t � 1.
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It follows that for every n and t �
Y
n�`px,yq�1

∆

]
¡ n�`px,yq�1

∆ � 1 we have

dnpx, yq ¡ 2t ¡ 2pn�`px,yq�1�∆q{∆ � Ceαpn�`px,yqq,

where C � 2p�1�∆q{∆ and α � ln 2
∆ . �

We say that α ¡ 0 is a lower exponent if there exists C ¡ 0 such that
α and C satisfy the conditions of Lemma 1.4.15. If α is a lower exponent,
then all numbers in the interval p0, αq are lower exponents. Hence, the set
of lower exponents is either an interval p0, αcq (including the case αc � �8)
or an interval p0, αcs. The number αc is called the critical lower exponent,
and we are going to prove the theorem for this value.

It is easy to see that if α is such that there exists a metric of exponent
α, then α is a lower exponent.

Let α be a lower exponent, and let β P p0, αq. Let us show that there
exists a metric d of exponent β. Denote by dβpx, yq the infimum of the

sum
°m
i�1 e

�β`pxi,xi�1q over all sequences x0 � x, x1, x2, . . . , xm � y. The
function dβ obviously satisfies the triangle inequality, dβpx, yq � dβpy, xq,
and dβpx, yq ¤ e�β`px,yq for all x, y P X . It remains to show that there exists

C ¡ 0 such that Ce�β`px,yq ¤ dβpx, yq. In other words, there exists C is
such that

(1.7) Ce�β`px,yq ¤
m̧

i�1

e�β`pxi,xi�1q

for all sequences x0, x1, . . . , xm such that x � x0 and y � xm.

Let C0 P p0, 1q be such that dnpx, yq ¥ C0e
�αpn�`px,yqq for all x, y P X

and n P N. Let us prove inequality (1.7) for C � exp
�
βplnC0�2α∆q

α�β
	

.

Lemma 1.4.16. Let x0, x1, . . . , xm be a sequence such that `pxi, xi�1q ¥ n
for all i � 0, 1, . . . ,m � 1. Let n0 ¤ n. Then there exists a sub-sequence
y0 � x0, y1, . . . , yt�1, yt � xm of the sequence pxiqmi�0 such that

n0 � 2∆ ¤ `pyi, yi�1q   n0

for all i � 0, 1, . . . , t� 1.

Proof. Let us construct the subsequence yi by the following algorithm.
Define y0 � x0. Suppose we have defined yi � xr for r   m. Let s be
the largest index such that s ¡ r and `pxr, xsq ¥ n0. Note that since
`pxr, xr�1q ¥ n ¥ n0, such s exists.

If s   m, then `pxr, xs�1q   n0, and

`pxr, xs�1q ¥ mint`pxr, xsq, `pxs, xs�1qu�∆ ¥ mintn0, `pxs, xs�1qu�∆ � n0�∆.
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Define then yi�1 � xs�1. We have

n0 � k ¤ `pyi, yi�1q   n0.

If s� 1 � m, then we stop and get our sequence y0, . . . , yt, for t � i� 1.

If s � m, then `pxr, xmq � `pyi, xmq ¥ n0, and

`pyi�1, xmq ¥ mint`pyi�1, yiq, `pyi, xmqu�∆ ¥ mintn0�∆, n0u�k � n0�2∆

and

`pyi�1, xmq   n0,

since yi was defined and was not equal to xm. Then we redefine yi � xm
and stop the algorithm.

In all the other cases we repeat the procedure. It is easy to see that at
the end we get a sequence yi satisfying the conditions of the lemma. �

Let x0 � x, x1, . . . , xm � y be an arbitrary sequence of points of X.
Let n0 be the minimal value of `pxi, xi�1q. Let y0 � x, y1, . . . , yt � y be a
sub-sequence of the sequence xi satisfying conditions of Lemma 1.4.16.

Suppose at first that

n0   `px, yq � 2α∆� lnC0

α� β
.

Remember that n0 � `pxi, xi�1q for some i, hence

m̧

i�1

e�β`pxi�1,xiq ¥ e�βn0 ¡ exp

�
�β`px, yq � βp2α∆� lnC0q

α� β



� Ce�β`px,yq,

and the statement is proved.

Suppose now that n0 ¥ `px, yq � 2αk�lnC0
α�β , which is equivalent to

(1.8) pα� βqn0 � pα� βq`px, yq � 2α∆� lnC0 ¥ 0.

If t � 1, then n0 � 2∆ ¤ `px, yq   n0, hence

n0 ¤ `px, yq � 2∆ � `px, yq � 2α∆� 2β∆

α� β
  `px, yq � 2α∆� lnC0

α� β
,

since lnC0   0   2β∆. But this contradicts our assumption.

Therefore, we have t ¡ 1, so that the inductive assumption implies

m̧

i�1

e�β`pxi�1,xiq ¥
t�1̧

i�0

Ce�β`pyi,yi�1q ¡ tCe�βn0 .
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We have t ¥ dn0�2∆px, yq ¥ C0e
αpn0�2∆�`px,yqq, hence

m̧

i�1

e�β`pxi�1,xiq ¥ C0Ce
�βn0�αn0�2α∆�α`px,yq �

C exp plnC0 � βn0 � αn0 � 2α∆� α`px, yqq �
C exp p�β`px, yq � pα� βqn0 � pα� βq`px, yq � 2α∆� lnC0q ¥ Ce�β`px,yq,

by (1.8). Which finishes the proof. �

1.4.4. Metrics associated with expanding maps.

Theorem 1.4.17. Let X be a compact space. A continuous map f ü X
is expanding (in the sense of Definition 1.4.1) if and only if f is metrically
expanding for some metric on X .

Proof. Suppose that there exists a metric d and numbers ε ¡ 0 and L ¡ 1
such that dpfpxq, fpyqq ¡ Ldpx, yq for all px, yq P X 2 such that dpx, yq ¤ ε.
Then the set tpx, yq : dpx, yq ¤ εu is an expansion entourage and the action
of N is expansive.

Suppose now that the action of N is expansive. Then there exists a
symmetric expansion entourage U . Suppose that d is a metric associated
with the log-scale defined by U , see Definition 1.4.10. Let α be the exponent
of the metric d, and let C ¡ 1 be such that

C�1e�α`px,yq ¤ dpx, yq ¤ Ce�α`px,yq

for all x, y P X . Let k be a positive integer, and suppose that `px, yq ¥ k.
Then `pfkpxq, fkpyqq � `px, yq � k, and

dpfkpxq, fkpyqq
dpx, yq ¤ C2e�αk.

It follows that for any integer k greater than lnC2

α we have dpfkpxq, fkpyqq ¤
Ldpx, yq, where L � C2e�αk   1, for all px, yq P Uk. If ε   C�1e�αk, then
`px, yq ¥ k for all x, y P X such that dpx, yq ¤ ε. It follows that fk is
metrically expanding. Lemma 1.4.4 shows that f is also expanding. �

Let us investigate how canonical is the metric constructed in the proof
of Theorem 1.4.17.

Proposition 1.4.18. Let U and V be expansion entourages for a map f ü
X . Then the sets of lower exponents for U and V coincide. If dU and dV are
metrics associated with U and V of exponent α, then there exists C ¡ 1 such
that C�1dU px, yq ¤ dV px, yq ¤ CdU px, yq (i.e., the metrics are bi-Lipschitz
equivalent).
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Proof. Let `U and `V be defined by U and V , respectively. By Lemma 1.4.8,
there exists k such that Uk � V , hence Un�k � Vn for all n P N. It follows
that `V px, yq ¥ `U px, yq � k. The same arguments show that `U px, yq ¥
`V px, yq � k for some k, i.e., that |`U px, yq � `V px, yq| is uniformly bounded.
The statements of the proposition easily follow from this fact. �

Proposition 1.4.18 implies that for any expanding map f ü X the criti-
cal lower exponent αc is well defined (i.e., does not depend on the choice of
the expansion entourage), and for every β P p0, αq the corresponding metric
of exponent β is uniquely defined, up to a bi-Lipschitz equivalence. Note
that if d is a metric of exponent β, then any metric bi-Lipschitz equivalent
to d is also a metric of exponent β. The map f is metrically expanding
with respect to some metric of exponent β for every β P p0, αcq. This class
of metrics is studied in detail in the works of P. Häısinsky and K. Pilgrim
(see [HP09] and references therein). The critical exponent αc is one of
several numerical invariants of expanding dynamical systems...

1.4.5. Expansive actions of Z. Recall that a homeomorphism f ü X of
a metric space is said to be expansive if there exists a closed neighborhood
U � X � X of the diagonal such that

�
nPZ f

npUq is equal to the diagonal.

Let f ü X be an expansive homeomorphism of a compact metric space,
and let U be the corresponding expansion entourage as above.

Define `px, yq as the maximal n ¥ 0 such that pfkpxq, fkpyqq P U for
all �n   k   n. If such n does not exist, then we set `px, yq � 0. It is
obvious that `px, yq � `py, xq and that `px, yq � 8 if and only if x � y.
Define, as in the expanding case, Un � tpx, yq P X � X : `px, yq ¥ nu, i.e.,
Un �

�
|k| n f

kpUq.

Lemma 1.4.19. The map ` is a log-scale on X compatible with the topology
(i.e., such that every metric associated with ` is compatible with the topology
on X . The log-scale ` does not depend, up to bi-Lipschitz equivalence, on
the choice of U .

Proof. It is proved in the same way as for expanding maps that for ev-
ery neighborhood V of the diagonal there exists n such that Un � V (see
Lemma 1.4.8). The statement of the Lemma 1.4.9 is also true in our case
with the same proof (the only thing to change is to replace “i � 0, 1, . . . , n”
by “�n ¤ i ¤ n”. These two lemmas imply that the metric associated with
the log-scale ` is compatible with the topology. Independence on the choice
of U is also proven in the same way as for the expanding case, see the proof
of Proposition 1.4.18. �
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We see that, in the same way as for expanding maps, we have a canonical
class of metrics associated with an expansive homeomorphism f ü X . These
metrics were defined by D. Fried in [Fri83].

Definition 1.4.20. We say that x, y P X are stably equivalent if dpfnpxq, fnpxqq Ñ
0 as nÑ8. We say that they are unstably equivalent if dpf�npxq, f�npyqq Ñ
0 as n Ñ 8. Two points are homoclinic if they are simultaneously stably
and unstably equivalent.

It is easy to see that the defined relations are equivalences.

Lemma 1.4.21. Let U be the expansivity entourage for an expansive homeo-
morphism f ü X . Two points x, y P X are stably (resp. unstably) equivalent
if and only if there exists n0 P Z such that pfnpxq, fnpyqq P U for all n ¥ n0

(resp. all n ¤ n0).

Proof. The “only if” direction is obvious. Suppose that pfnpxq, fnpyqq P U
for all n ¥ n0. Then `pfnpxq, fnpyqq ¥ n� n0 for all n ¥ n0. It follows that

for every metric associated with ` we have dpfnpxq, fnpyqq ¤ Ce�αpn�n0q Ñ
0 as nÑ8. �

Define, for x P X , and an expansivity entourage U

W�,U pxq � ty P X : pfnpxq, fnpyqq P U @n ¥ �∆� 1u
and

W�,U pxq � ty P X : pfnpxq, fnpyqq P U @n ¤ ∆� 1u,
where ∆ satisfies the condition of Definition 1.4.12 for the log-scale ` as-
sociated with U . Equivalently, W�,U pxq is the set of points y such that
`pfnpxq, fnpyqq ¥ ∆ � 1 for all n ¥ 0, and W�,U pxq is the set of points y
such that `pfnpxq, fnpyqq ¥ ∆� 1 for all n ¤ 0.

Lemma 1.4.22. For every pair x, y P X the intersection W�,U pxqXW�,U pyq
consists of at most one point.

Proof. Suppose that z1, z2 P W�,U pxq XW�,U pyq. Then for every n P Z
either

minp`pfnpz1q, fnpxqq, `pfnpz2q, fnpxqqq ¥ ∆� 1

or

minp`pfnpz1q, fnpyqq, `pfnpz2q, fnpyqqq ¥ ∆� 1,

depending on the sign of n. But this implies that `pfnpz1q, fnpz2qq ¥ 1
for all n P Z, i.e., that pfnpz1q, fnpz2qq P U for all n P Z. It follows that
z1 � z2. �

Definition 1.4.23. We will denote by rx, ysU or just rx, ys the unique in-
tersection point of W�,U pxq and W�,U pyq, if it exists.
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1.4.6. Local product structures.

1.4.6.1. Rectangles. A rectangle is a topological space R together with a
decomposition into a direct product R � A � B of two topological spaces.
In order to make this structure more intrinsic (so that we do not introduce
new spaces A and B), we can define the direct product structure as a binary
operation rpa1, b1q, pa2, b2qs � pa1, b2q on A�B � R. Then the structure of
the direct product decomposition can be axiomatized in the following way.

Definition 1.4.24. A rectangle is a topological space R together with a
continuous map r�, �s : R�R ÝÑ R such that

(1) rx, xs � x for all x P R;

(2) rx, ry, zss � rx, zs and rrx, ys, zs � rx, zs for all x, y, z P R.

Example 1.4.25. Let f ü X be an expansive homeomorphism of a com-
pact space. We say that R � X is a rectangle for f if the map r�, �s, given
in Definition 1.4.23 is defined on whole R � R. Then, by Proposition ??,
pR, r�, �sq is a rectangle in the sense of Definition 1.4.24.

Suppose that pR, r�, �sq is a rectangle. Then plaques of x P R are defined
as

P1pR, xq � ty P R : rx, ys � xu, P2pR, xq � ty P R : rx, ys � yu.
Note that we have the implication

rx, ys � x ùñ ry, xs � ry, rx, yss � ry, ys � y.

It follows that rx, ys � x is equivalent to ry, xs � y. It is shown in the same
way that rx, ys � y is equivalent to ry, xs � x. In other words, y P PipR, xq
is equivalent to x P PipR, yq for every i � 1, 2.

Lemma 1.4.26. For every x P R the map r�, �s : P1pR, xq � P2pR, xq ÝÑ R
is a homeomorphism.

Proof. For every y P R we have rx, ry, xss � x, hence ry, xs P P1pxq. Simi-
larly, rrx, ys, xs � x, hence rx, ys P P2pxq. Then rry, xs, rx, yss � rry, xs, ys �
y. It follows that y ÞÑ pry, xs, rx, ysq is a continuous map R ÞÑ P1pR, xq �
P2pR, xq inverse to the map r�, �s. �

Note that if pa1, b1q, pa2, b2q P P1pR, xq�P2pR, xq, then rra1, b1s, ra2, b2ss �
ra1, b2s, i.e., the map r�, �s, after the identification of R with P1pR, xq �
P2pR, xq, becomes rpa1, b1q, pa2, b2qs � pa1, b2q. See Figure 1.26, where the
structure of a rectangle is shown.

Note that two different plaques PipR, xq and PipR, yq are naturally iden-
tified by a canonical homeomorphism, so that the decomposition of R into
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Figure 1.26. A rectangle

the direct product of plaques does not depend on the reference point (x or
y). Namely, the respective homeomorphisms are

H1,x,y : z ÞÑ rz, ys : P1pR, xq ÝÑ P1pR, yq
and

H2,x,y : z ÞÑ ry, zs : P2pR, xq ÝÑ P2pR, yq.
It is checked directly that H1,x,y �H1,y,x and H2,x,y �H2,y,x are identity

homeomorphisms, and that the decomposition of R into the direct product
P1pR, xq � P2pR, xq is transformed by the homeomorphisms Hi,x,y to the
decomposition of R into the direct product of plaques of y.

We will therefore denote sometimes by P1pRq and P2pRq the plaques of
R as abstract topological spaces, without any reference to points of R.

1.4.6.2. Local product structures.

Definition 1.4.27. Let X be a topological space. An atlas of a local product
structure on X is a cover of X by open subsets Ri, i P I, together with
structures of rectangles pRi, r�, �siq on each of them, such that for every pair
i, j P I and every x P X there exists a neighborhood U of x such that
ry, zsi � ry, zsj for all y, z P Ri XRj X U .

Two atlases are compatible if their union is also an atlas. A local product
structure on X is a compatibility class of atlases of local product structures
on X .

Note that the condition of Definition 1.4.27 is void in the case when x
does not belong to the intersection of the closures of Ri and Rj .
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Figure 1.27. Local product structure

An open subset R � X together with a rectangle structure r�, �s on R
is a rectangle of X if the union of an atlas of X with tpR, r�, �squ is an atlas
of X , i.e., if the structure of a rectangle on R is compatible with the local
product structure on X .

Example 1.4.28. Let F : B ÝÑ X be a locally trivial bundle with fiber
P . It means that for every point x P X there is a neighborhood U of x
and a homeomorphism φU : P � U ÝÑ F�1pUq such that F pφU pp, yqq � y
for all y P U and p P P . Moreover, the maps φU naturally agree with each
other, i.e., if U1 and U2 intersect, then φU1pp, yq � φU2pp, yq for all p P P
and y P U1 X U2.

It is easy to see that the set of the rectangles φU pP �Uq defines a local
product structure on B.

Definition 1.4.29. Let X1,X2 be two spaces with local product structures
on them. We say that a continuous map f : X1 ÝÑ X2 preserves the
local product structures if for every point x P X1 there exist rectangular
neighborhoods pR1, r�, �s1q and pR2, r�, �s2q of x and fpxq, respectively, such
that fpry, zs1q � rfpyq, fpzqs2 for all y, z P R1.

Example 1.4.30. Consider a rectangle X � A � B, and let G be a group
acting properly and freely on X by homeomorphisms preserving the local
product structure on X . Then the quotient GzX by the action is naturally a
space with a local product structure. We call such local product structures
splittable. For example, for any decomposition of Rn into a direct sum of
subspaces, we get the corresponding local product structure on the torus
Rn{Zn. See, for example, the decomposition into the direct sum of the
eigenspaces for the “Arnold’s Cat” map 1.1.5.
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1.4.7. Ruelle-Smale systems. The following class of dynamical systems
was introduced by D. Ruelle in [Rue78] as a generalization of basic sets of
hyperbolic diffeomorphisms.

Definition 1.4.31. A Ruelle-Smale system (also called Smale space) is a
homeomorphism f ü X of a compact metric space with a local product
structure satisfying the following conditions.

(1) The map f preserves the local product structure.

(2) There exists λ P p0, 1q and a cover of X by a finite number of
rectangles pRi, r�, �sq such that for any two points x, y belonging to
one plaque P1pRi, xq � P2pRi, yq we have dpfpxq, fpyqq ¤ λdpx, yq;
and for any two points x, y belonging to one plaque P2pRi, xq �
P2pRi, yq we have dpf�1pxq, f�1pyqq ¤ λdpx, yq.

In other words, a homeomorphism is a Ruelle-Smale system if it is con-
tracting in one direction and expanding in the other direction of a local
product structure preserved by it.

We will denote P1 � W� and P2 � W�. The plaques W�pR, xq and
W�pR, xq are called the stable and the unstable plaques, respectively.

Note that by the Lebesgue’s covering lemma, if tpRi, r�, �siquiPI is a finite
atlas of the local product structure of a compact space X , then there exists
ε ¡ 0 such that rx, ysi � rx, ysj for all i, j P I and all x, y such that dpx, yq  
ε and the corresponding expressions are defined. It follows that we may
assume that we have one map r�, �s defined on a neighborhood of the diagonal
of X � X .

It follows from the definition that if x and y belong to the same stable
plaque, then the distance dpfnpxq, fnpyqq exponentially converges to zero.
Similarly, if x and y belong to the same unstable plaque, then dpf�npxq, f�npyqq
exponentially converges to zero.

Proposition 1.4.32. A homeomorphism f ü X of a compact space is a
Ruelle-Smale system if and only if f is expansive and for every expansivity
entourage U the map r�, �sU from Definition 1.4.23 is defined on a neighbor-
hood of the diagonal.

In particular, the local product structure satisfying the conditions of Def-
inition 1.4.31 is unique and depends only on the topological conjugacy class
of f ü X .

Proof. Let us prove at first that every Ruelle-Smale systems is expansive.
Let ε be a Lebesgue number of a finite cover tRiuiPI of X by rectangles. Sup-
pose that x, y P X are such that dpfnpxq, fnpyqq   ε for all n P Z and x � y.
Then for every n there exists in P I such that fnpxq, fnpyq both belong
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to Rin . Consider then the corresponding point zn � rfnpxq, fnpyqs P Rin .
We have then fpznq � zn�1 for all n P Z, i.e., zn � fnpz0q. The distance
dpfnpxq, fnpz0qq is bounded from above by the maximum of diameters of the
rectanglesRi. But we must have dpfnpxq, fnpz0qq ¥ λ�1dpfn�1pxq, fn�1pz0qq
for all n P Z, which is a contradiction. It follows that ε is an expansivity
constant for f ü X .

The fact that the local product structure on the Ruelle-Smale system
coincides with the local product structure given in Definition 1.4.23 for ex-
pansive systems is now straightforward.

In the other direction, suppose that f ü X is an expansive homeomor-
phism of a compact space such that r�, �sU is defined on a neighborhood of
the diagonal for every expansivity entourage U . Note that if U1 � U2, then
r�, �sU1 is a restriction of r�, �sU2 . We have px, rx, ysq P U and py, rx, ysq P U ,
which implies that r�, �sU is continuous. The axioms of a local product struc-
ture are checked directly using Lemma 1.4.22.

Let d be a metric on X associated with U (see beginning of 1.4.5). It
is checked directly that some iterate of f ü X is Ruelle-Smale system with
respect to d. Using then the same trick as in Lemma 1.4.4, we can modify
the metric so that f ü X is a Ruelle-Smale system. �

1.4.8. Examples of Ruelle-Smale systems.

1.4.8.1. Shifts of finite type.

Proposition 1.4.33. A subshift S � AZ is a Ruelle-Smale system if and
only if it is of finite type.

Proof. Two points panqnPZ and pbnqnPZ of XZ are stably equivalent if and
only if there exists n0 P Z such that an � bn for all n ¥ n0. Similarly, they
are unstably equivalent if and only if there exists n0 such that an � bn for
all n ¤ n0.

Suppose that F � XZ is a subshift. Denote by UN the entourage
consisting of all pairs pw1, w2q P F � F such that w1pnq � w2pnq for all
�N ¤ n ¤ N .

Suppose that F is a Ruelle-Smale system. Then there exists N such
that for any pair of sequences pw1, w2q P UN the intersection W�,UN pw1q X
W�,UN pw2q is non-empty. In other words, there exists N such that if se-
quences w1 and w2 from F coincide on the interval r�N,N s, then the se-
quence w equal to w1 on r�N,�8q and to w2 on p�8, N s also belongs to F .
The converse statement is also true: if F satisfies the last condition, then it
is a Ruelle-Smale system. We leave it to the reader to use this condition to
prove that every shift of finite type is a Ruelle-Smale system.
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Let L � X2N�2 be the set of all subwords of length 2N � 2 of elements
of F . Let us prove that if w P XZ is a sequence such that every subword of
length 2N � 2 of w belongs to L, then w P F . This will prove that F is a
shift of finite type. It is enough to show that if v is finite word such that
every subword of v of length 2N � 2 belongs to L, then v is a subword of
an element of F . Let us prove this statement by induction on the length of
v. The statement is trivially true for |v| � 2N � 2. Suppose that we have
proved it of |v| � k, let us prove it for vx, where x P X. Write v � yu for
y P X. Then |v| � |ux| � k, so there exist sequences w1, w2 P F such that
the restriction of w1 and w2 onto an interval ra, bs � Z containing r�N,N s
is equal to u, w1pa�1q � y and w2pb�1q � x. Then there exists a sequence
w P F such that w|p�8,Ns � w1|p�8,Ns and w|r�N,8q � w2|r�N,8q. Then
yux � vx is equal to w|ra�1,b�1s. �

1.4.8.2. Anosov diffeomorphisms.

Definition 1.4.34. An Anosov diffeomorphism is a diffeomorphism f ü M
of a compact Riemannian manifold such that there exists a decomposition
TM � T� ` T� of the tangent bundle into a direct sum of f -invariant
sub-bundles, and constants C ¡ 0 and λ P p0, 1q such that

(1) }Dfnp~vq} ¤ Cλn}~v} for all n ¥ 0 and ~v P T�,

(2) }Df�np~vq} ¤ Cλn}~v} for all n ¥ 0 and ~v P T�.

By classical theory (see, for example, [Sma67, Theorem 7.4], [BS02,
Theorem 5.6.4, Theorem 5.7.2]) every Anosov diffeomorphism is a Ruelle-
Smale system.

An example of an Anosov diffeomorphism is the Arnold’s Cat Map
from 1.1.5. It can be generalized in the following way. Let L be a sim-
ply connected nilpotent Lie group, and let φ : L ÝÑ L be its automorphism
such that the differential Dφ at the identity 1 P L is hyperbolic (i.e., its
spectrum is disjoint with the unit circle). Let G be a subgroup of the affine
group LnAutL acting naturally on L, and suppose that the action Gy L
is free and co-compact, so that GzL is a compact manifold. Such manifolds
are called infra nil-manifolds. Assume also that the G-action is φ-invariant,
so that φ induces a diffeomorphism of GzL. Then this diffeomorphism is
Anosov, see [Sma67, pp. 760–764]. We call such Anosov diffeomorphisms
algebraic.

All currently known Ansov diffeomorphisms are topologically conjugate
to algebraic diffeomorphisms. It is an open question if this is a complete
description. Moreover, the only known examples of Ruelle-Smale systems
f ü X such that X is a connected and locally connected space are algebraic
Anosov diffeomorphisms.
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1.4.8.3. Hyperbolic sets. More generally, let M be a Riemanian manifold,
U � M a non-empty open subset, and let f : U ÝÑ fpUq be a diffeo-
morphism. A closed totally f -invariant subset X � U (i.e., such that
fpUq � U � f�1pUq) is said to be hyperbolic if there exist decomposi-
tions TxM � T�pxq ` T�pxq of the tangent spaces at x P X and constants
C ¡ 0, λ P p0, 1q such that

(1) DfT�pxq � T�pfpxqq, DfT�pxq � T�pfpxqq;
(2) }Dfn~v} ¤ Cλn}~v} for all ~v P T�pxq, x P X , and n ¥ 0;

(3) }Df�n~v} ¤ Cλn}~v} for all ~v P T�pxq, x P X , and n ¥ 0.

A hyperbolic set X is locally maximal if there exists an open neighbor-
hood V � X such that Λ � �

nPZ f
npV q.

If X is a locally maximal compact hyperbolic set, then f ü X is a Ruelle-
Smale system, see [BS02, Proposition 5.9.1, 5.9.3]. Examples of locally
maximal hyperbolic sets are the Smale horseshoe attractor W from 1.1.3,
and the solenoid from 1.1.4 (in its concrete version in R3).

1.4.8.4. DA attractors. We have seen in 1.1.5 that there exists a semiconju-
gacy φ : F ÝÑ R2{Z2 from a shift of finite type F to the Anosov diffeomor-

phism A ü R2{Z2 defined by the matrix

�
2 1
1 1



. We will see later that

this is true for any Ruelle-Smale system.

The shift of finite type F can be defined as a result of cutting the torus
along the boundaries of the elements of the Markov partition, and propagat-
ing the cuts by the Z-action of the dynamical system, exactly in the same
way as we did it with the circle rotation in 1.3.1.2.

We could also cut, i.e., make slits in the torus, only along the stable
boundaries of the Markov partition. This will produce another Ruelle-Smale
system f ü X with a semiconjugacy φ : X ÝÑ R2{Z2. It is called a DA-
attractor (“Derived from Anosov”). We will give an alternative description
of this dynamical system later in....

The DA-attractor can be realized as a hyperbolic set of a diffeomorphism
by modifying the Anosov diffeomorphism in a small neighborhood of a point
(essentially by imitating the slits described above), see [Sma67, p. 788].

1.4.9. Natural extension of an expanding covering map.

Proposition 1.4.35. If f ü X is an expanding map on a compact space,
then its natural extension f̂ ü X̂ is expansive.

For the notion of a natural extension, see Definition 1.1.8.

Proof. Let ε ¡ 0 be an expansivity constant for f ü X with respect to a
metric d on X . Consider the entourage U � X̂ � X̂ consisting of pairs of
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sequences ppx1, x2, . . .q, py1, y2, . . .qq such that dpx1, y1q   ε. Suppose that

ξ � px1, x2, . . .q and ζ � py1, y2, . . .q are such that pf̂npξq, f̂npζqq P U for all
n P Z. Then for every i ¥ 1 we have dpfnpxiq, fnpyiqq   ε for all n ¥ 0, since
fn�i�1pξq � pfnpxiq, fnpxi�1q, . . .q and fn�i�1pζq � pfnpyiq, fnpyi�1q, . . .q.
This implies, by expansivity of f ü X , that xi � yi for all i. �

Theorem 1.4.36. Let f ü X be an expanding covering map of a compact
space, and let f̂ ü X̂ be its natural extension. Then X̂ is a fiber bundle with
respect to the natural projection P : X̂ ÝÑ X : for every x P X there exists
a neighborhood U of x such that P�1pUq is naturally homeomorphic to the
direct product C � U , where C is the inverse limit of the sets f�npxq.

The natural extension f̂ ü X̂ is a Ruelle-Smale system, where the local
product structure coincides with the local product structure coming from the
described fiber bundle.

Proof. Let ε ¡ 0, L ¡ 1 be such that dpfpxq, fpyqq ¥ Ldpx, yq for all
x, y P X such that dpx, yq ¤ ε.

For every x P X there exists an open neighborhood U of x that is evenly
covered, i.e., such that f�1pUq can be decomposed into a disjoint union
f�1pUq � U1 Y U2 Y � � � Y Um such that f : Ui ÝÑ U is a homeomorphism
for every i. The decomposition is finite, since X is compact (hence f�1pxq
is compact for every x P X ).

Note that in general (if X is not locally connected) the decomposition is
not unique. But we can use the fact that f is expanding to choose canonical
decompositions for sets U of small diameter as follows.

Since X is compact, there exists a finite cover U of X by open evenly
covered sets. Then, by Lebesgue’s lemma, there exists δ0 ¡ 0 such that for
every set B of diameter less than δ0 there exists U P U such that B � U . It
follows that every set of diameter less than δ0 is evenly covered.

Consider decompositions of f�1pUq, for U P U , into disjoint unions
U � U1 Y � � � Y Um such that f : Ui ÝÑ U are homeomorphisms, and
consider the corresponding inverse maps f�1 : U ÝÑ Ui. By the continuity
of the maps f�1 : U ÝÑ Ui, there exists δ   δ0 such that for every set A of
diameter less than δ the set f�1pAq can be decomposed into a disjoint union
of sets A1 Y � � � Y Am of sets of diameter less than ε. Then the diameters
of Ai will be less than L�1δ. Note that then the distance between any two
different points of f�1pxq for x P X is not less than ε. Consequently, for any
x1 P Ai and x2 P Aj for i � j we have dpx1, x2q ¡ ε � 2L�1δ. If δ is small
enough, then ε� 2L�1δ ¡ δ, and we get the following.

Lemma 1.4.37. If δ ¡ 0 is small enough, then for every set A � X of
diameter less than δ the set f�1pAq is decomposed in a unique way into a
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disjoint union f�1pAq � A1 Y � � � Y Am such that f : Ai ÝÑ A are home-
omorphisms, the sets Ai have diameters less than δ, and distance between
any two points belonging to different sets Ai is greater than δ.

Definition 1.4.38. We say that δ is a strong injectivity constant of the
expanding covering f ü X if it satisfies the conditions of Lemma 1.4.37.

We will call the sets Ai the components of f�1pAq. For n ¡ 1, the
components of f�npAq are defined inductively as components of f�1pAiq,
where Ai is a component of f�pn�1qpAq. Note that since components of
f�1pAq are of diameter less than L�1δ   δ, we have a unique decomposition
of f�npAq into components. If A is connected, then components of f�npAq
are its connected components.

Fix some strong injectivity constant δ ¡ 0. Let U � X be a set of
diameter less than δ. Consider the rooted tree TU with the set of vertices
equal to the disjoint union of the sets of components of f�npUq for n ¥ 0,
where a component A of f�npUq is connected to the component fpAq of

f�pn�1qpUq. The root is f�0pUq � tUu.
Similarly, for every x P X , denote by Tx the tree Ttxu with the set of

vertices equal to the disjoint union of the sets f�npxq for n ¥ 0. For every
x P U the trees Tx and TU are naturally isomorphic: the isomorphism maps
a vertex t P f�npxq of Tx to the unique component of f�npUq containing t.

The boundary BTU of the tree TU is the inverse limit of the sets of
components of f�npUq with respect to the maps induced by f . Similarly,
BTx is the inverse limit of the sets f�npxq with respect to f : f�npxq ÝÑ
f�pn�1qpxq.

For every set U � X of diameter less than δ we get a natural homeo-
morphism φU : P�1pUq � X̂ ÝÑ U � BTU defined in the following way. Let

ξ � pt0, t1, . . .q P pX be a point of the inverse limit X̂ , where t0 P U � U0.
Let Un be the component of f�npUq such that tn P Un. Then φU pξq �
pt0, pU0, U1, . . .qq. Recall that t0 � P pξq. It is easy to see that this is a
homeomorphism.

It also follows from the fact that TU is naturally isomorphic to Tx for
every x P U , that the homeomorphisms φU agree on the intersections of the
sets U , i.e., that we have a fiber bundle.

If ξ1 � pt10, t11, . . .q, ξ2 � pt20, t21, . . .q P U are such that the second coordi-
nates of φU pξ1q and φU pξ2q are equal, then t1i and t2i belong for every i to
the same component of f�npUq. This implies that dpt1i, t2i q Ñ 0 as i Ñ 8,
hence ξ1 and ξ2 are unstably equivalent.
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Suppose that ξ1 � pt10, t11, . . .q and ξ2 � pt20, t21, . . .q are such that P pξ1q �
P pξ2q P U . Consider the points f̂npξ1q and f̂npξ2q. They are equal to

pfnpt0q, fn�1pt0q, . . . , fpt0q, t0, t11, t12, . . .q
and

pfnpt0q, fn�1pt0q, . . . , fpt0q, t0, t11, t12, . . .q,
respectively, where t0 � t10 � t20. We see that the distance between f̂npξ1q
and f̂npξ2q in the inverse limit X̂ goes to zero, i.e., that ξ1 and ξ2 are stably
equivalent.

We have shown that the local product structure defined by the homeo-
morphisms φU agrees with the stable and unstable equivalence classes, which
finishes the proof of the theorem. �

Example 1.4.39. Let f ü X be an expanding endomorphism of a Rie-
mannian manifold. Then its natural extension f̂ ü X̂ can be realized as
an attractor of a diffeomorphism, see [Sma67, p. 788]. We have seen an
example of such a realization in the case of the angle doubling map and the
solenoid in 1.1.4. The general case is very similar to the solenoid example.

1.4.10. Williams solenoids. The natural extension of a map f ü X is
a Ruelle-Smale system not only in the case of expanding coverings. As a
starting point of a more general setting, let us consider the following class
of examples.

Let σ : X ÝÑ X� be a substitution such that the length of σnpxq goes
to infinity for all x P X. Let Bσ be the corresponding stationary Vershik-
Bratteli diagram, see 1.3.7. Suppose that Bσ is properly ordered, see Propo-
sition 1.3.31. An example of such a substitution is

(1.9) σp0q � 01, σp1q � 011,

The associated Vershik-Bratteli diagram is shown on Figure 1.17.

Let X be a bouquet of |X| oriented loops labeled by the letters of X.
Consider the map fσ ü X realizing σ: it maps every loop labeled by x to
the path in X on which the word σpxq is read. We parametrize each loop
by r0, 1s, so that the common point of the loops is parametrized by 0 and 1,
and assume that the word σpxq is read in the positive (increasing) direction.

See, for instance Figure 1.28 where the corresponding map fσ for the
substitution (1.9) is shown.

By choosing appropriate lengths of the loops in X , we can make fσ
expanding on each loop. The map fσ will be expanding the length of paths,
but it is not expanding on any neighborhood of the common point of the
loops, since it is not injective there.
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Figure 1.28. Geometric realization of a substitution

Note that for every positive n the map fnσ ü X is the realization of σn:
the loop labeled by x is mapped to the path on which σnpxq is read.

Proposition 1.4.40. The natural extension f̂σ ü X̂ is a Ruelle-Smale
system. The space X̂ is homeomorphic to the mapping torus of the adic
transformation defined by the Vershik-Bratteli diagram Bσ.

Proof. Let us denote by γx the loop of X labeled by x P X. Consider a
point pt1, t2, . . .q P X̂ . Suppose that t1 belongs to the interior of γx (i.e., is
not equal to the common point of the loops) for some x P X. Let an P X
be such that tn belongs to γan . In particular, x � a1. Then fσ maps γan
to a path containing xn�1. We get an occurence of the letter an�1 in the
word σpanq corresponding to the segment of γan mapped by fσ to γan�1 and
containing tn�1. Let en�1 be the edge of the Vershik-Bratteli diagram Bσ
corresponding to this occurence. It is an edge connecting an to an�1 in Bσ.

We get a path pe1, e2, . . .q in Bσ. It is clear that the point pt1, t2, . . .q P X̂
is uniquely determined by t1 and pe1, e2, . . .q. We will denote the point
pt1, t2, . . .q by pt; e1, e2, . . .q, where t P p0, 1q is the parameter corresponding

to the point t1. We see that the subset of X̂ consisting of points pt1, t2, . . .q
such that t1 different from the common point of the loops γx is naturally
identified with the product of the open unit interval p0, 1q with the space of
paths in Bσ. It is easy to show that this identification is a homeomorphism.

Denote by p0; e1, e2, . . .q and p1; e1, e2, . . .q the limits of pt; e1, e2, . . .q as
t Ñ 0 and t Ñ 1, respectively. It follows from the construction that
p1; e1, e2, . . .q is equal to p0; f1, f2, . . .q, where pf1, f2, . . .q is the image of
pe1, e2, . . .q under the adic transformation, provided pe1, e2, . . .q is not max-
imal. If pe1, e2, . . .q is maximal, then the point p1; e1, e2, . . .q is equal to
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pp, p, . . .q P X̂ where p is the common point of the loops of X . The same is
true for p0; e1, e2, . . .q if pe1, e2, . . .q is minimal.

We see that the space X̂ can be obtained from the product of r0, 1s with
the space of paths PpBσq by identifying p1; e1, e2, . . .q with p0; f1, f2, . . .q,
where pf1, f2, . . .q is the image of pe1, e2, . . .q by the adic transformation. It

is not hard to check that f̂σ expands the distances in the direction of the
unit interval and contracts them in the direction of PpBσq. �

The construction from Proposition 1.4.40 and its generalizations were
studied by R. F. Williams in [Wil67] and [Wil74].

The main feature of this approaches is that even if the map f ü X is
not an expanding covering in the sense of Definition 1.4.1, it is “eventually”
an expanding covering map.

R. F. Williams, for example, uses branched manifolds, i.e., spaces equal
to unions of closed pieces of Rn pasted together in such a way that every
point still has one well defined tangent space. We will not give a precise
definition, but note that the above example of a rose of loops in Proposi-
tion 1.4.40 is a branced manifold (you should imagine it as a union of circles
tangent to each other at the common point). Then the expansion condition
can be defined in the same way as for manifolds (see Example 1.4.5). The
covering condition is replaced by a “flattening” condition: for every x P X
there exists k ¥ 1 and a neighborhood N of x such that fkpNq is contained
in a subset of X diffeomorphic to an open ball of Rn. Note that this con-
dition is satisfied for the example shown on Figure 1.28 with k � 1: the
image of a neighborhood of the singular point (the common point of the two
circles) under the map is a smooth interval equal to the union of one black
and one red half-intervals; it is trivially true for the interior points of the
loops.

The following more combinatorial version of Williams’ conditions (in the
one-dimensional case) are given in [Yi01].

Definition 1.4.41. Let Γ be a graph seen as a topological space (a one-
dimensional CW-complex) with a metric d compatible with the topology.
Consider the following conditions.

(1) Expansion: there exist constants C ¡ 0 and L ¡ 1 such that if
x, y are points on an edge of Γ, and fn, for n ¥ 1 maps the interval
rx, ys � Γ to an edge of Γ, then dpfnpxq, fnpyqq ¥ CLndpx, yq.

(2) Markov: The set V of vertices of Γ is forward-invariant: fpV q �
V .

(3) Nonfolding: The map fn : ΓzV ÝÑ ΓzV is locally one-to-one for
every n ¥ 1.
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(4) Flattening: There exists k ¥ 1 such that for every x P Γ there
exists an open neighborhood N of x such that fkpNq is homeomor-
phic to an open interval.

It is proved in [Yi01] that if f ü Γ satisfies the conditions of Defini-

tion 1.4.41, then the natural extension f̂ ü Γ̂ is a Ruelle-Smale system. (The
paper includes additional irreducibility and non-wandering conditions.)

More general conditions are given in S. Wieler’s paper [Wie14]. We
present here a modified version.

For an entourage U and x P X , we denote by BpU, xq the “ball of radius
U” with center in x:

BpU, xq � ty P X : px, yq P Uu.
Theorem 1.4.42. Let f ü X be a map, where X is compact and Hausdorff.
Suppose that the following conditions hold:

(1) Eventual expansion: There exists an entourage U and a number
k ¥ 1 such that if pfnpxq, fnpyqq P U for all n ¥ 0, then fkpxq �
fkpyq.

(2) Eventually open map: For every entourage U there exists an
entourage V � U and k ¥ 1 such that for every x P X we have
fkpBpfkpxq, V qq � f2kpBpx, V qq.

Then the natural extension f̂ ü X̂ is a Ruelle-Smale system.

Proof. Let us prove at first that the first condition implies that the nat-
ural extension is expansive. The proof essentially repeats the proof of
Proposition 1.4.35. Consider the entourage Û � X̂ � X̂ consisting of all
pairs ppx1, x2, . . .q, py1, y2, . . .qq such that px1, y1q P U . Suppose that ξ �
px1, x2, . . .q and ζ � py1, y2, . . .q are such that pf̂npξq, f̂npζqq P Û for all
n P Z. Then we have pfnpxiq, fnpyiqq P U for all n ¥ 0 and i ¥ 1. It follows
from eventual expansion of f that fkpxiq � fkpyiq, hence xi�k � yi�k for

all i ¥ k. The latter implies that ξ � ζ, i.e., that f̂ is expansive.

Let us prove now that the map r�, �s from Definition 1.4.23 is defined

on a neighborhood of the diagonal of X̂ � X̂ , if the map f ü X satisfies
both conditions of the theorem. Let U be an entourage satisfying the first
condition of the theorem, and let V be an entourage satisfying the second
condition and such that V � U and fpV q � U . We can replace f by fk, so
it is enough to prove the statement for the case k � 1.

Let ξ � px1, x2, . . .q and ζ � py1, y2, . . .q be points of X̂ such that
pxi, yiq P V for i � 1 and i � 2.

Let us construct by induction a sequence y1i such that pxi, y1iq P V
and f2py1i�1q � fpy1iq for all i ¥ 1. Set y11 � y1 and y12 � y2. Then
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since y1i P Bpxi, V q � Bpfpxi�1q, V q, we have fpy1iq P fpBpfpxi�1q, V qq �
f2pBpxi�1, V qq. It follows that we can choose y1i�1 P Bpxi�1, V q such that

f2py1i�1q � fpy1iq. Denote y2i � fpy1i�1q. Then we have fpy2i�1q � f2py1i�2q �
fpy1i�1q � y2i , y

2
1 � fpy12q � fpy2q � y1, and pxi, y2i q � pfpxi�1, fpy1i�1qq P

fpV q � U for all i ¥ 1.

We have found a point ζ2 � py21 , y22 , . . .q P X̂ such that y21 � y1 and
pxi, y2i q P U for all i. We have rξ, ζs � ζ2 (check the order....), hence r�, �s
is defined on a neighborhood of the diagonal, i.e., f̂ ü X̂ is a Ruelle-Smale
system. �

S. Wieler proved in [Wie14] that for every Ruelle-Smale system g ü S
with totally disconnected stable direction there exists a map f ü X on a
compact metric space X satisfying the conditions of Theorem 1.4.42 such
that f̂ ü X̂ is conjugate to g ü S.

Example 1.4.43. Consider a map f ü X defined on a domain in R2 as
it is schematically shown on the left-hand side of Figure 1.29. We can
choose f in such a way that it is contracting along an f -invariant foliation
consisting of vertical lines in the orange rectangle and radial lines in the
semi-annular shapes. We also may assume that iterations of f are expanding
in a transversal foliation, so that the intersection of the ranges of fn is a
hyperbolic set in the sense of 1.4.8.3. This set is locally maximal, and is
called the Plykin attractor [Ply74].

If we collapse the domain of f along the leaves of the stable foliation, i.e.,
collapse the orange rectangle to a horizontal segment, and the semianular
regions to loops, we will get a graph shown on the top part of the right-
hand side of Figure 1.29. Since the foliation is f -invariant, f induces a
well-defined self-map of the graph, as it is shown schematically on the lower
part of the right-hand side of the figure. This map satisfies the conditions
of Definition 1.4.41, and its natural extension is topologically conjugate to
the Plykin attractor.

Example 1.4.44. DA attractor...

1.4.11. Symbolic encoding and shadowing. Let H y X1 and H y X2

be topological dynamical systems, where H is a semigroup. Recall that a
semiconjugacy from the first system to the second one is a continuous map
φ : X1 ÝÑ X2 such that

φphpxqq � hpφpxqq
for all x P X1 and h P H. If there exists a surjective semiconjugacy φ :
X1 ÝÑ X2, then H y X2 is called a factor of H y X1.

The kernel of the semiconjugacy is the set

Eφ � tpx, yq P X 2
1 : φpxq � φpyqu.
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Figure 1.29. Plykin attractor and its one-dimensional model

It is a subset of X 2
1 invariant under the diagonal action of H: if px, yq P Eφ,

then phpxq, hpyqq P Eφ. We consider the kernel as the topological dynamical
system H y Eφ.

Definition 1.4.45. We say that a system H y X is finitely presented if
there exists a subshift of finite type H y S, S � XH , and a surjective
semiconjugacy φ : S ÝÑ X such that the kernel H y Eφ is also a shift of

finite type. Here we naturally identify XH � XH with pX � XqH , so that
Eφ � pX� XqH .

The terminology is attributed to M. Gromov... references...

Proposition 1.4.46. Let H y S � XH be a subshift, and let φ : S ÝÑ X
be a surjective semiconjugacy to a dynamical system H y X . If H y X
is expansive, then the kernel H y Eφ is a subshift of relative finite type in
H y S � S.

For the notion of relative finite type, see Definition 1.2.13.

Proof. Let U � X �X be an expansion entourage. Consider its full preim-
age φ�1pUq � S � S. We have Eφ � φ�1pUq. Since Eφ is compact, and
S � S is zero-dimensional, there exists a clopen set U 1 � S � S such that
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Eφ � U 1 � φ�1pUq. Let us prove that Eφ �
�
hPH h

�1pU 1q. We obviously
have Eφ �

�
hPH h

�1pU 1q, since Eφ � U 1 and Eφ is H-invariant. Suppose
that pw1, w2q P h�1pU 1q for all h. Then phpw1q, hpw2qq P U 1 � φ�1pUq for
all h P H, hence phpφpw1qq, hpφpw2qqq P U for all h P H, which implies
φpw1q � φpw2q, i.e., pw1, w2q P Eφ. This proves that Eφ is of relative finite
type in S � S. �

Example 1.4.47. A subshift F � XZ is called sofic if there exists a shift of
finite type F̃ � YZ and a surjective semi-conjugacy F̃ ÝÑ F . It follows from
Proposition 1.4.46 that every sofic subshift is finitely presented. Consider,
for example, the even subshift F � t0, 1uZ consisting of all sequences pxnqnPZ
such that there is an even number of 1s between any two consecutive 0s. It
is nor hard to show that it is not a shift of finite type (exercise ...). On

the other hand, if F̃ is the shift of finite type consisting of all sequences
pxnqnPZ P t0, 1uZ with no subword 11, then the sliding block map defined by

p00q ÞÑ 0, p01q ÞÑ 1, p10q ÞÑ 1 maps F̃ surjectively to F . Exercise... describe
Eφ in this case...

Example 1.4.48. Let f ü R{Z be the angle doubling map x ÞÑ 2x
pmod 1q. We have seen in 1.1.2 that it admits a surjective semiconjugacy
t0, 1u� ÝÑ R{Z from the one-sided full shift. The system f ü R{Z is expan-
sive, therefore it follows from Proposition 1.4.46 that it is finitely presented.
Check that the corresponding kernel is of finite type...

It follows from Proposition 1.4.46 that a system H y X is finitely
presented if and only if it is expansive and is a factor of a shift of finite type.
The following approach to factors of shifts of finite type is due to R. Bowen,
see...

Definition 1.4.49. Let H be a semigroup generated by a finite set S � H
(our main examples will beH � N andH � Z with S � t1u), and letH y X
be an action on a metric space. We say that a sequence h ÞÑ xh : H ÝÑ X
is an ε-pseudo-orbit if

dpspxhq, xshq   ε

for all h P H and s P S.

We say that a system H y X satisfies the shadowing property if for
every δ ¡ 0 there exists a positive number ε ¡ 0 such that for every ε-
pseudo-orbit xh there exists a point y P X such that dpxh, hpyqq   δ for all
h P H.

Picture of a pseudo-orbit...

Proposition 1.4.50. Every Ruelle-Smale system satisfies the orbit shad-
owing property.
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Proof. Let xn, n P Z be an ε-pseudo-orbit for a Ruelle-Smale system f ü X ,
where ε will be selected later. We assume that the metric d on X belongs
to the canonical class of metrics ... Let λ P p0, 1q be as in the definition
... Let δ be such that the δ-neighborhood every point of X is contained
in a rectangle. We assume that ε   δ. Choose for every n a rectangle Rn
containing the δ-neighborhood of xn.

Let us choose a metric dn on Rn equal to the direct product metric of
the expanding and the contracting directions:

dnpx, yq � maxtdprxn, xs, rxn, ysq, dprx, xns, ry, xnsqu.
This metric is compatible with the topology on Rn (in fact, it is bi-Lipschitz
equivalent to d).

Define x�n,0 � xn and then inductively, for k ¥ 0,

x�n,k�1 � rx�n,k, fpx�n�1,kqs.
Then all x�n,k belong to the stable plaque of xn, and we have

dpx�n,k, x�n,k�1q ¤ λdpx�n�1,k�1, x
�
n�1,kq,

see Figure... It follows that there exists C ¡ 0 such that dpx�n,k, x�n,k�1q ¤
Cδλk for all k for some C depending only on the metric d. It follows that
the sequence x�n,k, k � 1, 2, . . . converges, provided all x�n,k are defined. Each

point x�n,k and the limit are on the distance not more than Cε
1�λ from xn. It

follows that if ε is small enough, the points x�n,k are defined and converge

in Rn. Let x�n be its limit. Note that it follows from the definitions that
rx�n�1, fpx�n qs � x�n�1.

Changing the direction, we will find a sequence x�n,k satisfying x�n,k�1 �
rf�1px�n�1,kq, y�n,ks � rf�1px�n�1,kq, xns and converging to a point x�n on dis-

tance not more than Cε
1�λ from xn. We will also have rf�1px�n q, x�n�1s � x�n�1.

Then yn � rx�n , x�n s is an orbit such that dpxn, ynq ¤ 2Cε
1�λ for all n. �

Proposition 1.4.51. Suppose that H y X is an expansive dynamical sys-
tem on a compact metric space satisfying the shadowing property. Then
H y X is a factor of a shift of finite type, and hence is finitely presented.

Corollary 1.4.52. Every Ruelle-Smale system is finitely presented.

Proof. Let δ ¡ 0 be a number less than half of the expansivity constant ...
Let ε ¡ 0 be the corresponding constant from Definition 1.4.49. Let N � X
be a finite ε-net. Consider the set S � NH consisting of all ε-pseudo-orbits,
i.e., all sequences w : H ÝÑ N such that dpspwphqq, wpshqq   ε for every
h P H, s P S. It is a topological Markov shift, see... In particular, it is a
shift of finite type. For every w P S, by Definition 1.4.49, there exists y P X
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such that dpwphq, hpyqq   δ. Define φpwq � y. Note that if y1 is another
point satisfying this condition, then dphpyq, hpy1qq   2δ for all h P H, hence
y � y1, by expansivity.

We get a well defined map φ : S ÝÑ X such that φphpwqq � hpφpwqq
for all w P S and h P H. The map φ is surjective, since for every y P X and
h P H we can choose wphq such that dpwphq, hpyqq   ε. It is continuous,
since if w1, w2 P S are such that w1phq � w2phq for all h P A for a set A � H,
then dphpφpw1qq, hpφpw2qqq   2ε for all h P A. By increasing A, we can get
an arbitrarily small upper estimate of dpφpw1q, φpw2qq, by Lemma 1.2.7. It
follows that φ : S ÝÑ X is a surjective semiconjugacy. �

Example 1.4.53. We have seen that the binary solenoid from 1.1.4 has a fi-
nite presentation given by the semiconjugacy from the two-sided shift t0, 1uZ.
The corresponding kernel consists of the diagonal, the pair p. . . 111 . . . , . . . 000 . . .q,
and all the pairs of the form p. . . xn�1xn0111 . . . , . . . xn�1xn1000 . . .q. It is
easy to check that this set is a subshift of finite type.

Suppose that φ : F ÝÑ X is a surjective semi-conjugacy from a subshift
of finite type s ü F � XZ to a Ruelle-Smale system f ü X . Consider
the cylindrical subsets Cx � tpxnqnPZ P F : x0 � xu for x P X. If
the corresponding subsets φpCxq have disjoint interiors, then we say that
tφpCxqu is a Markov partition of f ü X . Note that the subshift F is
uniquely determined by the Markov parition. Namely, for every generic
t P X the point fnptq belongs to the interior of a unique element Cxn of
the Markov partition for every n P Z (by Bair’s Category Theorem). The
sequence pxnqnPZ is the itinerary of t, and we obviously have φppxnqnPZq � t.
Then F is equal to the closure of the set of such itineraries. The subshift F
can be seen as a result of “cutting” X along the boundaries of the elements
of the Markov partition, and then propagating the cuts by the dynamics,
similarly to what we did with an irrational rotation in 1.3.1.2 (compare it
with the definition of Xθ in Proposition 1.2.37).

It was proven by R. Bowen that every Ruelle-Smale system has a Markov
partition, see [Bow70] (he proved it for hyperbolic sets of diffeomorphisms,
but the proof of the general statement is the same).

The class of finitely presented actions of Z is wider than the class of
Ruelle-Smale systems. The following theorem of D. Fried [Fri87] clarifies
the relation between these two classes.

Theorem 1.4.54. An expansive system f ü X is finitely presented if and
only if X can be covered by a finite number of closed rectangles.

Here a rectangle is a subset R � X such that the operation r�, �s given in
Definition 1.4.23 is defined and continuous on R�R and takes values in R.
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Example 1.4.55. Consider the Arnold’s Cat map f ü R2{Z2 defined by

the matrix

�
2 1
1 1



. Note that fp�xq � �x, so f induces a well defined

homeomorphism of the space obtained from the torus by identifying every
element x P R2{Z2 with �x. This space is homeomorphic to the sphere, and
can be visualized as a result of folding the rectangle r0, 1{2s � r�1{2, 1{2s
into a square pillow, see Figure..., where the foliation by the stable and
unstable equivalence classes (manifolds) are shown... Show the partition
into a finite number of rectangles... This is an example of a pseudo-Anosov
diffeomorphism, see...

Example 1.4.56. Consider the even subshift F from Example 1.4.47. It
is the set of all sequences pxnqnPZ P t0, 1uZ such that there is an even num-
ber of 1s between any two consecutive 0s. Let R0 and R1 be the sets
of sequences pxnqnPZ such that the number of leading 1s of x0x1x2 . . . is
even and odd, respectively (where infinity is considered to be even and
odd). If w1 � pxnqnPZ, w2 � pynqnPZ P Ri, then the sequence rw1, w2s �
. . . y�2y�1 . x0x1x2 . . . belongs to Ri � F . It follows that F is a union of
two closed rectangles R0 and R1. Their intersection is the set of all sequences
pxnqnPZ P F such that x0x1x2 . . . � 111 . . ..

1.4.12. Structural stability. Corollary 1.4.52 implies that Ruelle-Smale
systems can be described, up to topological conjugacy, by a finite amount of
information: by a shift of finite type F and a shift of finite type E � F�F . A
shift of finite type is, by definition, described by a finite number of prohibited
subwords. In particular, there only countably many Ruelle-Smale systems,
up to topological conjugacy. The same is true for expanding self-coverings
(write more above)...

In other words, hyperbolic dynamical systems are essentially combina-
torial objects. One of aspects of the combinatorial nature of hyperbolic
dynamical systems is their rigidity, or structural stability. It can be formu-
lated, for example in the following way.

Theorem 1.4.57. Let f ü X be a Ruelle-Smale system, and let d be a
metric on X . Then there exists ε ¡ 0 such that if f 1 ü X is another Ruelle-
Smale system such that dpfpxq, f 1pxqq   ε for all x P X , then f ü X and
f 1 ü X are topologically conjugate.

Proof. (Sketch.) If dpfpxq, f 1pxqq   ε for all x P X , then the f -orbit
pfnpxqqnPZ is an ε-pseudo-orbit for f 1, since we have dpf 1pfnpxqq, fn�1pxqq �
dpf 1pfnpxqq, fpfnpxqqq   ε. By Proposition 1.4.50, for every δ ¡ 0 we can
find ε ¡ 0 such that if f and f 1 satisfy the condition of the theorem for ε,
then for every x P X there exists x1 P X such that dppf 1qnpx1q, fnpxqq   δ for
all n P Z. If δ is smaller than the expansivity constant for f 1, the point x1 is
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unique. Consider the map φ : x ÞÑ x1. It follows from the definition that φ is
a semiconjugacy from f ü X to f 1 ü X . On the other hand, x and x1 play
the same role in the definition, so it follows from the uniqueness that φ is a
bijection conjugating the systems. It remains to show that φ is continuous.
This can be deduced from the proof of Proposition 1.4.50, where the orbit
shadowing a pseudo-orbit was constructed as yn � rx�n , x�n s, where x�n and
x�n were constructed as limits of sequences defined using the map and the
operation r�, �s. Using uniform continuity of f , f 1, and r�, �s, one can show
that φpxq depends continuously on x. �

Structural stability suggests that one should be able to describe and
study hyperbolic dynamical systems using some algebraic or combinatorial
techniques. Finite presentations and symbolic dynamics is in some sense
such technique, though it is not easy to work with it, and to deduce topo-
logical properties of a dynamical system from its symbolic presentation. We
will see later in Chapter 4 that there exists an algebraic approach to ex-
panding covering maps, which have computationally efficient encoding by a
self-similar group (or a biset). A similar encoding of Ruelle-Smale systems
is still missing...

1.5. Holomorphic dynamics

Here we present a very short collection of classical introductory results in
holomorphic dynamics, which will be used later. For a more detailed expo-
sition, see the books [Mil06, Bea91]...

1.5.1. Preliminaries from complex analysis.

Theorem 1.5.1 (Uniformization Theorem). Any simply connected Rie-
mann surface (i.e., a one dimensional smooth complex manifold) is con-
formally isomorphic to exactly one of the following surfaces.

(1) The Riemann sphere pC.

(2) The (Euclidean) plane C.

(3) the open unit disc D � tz P C : |z|   1u, or, equivalently, the
upper half plane H � tz P C : =z ¡ 0u.

Theorem 1.5.2 (Schwarz Lemma). If f ü D is holomorphic and fp0q � 0,
then |f 1p0q| ¤ 1. If |f 1p0q| � 1, then f is a rotation z ÞÑ cz about 0 (for
|c| � 1). If |f 1pzq|   1, then |fpzq|   |z| for all z � 0.

As a corollary we get

Theorem 1.5.3 (Liouville Theorem). If f ü C is holomorphic and bounded,
then it is constant.
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The automorphism groups (i.e., groups of bi-holomorphic automorphisms)
of the simply connected Riemannian surfaces are as follows:

(1) AutppCq is the group of all Möbius transformations z ÞÑ az�b
cz�d for

a, b, c, d P C such that

���� a b
c d

���� � 0. It is isomorphic to PSLp2,Cq.
(2) AutpCq is the group of all affine transformations z ÞÑ az � b for

a, b P C, a � 0.

(3) AutpHq is the group of all transformations z ÞÑ az�b
cz�d , where a, b, c, d P

R are such that

���� a b
c d

���� ¡ 0. It is isomorphic to PSLp2,Rq. Ev-

ery automorphism of D is of the form z ÞÑ eiθ z�a1�az , where θ P R,

|a|   1.

If S is a connected Riemann surface, then its universal covering rS is

one of the simply connected surfaces pC,C,D, and the fundamental group

π1pSq acts on rS by conformal automorphisms. We say that S is Euclidean

or hyperbolic, if rS is isomorphic to C or D, respectively.

Note that the action of π1pSq on rS is fixed point free. Since every non-
identical Möbius transformation has a fixed point, the only surface with

universal covering pC is the sphere pC itself.

Any transformation z ÞÑ az � b for a � 1 has a fixed point, hence in
the Euclidean case the fundamental group acts on the universal covering C
by translations. It is easy to see that this implies that a Euclidean surface
is isomorphic either to the cylinder C{Z, or to a torus C{Λ, where Λ is
the subgroup of the additive group of C generated by two non-zero com-
plex numbers a, b such that a{b R R. All the other Riemann surfaces are
hyperbolic.

It is a direct corollary of the Liouville theorem that every holomorphic
map from C to a hyperbolic surface is constant (since we can lift it to the
universal covering). In particular, every holomorphic map f ü C such that
Cr fpCq has more than one point is constant (Picard’s Theorem).

Theorem 1.5.4 (Poincaré metric). There exists a unique Riemannian met-
ric (up to multiplication by a constant) on D invariant under every conformal

automorphism of D. It is given by ds � 2|dz|
1�|z|2 . Every orientation preserving

isometry of D is a conformal automorphism.

Every hyperbolic surface S has then a unique Poincaré metric coming

from the Poincaré metric on the universal covering rS � D of S (since the

fundamental group π1pSq acts on rS by conformal automorphisms).

The following is a corollary of Schwarz Lemma.
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Theorem 1.5.5 (Pick Theorem). Let f : S ÝÑ S1 be a holomorphic map
between hyperbolic surfaces. Then exactly one of the following cases is taking
place.

(1) f is a conformal isomorphism and an isometry with respect to the
Poincaré metrics.

(2) f is a covering map and is a local isometry.

(3) f is strictly contracting, i.e., for every compact set K � S there
is a constant cK   1 such that dpfpxq, fpyqq ¤ ckdpx, yq for all
x, y P K.

1.5.2. Fatou and Julia sets.

Definition 1.5.6 (Compact-open topology). Let X be a locally compact
space, and let Y an arbitrary topological space. Compact open topology on
the space MappX ,Yq of continuous maps X ÝÑ Y is given by the basis of
neighborhoods of a map f : X ÝÑ Y consisting of sets

NK,εpfq � tg PMappX ,Yq : dpfpxq, gpxqq   ε for all x P Ku
where K � X is compact and ε ¡ 0.

In fact, the compact-open topology does not depend on the metric on Y.
Convergence in the compact-open topology is called the uniform convergence
on compact subsets.

Definition 1.5.7. A set F of holomorphic functions from a Riemann surface
S to a compact Rieman surface T is called a normal family if its closure is
compact in MappS, T q. In the case when T is not compact, we replace T by
its one-point compactification.

Thus, a family F � HolpS, T q is normal if every sequence fn of ele-
ments of F has either a subsequence fnk convergent uniformly on compact
subsets, or a subsequence fnk converging to infinity uniformly on compact
subsets (i.e., such that for all compact K1 � S and K2 � S the intersection
fnkpK1q XK2 is empty for all k big enough).

Definition 1.5.8. Let f ü pC be a rational function. The Fatou set of f is

the set of points z P pC such that there exists a neighborhood U of z such

that f�n : U ÝÑ pC, for n ¥ 0, is normal. The complement of the Fatou set
is called the Julia set.

Example 1.5.9. Consider the function fpzq � zn for n ¥ 2. If |z0|   1,
then fnpzq uniformly converges on a neighborhood of z0 to the constant 0
function, hence z0 belongs to the Fatou set. If |z0| ¡ 1, then fnpzq uniformly
converges to 8 on a neighborhood of z0, hence z0 also belongs to the Fatou
set in this case. On the other hand, if |z0| � 1, then for any neighborhood U
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of z0 and any sequence nk Ñ 8 the sequence fnk : U ÝÑ pC does not have
a continuous limit. Consequently, the Julia set of zn is the unit circle.

It easily follows from the definitions that the Julia set J is totally in-
variant, i.e., fpJq � J � f�1pJq. The Julia sets of f and fn coincide. It is
always non-empty (unless f is a Möbius transformation) and compact. On
the other hand, the Fatou set can be empty.

Another possible definition of the Julia set is given by the following
theorem (see, for instance [Mil06, Theorem 14.1].

Theorem 1.5.10. Let fpzq be a rational function of degree ¡ 1. Then the
Julia set of f is equal to the closure of the union of its repelling cycles.

Here a cycle z0 � fpzn�1q, z1 � fpz0q, z2 � fpz1q, . . . , zn�1 � fpzn�2q
is called repelling if the multiplier dfnpzq

dz

���
z�zi

� f 1pz0qf 1pz1q � � � f 1pzn�1q is

greater than one in absolute value. It is called attracting if the multiplier is
less than one in absolute value.

A Fatou component of a rational function fpzq is a connected component
of the Fatou set of f . If U is a Fatou component, then fpUq is also a Fatou
component. By D. Sullivan’s Nonwandering Theorem... the forward orbit of
every Fatou component is finite, i.e., eventually belongs to a cycle. It follows
that every Fatou component is a branched covering of a Fatou component
fixed under some iteration of f . The fixed Fatou components are classified
in the following way.

Theorem 1.5.11. Let U be a Fatou of f such that fpUq � U . Then one of
the following four cases takes place.

(1) U is the immediate basin of attraction of an attracting fixed point.

(2) U is one petal of a parabolic fixed point of multiplier 1.

(3) U is a Siegel disc.

(4) U is a Herman ring.

Here the immediate basin of attraction of a fixed point z0 is the con-

nected component containing z0 of the set of points z P pC such that limnÑ8 fnpzq �
z0. Similarly, if z0 is a fixed point such that f 1pz0q � 1, then there is a Fatou
component, called a petal of points whose forward orbits converge to z0. A
Siegel disc is an open domain such that the action of f on it is biholomor-
phically conjugate to an irrational rotation of a disc. Similarly, a Herman
ring is domain the action of f on which is conjugate to an irrational rotation
of an annulus. For more detail, see [Mil06], in particular Section 16.

1.5.3. Hyperbolic rational functions.
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Definition 1.5.12. A rational function f is hyperbolic if it is expanding on
a neighborhood of its Julia set.

Hyperbolic rational functions are important examples of expanding dy-
namical systems in the sense of Definitions 1.4.1 and 1.4.2.

A post-critical set of f is the set of all points of the form fnpcq, where c
is a critical point of f , and n ¥ 1.

Theorem 1.5.13. Let f be a rational function of degree ¥ 2. Then the
following conditions are equivalent.

(1) f is hyperbolic.

(2) The closure of the post-critical set of f is disjoint from its Julia
set.

(3) The orbit of every critical point converges to an attracting cycle.

Sketch of the proof. It is easy to see that (3) implies (2), since basins of
attraction belong to the Fatou set. Let us show only that (2) implies (1) in

the case when P has more than two points. Then X � pCrP is a hyperbolic
surface containing the Julia set. Note that fpP q � P , hence f�1pX q � X .
The map f : f�1pX q ÝÑ X is a covering. Consider the Poincaré metrics on
X and f�1pX q. The map f is a local isometry with respect to these metrics.
The inclusion map Id : f�1pX q ÝÑ X is not a covering map, hence it is
strictly contracting, see Theorem 1.5.5. It follows that if we consider the
restriction of the Poincaré metric of X onto the subset f�1pX q, then the
map f : f�1pX q ÝÑ X is expanding. Since the Julia set is compact and
contained in f�1pX q, the map f will be uniformly expanding on the Julia
set.

If closure of the post-critical set has less than three points, then they

belong to attracting cycles, and we can take X equal to pC minus a small
neighborhood of P , and repeat the proof.

Let us show that (1) implies (2). Let W be a neighborhood of the Julia
set J such that f is expanding on W . Taking an ε-neighborhood of J in W ,
we get an open neighborhood U of J such that f is expanding on U , and
f�1pUq � U . Then f�npUq � U for all n ¥ 1. The set U does not contain
critical points of f , since otherwise f is not one-to-one, hence not expanding
on any neighborhood of a critical point. If c is critical, and fnpcq P U , then
c P f�npUq � U , which is a contradiction. Consequently, U does not contain
any post-critical points. This implies that intersection of U with the closure
of the post-critical set is empty.

The fact that (2) implies (3) follows from classification of components
of the Fatou set, see Theorem 1.5.11. �
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Figure 1.30. Julia set of a hyperbolic rational function

If f is a hypebolic rational function, then all its Fatou components belong
to the basins of attraction to attracting cycle. In other words, only the first
type in the classification of Fatou components in Theorem 1.5.11 is possible
in this case.

See examples of Julia sets of hyperbolic rational functions on Figure 1.30
and Figure 1.31.

1.5.4. Subhyperbolic rational functions. Post-critically finite rational
functions in general, orbifolds and orbifold metrics... (define using the uni-
versal cover and lengths of paths)...

1.5.5. Quadratic polynomials and the Mandelbrot set. Let fpzq be
a complex polynomial. Its critical points are zeros of the derivative and
the infinity. The infinity is totally invariant, i.e., fp8q � f�1p8q � 8
and superattracting. It follows that the basin of attraction of infinity is
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Figure 1.31. A Sierpinski carpet Julia set

connected. Points belonging to it escape to infinity. The filled Julia set of
the polynomial is the complement of the basin of attraction of infinity. In
other words, it is the set of points whose forward orbit is bounded. The
filled Julia set is compact. The Julia set is its boundary.....

Every quadratic polynomial is conjugate (by an affine transformation)
to a polynomial of the form z2 � c. It has only one finite critical point 0.

Theorem 1.5.14. The Julia set of z2 � c is connected if and only if the
orbit of the critical point 0 is bounded. Otherwise it is homeomorphic to the
Cantor set.

Proof. If the orbit of 0 is not bounded, then c belongs to the basin of infinity.
Consider a curve γ connecting c to infinity inside the basin of infinity. Then
f�1pγq disconnects the complex plane in two connected components, both
of which are homeomorphically mapped onto the complement of γ. Since
the Julia set of f is totally invariant, and does not intersect γ, it follows
that f�1pγq disconnects the Julia set J into two closed subsets J0 and J1

such that f : J0 ÝÑ J and f : J1 ÝÑ J are homeomorphisms....
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Figure 1.32. The Mandelbrot set

The main ideas of the proof... �

Definition 1.5.15. The Mandelbrot set M, see Figure 1.32, is the set of
points c such that the Julia set of z2 � c is connected. In other words, it is
the set of points c such that the orbit of 0 under the iterations of z2 � c is
bounded.

It is known, see... that the Mandelbrot set is connected, and that its
complement in the complex plane is homeomorphic to the complement of the
closed unit disc. External angles... rational angles, hyperbolic components,
their parametrization by the multiplier of the attracting cycle, Misiurewicz
points, external angles in the dynamical plane...

1.5.6. Lyubich-Minski lamination. The natural extension, leaves, con-
formal type of the leaves...
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Figure 1.33. Julia set of z2 � 1

Figure 1.34. Julia set of z2 � i

Figure 1.35. “Airplane” and “Rabbit”

Exercises

1.1. Prove that an action of a group G on a space X is minimal if and only
if the space of orbits GzX has trivial (i.e., antidiscrete) topology.

1.2. Let panqnPZ be the sequence defined in 1.1.1. Let dn be the number of
letters d in the sequence pa1, a2, . . . , anq. Find limnÑ8 dn

n .
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1.3. Find a number x P R{Z such that the closure of its orbit under the angle
doubling map is homeomorphic to the Cantor set.

1.4. Show that for the one-sided shift s ü Xω there is no nonempty proper
closed subset F � Xω such that s�1pF q � F .

1.5. Tent map and a semiconjugacy with the one-sided shift... Describe the
identifications...

1.6. Prove that the natural extension of the one-sided shift s ü Xω is topo-
logically conjugate to the two-sided shift ü XZ.

1.7. Prove Proposition 1.1.11.

1.8. Prove that a point of the torus is represented by at most three sequences
in the encoding of the map Aü R2{Z2 constructed in Subsection 1.1.5
for the Markov partition given in Figure 1.11.

1.9. Prove Proposition 1.2.3.

1.10. Prove that t0, 1uZ has uncountably many subshifts.

1.11. Prove that for every subshift of finite type F � XZ the union of finite
orbits is dense.

1.12. Let s ü F be a subshift of finite type. Let pn be the number of points w P
F such that snpwq � w. Prove that the formal power series

°8
n�0 pnx

n

is a rational function.

1.13. Prove that the intersection of two shift of finite type is a shift of finite
type.

1.14. Let x0x1x2 . . . � 01101 . . . be the Thue-Morse word from Example 1.2.21.
Prove that xn is equal to the sum modulo 2 of the digits of the binary
expansion of n.

1.15. Let x0x1x2 . . . be, as in the previous problem, the Thue-Morse sequence.
Let A and B be the sets of numbers i � 0, 1, 2, . . . such that xi � 0
and xi � 1, respectively. Prove that for every k � 1, 2, . . ., the sets
Ak � A X t0, 1, 2, . . . , 2k�1 � 1u and Bk � B X t0, 1, 2, . . . 2k�1 � 1u
satisfy

°
xPAk x

d � °
xPBk x

d for all d � 0, 1, 2, . . . , k. (solve...)

1.16. Prove that the Thue-Morse word is cube-free, i.e., that it has no subwords
of the form vvv for a non-empty v P t0, 1u�.

1.17. Show that the Fibonacci substitutional shift is palindromic...

1.18. Prove that every Sturmian subshift is palindromic...

1.19. Let A be a dense countable subset of r0, 1s disjoint from t0, 1u. Replace
every point a P A by two copies a� 0 and a� 0 with the natural order
on the obtained set X . Prove that X is homeomorphic to the Cantor
set with respect to the order topology.
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1.20. Consider the substitution

σ : a ÞÑ aca, b ÞÑ d, c ÞÑ b, d ÞÑ c

from [Lys85]. Show that it generates a minimal subshift. Find a prim-
itive substitution generating a conjugate subshift.

1.21. Prove that the subshift from the previous problem is Toeplitz.

1.22. Paper folding sequence... Prove that it is Toeplitz.

1.23. Let σ : X� ÝÑ X� be a substitution such that for every x P X the word
σpxq is non-empty (such substitutions are called non-erasing). Let βS
be a block code (see ...), and let Fσ be the subshift defined by the
substitution σ. Prove that βSpFσq is a substitutional subshift.

1.24. Let W be a non-empty set of words. Show that W is the set of all finite
subwords of elements of a subshift F � XZ if and only if the following
conditions are satisfied. (1) Every subword of an element of W belongs
to W . (2) For every v P W there exists a word v1vv2 P W , where
v1, v2 P X� are non-empty.

Formulate a similar criterion for one-sided subshifts.

1.25. We say that a dynamical system Z y X is essentially minimal if there
exists a unique closed Z-invariant set Y � X such that Z y Y is mini-
mal. Prove that a dynamical system Z y X , where X is totally discon-
nected compact and metrizable, is essentially minimal if and only if there
exists a properly ordered Vershik-Bratteli diagram B such that Z y X
is topologically conjugate to the system generated by the adic transfor-
mation on PpBq. In other words, prove Theorem 1.3.20 for essentially
minimal systems without the condition that B is simple.

1.26. Let Gy R{Z be an action of a group on the circle by homeomorphisms.
Prove that either Gy R{Z has a finite orbit, or Gy R{Z is essentially
minimal. Give an example of an action Z y R{Z that has no finite
orbits but is not minimal.

1.27. Prove the statement of Example 1.3.9, i.e., construct and explicit isomor-
phism of the direct limit with the group of continuous maps PpBq ÝÑ G.

1.28. Find a properly ordered Vershik-Bratteli diagram realizing the Lysenok
subshift from Propblem 20.

1.29. Suppose that B is a properly ordered Vershik-Bratteli diagram such that
the sizes of the sets of vertices Vi and the sets of edges Ei are uniformly
bounded, and the adic transformation generates an expansive Z-action.
Show then that the complexity pF pnq of the adic transformation (see
Definition 1.2.28) is bounded from above by a linear function. (Hint:
generalize the proof of Theorem 1.2.34.)
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1.30. Prove the converse S. Ferenczi, Rank and symbolic complexity, Ergodic
Theory Dyn. Systems 16 (1996) 663–682....

1.31. Complexity of Toeplitz subshifts... (realizability of a particular class of
functions)...

1.32. Consider the sets of words W0 � t0n10m : n,m ¥ 0u, W1 � t1n01m :
n,m ¥ 0u, W2 � t0n1m : n,m ¥ 0u and W3 � t1n0m : n,m ¥ 0u.
Prove that if X is a countable subshift of complexity pX pnq � n � 1,
then there exists a finite sequence k1, k2, . . . , kn and i P t0, 1, 2, 3u such
that the WX � ψk1�1ψk2�1 � � �ψkn�1pWi Y t∅uq, where ψki�1 are as in
Theorem 1.3.36. (Such subshifts are called skew-Sturmian, see...).

1.33. Show that Toeplitz subshifts can have arbitrarily large repetitivity func-
tions...

1.34. Prove that the critical exponent αc (see Theorem 1.4.17) is infinite for
every one-sided subshift.

1.35. Find the critical exponent of the circle doubling map x ÞÑ 2x pmod 1q.
1.36. Prove that every map satisfying the conditions of Definition 1.4.41 sat-

isfies the conditions of Theorem 1.4.42.

1.37. Consider the following endomorphism σ of the free group

a ÞÑ b, b ÞÑ b�1cb, c ÞÑ cac�1.

Consider a rose X of three circles labeled by a, b, c, and a map f ü X
realizing the substitution σ similarly to Proposition 1.4.40, i.e., mapping
the circle labeled by x to the path σpxq in X . Choose a realization
such that iterations of f expand the lengths of paths in X . Show that
the natural extension f̂ ü X̂ is topologically conjugate to the Plykin
attractor (see Exampe 1.4.43).

1.38. Find the set of values of c P C such that z2 � c has an attracting fixed
point (i.e., a cycle of length 1).

1.39. Find the set of values of c P C such that z2 � c has an attracting cycle
of length 2.

1.40. Show that every repelling cycle belongs to the Julia set.

1.41. Consider the Tchebyshev polynomials Tdpxq � cospd arccosxq. Describe
the Julia sets of Td for d ¥ 1.

1.42. Let C{Zris be the torus, and let A ü C{Zris be the map given by
Apzq � p1 � iqz. Find the Julia set of A. Using the fact that any
holomorphic map f ü C{Λ on a torus is induced by a linear map on C,
describe all possible Julia sets of holomorphic maps on the torus.

1.43. Consider the group G of all maps of the form z ÞÑ p�1qkz � a � ib,
where k P t0, 1u, and a, b P Z. Show that C{G is homeomorphic to a
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sphere. Consider the map Apzq � p1� iqz. Show that it induces a well
defined map on the sphere C{G. Since the group G and the map A
act by holomorphic maps, there is a well defined structure of a complex
manifold on C{G, and A induces a holomorphic map on C{G, hence is
can be realized by a rational function. What is the Julia set of this
rational function?

1.44. Prove that fcpzq � 1 � c
z2

has a unique cycle of length 2 consisting of

the roots of the polynomial x2 � cx� c (except for the case c � 4 when
it degenerates to a fixed point). Show that this cycle is attracting if and
only if |c| ¡ 4.

1.45. Prove that the set of values c such that z ÞÑ 1� c
z2

has an attracting fixed
point is equal to the image of the open unit disc under the transformation
u ÞÑ 4u

p2�uq3 . It is the largest “cardioid” on Figure 6.7.

1.46. Let c P p�1,�4{27q, denote fcpxq � 1� c
x2

.
a) Prove that for every positive real number x we have fcpxq   x and

that there exists n such that f�nc pxq ¤ 0.
b) Prove that for every n ¥ 1 there exists cn such that the sequence

ak � f�kp1q satisfies 1 ¡ a1 ¡ a2 ¡ . . . ¡ an � 0.
c) Find the limit limnÑ8 cn.

1.47. Prove that every quadratic polynomial can be conjugated by an affine
map to z2 � c for some c.
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matics, ETH Zürich, Birkhäuser Verlag, Basel, 1993.

[BB17] James Belk and Collin Bleak, Some undecidability results for asynchronous
transducers and the Brin-Thompson group 2V , Trans. Amer. Math. Soc. 369
(2017), no. 5, 3157–3172.

[BBM17] J. Belk, C. Bleak, and F. Matucci, Rational embeddings of hyperbolic groups,
(preprint, arXiv:1711.08369), 2017.

[BCM�16] Collin Bleak, Peter Cameron, Yonah Maissel, Andrés Navas, and Feyishayo
Olukoya, The further chameleon groups of richard thompson and graham hig-
man: Automorphisms via dynamics for the higman groups gn,r, (preprint,
arXiv:1605.09302), 2016.

[Bea91] Alan F. Beardon, Iteration of rational functions. Complex analytic dynamical
systems, Graduate Texts in Mathematics, vol. 132, Springer-Verlag. New York
etc., 1991.
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[Röv99] Claas E. Röver, Constructing finitely presented simple groups that contain
Grigorchuk groups, J. Algebra 220 (1999), 284–313.

[Roz86] A. V. Rozhkov, On the theory of groups of Aleshin type, Mat. Zametki 40
(1986), no. 5, 572–589, 697. MR 886178



Bibliography 461

[Rub89] Matatyahu Rubin, On the reconstruction of topological spaces from their
groups of homeomorphisms, Trans. Amer. Math. Soc. 312 (1989), no. 2, 487–
538.

[Rue78] D. Ruelle, Thermodynamic formalism, Addison Wesley, Reading, 1978.

[Sav15] Dmytro Savchuk, Schreier graphs of actions of Thompson’s group F on the
unit interval and on the Cantor set, Geom. Dedicata 175 (2015), 355–372.

[Shu69] Michael Shub, Endomorphisms of compact differentiable manifolds, Am. J.
Math. 91 (1969), 175–199.

[Shu70] , Expanding maps, Global Analysis, Proc. Sympos. Pure Math., vol. 14,
American Math. Soc., Providence, Rhode Island, 1970, pp. 273–276.

[Sid00] Said N. Sidki, Automorphisms of one-rooted trees: growth, circuit structure
and acyclicity, J. of Mathematical Sciences (New York) 100 (2000), no. 1,
1925–1943.

[Sma67] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967),
747–817.

[Šun07] Zoran Šunić, Hausdorff dimension in a family of self-similar groups, Geome-
triae Dedicata 124 (2007), 213–236.

[Tho80] Richard J. Thompson, Embeddings into finitely generated simple groups which
preserve the word problem, Word Problems II (S. I. Adian, W. W. Boone,
and G. Higman, eds.), Studies in Logic and Foundations of Math., 95, North-
Holand Publishing Company, 1980, pp. 401–441.

[Thu12] A. Thue, über die gegenseitige lage gleicher teile gewisser zeichenreihen,
Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67.

[Vor12] Yaroslav Vorobets, Notes on the Schreier graphs of the Grigorchuk group,
Dynamical systems and group actions (L. Bowen et al., ed.), Contemp. Math.,
vol. 567, Amer. Math. Soc., Providence, RI, 2012, pp. 221–248.

[Wie14] Susana Wieler, Smale spaces via inverse limits, Ergodic Theory Dynam. Sys-
tems 34 (2014), no. 6, 2066–2092.

[Wil67] R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473–
487.

[Wil74] , Expanding attractors, Inst. Hautes Études Sci. Publ. Math. (1974),
no. 43, 169–203.

[Yi01] Inhyeop Yi, Canonical symbolic dynamics for one-dimensional generalized
solenoids, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3741–3767.


	Chapter 1. Dynamical systems
	1.1. Introduction by examples
	1.2. Subshifts
	1.3. Minimal Cantor systems
	1.4. Hyperbolic dynamics
	1.5. Holomorphic dynamics
	Exercises

	Chapter 2. Group actions
	2.1. Structure of orbits
	2.2. Localizable actions and Rubin's theorem
	2.3. Automata
	2.4. Groups acting on rooted trees
	Exercises

	Chapter 3. Groupoids
	3.1. Basic definitions
	3.2. Actions and correspondences
	3.3. Fundamental groups
	3.4. Orbispaces and complexes of groups
	3.5. Compactly generated groupoids
	3.6. Hyperbolic groupoids
	Exercises

	Chapter 4. Iterated monodromy groups
	4.1. Iterated monodromy groups of self-coverings
	4.2. Self-similar groups
	4.3. General case
	4.4. Expanding maps and contracting groups
	4.5. Thurston maps and related structures
	4.6. Iterations of polynomials
	4.7. Functoriality
	Exercises

	Chapter 5. Groups from groupoids
	5.1. Full groups
	5.2. AF groupoids
	5.3. Homology of totally disconnected étale groupoids
	5.4. Almost finite groupoids
	5.5. Bounded type
	5.6. Torsion groups
	5.7. Fragmentations of dihedral groups
	5.8. Purely infinite groupoids
	Exercises

	Chapter 6. Growth and amenability
	6.1. Growth of groups
	6.2. Groups of intermediate growth
	6.3. Inverted orbits and growth of wreath products
	6.4. Growth of fragmentations of D
	6.5. Non-uniform exponential growth
	6.6. Amenability
	Exercises

	Bibliography

