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Chapter 1

Dynamical systems

A topological dynamical system H ~ X is an action of a semigroup H on a
topolgical space X' by continuous transformations.

Classically, X' is the phase space, the semigroup H represents time, and
the action describes time evolution of the system. Accordingly, the acting
semigroup is typically a subsemigroup of the additive group of real numbers
(e.g., the semigroup of non-negative reals, the group of integers, or the
semigroup of natural numbers).

The subsequent chapters of the book will mostely deal with more “ex-
otic” groups. But even in such cases, the groups often will be associated
in a natural way to classical dynamical systems. The first section of this
chapter is a short overview of well known examples of dynamical systems.
It introduces concepts that will be developed and generalized in the later
parts of the book. The subsequent sections deal with more specialized top-
ics in dynamical systems: subshifts, minimal homeomorphisms of Cantor
sets, basic notions of hyperbolic dynamics, symbolic encoding of dynamical
systems, and basic facts of holomorphic dynamics.

1.1. Introduction by examples

1.1.1. Irrational rotation. Consider the circle R/Z of real numbers mod-
ulo 1. It can be naturally identified with the complex unit circle T' c C by
the map x — e>™%,

The circle R/Z is a group with respect to the addition. The above
identification of R/Z with the unit circle is an isomorphism of the additive
group R/Z with the multiplicative group 7.

1



2 1. Dynamical systems

Suppose that § € R/Z is irrational. Consider the corresponding rotation
Ry:x—xz+806.

It is a homeomorphism of the circle, hence it generates an action of the
infinite cyclic group Z by homeomorphisms. It is given by (n,x) — nf + z
for n € Z and x € R/Z.

The central topic of topological dynamics is the study of topological
properties of the orbits of a dynamical system H ~ X, i.e., the sets of the
form Hx = {hx : he H} for x € X. For example, we may be interested in
the cases when Hz is finite (or compact for a topological semigroup H), or
in properties of the closure of Hzx, etc.. If G is a group acting on a space X
by homeomorphisms, then it naturally defines the orbit equivalence relation
on X. It is given by

r~y<3dgeqG : g(x)=y.

The orbits of the action are the equivalence classes of this relation.

It is natural to consider then the set G\X (or X' /G for right actions)
of orbits of the action. We introduce on it the smallest (coarsest) topology
(i.e., topology with smallest set of open sets) for which the natural map
X — G\X is continuous. In other words, a subset A € G\ X' is open if and
only if its full preimage in X is open.

The space G\X is frequently non-Hausdorff. For example, the following
classical theorem of Kronecker [Kro84] implies that in the case of the ir-
rational rotation Ry the space of orbits of the action of Z on the circle has
trivial topology (i.e., the only open sets are the empty set and the whole
space).

Theorem 1.1.1. Every orbit {x +nf : n e Z} is dense in R/Z.

Proof. Denote, for a real number z, by frac(x) the fractional part of z, i.e.,
the unique number from the interval [0, 1) such that a — frac(a) € Z.

It is enough to prove that the orbit of 0 is dense in R/Z, since the orbit
of an arbitrary point o € R/Z is obtained from the orbit of 0 by the rotation
R,.

Consider an arbitrary positive integer N, and the arcs [0,1/N), [1/N,2/N),
...[(N —1)/N,1) of the circle R/Z. Since the orbit {frac(nf) : n € Z} is
infinite, there exist integers n; < ng such that frac(ni0) and frac(nq6) be-
long to the same arc. Then frac(|(ny — n2)0|) < 1/N. This proves that for
every € > 0 there exists n. € Z such that frac(n.f) < e. Then the difference
between consecutive entries of the sequence 0, frac(n.f), frac(2n.6), ... is less
than €, hence for every a € R/Z there exists k such that frac(|a—knef|) < e.
Consequently, the orbit of 0 is dense in R/Z. O
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Definition 1.1.2. An action H ~ X is minimal if every H-orbit Hzx is
dense in X.

It is easy to see that a group action G ~ & is minimal if and only if the
space G\X is antidiscrete.

Minimality is one of possible notions of irreducibility of topological dy-
namical systems, as the following lemma shows. (It also explains the origin
of the term “minimal”, which referred to minimal invariant closed subsets.)

Lemma 1.1.3. A system H ~ X is minimal if and the only closed subsets
Y c X such that h(Y) < Y for every h€ H are X and the empty set.

Proof. If H ~ X is not minimal, then there exists z € X such that the
orbit Hz is not dense. Then its closure ) = Hzx satisfies h(Y) c Y for all
h € H, and is not equal neither to X nor to .

In the other direction, if ) is H-invariant and closed, then for every
x € Y the closure of the orbit Hz is contained in ). So, if ) is non-emtpy
and different from X, then no H orbit of a point of ) is dense in X. O

The circle is the quotient of R by the natural action of Z, and the rotation
Ry is lifted to the action on R of the transformation x +— = + 6. The orbits
of the irrational rotation are therefore equal to the images under the natural
quotient map R — R/Z of the orbits of the action Z? ~ R generated by
the transformations  +— z + 1 and x — x + 6.

Consider the natural action Z? ~ R? generated by the transformations

a:(z,y)—(@+1ly), b:(zy—(z,y+1),
and consider the projection P : R?> — R given by P(z,y) = x + 0y. We
have P(a(v)) = P(¥) + 1 and P(b(¥)) = P(¥) + 6. In other words, the map
P projects the natural action Z? ~ R? to the action Z?> ~ R generated by
z—z+1land z— z+0.

Denote by @ the composition of P with the natural quotient R — R/Z.
The orbits of the rotation Ry G R/Z are the Q-images of the sets of the form
72 +v < R2. The segment [0, 1) = R is a natural fundamental domain of the
quotient map R — R/Z, and we can consider the part of Z? + v projected
by P to [0,1). Every point of the Rp-orbit of o € R/Z is represented then
by exactly one point of the set P~1([0,1)) n (Z2 + v) for v € Q ().

See Figure where an orbit of a point under a rotation is represented
in this way. The grid is the set Z? + v for some v € R%. The transformation
P is the projection onto the horizontal coordinate axis along lines parallel
to the slanted lines shown on the picture. The strip between the slanted
lines is the set P~1([0,1)). The points of the grid inside the strip represent
the points of the orbit of the rotation. The segments connecting neighboring
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v

Figure 1.1. Irrational rotation

points of the orbit represent the action of Rg. Let 6 € |0, 1) (which we always
can assume). Then for x € [0,1) the point Rg(x) is represented either by
x+6orbyx+6—1in[0,1). Therefore, on Figure we move from
the point representing x to the point representing Rg(x) either by adding
(0,1) or by adding (—1,1). One can see these two cases as two types of
edges of the broken line inside the strip on Figure the vertical edges
(corresponding to adding (0,1)) and the diagonal edges (corresponding to
adding (—1,1)).

We can record the shape of the broken line by writing a two-sided infinite
sequence

... dvvdvdvvdvdvvdvdovd . . .,

where d stands for “diagonal” and v for “vertical”. More formally, let z,, be
the point of [0,1) representing Ry (x) (i.e., z, = frac(x + n#)). Define the
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Figure 1.2. Angle doubling

sequence (an)nez by the rule

0 =1 if xpy1 =xn +6,
"ld ifrpg =, 01

We will study such sequences and their generalizations in subsequent
sections of the book (see and for example). A multi-dimensional
generalization of these sequences are quasi-crystals (see...) and, more gen-
erally, Cayley graphs of groupoids (see...).

1.1.2. Angle doubling map and one-sided shift. Consider the map
f:x v 2z (mod 1) on the circle R/Z. If we identify the circle R/Z with

the complex unit circle by the map = — 2™, then f becomes z — z2.

The map f G R/Z is a degree two covering. Every point € R/Z has
two preimages: x/2 and (z + 1)/2. Accordingly, as a dynamical system, we
consider it to be an action of the semigroup of non-negative integers. In
particular, the orbit of x is, by definition, the set {f"(z)}n—0,12,... Here I
is the identity map.

If = is a rational number, then f does not increase the denominator of
x (it either does not change it or divides it by 2). Since we always can
represent points of R/Z by points of [0, 1), it follows that the f-orbits of
rational points of R/Z are finite. Conversely, if z € R/Z has finite orbit,
then there exist positive integers m < n such that 2™z = 2"z (mod 1),
which implies that x is rational.

If x has a finite orbit under the action of a map f, then either x belongs

to a cycle (is periodic) and f acts on the orbit of x as a cyclic permutation,
or it is pre-periodic and the orbit contains two points of the form y/2 and
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(y+1)/2 mapped by f to the same point. In the first case there exists a non-
negative integer n such that f™(x) = x. The smallest such n is called the
period or the length of the cycle. We have then that 2"z = x (mod 1), hence
T = iy, so that z is a fraction with an odd denominator. Conversely, if
T = g for p,q € N, where ¢ is odd, then the orbit of x is finite and can not
be pre-periodic, since for every rational y one of the fractions y/2, (y +1)/2
has an even denominator. It follows that x belongs to an f-cycle if and only
if  is rational and has an odd denominator.

In the pre-perodic case there exist smallest n > 0 such that f™(z) belongs
to a cycle (i.e., has an odd denominator). We call this n the pre-period of
z. Then z is of the form 2%1, where p and ¢ are odd.

Let us represent the points of R/Z by their binary expansions. Namely,
a point x € R/Z is represented by a sequence .ajagas ... of zeros and ones
so that

]

Il
s
1\3‘5

(mod 1).
k=1

Denote by {0, 1}* the set of all infinite sequences of zeros and ones, and de-
note by @ : {0, 1} — R/Z the natural map given by the binary numeration
system:

P(araz...) = Z L (mod 1).

It is well known that the binary representation of real numbers is al-
most one-to-one, i.e., ® : {0,1}* — R/Z is almost a bijection. The only
ambiguity is

(1.1) .aias . ..a,10000... = .ajas...a,01111 .. ..

The space {0,1}* comes with a natural direct product topology. It is
defined by the basis of open sets consisting of all sets of the form

Calaz...an = {1'1732 ... E {0, 1}w D T1T2... Ty = A1y ... an},

called sometimes cylindrical sets. Note that the sets ®(Cy,q,..q4,) are closed

intervals of the form [2%, mTJ,gl] fork>0and 0 <m <2F—1.

A natural metric on {0, 1} is given by d(w;,w2) = 27", where n is the
maximal length of a common beginning of w; and we. It is easy to see that
we have |®(wq) — ®(w2)| < d(w1,ws), hence the map ® is continuous. As we
have seen above, ®~!(z) consists of one or two sequences, and all instances
when ® ! () has two elements are described by (L.1)). Namely, |®!(z)| = 2
if and only if x is of the form &7 for some natural numbers m and n.
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If ®(ajazas...) = x, then f(x) = ®(agasay ...). We get what is called a
semiconjugacy implemented by ® between two dynamical systems: f G R/Z
and the shift map s: ajazas ... — agasay ... on {0,1}*.

Definition 1.1.4. Let H ~ X and H ~ ) be two actions of the same
semigroup on topological spaces. A semiconjugacy from the first topological
dynamical system to the second one is a continuous map ® : X — ) such
that ®(hx) = h®(z) for all h € H and = € X. If, additionally, ® is a
homeomorphism, then we say that it is a (topological) conjugacy.

In our case, the statement that ® is a semiconjugacy is equivalent to the
statement that the diagram

S

(0,1} =5 {0,1}*
£ s
R/Z -1 R/Z

commutes. The dynamical system s G {0, 1}* is called the one-sided shift.

This semiconjugacy can be used to prove many facts about the angle
doubling map. For example, consider the following description of typical
orbits of f G R/Z.

Proposition 1.1.5. The set of points x € R/Z such that the orbit of x under
f is dense is of full measure and co-meager in R/Z.

Recall that a set is called co-meager (or residual) if it is equal to in-
tersection of a countable collection of open dense sets. By Bair Category
Theorem ... such sets are non-empty for locally compact Hausdorff spaces
and for complete metric spaces. In these cases the notion of a co-meager set
is a topological version of the notion of a set of full measure.

Proof. Consider the uniform Bernoulli measure g on {0, 1}*. It is uniquely
determined by the condition u(Cyyay..a,) = 2% Note that the length of
the subinterval ®(Cyya,..4,) < [0,1] is also equal to % It follows that
@ : {0,1}* — R/Z maps the Bernoulli measure on {0, 1}* to the Lebesgue
measure on R/Z. In fact, ® is an isomorphism of the corresponding measure

spaces, since it is a bijection modulo a set of measure zero.

Let w € {0, 1}, If the orbit of w with respect to the shift action is dense
in {0,1}%, then its ®-image is dense in R/Z. The orbit of w is dense if and
only if every finite word v € {0, 1}* appears as a subword in w. Equivalently,
if the orbit is not dense, then there exists a finite word v € {0, 1}* that does
not appear in w. Let P, < {0,1}* be the set of sequences w € {0,1}* not
containing v as a subword. The set P, is obviously closed.



8 1. Dynamical systems

If a finite word u contains v, then C, n P, = ¢J. For every n the num-

ber of words u € {0,1}"/"l not containing v as a subword is not more than
@r-nm _
2lv[n -

(2l*l — 1), It follows that the measure of P, is not more than

(2;'[‘ 1>n — 0 as n — 0. Consequently, P, has measure zero. It follows
that the set of points w with non-dense orbits has measure zero, as a count-
able union Uve{O,l}* P, of sets of measure zero. Consequently, the set of
points w € {0, 1}* with dense orbit has measure one, which implies the same

statement about R/Z.

Note also that P, has empty interior, since it has measure zero. Conse-
quently, P, is a closed nowhere dense set, and hence [ J, . (0,1} P, is meager.
The set ®(P,) is also closed as a continuous image of a compact set. Sup-
pose that ®(P,) has non-empty interior. Then ® !(®(P,)) has non-empty
interior. But for any subset A < {0,1}*, the set ®~1(®(A)) is contained
in the union of A with the countable set of sequences eventually equal to
000...or to 111... (since this is the set of points where @ is not one-to-one).
It follows that ®~1(®(P,)) is contained in a union of a countable set with
a nowhere dense closed set, hence it can not contain an open subset. Con-
sequently, ®(P,) is closed and nowhere dense, and hence is meager, which
implies that the set | J,¢(o 13+ (P) is meager. O

A particular corollary of Proposition [1.1.5]is that there exists a point x €
R/Z with a dense f-orbit. Existence of a dense orbit is another irreducibility
notion for topological dynamical systems, weaker than minimality. We call
it (in the case of group actions) topological transitivity. We will see later
(Proposition that a group action G ~ X on a second-countable
completely metrizable space is topologically transitive if and only if every
two non-empty open subsets of the space of orbits G\X have non-empty
intersection.

The angle doubling map f G R/Z is very far from being minimal. Since

the set of rational numbers with odd denominator is dense in R, we have
the following property.

Proposition 1.1.6. The union of all finite cycles under the angle doubling
map is dense in R/7Z.

Density of the union of finite cycles is usually one of the ingredients of
different definitions of “chaos”, see [LY 75, Dev89, [AHO03].

1.1.3. Horseshoe and two-sided shift. Let S be a stadium-shaped re-
gion of R? formed by a square and two half-discs shown on the left hand
side part of Figure Let @ be the square, and denote by D1, Do the left
and the right half-discs, as it is shown on the figure.
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Ir—

Figure 1.3. The horseshoe

Consider a continuous map F' G S mapping S to the horseshoe shaped
region shown on the right hand side part of Figure We assume that F’
acts on D as an affine map of the form = — Az + v; for some A € (0,1/2)
and v; € R?, and on D5 as an affine map of the form z — —Az + vy for the
same value of A and for some vy € R2.

We also assume that F(Q) n Q is a disjoint union of two rectangles, and
that the restriction of F' onto the preimages of these rectangles are affine
maps of the form (z,y) — (Lz, \y) + wy and (z,y) — (—Lz, —A\y) + wy for
some wi, wo € R?. It is not very important how F acts on the rest of S. It is
not hard to see, though, that we can choose F' so that it is a diffeomorphism
from S to F(S5).

Note that F' G D is a contraction, and has a unique fixed point p =
—L5v such that F™(z) — p as n — oo for all z € Dy. We also have
F(Dy) € Dy, hence F"(x) — p as n — oo for all z € Ds.

It follows that F™(z) — p for n — oo unless F"(x) € @ for all n > 0.
Consider the set F~"(Q) of points x € S such that F"(z) € (). We define
F7%Q) = Q. The set F71(Q) is equal to the union of the two vertical
rectangles V7 and V5 equal to the preimages of the two rectangles forming
F(Q) n Q, see the top part of Figure The map F acts on Vi and
Vo by affine transformations with the linear parts (z,y) +— (Lx,\y) and
(z,y) — (—Lx, —\y), respectively.

The set F2(Q) is equal to F~H(F1(Q) n F(Q)). The horseshoe F(Q)
intersects with the two rectangles forming F~!(Q) in four rectangles (see
the second row of Figure [1.4)). Their preimages under F' are four vertical
rectangles (i.e., direct products of four segments in the horizontal side of @
with the full vertical side of Q).

Continuing this way, we conclude that F~"(Q) is equal to a union of
2" vertical rectangles, and that each rectangle of F~"(Q) contains two rect-
angles of F~("~1(Q). See, for example, the third row of Figure where
F=3(Q) is described.
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Q2

Figure 1.4. Sets F™"(Q)

If the side of @ has length 1, then the width of the rectangles forming
F7(Q) is equal to A". It follows that the set (1), F"(Q) of points that
stay in ) under positive iterations of F' is a direct product of a horizontal
Cantor set with the vertical side of the square @). Its connected components
are vertical subsegments of the square Q.

We can label the rectangles of F~"(Q) by sequences of symbols T, B,
where T' and B stand for the top and the bottom rectangles of F(Q) n Q,
respectively. Namely, if x € F7"(Q), then the itinerary X1 X5...X, of
is given by the condition that X; = T (resp., X = B) if F¥(x) belongs to
the top (resp., bottom) rectangle of F/(Q) n Q. Then the set of points with
a given itinerary X;Xso...X,, is one of the rectangles of FF~"(Q). The two
rectangles of F~("*1)(Q) contained in the rectangle of points with itineraries
X1X5...X,, are the rectangles of points with the itineraries X1 Xs... X, T
and X1 X, ... X,,B. It follows that (1), -, F~"(Q) is naturally homeomorphic
to the direct product of {1, B}* with [0, 1], where a set {X1 X5 ...} x[0, 1] for
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N\

Figure 1.5. Ranges of iterations

X1Xs...€{T, B}¥ is identified with the vertical subsegment of @) consisting
of all points = € @ such that for every n > 1 the point F"(x) belongs to the
rectangle X, of F(Q) n Q.

The set (),=o F"(Q) is the set of points x such that F"(z) € Q for
all n = 0. Note, however, that the map F' is not surjective on this set,
i.e., there are points that do not have preimages under F. Let us describe
the sets F"(Q) n Q. They are shown on Figure for n = 1,2, 3, inside
the left-hand side squares. The right-hand side of the figure shows their
images under F. We obviously have F"(z) n Q = F(F" }(z) n Q) n Q.
Similarly to the case of the sets @, we see that F"(Q) n @ consists of 2"
horizontal rectangles of width L~". Each rectangle of F"(Q) n @ is labeled
by itineraries X1 X3 ... X, € {T, B}" of its points under the map F~!. Each
rectangle X1 Xo... X, of F"(Q) n @ contains two rectangles TX; X5 ... X,
and BX1Xs...X, of F""1(Q) n Q.
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The intersection (,-; F"(Q) n Q is the direct product of a vertical
Cantor set with the horizontal side of the square. The Cantor set is naturally
identified with the space {1, B}~ of left-infinite sequences ... XX, over
the alphabet {T', B}.

Let us denote Wy = (), F™(Q), and W_ = (o1 F(Q) n Q. The
set W, is a Cantor set of vertical segments in the square ). The set W_ is
a Cantor set of horizontal segments. We have F(W,) c W, and F(W_) >
W_. The set W, is equal to the set of points x € S such that F"(z) € Q for
alln > 1, i.e., precisely to the set of points such that F™(x) does not converge
to the fixed point p. Note that if x € Wy, then F™(z) € (7_, F*(Q) n Q,
which implies that the distance from F™(z) to W_ converges to zero as
n — oo. Note also that F™(z) € Wy for all n > 1. Consequently, the
distance from F™(z) to W, n W_ converges to zero. The map F acts as a
homeomorphism on W =W + nW_.

We see that either F™(z) converges to the fixed point p (if z ¢ W) or
the distance from F"(z) to W goes to zero. It follows that W is an attractor.

Definition 1.1.7. Let f G X be a continuous map, where X is compact. A
compact set C < X is called an attractor if there exists an open set U = C
such that C' = (1,5, f"(U).

Recall that the vertical lines forming W are labeled by right-infinite
sequences XoX] ... of the symbols {T', B}, while the horizontal lines forming
W_ are labeled by the left-infinite sequences ... X X 1 over the same set
of symbols. Every horizontal segment intersects every vertical segment in
exactly one point of W; and, conversely, every point of W is the intersection
point of a horizontal and a vertical segment. We see that the points of W
can be labeled by bi-infinite sequence ... X 92X 1XpX;.... The sequence
o X 0 X 1 XX, ... isthe itinerary of the corresponding point x in the sense
that F™(x) belongs to the rectangle labeled by X, for every n € Z. It is easy
to see that this correspondence between the points and their itineraries is a
homeomorphism.

It also follows directly from the definition that this homeomorphism
conjugates the action of F' on W with the two-sided shift s given by

S(. . .X72X71X0X1 .. ) = ... Y,2Y71Y70Y71 ey where Yn = Xn+1.

Note that the map F' acts in a neighborhood of every point of W as
an affine transformation with linear part (z,y) — (Lz,\y) or (z,y) —
(—Lz, —Ay), i.e., it locally expands the horizontal and contracts the vertical
directions of the square ). This is an example of a system belonging to the
class of hyperbolic dynamical systems, which is the subject of Section
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000

Figure 1.6. Inverse limit of angle doubling maps

For a finite alphabet X, the two-sided full shift is the dynamical system
7 ~ X”_ where the generator of Z acts by the homeomorphism s((2,,)nez) =
(Yn)nez, where y, = T,41. Let us introduce on X% the metric

d((xn), (yn)) = 2°F,

where k is the maximal non-negative integer such that *_pxr,1... 2 12, =
Y kY_fsd---Yk_1Ys. Note that this metric agrees with the direct product
topology on XZ.

Let w = (x,) be an arbitrary point of X%. Denote by W, (w) the set
of points (y,) of X% such that ...z oz 1 = ...y 2y 1. The set W (w) is
naturally homeomorphic to X“, where the homeomorphism W, (w) — X%
erases the negative coordinates. Similarly, denote by W_ (w) the set of points
(yn) € X” such that the non-negative coordinates of (1,) and (x,) coincide.
The set W_(w) is naturally homeomorphic to the space X~ of the left-
infinite sequences ...y_oy_1. The space X% is naturally homeomorphic to
the direct product X ¢ x X, where the homeomorphism X ¢ x X% — X?%
concatenates the corresponding sequences. Consequently, we have a natural
decomposition of X7 into the direct product W_(w) x W (w).

Note that if wy,ws € Wi (w), then d(s™(w1),s"(w2)) — 0 as n — oo for
any metric on X%. Similarly, if wy, ws € W_(w), then d(s™"(w1), s "(wz)) —
0 as n — oo.

1.1.4. Smale-Williams solenoid and the adding machine. Consider
the backwards sequence
f f f f
R/Z «+—R/Z «+—R/Z «+— R/Z «— - --

of the angle doubling maps f : x — 2z (mod 1) from see Figure
Let S be the inverse limit of this sequence. By definition, it is the set

of sequences (z1,x2,...) of points of R/Z such that f(z,11) = x, for all n.

The topology is induced from the direct product topology on (R/Z)“. Note
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that the map

f($1ax27"’) = (f(x1), f(22),...)
is a well defined homeomorphism of S, where the inverse homeomorphism
is the shift (z1,z9,...) = (22, x3,...).

Definition 1.1.8. Let f G X be a continuous map. Its natural extension
is the homeomorphism f induced by f on the inverse limit of the sequence

f f f

X < < Jo

The natural extension of the angle doubling map is called the Smale-
Williams solenoid, see [Sma67| page 788. Note that S is a compact abelian
topological group, since the map = +— 2z is an endomorphism of the com-
pact abelian group R/Z, and S is the inverse limit with respect to these
endomorphisms.

Let us extend the symbolic representation of the angle doubling map
described in to the solenoid. Let & = (x1,22,...) be a point of S. If
.b1by ... is a binary representation of x,, then the binary representation of
Tp—1 = f(x1)is .babs . ... It follows that the coordinates of £ are encoded by
sequences of the form

(.a1ag...,.apa1a3...,.a_100a1G2 .. .,...).
It is natural then to represent £ by the bi-infinite binary sequence
...a_2a_10ap.a109 ...,

where .a_,42a_p+3 ... is the binary sequence representing z,, € R/Z.

We have the same description of the identification of the sequences rep-
resenting the same point of the solenoid as in the case of the circle. Namely,
two binary sequences (an)nez and (b, )nez represent the same point of S
if and only if they are either equal to each other, equal to 000... and
111..., or are of the form ...a,_1a,10000... and ...a,_1a,01111... for
some n € Z. One can show that the quotient of {0, 1} by this identification
rule is homeomorphic to S, and that the map on S induced by the two-sided
shift s G {0,1}% is topologically conjugate to the natural extension of the
angle doubling map.

Let & be a point of S represented by a binary sequence . ..a_sa_1ag9.a103 . . ..
Let us call the sequences ...a_2a_1a¢ and .ajas ... the integral and frac-
tional parts of £, respectively. The identification rule for representation of
points of S allows us to identify the fractional part with a point of the real
interval [0, 1] via the natural map

o0
.a1as ... — Z a; 27",
=0
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Figure 1.7. The solenoid as a mapping torus

The integral part of ¢ is naturally identified with a dyadic integer via

e’
L..a_2a_1a0 = Z a,i2’ € ZQ.
i=0

Note that the integral and the fractional parts of £ € S are uniquely
defined, except for the points which can have fractional parts 0 or 1. Then a
point can have fractional part 1 and integral part a € Zo, or fractional part
0 and integral part a + 1 € Zo.

It follows that S can be constructed by taking the direct product Zy x
[0,1], and then identifying every point (a, 1) with (a + 1,0). See Figure
for a schematical representation of this construction.

In other words, the solenoid S is the mapping torus of the transformation
a — a + 1 of the ring Zy of dyadic integers.

Definition 1.1.9. Let f G X be a homeomorphism. Its mapping torus is
the quotient of the space X x [0,1] by the identification (x,1) ~ (f(z),0).

The transformation 7 : a +— a + 1 of Zs is called the adding machine or
odometer. Its action on the binary sequences is given by the classical rule
of adding one to a binary integer:

(e aparan) = |

...asa1l if ag = 0;
7(...a2a1)0 if ap = 1.
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Proposition 1.1.10. The odometer is a minimal homeomorphism of Zs.

See Definition [[.1.2] for the definition of a minimal action.

Proof. The group Zs is the inverse limit (as a topological group) of the
groups Z,/2"7Z with respect to the natural epimorphisms 1+2"17Z — 1+2"Z.
The odometer is the inverse limit of the maps k — k + 1 acting on each
Z/2"7Z. These maps are transitive cycles on Z/2"Z, and every orbit of the
action of the odometer on Zo is mapped to these transitive cycles, which
implies that every orbit is dense. ([

As a corollary we get the following topological property of the solenoid.

Proposition 1.1.11. FEvery path connected component of S is dense. In
particular, S is connected but has uncountably many path connected compo-
nents.

Note that ]? multiplies the fractional parts by 2, which is a locally ex-
panding map on [0,1]. It is also multiplying the integer parts by 2, which
is a contracting map on Zo. We see that, similarly for the two-sided shift,
neighborhoods of points of the solenoid are decomposed into a direct product
of an expanding and contracting directions of the dynamical system (i.e., is
also a hyperbolic dynamical system, similarly to the two-sided shift).

The solenoid can be also realized as an attractor of a diffeomorphism,
see [Sma67, page 788] or [BS02, Section 1.9.]. Consider the region R inside
a torus in R? obtained by rotating a disc D around a line in its plane not
intersecting D. We call the images of D under the rotations meridional
discs of R. Let F G R be a map extendable to a diffeomorphism on a
neighborhood of R such that F(R) is the region inside a torus winding
twice around R, as it is shown on Figure We assume that F' maps
every meridional disc of R to a smaller disc contained in a meridional disc
of R. We also assume that F' uniformly contracts the distances inside the
meridional discs, and that it uniformly expands the distances in the direction
perpendicular to the meridional discs.

More explicitly, let us introduce a local coordinate system (z,y,6) in-
side the torus, where x, vy, for 22 + y? < 1 are the Cartesian coordinates in
the disc D, and 6 € (0,27) is the angle of rotation of the disc D around
the axis of the torus. We can define then F', for example, as F(x,y,0) =
(2 oot &4 Sizit,QH). One can show then that the intersection of the
ranges of F" is homeomorphic to the solenoid, and that the restriction of F
onto the intersection is topologically conjugate to the natural extension of
the angle doubling map.
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Figure 1.8. Solenoid map

%/

-~

Figure 1.9. Arnold’s cat

1.1.5. Anosov diffeomorphisms. Another classical example of a hyper-
bolic dynamical system is a hyperbolic automorphism of a torus, known in

the literature as “Arnod’s cat map”.
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Ry

R1 Rd

Figure 1.10. Markov condition

Consider the map f G R?/Z? induced by the linear transformation of

R? with the matrix A = ( f 1 ) Since det A = 1, the map f is a

homeomorphism (and an automorphism of the group R?/Z?2).

The characteristic polynomial of A is A2 — 3\ + 1 = 0, hence its eigen-

values are A = % and A7 = % Note that A > 1 and 0 < A7! < 1.
1 1-+5

The eigenvectors of A are v} = < 14vE ) and Uy = ( i ) Note that
2

they are orthogonal (A is symmetric).

An A-rectangle is a rectangle R — R? with the sides parallel to the
eigenvectors of A such that the quotient map R? — R2/Z? restricted to
the interior of R is injective. The images of A-rectangles in R2/Z? are also
called A-rectangles. If R is an A-rectangle, and x € R, then we denote by
Ws(z, R) the maximal segment inside R containing x and parallel to the
contracting eigenspace (i.e., to the eigenspace of the eigenvalue A7! < 1),
and by Wy (x, R) we denote the maximal segment inside R containing = and
parallel to the expanding eigenspace.

Definition 1.1.12. Let R be a finite set of A-rectangles R = R?/Z? satis-
fying the following conditions:

(1) The interiors of the rectangles R € R are disjoint, and union of
their closures is the whole torus.

(2) If x belongs to the interior of Ry € R and f(x) belongs to the
interior of Ry € R, then

A(Ws(x, R1)) € W(A(z), Ra)

and
Wu(A(z), Re) < A(Wy(z, Ry)).

Then the set R is called a Markov partition of A G R?/Z2.

For example, we can construct a Markov partition of A G R?/Z? in
the following way. Consider the square formed by the lines parallel to the
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Figure 1.11. Markov partition

eigenvectors with one vertex (0, 1), and one side containing (0,0). Consider
all its translations by the elements of Z? — R2. See the left-hand side of
Figure where they are shown blue. The components of the part of R?
not covered by these squares are also squares. Their sides are parallel to
the eigenvectors of A and form one Z2-orbit (red on Figure . Consider
the images of the two constructed ZZ?-orbits of squares in the torus. We
get a partition of the torus R?/Z? into two squares with sides parallel to
the eigenvectors of A. Their images under the action of A are shown on
the right-hand half of Figure It is easy to check that the constructed
partition of the torus satisfies the conditions of Definition [I.1.12

Let R be a Markov partition of A G R2/Z2. Then for every R € R the
intersections of the form A(R) n R; for R; € R subdivide the rectangle A(R)
into a finite number of disjoint sub-rectangles, by cutting the expanding
direction into pieces. For each of these sub-rectangles R’ and x € R’ we have
Ws(x, R) = Wy(x, R'), see Figure Note that an intersection A(R) N R;
can consist of several sub-rectangles of A(R).

Consider the oriented graph with the vertices identified with the elements
of R and an edge from R to R; for every rectangular piece of a non-empty
intersection A(R) n R;. Let us call this graph the structural graph of the
Markov partition. For an edge e of the structural graph, denote by R,
the corresponding (closed) piece of an intersection A(R;) n Ry for R; € R
(so that R; and Ry correspond to the beginning and end of the edge e,
respectively).

For example, the structural graph of the Markov partition from Fig-
ure [1.11]is shown on Figure [1.12
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Figure 1.12. Structural graph

Denote by M the set of all bi-infinite paths in the structural graph. It
is a subshift, i.e., a closed shift-invariant subset of the full shift £“, where
FE is the set of edges of the graph.

Proposition 1.1.13. For every infinite path w = ...e_iepeq ... € M there
exists exactly one point ¢p(w) € R2/Z? such that A"(¢p(w)) € Re, for all
n € Z. The map ¢ : M —> R2/Z? is a surjective semi-conjugacy from the
subshift s G M to A G R?/Z2.

Proof. Let ...a_japay... € M. It follows from the definition of the map
¢ that the image of the cylindrical set Copa,y..0, = {---€_1€0€1... : € =
ai,i=0,1,...,n}is equal to the rectangle R,, n A~ (R, )N A72(Ryy) M. ..
AT™"(R,,,). It follows that ¢(Cuya,..a,) is a rectangle R such that the side
Ws(z, R) is equal to the side Ws(z, Ry,), and the side W, (z, R) has length
not more than KA~ ", where K is the maximum length of the sides W, (x, R;)
for all rectangles R; of the Markov partition. It follows that ¢(Caya;...ar)s
n = 0, is a descending sequence of compact rectangles such that one side
(parallel to the contracting direction) stays the same, while the length of the
other side (parallel to the expanding direction) is exponentially decreasing.

Similarly, the set ¢({...e_jepe1... : € = a;,i =0,—1,...,—n}) is a
subrectangle R of R,, such Wy (z, R) is equal to the side W, (z, R,,), while
the contracting sides Ws(z, R) form a nested sequence of subintervals of
Ws(x, Ry, ) of exponentially decreasing lengths.

It follows that for every finite path a_,a_n+1 ... ap—1a, in the structural
graph the set ¢({...e_1epe1... : €; = a;,—n < i < n}) is a rectangle with
length both sides less than KA™" for some fixed K > 0 and for A > 1.
This implies that ¢ is continuous. It is easy to check that it is onto and a
semi-conjugacy. ([

The encoding of points of the torus by bi-infinite sequences is analogous
to the encodings of the systems considered in and In fact, they
are examples of a general construction, which will be studied in
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1.2. Subshifts

1.2.1. Definition and examples. Let H be a semigroup, and let X be a
finite alphabet. We always assume that [X| > 2. Consider the space X
with the topology of the direct product of discrete sets. In other terms, X
is the set of all maps f: H — X, and the topology is defined by the basis
of open cylindrical sets:

Crpax ={f:H—X: fla= fo},
where A runs through the set of all finite subsets of H, and fy runs through
the set of all maps A — X.

Note that C'y,.4—,x is also closed, since it is equal to the complement of
the union of the sets of the form Cy.4o_,x for all f € XA such that f # fo.

If H is the semigroup N of non-negative integers, we we represent the ele-
ments f € XY as sequences zoz1z2... = f(0)f(1)f(2).... Similarly, for H =
7, we write the elements of X% as bi-infinite sequences ...z_sx_1 . ToZ1 . . .,
where x,, is the value of the element at n. We denote by a dot the place
between the coordinates number -1 and 0.

It follows directly from the definitions that for every element h € H the
map

f=h-f,
where h - f is defined by
h-f(z) = fzh),
is a (left) action of H on X by continuous maps. We call the dynamical
system H ~ XH the (full) H-shift.
For example, the action of the generator 1 of N on XY is given in terms
of sequences by

ror1...—=>T1x2...,

while the action of the generator 1 of Z on XZ is given by
L1 XX e X1 - X1T2
These maps are called the (full) one-sided and two-sided shifts, respectively.

Definition 1.2.1. An H-subshift is a dynamical system H ~ X, where
X is a closed H-invariant subset of the full shift space X¥. Here a subset
Y c X is said to be H-invariant if h) < ) for every h e H.

One way to define a subshift is to take an arbitrary closed subset F < X,
and consider the intersection [),c; hF. Another standard way is choose an
element f of X and take the closure of the H-orbit {h- f : he H}.
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Definition 1.2.2. Let X < X% be a Z-subshift. Its language is the set Wy
of all finite words v = agay .. .a, such that there exists (z)nez € X such
that x; = a; for alli =0,1,...,n.

The following is straightforward.

Proposition 1.2.3. Let Wy be the language of a subshift X < XZ. A
sequence (xTn)nez, belongs to X if and only if vpxpi1 ... Ty belongs to Wy
for all n < m.

The following is a classical fact (see, for example [MH38| Theorem 7.2]).
We say that a subshift is minimal if the Z-action on it is minimal, i.e., if
all orbits of the shift are dense in it, see Definition [[.1.2] Note that in this
context the word “minimal” has the usual sense: a subshift is minimal if
and only if it does not contain a proper non-empty subshift.

Proposition 1.2.4. Let w € XZ. The closure of the orbit {s"(w) : n € Z}
of w in X% is a minimal subshift if and only if for every finite subword v of
w there exists R > 0 such that every subword of w of length R contains v as
a subword.

In other words, the closure of the orbit of w is a minimal subshift if and
only if every finite subword of w appears in w infinitely often with gaps of
uniformly bounded length.

Proof. Let C be the closure of the orbit of w. Suppose that s G C is
minimal, and let v be a subword of w of length m. Then for every w’ € C
there exists n € Z such that s”(w’) belongs to the cylindrical set C, =

{...xqzor1... € C : mx2...2: = v}, as the shift orbit of w’ is dense
in C. In other words, the sets of the form s"(C,) for n € Z cover C. But
C is compact, so there exists a finite cover s"1(C,),s"2(Cy),...,s"*(Cy) of

C. It follows that for every n € Z there exists n; such that s" " (w) € C,.
This exactly means that the word v appears in w on a uniformly bounded
distance from any place in w.

The converse statement (if every finite subword of w appears in w with
uniformly bounded gaps, then the closure of the orbit of w is a minimal
shift) is straightforward, and is left as an exercise. O

1.2.2. Expansive actions.

Definition 1.2.5. An action of a semigroup H on a metric space X is said
to be expansive if there exists 6 > 0 such that if for all ¢ € H we have

d(g(z),g(y)) < 6 then x = y.

The definition of expansivity of an action does not depend on the metric
if X is compact. Namely, we have the following equivalent definition.
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Definition 1.2.6. Let X be a compact space. A neighborhood U ¢ X x X
of the diagonal {(xz,z) : x € X} is called an expansion entourage for an
action H ~ X if (g(x),g(y)) € U for all g € H implies = = y.

Here U denotes the closure of U in X x X. It is easy to check that an
action H ~ X on a compact metric space X is expansive if and only if it
has an expansion entourage.

Let U be a closed expansion entourage for an action of H on a compact
space X. For a finite subset A ¢ H, denote by Uy the set of pairs (z,y) €
X x X such that (h(x),h(y)) € U for all h € A. In other words,

Ua=[]h1U),

heA
where H acts on X2 diagonally.

Lemma 1.2.7. For every neighborhood of the diagonal W < X x X there
exists a finite set A < H such that Uy c W.

Proof. It is enough to prove the lemma for the case when W is open. Then
X%\ W is compact, and for every (z,y) € X2 . W there exists h € H such
that (h(z),h(y)) ¢ U. The set X2\ h~'(U) is open, so we have an open
cover of X2 \. W by sets of the form X2 \ h~'(U). There exists a finite
subcover, and its union is equal to X% ~ U, for some finite A < H. It
follows that U4 c W. O

Expansive dynamical systems are chaotic in the sense that they exhibit
sensitive dependence on the “initial conditions”. Namely, however small is
the distance between the initial positions of two points z, y, as soon as x # y
there exists a moment g € H such that the distance between g(z) and g(y) is
at least 4. This and similar conditions are ingredients of various definitions
of chaos, see [LY75, Dev89, [AHO03].

Example 1.2.8. An action by isometries is obviously not expansive. In
particular, a rotation of the circle and the odometer (see its definition before
Proposition |1.1.10]) are examples of non-expansive action.

Example 1.2.9. The two-sided shift, the solenoid, and the Arnold’s Cat
map are expansive. This follows from the corresponding local direct product
decomposition into expanding and contracting directions. Namely, any two
sufficiently close points x, y belong to one rectangle of such a decomposition.
If « # y, then either their projections onto the expanding side or the pro-
jections onto the contracting side of the rectangle are different. Then the
distance between the corresponding projections of the points f"(x), f"(y)
will grow exponentially (if it is small) for positive or negative values of n,
respectively. This proves that f™(z) and f™(y) can not be close to each
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other for all n € Z. We will study this approach and this proof in more
detail in [L4.7]

The following description of expansive actions is a classical result, see....

Theorem 1.2.10. An action H ~ X of a semigroup H on a compact
totally disconnected space X is expansive if and only if the dynamical system
H ~ X is topologically conjugate to an H-subshift.

Proof. Let § be as in Definition Consider a finite partition U of X
into clopen sets of diameters less than §. For a point z € X, define its
itinerary as the map I, : H — U given by the rule

h(z) € I(h).

The map x — I, is a continuous map from X to HY, since it is locally
constant on each coordinate. It follows that its range is a compact subset
of HY. We have gh(z) € I.(gh) and gh(z) € In2)(g). Tt follows that
h-1.(9) = I.(gh) = Ipe)(g), so that h- I, = I, ie., that the map
I.: X — HY is H-equivariant.

The map x +— I is also injective, since I, = I,, implies that the distance
from h(x) to h(y) is less than 0 for every h € H. It follows that x — I, is a
homeomorphism from X’ to its images, since every injective continuous map
from a compact space to a Hausdorff space is a homeomorphism onto the
image. ([l

1.2.3. Shifts of finite type. Let P = {C},.4,—x}ier be a collection of
cylindrical subsets of X¥. Consider now the set of all sequences w € X#
such that configurations f; : A; — X do not appear in any shifts of w.
Namely, consider the set Xp of elements w € X such that h - w| A, # fi
for all 4 € I. We say that Xp is the shift defined by the set of prohibited
configurations P. Note that Xp is closed and H-invariant, i.e., that it is
a subshift. Every subshift can be defined by some collection of prohibited
configurations.

Definition 1.2.11. A subshift X ¢ X is a shift of finite type if there exists
a finite set of prohibited configurations defining X'.

In particular, a Z or N-shift X is defined by a finite collection A  X* of
finite prohibited words. A sequence w belongs to the corresponding subshift
if and only if no subword of w belongs to A.

Note that a subset of X is a union of a finite number of cylindrical
sets if and only if it is clopen. It follows that a subshift X < X is of
finite type if and only if there exists a clopen set U such that X = XH <
Uperr B 2(U), where h~1(U) denotes the full preimage of U under the action
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of h. Replacing U by V = X U, we get another definition of shifts of
finite type.

Lemma 1.2.12. A subshift X < X is of finite type if and only if there
exists a clopen set U such that X = (g h™1(U).

More generally, we adopt the following definition.

Definition 1.2.13. Let X — X be a subfshift. A subshift X; ¢ X is of
relative finite type in X if there exists a clopen subset U < X such that

X1 = (Nyer hH(0).

Let G be a group, and let X be a finite alphabet. For a finite subset

B c G, consider the alphabet XZ and the map 8p : X& — (XB)Y given by
the equality

Be(f)(g9) = (g f)lB-

Proposition 1.2.14. The map Bp is a G-equivariant homeomorphic em-
bedding.

Proof. We have
Bu(h- f)(g9) = ((gh) - NIB = Ba(f)(gh) = h-Ba(f)(9),

hence fp is G-equivariant.

Choose an element go € B. Then the value of Bp(f)(gy'g) as a function
B — G on the point gg is equal to f(g). It follows that f € X& can be
reconstructed from Sp(f), i.e., that Sp is injective. It is obviously continu-
ous and the spaces X and (XP)& are compact and Hausdorff, hence 3 is
a homeomorphic embedding. O

Definition 1.2.15. The map 8p : X& — (XB)% is called the block map
(or sliding block code) with the window B.

For example, in the case G = Z, it is natural to consider a window of
the form {0,1,...,n — 1}. Then X? is the set of words of length n, and the
block map transforms a sequence ...x_1.xgx7 ... over the alphabet X to the
sequence

(@i orp—2) (Toxy L o) (T2 Ty -
over the alphabet X". It is easy to see that the block map is a shift-
equivariant homeomorphic embedding.

Let G be a group generated by a finite set S. Choose for every gener-
ator s € S a set A, X2 of pairs of letters, and define the corresponding
topological Markov shift as the set of all G-sequences f € X& such that

(f(9), f(s9)) € As
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Figure 1.13. Fibonacci s.f.t.

for every g € G and s € S. It is easy to see that this is a shift of finite type.

For example, if G = Z, then it is natural to consider S = {1}, and then
the corresponding topological Markov shifts are given by a set A < X2 of
allowed transitions. A sequence (zy)nez belongs to the corresponding shift
if and only if x,z,11 € A for all n € Z. One can represent the set A by an
|A| x |A] transition matriz. Its entries a,, are indexed by the letters z,y of
X, and we have

a — { 1 ifzxye A,
“Y 1 0 otherwise.

Example 1.2.16. Consider the subshift of {0,1}? defined by the set of
allowed transitions {00,01}. In other words, a sequence belongs to F if
and only if it does not contain 11 as a subword. Then transition matrix is

11

10 )

Another way of representing topological Markov shifts is to use graphs
with the set of vertices X, where we have an arrow from z to y if and only

if xy € A. Then the subshift is the set of all bi-infinite sequences that can
be read along bi-infinite paths in the graph.

Example 1.2.17. The subshift from Example [1.2.16| is described by the
graph shown on Figure [1.13

Example 1.2.18. Consider the graph shown on Figure The cor-
responding topological Markov chain describes the subshift encoding the
Arnold’s Cat map, see Proposition [I.1.13]

Proposition 1.2.19. Let G be a group with a finite generating set S = S~1.
For every shift of finite type X < X there exists a block map conjugating
X with a topological Markov shift.

Proof. Let {f; : A; — X}, be a finite set of prohibited configurations
defining X. Let R be such that JI; 4; < (S U {1})®. Denote B = (S u
{1h*".

We can define X by a set of prohibited configurations f : B — X
defined on B. Equivalently, we can find a finite subset Y < XB of maps
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B — X such that f € X& belongs to X if and only if for every g € G the
restriction of ¢ - f to B belongs to Y.

Consider the block map 8p with the window B. For an element f € Y&
and g € G we will denote by f, the function f;, : gB — X given by
fo(h) = f(g9)(g h) (check...), where f(g) : B —> X is the element of Y
corresponding to g € G (i.e., the value of f € Y& at g).

An element f € Y& belongs to f5(X) if and only if for every pair g1, g2 €
G we have f,,(h) = f,,(h) for every h € g1 B n goB. In other words, f € Y¢
belongs to Bp(X) if and only if the functions f;, and fg, agree on the
intersection of their domains.

Consider the topological Markov S shift consisting of all sequences f €
Y& given by the condition that fq and f,4 agree on the intersection gBnsgB
of their domains, where g € G and s € S. Let us show that S coincides with
Bp(X).

The inclusion Sp(X) < S is obvious. Suppose that f € S. We have to
prove that for any g1, g2, h € G we have f,, (h) = fg4,(h) whenever both sides
of the equality are defined. By G-equivariance, it is enough to prove this
statement for the case h = 1. We have 1 € g1 B n g9 B if and only if g; and
go are on distance at most R from 1. Consequently, it is enough to prove
that fg, (1) = fg (1) for every g1,92 € B, i.e., that fo(1) = fi(1) for every
g € B. Write g as a product of at most R generators g = s1s2---S,. Then,
by definition of §, we have

fl(l) = fsn(l) = fsn71sn(1) == f3152"'5n(1)7
which finishes the proof. O

1.2.4. Substitutional subshifts. Let X be a finite alphabet. Denote by
X* the free monoid generated by X, i.e., the set of all finite words x125... 2,
over the alphabet X, including the empty word &. It is a semigroup (monoid)
with respect to the operation of concatenation. We say that v is a subword
of w € X* if there exist vy, v € X* such that w = vivvy. If x € X is a letter,
then we sometimes say that = appears in w if z is a subword of w. The
notion of a sub-word of an infinite word (sequence) is defined analogously.

A substitution is an endomorphism o : X* — X* of the monoid. It is
defined by the values o(z) € X* on the elements of X. Namely, for every
word z1x2 ...z, we have o(z1x2 ... 2y) = o(x1)o(22) . ..0(Tp).

Ifw=...2_9x_1.20x1...1s an element of X%, and ¢ : X* — X* is a
substitution, then we denote by o(w) the infinite word

e O'(:L’_Q)O'(Jf_l) . O'(IL’())U(.CCl) ey

where dot, as before, denotes the place between the coordinates number —1
and 0.



28 1. Dynamical systems

Definition 1.2.20. The substitutional subshift generated by o : X* — X*
is the set of all bi-infinite words w € X% such that for every finite subword v
of w there exists 2 € X and n € N such that v is a subword of ¢"(x).

In other words, the language of the subshift generated by o is the set of
all subwords of words of the form o"(x) for z € X.

Note that in order for the substitutional subshift to exist, the length of
the word ¢™(x) must go to infinity for some letter = € X. Another (probably
more common in the literature) definition of the substitutional subshift is
to choose a particular x € X such that the length of o™ (z) goes to infinity
and to consider the set of all bi-infinite sequences w such that every finite
subword of w is a subword of ¢™(z) for some n.

Note that if F is the substitutional subshift generated by o : X* — X*,
then F is o-invariant, i.e., o(F) < F. The range o(F) is usually not equal
to F, but if m is the maximum of the lengths of the words o(z), € X, then
Uiy s*(o(F)) = F, where s is the shift.

Example 1.2.21. Let X = {0, 1}, and define an endomorphism o : X* —
X* by

c(0) = 01, (1) = 10.
The corresponding substitutional shift is called the Thue-Morse subshift.
The first letter of o(0) is 0. It follows by induction that the word o"*1(0)
begins with ¢™(0) for every n. Therefore, the sequence ¢™(0) naturally
converges to one right-infinite sequence

01101001100101101001011001101001....

This particular sequence is called the Thue-Morse sequence. It is easy to
see that an infinite sequence belongs to the Thue-Morse subshift if and
only if all its finite subwords are subwords of the Thue-Morse sequence.
Thue-Morse sequence was defined independently by E. Prohuet [Pro51],
A. Thue [Thul2], and M. Morse [Mor21]. E. Prouhet implicitly discov-
ered the sequence as a solution of a particular case of Prouhet-Tarry-FEscott
problem, see Exercise A. Thue considered it as an example of an in-
finite cube-free sequence, see Exercise M. Morse gave it, essentially
as an example of a minimal infinite subshift. See ... [literature] for more
properties of the Thue-Morse sequence

Example 1.2.22. Consider now the substitution
o(0) =01, o(1l) =0.

Here too the word ¢™(0) is a beginning of ¢”*1(0), and in the limit we get
an infinite sequence

0100101001001010010100100101001001 . ..
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called the Fibonacci word. The corresponding subshift consisting of all bi-
infinite sequences whose finite subwords are subwords of the Fibonacci word
is called the Fibonacci substitutional subshift (not to be confused with the
Fibonacci shift of finite type from Example .

Note that in general the set of finite subwords of the subshift F, gener-
ated by a substitution o : X* — X* may be strictly smaller that the set of
all finite subwords of the words of the form ¢™(z) for z € X. For example,
if 0 : {0,1}* — {0,1}* is given by ¢(0) = 10, o(1) = 1, then F, consists of
one sequence ...111....

Proposition 1.2.23. Let F, be the subshift generated by the a substitution
o : X —> X*. Then the following conditions are equivalent.

(1) For every x € X there exists w € F, such that x appears in w.

(2) The set of finite subwords of elements of F, is the same as the set
of subwords of the words of the form o™(x) for x € X and n > 0.

(3) For every x € X there exists n = 1 and y € X such that c™(y) =
v12Vy for some non-empty words vy, vy € X*,

Proof. Let us show that (1) implies (2). Let v be a subword of o™(z).
There exists w € F, containing x. Then ¢"(w) € F, and it contains o™ (x),
hence it contains v.

We obviously have that (2) implies (1), since every letter = is equal to
o(x), by definition.

Let us show that (3) implies (1). Let 1 = = € X be an arbitrary
letter. Then, there exists n; and x2 € X such that z; is appears strictly
inside 0™ (x3). Inductively, there exists xx,1 € X and nj > 1 such that xy
appears strictly inside 0™ (xy1). Choosing a convergent subsequence of the
sequence of the words g™ T2 +"k (1, 1) we can find a bi-infinite sequence
w € F, containing x.

Conversely, if (1) is satisfied, then for every x € X there exist letters
a,b € X such that axb is a subword of some sequence w € F,. Then, by
definition of F, there exists y € X and n = 1 such that azxb is a subword of
" (y). O

Proposition 1.2.24. Let o : X* — X* be a substitution, and let (Fy,s) be
the subshift generated by it. Then the following two conditions are equivalent.

(1) There exists N = 1 such that for every pair of letters x,y € X the
letter y appears in o' (x).

(2) The dynamical system (Fg,s) is minimal, for every letter x € X
there exists w € F, containing x, and the length of o™ (x) goes to
nfinity for every x € X.
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Substitutions satisfying condition (1) of Proposition [1.2.24] are called
primitive.

references...

Proof. Let us prove the implication (1)==(2). Let N be as in (1). Then
for every = € X the word o'V () contains all letters of the alphabet X, hence
the length of oV(z) is at least |X| > 1. It follows that the length of oN* (x)
is at least |X|* for every k > 1. Consequently, the length of o*(z) goes to
infinity. It is also easy to see that if (1) is satisfied, then the condition (3)
of Proposition [1.2.23| is satisfied, hence every letter of X appears in some
element of F,.

It remains to show that F, is minimal. Suppose that L is larger than
the length of every word of the form o™ (x) for z € X, and let w € F, be
arbitrary. A shift of w belongs to o™ (F,). It follows that every subword
of w of length L contains a subword of the form o™ (x) for some 2 € X.
Consequently, every subword of w of length L contains every letter of X. It
follows that for all n > 1, x € X, w € F, the word o"(x) is a subword of w,
which implies that the subshift F, is minimal by Proposition

Let us show that (2) implies (1). Assume that (2) is satisfied. Then for
every sequence w € F,, every x € X, and every k € Z there exists n € Z such
that |k—n| < M and w(n) = x. In other words, every letter appears in every
word w € F, with bounded gaps. By the conditions of the proposition, there
exists N such that the lengths of oV (z) are bigger than M for all z € X.
Then o™ (x) will contain every letter y € X for every = € X. O

If F, is minimal, but a letter z € X does not appear in a sequence w € Fy,
then the letter x does not appear in any sequence w € F,. It follows that
there exists n such that x does not appear in any word ¢"(y), y € X. Then
Fo is generated by the restriction of ¢ to the monoid (X \ {z})*. In other
words, the condition that every letter appears in some element of the subshift
is not restrictive if we want to describe all minimal substitutional subshifts.

Here are some examples of minimial substitutional shifts not satisfying
the other condition of the Proposition|1.2.24| (that the length of o™ (z) always
goes to infinity).

Example 1.2.25. Let X = {0, 1,2}, and consider the substitution
c(0) =021, o(1)=10, o(2)=2.

Then the length of 0™ (x) goes to infinity if and only if = # 2. It is easy to see
that the subshift generated by o is the set of all bi-infinite sequences obtained
from the sequence belonging to the Thue-Morse subshift by inserting a 2
after every 0.
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Example 1.2.26. Consider the Chacon substitution
o(0) = 0010, o(l) =1

Denote b, = ¢™(0). In particular, by = 0 and by = 0010 = bobylby. It
follows by induction that b, 11 = o(by) = 0(bn—1bn—11b,—1) = bpbyp1b,. The
recurrent formula b, 1 = b,b,1b, implies that the subshift generated by the
Chacon substitution is minimal.

The last example is actually conjugate to a subshift generated by a
primitive substitution. Namely, consider the substitution

©(0) = 0012, (1) =12, (2)=012.

It is primitive, so it generates a minimal subshift. Define v, = ¢"(0), and
let v/, be the word v, in which the first symbol 0 is replaced by 2.

Let us show by induction that v,11 = vyv,lv),. It is true for n = 0.
Suppose that it is true for n, let us show it for n + 1. We have v,49 =
©(vn)p(vr)12p(v))). The word ¢(v],) is obtained from ¢(v,) by replacing
the initial 0012 by 012. It follows that 2¢(v],) is obtained from ¢(vy) by
replacing the initial 0012 by 2012, i.e., it is obtained from ¢(v,) by replacing
the initial 0 by 2. Consequently, 2¢(v;,) = v/, , 1, and vp42 = Vpy1Vp4110], ;.

We see that if o is the Chacon substitution from Example then
o™(0) is obtained from ¢™(0) by replacing all symbols 2 by 0. In the other
direction, it is easy to prove by induction that ¢"(0) is obtained from ¢"(0)
by replacing every subword 10 of ¢™(0) by 12. It follows that the subshifts
generated by o and ¢ are topologically conjugate. For more on the Chacon
substitution, see [Fer02].

On the other hand, up to topological conjugacy, the class of minimal
substitutional subshifts coincides with the class of subshifts generated by
primitive substitutions.

Proposition 1.2.27. Let X < X% be a substitutional subshift. If it is
minimal, then there exists a finite alphabet Y and a primitive substitution
¢ Y — Y* such that the subshift Fy generated by ¢ and the subshift X
are topologically conjugate.

Proof. We may assume that every letter x € X belongs to the language of
X, i.e., appears in some element of X'. Otherwise, we can remove all such
letters from the alphabet, and replace o by an iterate, so that the removed
letters do not appear in the values of ¢ on the remaining letters.

Since X is minimal, every letter x € X appears in every element of X
with uniformly bounded gaps between consecutive appearances, see Propo-
sition Let xy € X be such that the length of o™ (z() goes to infinity.
Then there exists N > 0 such that every word of length IV in the language
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Wy of X contains xg. It follows that for every word v € Wy the length of
o™(v) goes to infinity. Let Y be the set of elements of Wy of length N. For
every £1x2...xy € Y € X¥* compute o(z1z2...2N) = a1az. .. ay € X*, and
let o(x1) = ajag . ..ag. Consider the word

o(v) = (arag...an)(azas...an+1) ... (agags1 ... agrn—1) € Y.

Note that k +n —1 < N, since aqas ... ay = ajas . ..ao(roxs ... xy). It is
good to imagine x1x2 ...z, € Y as a copy of the letter 1 € X decorated by
the “future” word xs...x,. Then ¢ becomes the substitution induced by o
on the decorated version of the alphabet. It is easy to prove by induction
that ¢"(v) for v € Y is defined using ¢™ by the same rule as ¢ was defined
using o. It follows that F; is obtained from & by conjugating by the block
map with window on width N. Note that the length of ¢"(y) goes to infinity
for every y € Y, and every letter y € Y is contained in every element of F.
Proposition shows that ¢ is primitive. O

1.2.5. Complexity and entropy.

Definition 1.2.28. Let F be a subshift, and let Wr be its language. The
complexity function of F is

pr(n) =[{ve Wz : |v| = n}|,

where |v| denotes the length of v.

The complexity functions is sometimes called the factor complexity,
block growth, or subword complexity. It was introduced by G. Hedlund and
M. Morse in [MH38]. See [CN10] for an overview of the main results on
this subject.

Proposition 1.2.29. The function pr(n) is non-decreasing. Moreover, if
pr(n) = pr(n+ 1) for some n, then pr(n) is bounded, and F is finite.

We have pr(n +m) < pr(n)pr(m) for all nym = 1. The limit of the

log pr(n)
n

sequence exists and is equal to its infimum.

Proof. Every word v € Wr of length n can be continued, by adding one
letter to its end, to a word v € Wx of length n + 1. If v; # v9, then their
continuations v}, v} are also different. It follows that v — v’ (for any choices
of the continuations v') is a one-to-one map from the set of words of length n
to the set of words of length n+1 of the language Wr. If pr(n) = pr(n+1),
then this map is a bijection. It follows that every word z122 ...z, € Wx has
a unique continuation x1xs...x,T,11 to a word of length n + 1 belonging
to Wx. Then the word zsz3...T,1 also has a unique continuation, which
implies that every word of length n has a unique continuation to a word
of length n + 2. By induction, we get that for every m > n every word



1.2. Subshifts 33

v € Wr is a prefix of a unique word w € Wr of length m. Consequently,
pr(m) = pr(n) for every m > n, and pr is bounded.

Every word v € Wx of length n + m can be split into a prefix of length
n and a suffix of length m, so pr(n + m) < pr(n)pr(m). The statement
about the limit follows from the classical Fekete’s lemma [Fek23| and [PS72,
Problem 98] applied to log pr(n). O

Proposition 1.2.30. Let Fi and Fa be topologically conjugate subshifts.
Then there exists ¢ > 1 such that we have

pr(n—c) <pr(n) <pr(n+c)

for all n > c.

Proof. Let X; be the alphabet such that F; < XZZ. Suppose that v € X?"H
is a word of odd length 2n + 1, and denote by C,; the set all sequences
(Tn)nez € Fi such that z_,x_pi1... 212, = v. Let & : F; —> Fy be
a topological conjugacy. Then for every sequence w = (x,)nez € F; the
intersection ﬂn>0 Co_pepiroan_1an,i 15 equal to {w}. Consequently, there
exists k such that ®(Cy o 1.z 125,1) © Cyp,2 for some letter yo € Xo. It
follows from compactness of F; that there exists K = 0 such that for every
word v € X%KH there exists y, € Xy such that ®(Cy 1) < Cy, 2. Then we
have that ® is given by the “centered” block map:

q)((wn)nez) (n) = Yz KTn K41 TniK—1TniK

For every n > 2K + 1, the constructed block map defines a surjective map
from the set of words of length n of the language of F; to the set of words
of length n — 2K of the language of Fs:

T1X2 - Tn 7> Yzyap.wog 41 Yzozs.. ok g2 * *  YTn_okTn_2Kk41---Tn-

It follows that pr,(n — 2K) < pr,(n)- O

As a corollary of Proposition [1.2.30{we get that the limit lim, %
1.2.29

(which exists by Proposition [1.2.29)) depends only on the topological conju-
gacy class of the subshift. It is called the entropy of the subshift.

Example 1.2.31. Let F < X% be a topological Markov shift with the
transition matrix A. Then, for all n > 2, the complexity pr(n) is equal
to the sum of the entries of the matrix A”~!. The entropy of F is equal
therefore to the logarithm of the spectral radius of A.

Example 1.2.32. If F is the Fibonacci shift of finite type from Exam-
ple[1.2.16] then pr(n) is the Fibonacci sequence 2,3,5,8, . ... It follows that
the entropy is equal to the logarithm of the golden mean.
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Entropy is an important invariant of dynamical systems and a classical
subject originating from the work of Shannon on information theory. The
notion defined above is a particular case of topological entropy .... more on
history ... literature...

The following theorem was proved in [Gri73]. See a short proof in [CN10,
Theorem 4.4.4].

Theorem 1.2.33. For every h > 0 and every integer k such that h < logk
there exists a minimal subshift F < {1,2,...,k}* of entropy h.

Substitutional dynamical systems, on the other hand, are examples of

subshifts of zero entropy.

Theorem 1.2.34. Let F be a minimal substitutional subshift. Then there
exists C > 1 such that pr,(n) < Cn for allmn > 1.

Proof. It follows from Propositions [1.2.27] and [1.2.30] that we may assume
that F = F, is generated by a primitive substitution o : X — X*.

Moreover, we may assume that for every z € X the word o(x) contains
all letters of the alphabet (otherwise, replace o by a high enough iterate).
Then for every xz,y € X and k > 1 we have

0" (@) < lo"* ()],

since o (z) is a subword of o**+1(y).

Let M = maxgex |o(x)|. We have then |o**1(z)| < M|o¥(x)| for all
x € Xand k > 1. It follows that

|0 ()] < Mo (y)]
forall k> 1 and x,y € X.
Let n > 1, and let k be the smallest integer such that n < |0 (z)| for all

x € X. Then there exists 21 € X such that |0~ (z1)| < n. Then, for every
x € X, we have

0% (z)] < M|o* 1 (z)] < M2|o" Y (a1)] < M?n.

Suppose that v € W, has length n. Let (z,,)nez € F» be such that v
is a subword of ...o%(z_2)o*(x_1).0F(xg)o*(x1) . ... Since all words o¥(x)
are of length at least n, there exists a word x;x;,1 of length 2 such that v
is a subword of o*(z;x;,1). The length of o®(x;x;,1) is strictly less than
2M?n, hence o*(x;2;,1) has not more than 2M?n — n subwords of length
n. It follows that pz, (n) < pz,(2)(2M? — 1)n, so the Theorem is valid for
C =pr,(2)(2M? —1). O

See a similar proof of Theorem [1.2.34] (for the case of a primitive sub-
stitution) using Perron-Frobenius theorem in [Que87, Proposition V.19].
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Minimal systems of various subexponential complexity have been con-
structed in the literature. For example, the following is a result of J. Goyon,
see [Fer99, p. 149].

Theorem 1.2.35. Let ¢ : N — N be such that there exist r,h > 1 such
that for all k = 1 we have ¢(r**1) < he(r¥). Then there exists a minimal
subshift F and positive constants Cp,Co such that

Cing(n) < pr(n) < Cong(n)

foralln = 1.

For example, there exist minimal subshifts whose complexities are of
the form n®(logn)* (loglogn)®2--- (loglog...logn)* for any ag > 0 and
a1,09,...,0r € R.

The sequences used in the proofs of Theorems [1.2.35] and [1.2.33] belong
to the class of Toeplitz sequences. A sequence w € X% is Toeplitz if for every
n € Z there exists ¢ € N such that w(n + kq) is constant for all k € Z. Note
that it follows directly from Proposition that the closure of the orbit
of any Toeplitz sequence is a minimal subshift.

It was also shown, see [Fer99| p. 149], that for any 1 < o < 3 there exists
a minimal subshift F such that lim inf,, o, 22 () — 0 and lim SUD,, o0 22 %") =
+0. More on different complexity functions of minimal subshifts, see [Fer99]

and [CN10J.

Proposition 1.2.36. Let F < X% be a subshift. If pr(n) < n for some n,
then pr is bounded.

Proof. Suppose that pr(n) < n. By Proposition the function pr
is non-degreasing. We have pr(1) > 1. Consequently, there exists k <
n — 1 such that pr(k) = pr(k + 1). But this implies, also according to
Proposition that pr is bounded. O

It follows that the smallest possible unbounded complexity is p(n) =
n + 1. It is realized by the subshifts from the following class.

Proposition 1.2.37. Let 6 € (0,1) be an irrational number, and consider
the rotation Ry : x — x + 0 of R/Z. For x € R/Z, denote by I, € {0,1}% the
sequence given by the condition

{0 i RY(2)e[0,1-0);
Lon) = { 1 if R*(z) e[l —06,1),
where we identify the circle R/Z with |0,1) in the natural way. Let Xy be
the closures of the set of sequences I, for x € [0,1).

Then the complexity of Xy satisfies px,(n) =n + 1.
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The sequences I, are precisely the sequences considered in where
0 corresponds to the symbol v, and 1 corresponds to d.

Proof. A word v = ajaz...a, belongs to Wz, if and only if there exists
a number z € [0,1) such that I, (i) = a; for i = 1,2,...,n. The set of
such points x (for a given v) is an arc of R/Z into which the points 0,1 —
0 = R71(0), R=%(0),..., R~"(0) subdivide R/Z. The number of such arcs is
equal to n + 1. O

In fact, the converse to Proposition|1.2.37]is also true, see Theorem|1.3.38

1.3. Minimal Cantor systems

We describe in this section theory of minimal Z-actions on the Cantor set
via Vershik-Bratteli diagrams. This theory was developed in [HPS92] and
found important applications for the theory of orbit equivalence in [GPS95].
For a more detailed exposition, see the book [...]. See also ... Our interest
in the subject comes primarily from the fact that minimal Cantor systems
provide an interesting class of amenable groups, see... and the literature
therein. Moreover, one of the main classes of groups that will be studied in
this book can be seen as a direct generalizations of the model of minimal
Z-actions via Vershik-Bratteli diagrams, see... A special class of stationary
Vershik- Bratteli diagrams provide interesting examples of groups generated
by finite automata and are closely related to hyperbolic dynamical systems.

1.3.1. Examples of minimal homeomorphisms of the Cantor set.

1.3.1.1. Odometers. We have seen (Proposition that the transfor-
mations a — a + 1 of the ring of dyadic integers Zs is a minimal home-
omorphism. A straightforward generalization of this construction is the
transformation x +— x + 1 for an aribtrary profinite completion of Z. More
explicitly, consider a sequence of integers greater than one

di,do,ds, ...,
and the inverse limit 2d1d2,_ of the cyclic groups
2]\ 7 «— 7,/d1do7 «— 7./d1d2dsZ «— - - -
with respect to the natural epimorphisms r+dyds - - - dnZ — r+dyds - - - dyy 1 7Z.
The elements of Zdld% are uniquely represented as formal expressions
(1.2) r1+7ro-dy +7r3-didy+ 14 didads + -+ -

where r; € {0,1,...,d;—1}. Namely, the formal expression (|1.2]) corresponds
to the element of the inverse limit given by the sequence

(7‘1, 1+ 1o -dl, r1+79 -dl +7r3- dldg, .. ) S (Z/dlz, Z/dldQZ, Z/d1d2d3Z, .. )



1.3. Minimal Cantor systems 37

The transformation x +— x + 1 can be interpreted as a procedure of adding
one to the series , and then rewriting it in the same form. Namely, if
r1 € {0,1,...,d;—2}, then we just replace r1 by 1 +1. Otherwise, if r; = dy,
we replace 71 by 0, and then change the sequence 79,73, ..., by adding one
to the formal series
ro+1r3-do+ry-dods+---

using the same rule (i.e., replacing ro by ro+1if ro € {0,1,...,d2 —2}, etc.).

It is easy to see that the same arguments as in the proof of Proposi-
tion show that the transformation z +— x + 1 of Zdld% is a minimal
homeomorphism.

1.3.1.2. Irrational rotation. Let us show how one can construct a minimal
homeomorphism of a Cantor set from an irrational rotation of the circle.
This construction is called sometimes the Denjoy homeomorphism, see...

Let Rg : x — x + 6 for § € R\ Q be an irrational rotation of R/Z,
see Consider the orbit O = {frac(nf) : n € Z} of 0 under Ry.
We represent the points of R/Z by points of [0,1) (by their fractional parts
frac(z)). Let us replace every point a € O \ {0} by two copies o + 0 and
a — 0. We replace 0 € O also by two copies: 0 and 1 (playing the role of
0+ 0 and 0 — 0, respectively). Consider the obtained set with the natural
order: @ —0 < a + 0; and if a, 8 € [0, 1] are such that a < 3, then every
copy of « is less than every copy of 5. Denote by Xy the obtained ordered
set.

Consider the order topology on Xjy: a basis of topology is the set of all
intervals of the form («, ), [0, @), or (a,1]. We have a natural continuous
surjective map ® : Xy — R/Z mapping each copy of a € [0, 1) to its image
in R/Z. The map ® is at most 2-to-1.

One can show that X is homeomorphic to the Cantor set (Exercise .
It is easy to see that Rg(a + 0) = Rg(a) + 0, Rg(a — 0) = Rg(a) — 0, and
Ro(a) = Ry(a) defines a minimal homeomorphism Ry of Xy. It acts on X
as an interval exchange transformation: it moves [0,1 — 6 — 0] to [0 + 0,1]
and [1 — 6 4+ 0,1] to [0,0 — 0] by parallel translations. The map @ is a
semiconjugacy from Ry ~ Xy to Rg ~ R/Z.

Proposition 1.3.1. The homeomorphism Ry generates an expansive action

of Z.

Recall that the homeomorphism Ry G R/Z is not expansive, as it is an
isometry.

Proof. It is enough to show that for any two points z,y € Ap such that
x <y and y —x < 1/2 there exists n such that Ry(z) and Ry(y) belong to
different intervals [0,6 — 0] and [ + 0, 1]. But this follows from minimality
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of Ry ~ R/Z. Namely, if ®(z) # ®(y), then there exists n € Z such that
nb € (®(x), ®(y)), and then O belongs to the shorter arc of the circle R/Z
with the endpoints R,""!(®(z)) and R;"H(@(y)), which implies that 6
separates the points R,""!(z) and R,""(®(y)). If ®(z) = ®(y), then
®(x) and ®(y) belong to the Ry-orbit of 0, so there exists n such that
Ro(z) = 0 — 0 and Ry(y) = 0 + 0. O

In fact, it is easy to check that the system Ry G Xy is topologically
conjugate to the subshift Xy described in Proposition [1.2.37

1.3.1.3. Minimal subshifts. We have seen many example of minimal Can-
tor dynamical systems in Section [1.2] in particular, the ones generated by
primitive substitutions.

Another important class of minimal subshifts are the Toeplitz subshifts,
i.e., subshifts equal to the closure of the set of shifts of a Toeplitz sequence.
A sequence (x,)nez € X2 is Toeplitz if for every n € Z there exists a positive
integer ¢ such that x4 = x, for all k € Z. The closure of the Z-orbit of
a Toeplitz sequence under the shift is called a Toeplitz subshift. It easily
follows from Proposition that every Toeplitz subshift is minimal.

Any Toeplitz (2, )nez € X% sequence can be constructed in the following
way. Let * be a symbol not contained in X, and denote by X, = X u {x}.
Suppose that wy, ws € XZ are periodic sequences, and suppose that symbols
« appear in wj. Denote then by Ty, (w2) the sequence obtained from wy
by replacing consecutive symbols % of w; by the sequence ws (so that, for
example, the coordinate number 0 of wo is placed in the first non-negative
coordinate of w; equal to ). If p; and pe are periods of w; and wa, then
T, (w2) is a periodic sequence of period p;pa.

Let wy,wa,... € X2 be non-constant periodic sequences with periods
P1, D2, - - . such that = appears in every sequence w;. Suppose that for infin-
itely many values of n the symbol # does not appear on the zeroth coordinate
of wy. Then the sequence Ty, (Twy(Tws(. - - Tw,_, (wy) ...))) converges to a
Toeplitz sequence w € XZ.

Example 1.3.2. Consider the Feigenbaum substitution ¢ : 0 +— 11,1 — 10,
and let X be the subshift generated by it. Since the words ¢(x) for z € {0, 1}
are of length two and both start with 1, for every sequence (x,)nez € X we
either have zo, = 1 or x9,y1 = 1 for all n € Z. If we eraze this con-
stant 1 subsequence, the sequence that remains is obtained from a sequence
(Yn)nez € X by changing 0 to 1 and 1 to 0. It follows that every sequence
in X' is the limit of the sequence Ti,, (T, (. - - T, _, (Tw,,) - - -)), where wy, for
odd n is one of the two sequences of the form ...*1x1%1%..., and for even
n is one of the two sequences of the form ...« 0«0 0x*....
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The following characterization of Toeplitz shifts shows a relation between
Toeplitz subshifts and odometers similar to the relation between Denjoy
systems and irrational rotations of the circle.

Theorem 1.3.3 (Downarowicz, Lacroix). A minimal subshift f G X is
Toeplitz if and only if there exists a generalized odometer f' G X' and a
surjective semiconjugacy ™ : X —> X' such that |7=(z)| = 1 for some
rxeX.

1.3.2. Rokhlin-Kakutani towers.

Lemma 1.3.4. Let f G X be a minimal homeomorphism of a compact
topological space. For every open set U — X and every x € X there exist
integers ny > 0 and n_ < 0 such that {f™t(x), f*"~(x)} c U.

Proof. By minimality, the sets f™(U), for n € Z, cover X. By compactness,
there exists a finite set n1,ng,...,ni € Z such that the sets f"(U) cover X.
Applying f~™**"™ to this cover, we get a cover {f™(U)};_1,.  where all
the numbers m; are non-positive. Similarly, applying f~ ™%+l we get a
cover {f™(U)}i=1,. r where all the numbers m; are positive. O

Let 7 G X be a minimal homeomorphism of a compact totally discon-
nected metrizable space.

A Rokhlin-Kakutani partition is a collection of finite sequences

(C1, 7(C1), T(Cy), ..., TMTHCY)),
(02, T(CQ), T(CQ), PN TkQ_l(CQ)),
(Crmy, T(Crn), 7(Cn), ..., Tkm*l(Cm))

of clopen subsets of X such that {r*(C;) : 0 < i < k;} is a parition of X,
and 7 (C;) 7L, Cj. Each sequence

(CZ T(Ci), 7'2(01'), ey Tki_l(Ci))

is called a tower of the partition. The set | ;" C; is called the base of the
partition, and the set C; is called the base of the corresponding tower.

See Figure where the action of 7 on a Rokhlin-Kakutani partition
is shown schematically.

Proposition 1.3.5. For every finite clopen partition P of X and every
clopen subset C < X there exists a Rokhlin-Kakutani parition subordinate
to P with the base equal to C.
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73(Cy)

72(Cy)

7(Cu)

Cy

Figure 1.14. A Rokhlin-Kakutani partition

Proof. By Lemma for every x € X there exists a positive integer n
and a non-positive integer n_ such that 7"+ (z),7" € C. Let n4(z) and
n_(x) be the smallest and the largest of such numbers, respectively. They
are the first return times to C of the dynamical system.

Note that for every k € N the set of points {x € X : ni(zr) = k} is equal
to

Hoys | o).
1<i<k
Similarly, the set {r € X : n_(x) = —k} is equal to
o)~ | 7).
O<i<k

Note that since C is clopen and 7 is a homeomorphism, these sets are clopen.
It follows that the functions n.(z) and n_(x) are locally constant, i.e.,
continuous. Consequently, the map = — (n_(z),n4(z)) is locally constant,
hence its set of values is finite (as X' is compact).

Denote by
Cij={zeX : n_(z)=—i,n.(z) = j}
its level sets. They form a finite clopen partition of X.
Note that C' is equal to the set of points x € X such that n_(x) = 0. It
follows that C' is partitioned into a finite collection of disjoint sets
CO,kw Co,kza PR CO,km

for some positive integers k;.
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Ey Es Es
Vi Va Vs Vi

Figure 1.15. A Bratteli diagram

For every k; and 1 <[ < k; we obviously have
7 (Cok,) = Crri—,

since the first moment in the future when points of 7¢(Cpx,) come back to
C, by definition, is k; — [ (as the first positive return time to C' of points of
Co,, is k;); and the first time in the past when points of Tl(C’O,ki) are in C
is —1. It follows that the sets C; ; form a Rokhlin-Kakutani partition with
base C' and towers

Coki» Ciri-1, Copj—2, .-y Cr—11-

For a point « € Cyy, consider the itinerary (Po, P, ..., Py—1) of = with
respect to P, i.e., a sequence of elements of P such that 7!(z) € P, for 0 <1 <
k; — 1. Since P is finite, the set of all itineraries (Py, P, ..., Py,—1) is finite,
hence Cy , is partitioned into a finite set of clopen subsets Ay, Aa, ..., Axy
such that all points one set A; have the same itineraries. Let us split the
tower into M; towers

Ajv T(Aj)’ 7—2(Aj)’ ) Tkiil(Aj)'

Then each element of the tower is a subset of an element of P. The union
of all such towers (for all towers of the partition {C; ;}) will be a Rokhlin-
Kakutani partition subordinate to P and with the base equal to C. U

1.3.3. Bratteli diagrams. A Bratteli diagram B consists of sequences
(V1,Va,...) and (E1, Ea, .. .) of finite sets and sequences of maps s, : F,, —>
Vi, 't By — Vi1, Thesets V = | |, Vi and E = | |-, By, are the sets
of vertices and edges of the diagram, respectively. An edge e € F,, connects
the vertices s, (e) € V,, and r,(e) € V,41. See Figure where a beginning
of a Bratteli diagram is shown.

We assume that the maps s,, and r,, are surjective (though more general
Bratteli diagrams are also sometimes considered in the literature). We will
sometimes denote s = s, and r = r, when the domains of the corresponding
maps are clear from the context.
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Let us enumerate each set V,,, i.e., identify it with {1,2,...,|V,|}. The
the Bratteli diagram is determined then by the sequence of matrices A, =
(Mij)1<i<|Visr| 1<j<|Ve|» Where my; is the number of edges connecting i €
Vh+1 to j € V,. For example, if we enumerate the vertices of the levels of
the diagram shown on Figure from left to right, then we have

10
2 0 1 130
Al:(o10)’ Az = (1)} ’ A3:(001)‘

A (finite or infinite) path in the diagram B is a (finite or infinite) se-
quence (e, ea,...), where e, € E, and ry(e,) = spyi1(ens1) for all n. If
(e1,€9,...,6,) is a finite path, then its length is n. Additionally, a path of
length 0 is a vertex of Vi. We will also sometimes consider paths from V; to
V; for arbitrary ¢ < j, but then we explicitly specify that the path begins in
a vertex of V;.

It is easy to see that the number of paths from i € V; to j € V,, is equal
to the entry in the ith column and jth row of the matrix A1 As--- Ap_1.

We denote by P, (B) the set of paths of length n (from V; to V;,). The set
of all infinite paths P(B) is a closed subset of the direct product Fq x Egx- - -,
and we consider it as a topological space with the induced topology. The
space P(B) is compact, totally disconnected, and metrizable.

We say that a path (e1,eg,...,e,) € Pn(B) starts in si(e1) and ends in
rn(en). The multiplicity of a vertex v € V,, is the number of paths v € P, (B)
ending in v. We denote it m(v).

IfB = ((Va)2 q, (En)X_q,s,r) is a Bratteli diagram, then we denote by B

n=1» n=1»

the diagram ((V,,);_g, (En)i_y, S, ) obtained by adding one level of vertices
Vb consisting of one vertex and one level of edges Ey such that r : g — Vj
is a bijection.

Definition 1.3.6. Let B = (V) q, (En)’g,s,r) be a Bratteli diagram.
Let kg =0 < k1 < ko < ... be an increasing sequence of integers. The tele-
scoping of B defined by the sequence is the diagram ((V,))*_,, (E})® .8, 1),
where V) =V}, ., E, is the set of paths in B from Vj,, to V4, ,,, and s, r are

the beginning and the end of the paths, respectively.

We write By ~ By (and call the diagrams By and By equivalent) if one
can transform Bl by a sequence of telescopings and operations inverse to
telescoping to a diagram isomorphic to By. We will see later that By ~ By
if and only if there exists a diagram B such that a telescoping of B is a
telescoping of By and another telescoping of Bisa telescoping of B,.

Example 1.3.7. Let B; be the diagram with one vertex and two edges
on every level. Let Bs be the diagram with two vertices on each level and
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Figure 1.16. Equivalence of diagrams

complete bipartite graphs of edges on each level. Then they are equivalent,
see Figure [[.16] where telescopings of the diagram B shown in the middle
are isomorphic to the diagram By shown on the left and to the diagram B,
shown on the right.

Bratteli diagrams were introduced by O. Bratteli in [Bra72] to describe
approximately finite C*-algebras (i.e., direct limits of finitely dimensional
C*-algebras). They can be used to describe inductive limits of direct prod-
ucts of various algebraic structures with respect to block-diagonal embed-
dings.

Example 1.3.8. Consider for every level n of the diagram B the direct sum
An = Dyey;, M) xm(v) (k) of the algebras of m(v) x m(v)-matrices over a
field k. For every vertex v € V,, consider the set of edges e € E,,_1 ending in
v. Then the algebra M,,(,)xm(v) (k) contains a sub-algebra of block-diagonal
matrices isomorphic to @ cer—1(v) M (s(e)) xmis(e)) (k). We get hence a block-
diagonal embeddings A, 1 — A,, and the corresponding inductive limit
Mg(k), defined by the diagram. We can also consider the inductive limit
in the category of C*-algebras, in the case k = C, which was the original
motivation of [Bra72].
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Example 1.3.9. Let G be a group. For every n > 1, let G,, be the direct
product HveVn G™v) . For every v € V,, the group G™") is isomorphic to
Heerl(v) G™s(e) | where the direct factors are labeled by paths of length
n. We have natural block-diagonal embeddings G,—1 — G, mapping the
factor corresponding to a path + diagonally to the factors corresponding to
its continuations. The inductive limit of these maps is naturally isomorphic
to the group of all continuous (i.e., locally constant) maps P(B) — G with
pointwise multiplication, where G has discrete topology.

Example 1.3.10. Consider the direct sums G, of the symmetric groups
Sm(v) for v € V. Each group S, acts by permutations on the set of
all paths v € P,(B) ending in v. Then the permutation group Sm(v) nat-
urally contains an isomorphic copy of the direct sum of the permutation
groups S, (s(e)) for all e € r—!(v). We get hence block-diagonal embeddings
G,_1 — G, and the direct limit of finite groups, defined by the diagram.
Similarly, one can take direct sums of the alternating groups A,y and the
corresponding embeddings and direct limit. See for more about these
constructions.

Example 1.3.11. Let B be a Bratteli diagram defined by the sequence of
matrices A, Ao, .... Consider the sequence of abelian groups

7IVil A, giVa| A2 lVs| As

Its direct limit is called the dimension group of the diagram. Its positive
cone is the union of the images of the subsemigroups Z‘X"' c ZV» in the
direct limit (where Z. is the semigroup of non-negative integers).

Note that in all the above examples B; ~ By implies for each of Exam-
ples 1.3.11] that the direct limits defined by the diagrams By and Bo
are isomorphic.

1.3.4. Vershik-Bratteli diagrams.

Definition 1.3.12. A Vershik-Bratteli diagram (or an ordered diagram) is
a Bratteli diagram together with a linear order on each set r~!(v). An edge
e is called minimal (resp. mazimal) if it is minimal (resp. maximal) in the
set v 1(r(e)). A path is said to be minimal (resp. mazimal) if it consists of
minimal (resp. maximal) edges only.

An ordering of the edges of a Vershik-Bratteli diagram B = ((V;), (E;), (s;)
defines a natural lezicographic order on the sets of path between V; and V;
for every pair i < j and on the set P(B) of infinite paths in B.

Namely, two finite paths (e, ea,...,e,), (f1, f2,..., fn) are comparable
if and only if r(e,) = r(f,). Then (e1,e2,...,en) < (f1, fo,.--, fn) if ex < fi

(rs))
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for the largest index k such that ex # fx. Note that then r(eg) = r(fx), so
er and fi are comparable. In particular, a telescoping of a Vershik-Bratteli
diagram is again a Vershik-Bratteli diagram with respect to the lexicographic
order on the contracted paths (which become edges of the telescoping, see

Definition |1.3.6)).

Similarly, two infinite paths (eq, €9, .. .) are comparable if and only if they
are co-final, i.e., if e, = f,, for all n big enough. Then we have (e, ez,...) <
(f1, f2,...) if ex < fi for the largest index k such that ey # f.

The adic transformation (or the Vershik map) is defined on the set of
non-maximal paths in P(B) and maps a path v = (e1,ea,...) to the next
path in the lexicographic order (i.e., to the smallest path among the paths
bigger that ). It is computed in the following way. Find the first in-
dex n such that the edge e, is non-maximal. Let e/ be the next edge
in r;1(r,(en)), and let (e}, é€h,...,e! ;) be the minimal path such that
rp_1(el,_1) = sn(el,) (it exists and is unique, since for every vertex v there
exists a unique minimal edge e € r~!(v)). It is easy to see that the path
(€),€eh,....el 1 €, ent1,enta,...) is the minimal path among the paths
bigger than 7 in the lexicographic order. See Figure [I.17] where the arrows
show the ordering of the edges, and point from a smaller edge to the bigger
one. The map 7 changes the highlighted red beginning of a path to the black

path. (check the colors...)

The adic transformation is defined on the set of non-maximal paths, and
its set of values is the set of non-minimal paths. Note that the inverse of
the adic transformation is the adic transformation of the Vershik-Bratteli
diagram obtained from B by reverting the ordering of the edges.

The adic transformation is continuous on the set of non-maximal paths,
since it changes in every non-maximal path (ej,ea,...) only the finite be-
ginning (e, €2, ..., ey,), where e, is the first non-maximal edge in the path.
However, it may not have a continuous extension to the whole space P(B).

Consider, for example, the Vershik-Bratteli diagram shown on the right-
hand side of Figure Let us label the vertices of each level by 0 and
1 so that O is on the left-hand side, and denote paths in the diagram by
the sequence of vertices through which it passes (in this case this notation
is non-ambiguous). It has two minimal paths 010101... and 101010...,
and one maximal path 1111.... The adic transformation can not be ex-
tended continuously to the whole space of paths. Namely, it maps a sequence
w = 111...101v either to 0101...011v or to 1010...011v depending on the
parity of the number of the leading ones in w, so it can not be continuously
defined at 111....

Another example is given by the diagram shown on the right-hands side
half of Figure In this case there are two maximal and two minimal
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Figure 1.17. Adic transformation

infinite paths, but there is no continuous extension of the adic transformation
to the whole space of paths.

Definition 1.3.13. We say that a Vershik-Bratteli diagram B is properly
ordered if it has a unique maximal and a unique minimal paths in P(B).

Proposition 1.3.14. Suppose that a Vershik-Bratteli diagram B is prop-
erly ordered. Let max and Ymin be the mazimal and the minimal paths,
respectively. Then the extension of the adic transformation T given by
T(Ymax) = Ymin S @ homeomorphism.

We will also call the extension of the adic transformation 7 given in

Proposition the adic homeomorphism.

Proof. Since changing the ordering to the opposite one changes the adic
transformation to the inverse, it is enough to prove that the defined extension
of the adic transformation is continuous. The transformation is continuous
at non-maximal paths, hence it is enough to prove that 7 is continuous at
Vmax'

Let ~; be a sequence of non-maximal infinite paths converging to vmax.
It is enough to prove that we always have lim; ,o 7(7;) = Ymin- Let «; be
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the longest common prefix of v; and ~max. Let n; be the length of «;. We
have n; — o0 as i — 0. By the definition of 7, the beginning of 7(v;) of
length n; is a finite minimal path (i.e., a finite path consisting of minimal
edges only). It follows that the limit lim; ,o 7; is a minimal infinite path,
hence it is equal to Ymin. O

Definition 1.3.15. We say that a Bratteli diagram B is simple if for every
level V,, there exists m > n such that for every pair v € V,, and u € V,,, there
exists a path (e,, ep41,...,€m—1) in B starting in v and ending in w.

Proposition 1.3.16. Let B be a properly ordered Vershik-Bratteli diagram,
and let T G P(B) be the corresponding adic homeomorphism. There exists
a unique closed non-empty subset Y < P(B) such that T G Y is a minimal
homeomorphism. If B is simple, then T G P(B) is minimal, i.e., Y = P(B).

Proof. Let v € P(B) be an arbitrary path, and consider a finite beginning
« of 7v. By the definition of the adic transformation, there exists k = 0 such
that 7%(v) begins by the maximal path in the lexicographic order among
the paths ending in the same vertex as «. It follows that the forward orbit
7"(7y) for n = 0 contains arbitrarily long prefixes that are maximal paths
(it is possible that one of such prefixes is the whole path Yyax). It follows
from the uniqueness of the maximal path that v« belongs in the closure of
the T-orbit of v. Consequently, closure of the 7-orbit of vyax is the unique
closed non-empty subset Y  P(B) such that 7 G Y is minimal.

If B is simple, then for any infinite path v and for any finite path a there
exists a finite path £ such that af ends in a vertex of . It follows that
there exists a path 7/ € P(B) starting with « that has a common infinite
suffix with 4. Then ' and v belong to the same 7-orbit. This shows that
the T-orbit of 7 intersects every open subset of P(B), i.e., that every T-orbit
is dense. ([l

Example 1.3.17. Let di,do, ... be a sequence of integers greater than 1.
Consider the associated odometer x — x+1 acting on the inverse limit of the
cyclic groups Z/dyds - - - d,Z, see It follows from the description of
the action of the odometer on the set of infinite formal series that it is
topologically conjugate to the adic homeomorphism defined by the Vershik-
Bratteli diagram B such that |V,,| =1 and |E,| = d,,. A particular case, for
2=d; =dy = ..., was considered in

1.3.5. Diagrams associated with sequences of Rokhlin-Kakutani
partitions. Let 7 G A be a minimal homeomorphism of a Cantor set. If
R1 and Ro are Rokhlin-Kakutani partitions, then we write Ry < Rq if the
base of R is contained in the base of Ry, and Rs is a refinement of R4 (i.e.,
every element of Rs is a subset of an element of Ry).
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Consider a sequence of Rokhlin-Kakutani paritions R1, Ro, . . . with bases
Bi, By, ... such that R{ < Ro < .... We assume that the base Bj is equal
to X, i.e., that all towers of R; are of length 1.

We are going to associate a Vershik-Bratteli diagram B with the sequence
R,. Take the nth level set of vertices V;, equal to the set of towers of R,.
(In particular, V; is the set of elements of R;.)

Let (C,7(C),...,7*71(C)) be a tower of R,+1. Then C < B, is a
subset of an element C’ of R,,, and C' — B,,. Each of the elements of the
tower is also contained in an element of R,,. It follows that the tower is
naturally split into segments

(CO = CC, T(C)7 s Tllil(c))a

(Cy =T (C), rh+l (), o, ThFRTLOY),

(02 — 7_ll+l2 (C’), 7.[1+12+1(C)7 . Tll+lg+l3—1(0)),
.(Csfl — 7—11+12+--'+ls—1(0)7 7—l1+l2+"'+ls—1+1) (C)’ el 7-11+12+'“ls*1(c))’

such that for each segment
(Ci,7(Cy), ... T~ 1(Cy))

there exists a (necessarily unique) tower v; = (Cy, 7(C), ..., 7,-1(C;)) of
R, such that

Fhtlat+lioi4i (0 < 73(C).

In other words, the towers of R,11 are split into disjoint unions of restric-
tions of towers of R,. Let us connect the vertex of V,,.1 corresponding to
the tower (C,7(C),..., 7™ 1(C)) of Ry+1 to the vertices corresponding to
the towers v; in the natural order of their appearance in the above list of
segments. Note that v; are not necessarily pairwise different, so we may
get multiple edges. Then each edge connecting a tower (A4, 7(A),...,7%(A))
of Rny1 to a tower (B, 7(B),...,7'(B)) of R, is in a bijective correspon-
dence with a segment (7°(A),71(A),..., 7T (A)) of the first tower such
that 7/(A) = B. We say that this segment corresponds to the edge.

We call the constructed Vershik-Bratteli diagram B the diagram associ-
ated with the sequence (Rp)n=12,....

See Figure where an example of a pair R, < R,y1 of Rokhlin-
Kakutani partitions and the corresponding level of the Vershik-Bratteli di-
agram are shown. Bigger boxes represent elements of R,. Black and gray
rectangles depict elements of the partitions R, 1 and R, respectively, be-
longing to their bases. The towers and the corresponding vertices of the
Vershik-Bratteli diagram are labeled by letters v; and u; are placed near the
elements belonging to the bases.
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Figure 1.18. Refinement of a Rokhlin-Kakutani partition

Proposition 1.3.18. Let B be the Vershik-Bratteli diagram associated with
a sequence R1 < Ro < .... Then there is a unique sequence of bijec-
tions ¢n : Pp(B) — R, such that ¢p(e1,ea,...,en) € Ry is a subset of
On—1(€1,€2,...,en—1) (of ¢po(s(er)) for n = 1), and an element of the seg-
ment ey, of the tower r(ey).

Proof. Let e € E,, be an edge of B. Then s(e) is a tower of R, and r(e)
is a tower of R,,+1. The tower r(e) contains a segment (determined by e)
A,7(A),...,7"71(A) such that the tower s(e) is of the form A’, 7(A"),..., 77 1(A")
for some A’ € R,, such that A = A’. We see that for every element C’ of the
tower s(e) there is a unique element C' of the tower r(e) such that C' < C’
and C belongs to the segment fo r(e) corresponding to the edge e. The proof
of the proposition now follows by induction. O

The following proposition is also proved by induction on n. We leave it
as an exercise.

Proposition 1.3.19. Two paths 1,72 € Pn(B) are comparable if and only
if dn(v1) and ¢n(y2) belong to the same tower of Ry,. If o is the smallest
path bigger than 1, then T(¢n(11)) = én(72)-

In particular, a path v € Pp(B)) is minimal (resp. maximal) if and only
if dn(y) (resp. T(dn(7y))) is contained in the base of R,,.

The following theorem is a result of [HPS92]...

Theorem 1.3.20 (R.H. Herman, L.LF. Putnam, C.F. Skau). Let 7 G & be a
minimal homeomorphism of a Cantor set. Then it is topologically conjugate
to the adic homeomorphism of a simple properly ordered Vershik-Bratteli
diagram.

Proof. Let f G X be a minimal homeomorphism of a Cantor set. Choose a
metric d on X compatible with the topology. Take an arbitrary point zg € X.
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Let Rg be an arbitrary finite partition of X’ into non-empty clopen subsets
(e.g., {X}), seen as a Rokhlin-Kakutani partition with the base X. Let P,
be a sequence of finite clopen partitions such that maximum D,, of diameters
of elements of P,, converges to zero. Let C,, € P,, be the element containing
xg. Construct recursively R,, as a Rokhlin-Kakutani partition subordinate
to Rp—1 and P, with the base a subset of C,, see Proposition[I.3.5] We get a
sequence Ry < R1 < .... Let B be the associated Vershik-Bratteli diagram.
Let ¢, : Pn(B) — R, be the bijections described in Proposition
Then for every infinite path v = (e, ez,...) € P(B) we get a decreasing
sequence of sets ¢p(e1,€2,...,6,) € Ry. Their intersection is non-empty
by compactness, and of diameter zero, since the diameter of every element
of R, is less than D,. It follows that they intersect in one point, which
we will denote ¢(y). If 41 and 7, agree on a beginning of length n, then
d(¢(y1), ¢(y2)) < Dy, which implies that ¢ : P(B) — X is continuous.
For every x € X and n the point x belongs to a single element of R, and,
by Proposition this element is equal to ¢y (e1,e9,...,e,) for some
v = (e1,e2,...) € P(B) not depending on n. It follows that ¢ is onto. It is
also easy to see that it is one-to-one, hence a homeomorphism.

The intersection of the bases of R, is non-empty (since the base of
Ry+1 is non-empty and contained in the base of R,) and contained in C),.
It follows that the intersection of the bases is xg. It follows that the minimal
path in B is unique and its image under ¢ is xo (see the characterization
of the minimal path in Proposition . Similarly, the intersection of
the images of the bases under f~! is equal to {f~!(z0)}. In particular, the
minimal and the maximal paths in B are unique. Proposition shows
now that ¢ conjugates the adic homeomorphism with f. O

In fact, the proof of Theorem [I.3:20]shows if 7 G X’ is a minimal system,
and x € X, then there exists a Vershik-Bratteli diagram B and a homeomor-
phism ¢ : P(B) — X satisfying the conditions of the theorem and such
that ¢ maps the minimal path to z.

In fact, we have the following characterization of the Vershik-Bratteli
models of minimal Cantor systems.

Theorem 1.3.21. Let By and By be properly ordered Vershik-Bratteli dia-
grams, and let T; be the adic homeomorphism of P(B;). Then the Vershik-
Bratteli diagrams B; are equivalent if and only if there exists a homeomor-
phism ¢ : P(B1) — P(B2) mapping the minimal, resp. mazimal, path of By
to the minimal, resp. mazimal, path of Ba and conjugating the corresponding
adic transformations.

reference...
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Proof. (A sketch.) Telescoping a Vershik-Bratteli diagram does not change
the space of its paths and the lexicographic order on them, therefore it does
not change the corresponding adic transformation. It follows that equiv-
alent Vershik-Bratteli diagrams have topologically conjugate adic transfor-
mations.

In the other direction, it is easy to see that if Rg < R1 < Rg < ... 18
an increasing sequence of Rokhlin-Kakutani partitions with the associated
Vershik-Bratteli diagram B, then the diagram associated with a subsequence
Ro < Rpy, < Rpy, < ... 1s a telescoping of the diagram B. Suppose that
Ro < R1 < Ra < ...and Ry < R} < R, < are two sequences of Rokhlin-
Kakutani partitions for a given minimal system f G X such that the maxi-
mal diameters of the elements of the partitions go to zero in both sequences,
and xo € X is contained in the bases of all partitions R,, and R/,.

Then it is easy to prove (using Lebesgue lemma) that for every n there
exists m such that R, < R/, and R], < R,,. It follows that there exists a

sequence ny < ng < ng < ...such that Ro < R}, < Rn, <R}, <.... This
shows that the associated Vershik-Bratteli diagrams of the sequences (R,,)
and (R,)" are equivalent. O

1.3.6. Kakutani equivalence. Let f G X be a minimal homeomorphism
of a Cantor set, and let ) € X be a non-empty clopen subset. Then for
every x € Y there exists n > 0 such that f"(z) € ), see Lemma [1.3.4]
Let n, be the smallest such number. Then fy : x — f"(x) is called the
first return map to Y. Since x +— n, is locally constant, it is continuous.
The inverse map is the map x +— f"*(x), where m, is the smallest positive
integer such that f~™=(x) € ). Since the orbits of the first return map
are intersections of the f-orbits with ), the first return map fy G YV is a
minimal homeomorphism.

Definition 1.3.22. Two minimal Cantor dynamical systems f; G X} and
fo G Xy are said to be Kakutani equivalent if there exist non-empty clopen
subsets ); < A&; such that first return maps to (f1)y, G V1 and (f2)y, G a2
are topologically conjugate.

Proposition 1.3.23. The Kakutani equivalence is an equivalence relation.

Proof. The Kakutani equivalence is obviously reflexive and symmetric. Let
us show that it is transitive. Suppose that fi G A} is Kakutani equivalent
to fo G Xy, and fo G Xy is equivalent to f3 G A3. Then there exist
non-empty clopen subsets V1 € Xy, Vo € Xy, 2o € Ao, Z3 < A3 such that
(f1)y, G V1 is topologically conjugate to (f2)y, G Va2 and (fa)z, G 22 is
topologically conjugate to (f3)z, G Zs.
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There exists m such that U = f™(Z3) n )y is non-empty. Then the
conjugacy ¢1 : Y1 —> Yo between (f1)y, G (f2)y, restricts to a topological
conjugacy of (f1)g-1) G ¢~ (U) with (f2)y G U. The map f~™ : X —>
Xy is a conjugacy of fo G Ao with itself, which induces a conjugacy of
(f2)u G U with (f2)f-m@y G f™(U). Note that f="(U) < 22, and then
the conjugacy ¢2 : Z2 — 23 of (fa)z, G Z2 with (f3)z, G 23 will induce a
conjugacy of (f2)-mwy G [ (U) with (f3)g,p-m@y) G ¢2(f~"(U)). 1t
follows that (fi)v G U and (f3)g,(s-m@w)) G ¢2(f~™(U)) are topologically
conjugate, hence f; and f3 are Kakutani equivalent. O

Example 1.3.24. Consider the Denjoy homeomorphism Ry G Xy described
in Let a,b € [0, 1] be elements of the orbit of 0 under the rotation
Ry. Suppose that a < b, and let [a + 0,b — 0] be the corresponding clopen
subset of X heta. We will sometimes denote such subsets just [a, b], when
it does not lead to confusion. Let n be the smallest positive integer such
that ¢ = frac(b + n#) € (a,b). Then the first return map (Rg)[%b] maps the
interval [b—c+a, b] to [a, c] and the interval [a,b—c+a] to [¢, b] by parallel
translations. If we identify [a,b] with [0,1] by the affine transformation

r — 7=, then we get the transformation swapping [g:—g, 1] with [O, %]»
i.e., the rotation by the angle 2_;;. Note that 2_;; is of the form rﬁgiln for

some k,l,m,n € Z, since a, b, c belong to the orbit of 0 under the rotation by
0. We will give a complete description of the Kakutani equivalence classes
of the homeomorphisms Ry later.

Proposition 1.3.25. Let By and By are properly ordered Vershik-Bratteli
diagrams. The associated adic transformations are Kakutani equivalent if
and only if the diagrams B1 and Bo are equivalent to Vershik-Bratteli dia-
grams B} and B, that differ from each other on a finite number of levels.

Proof. Let Ry < Ro < ... be a sequence of Rokhlin-Kakutani partitions,
and let B be the associated Vershik-Bratteli diagram, as in in Let R,
for n = 2 be the partition of the base of Ry consisting of the elements of
R, contain in it. Then R} < R5 < ... is a sequence of Rokhlin-Kakutani
partitions of the first return map to the base of Rs. It is also easy to check
that the Vershik-Bratteli diagram associated with the sequence (R!)n>2 is
obtained by deleting the first level of the diagram B. It follows that remov-
ing a finite number of initial levels of a Vershik-Bratteli diagram does not
change the Kakutani class of the associated adic homeomorphism. Conse-
quenlty, any finite change in the Vershik-Bratteli diagram does not change
the Kakutani class of the adic transformation, since any such a change can
be erased by deleting a finite number of levels. This proves the “if” direction
of the proposition.
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Let f G X be a minimal homeomorphism, let ) € X be a non-empty
clopen subset, and let Ry < Rq1 < R < ... be a sequence of Rokhlin-
Kakutani partitions of f G X separating the points of X', so that the adic
transformation on the associated Vershik-Bratteli diagram is naturally con-
jugate to f G X. We assume that Ry = {X¥'}. We may also assume that
the base of R; is contained in ) and every element of R is either contained
in Y or disjoint with it. Then the same conditions will be satisfied for all
Ry, n =1 (by the definition of the relation “<” on Rokhlin-Kakutani par-
titions). Denote by R/, for n > 1, the partition of ) equal to set of the
elements of R,, that are contained in ). It is checked directly that R/, is a
Rokhlin-Kakutani partition of the first return map fy G Y, so that we get
sequence of Rokhlin-Kakutani partitions

{(X}<R1<Ra<Rz<...

and
{V} <RI <RL<RL < ...

of the sysetms f G X and fy G )Y, respectively. Both sequences separates
the points of the corresponding spaces, so the associated Vershik-Bratteli di-
agrams model the corresponding dynamical systems. These Vershik-Bratteli
diagrams differ only on the first level. This proves the “only if” direction of
the proposition. O

1.3.7. Vershik-Bratteli diagrams as sequences of substitutions. Ev-
ery level (V,,, E,,, V,+1) of a Vershik-Bratteli diagram naturally defines a ho-
momorphism of monoids ¢, : V,,; — V5. Namely, if v € V.1, and if
(e1,€2,...,em) is the set r~1(v) listed according to the ordering of E,,, then
we set ¢n(v) = s(er)s(e2) .. .s(em).

Conversely, every sequence of monoid homomorphisms
(1.3) Ve Sl 2

is naturally encoded by the Vershik-Bratteli diagram with the sets of ver-
tices V1, Va,..., where for every vertex v € Vj.1 the set r (v) of edges
ending in v has |¢(v)| elements e; < ez < ... < ey, and @(v) =
s(e1)s(e2) ... s(ejp(v)))- Telescoping of a Vershik-Bratteli diagram corresponds
in this interpretation to compositions of the homomorphisms, i.e., replacing
the sequence of monoids by a subsequence (containing V;*) connected
by the corresponding compositions of morphisms.

Definition 1.3.26. Consider a sequence

X LLoxr L2oxx &
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of substitutions. The subshift generated by it is the subshift F < X% of
all sequences (y,)nez such that for every finite subword v = z,@p41 ... Tm
there exists k and x € Xj, such that v is a subword of ¢ 0 ¢y 0--- 0 ¢p(x).

If the diagram is stationary, i.e., if all sequences V,,, E,,s,,r, and the
ordering are constant, then the sequence ¢, is also constant. Conversely,
the Vershik-Bratteli diagram associated with a constant sequence (¢, ¢, .. .)
of endomorphisms ¢ : X* — X* is stationary.

For example, the stationary Vershik-Bratteli diagram on the left-hand
side part of Figure [1.25] is associated with the substitution

o(0) =01, o(1) =011,
if we label the vertices of a level of the diagram by 0 and 1 from left to right.

Let B be a Vershik-Bratteli diagram, and consider the corresponding
sequence ¢, : V¥ — V¥ of monoid homomorphisms. For every v €
V,, the set of paths ending in v is in a natural bijective order-preserving
correspondence with the letters of the word ¢1 o ¢g 0 -+ 0 ¢p—1(v). Let
v = (e1, ea,...) be an infinite path in B. Denote wy,(y) = zg, Tg, 41 .- Thy =
p1o¢po0---0¢py(r(ey)), where the numbering of the letters is by consecutive
integers such that xg is the letter corresponding to the path (eq,es, ..., ep).
Then wy,+1(7) is obtained from w, () by appending letters to the beginning
and/or to the end of wy,(y). It follows that in the limit we get a word wg(7)
associated with the path +. The adic transformation acts as the shift on
the associated words. Note that if 7 is a minimal path, then wy(7y) is of
the form zoz; .... If 7 is maximal, then we () is of the form ...z_1z¢. In
general, the word wy () may be finite.

Different paths v may produce the same words. For example, if V,, = {z}
and |E,| = 2 for every n, then infinitely many paths in the diagram will be
associated with the word ...zzxz .... The remaining paths will be associ-
ated with one-sided sequences zxxx ... and ...xxxx. In order to recover the
path ~ from the word we (), we have to remember the “production process”
of the words w,, and position of the zeroth coordinate. For example, in the
last example, we can put brackets around subwords equal to the images of
the single letters x € V;, under compositions of the homomorphisms. Such
a bracketing may be still not enough for some Vershik-Bratteli diagrams,
for example, if images of the different letters are equal. (Take, for exam-
ple, the Vershik-Bratteli diagram of the constant sequence of substitutions
o(a) = ab,o(b) = ab.)

The problem of uniqueness of the path v for a word we () is called
recognizability, see [Ku03l, Section 4.3].

Example 1.3.27. Let 0 : 0 — 01, 0 : 1 — 10 be the Thue-Morse substi-
tution. Note that if w = (x,)nez is an element of the subshift generated
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by it, and z,z,+1 = 00 or xz,x,+1 = 11, then we know that z,_;x, and
Tpi1Znio are images of letters under o. After that the preimage of w is
uniquely determined. Note that we always can find such an index n, since
otherwise the word w is of the form ...abababab ..., which does not belong
to the Thue-Morse subshift. Consequently, the word w uniquely determines
the corresponding path in the Vershik-Bratteli diagram of the substitution.

Example 1.3.28. Similarly, consider the Fibonacci substitution ¢(0) = 01,
o(1l) = 0, and let S, be the subshift generated by it. Then in every word
w € S, every letter 1 is preceded by 0, and the corresponding subword 01 is
the image of a letter 0. The remaining letters 0 are the images of 1, so that
the sequence w is uniquely decomposed into a concatenation of o-images of
letters of a sequence w' € S,.

In fact, the above examples are fairly typical. Namely, we have the
following result of Mossé, see [Ku03l, Theorem 4.36].

Theorem 1.3.29. Let 0 : X —> X* be a primitive aperiodic substitution.
Then it is recognizalbe, i.e., every sequence w in the subshift F, gener-
ated by o can be uniquely decomposed into a concatenation of subwords

c.o(y—1)o(yo)o(yr) ... for a word ...y_1yoy1 - .. € Fo.

Here we call a substitution ¢ : X — X* is periodic if it generates a finite
subshift, i.e., if every element of the subshift generated by o is a periodic
sequence. Otherwise, it is called aperiodic.

Let 0 : X — X* be a primitive substitution generating a subshift F,,
and let B, be the stationary Vershik-Bratteli diagram defined by the con-
stant sequence o. As described above, every path « of B, defines an infinite
sequence wu(7y). Let us assume for a moment that F, is infinite, i.e., that
o is aperiodic. Then F, is a minimal subshift, hence it can be defined by
a properly ordered Vershik-Bratteli diagram. Note that B, is not properly
ordered in general. Moreover, minimal and maximal paths of B, define one-
sided sequences, and it is possible that they can be extended to elements of
Fo in many ways, so some paths of B, will correspond to several elements
of Fg.

Example 1.3.30. The left-hand side part of Figure shows the Vershik-
Bratteli diagrams associated with the Fibonacci substitution 0 — 01,1+ 0

(see Example |1.2.22))

Note that the diagram has one minimal path (passing through the ver-
tices 0,0,0,0,...) and two maximal paths (passing through the vertices
1,0,1,0,...and 0,1,0,1,...). The corresponding words wq(7y) are the right-
infinite limit 01001010... of ¢™(0), the left-infinite limit ...01001010 of
02"(0), and the left-infinite limit ...01001001 of o"(1), respectively. Note
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Figure 1.19. Vershik-Bratteli diagrams of Fibonacci and Thue-Morse substitutions

that concatenations of the right-infinite word with both left-infinite words
belong to the subshift F, generated by o. It follows that the minimal path
in the Vershik-Bratteli diagram represents two different points of F,.

Proposition 1.3.31. The Vershik-Bratteli diagram B, associated with a
substitution o : X — X* is properly ordered if and only if there exists k > 1
and letters xq, 1 € X such that for every x € X the words o*(z) starts with
zo and ends with x1.

Proof. Consider the map « : X — X mapping x to the first letter of o(z).
Note that o*(x) is equal to the first letter of o*(z).

The orbit of every letter x € X under the iterations of « is eventually
periodic, i.e., there exist m,n such that o (z) = a™*"(z). Note that if
belongs to a cycle, i.e., if x = () for some n > 1, then there exists a
minimal path starting in = and in every letter of the sequence a‘(z), i > 1.
Since there exists only one minimal path, we must have z = a(z). Similarly,
there can be only one point of X belonging to an a-cycle, and it is an «-
fixed point. Denote it by xg. Then for every z € X there exists n such that
a™(x) = xg. Denoting by k the maximal value of such numbers n, we will
get that the first letter of o¥(x) is x¢ for all € X. The same argument
proves the statement for the last letter.

Conversely, if o satisfies the conditions of the proposition, then it is easy
to see that there exist unique minimal (resp. maximal) path corresponding
to the first (resp. last) letters of the words o™ (x¢) (resp. 6" (x1)). The same
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argument shows that there exists k such that the last letters of o*(z) are
equal for all x € X. O

There is a simple algorithm described in [DHS99] producing a properly
ordered stationary Vershik-Bratteli diagram B starting from a proper substi-
tution o, such that the adic transformation on B is topologically conjugate
with the subshift generated by o. Here we extend the notion of a stationary
Vershik-Bratteli diagram by allowing the first level to be different from the
subsequent levels. Namely, we adopt the following definition.

Definition 1.3.32. A stationary Vershik-Bratteli diagram is the diagram
associated with an eventually constant sequence of substitutions.

Let 0 : X — X* be a primitive aperiodic substitution, and let F, be
the subshift generated by o. After replacing o by some iterate ¢, we may
assume that there exists a word £ = ... x_9x_1.209271 ... € F, such that

e L9 1. X0LL . = .. (7(.%',2)0(1',1).0'(.1‘0)0'(1‘1) e

Since the subshift F, is minimal, the subword z_jx¢ appears in £ in-
finitely many times with uniformly bounded gaps between consecutive oc-
currences. More formally, we say that k € Z is an occurrence of x_jxg in
a word (yn)nez if yx—1 = x—1 and y; = xg. Two occurrences k1 < ko are
consecutive if there is no occurrence k such that k1 < k < ko. It follows
from Proposition that there exists a uniform upper bound on ko — &y
for any consecutive occurrences of x_1xg in any element of F,.

If k1 < ko are consecutive occurrences of x_1xg in (zy,)nez, then we call
the word xp, g, 41 ... Tr,—1 the return word for x_1x¢. Let Ry_ 4z, be the
set of all return words. It is finite, since the length of the return words is
uniformly bounded. By minimality of F,, every sequence (yp)nez € Fo can
be uniquely decomposed into a concatenation of elements of R, ,z,: just
cut (Yn)nez inside every subword yx_1yx = x_120.

Suppose that w € Ry_,z,- Then z_jwzo belongs to the language of
Fs, the first letter of w is zg, the last letter of w is x_1. It follows that
o(x_jwzg) = o(x_1)o(w)o(xg) also belongs to the language of F,. The
first letter of o(w) and o(xp) is xo, the last letter of o(w) and o(z_1) is
x_1. It follows that if we cut o(w) at every occurrence of z_1xg, we will
decompose o(w) into a product of elements of Ry_,4,-

We have proved that the sub-semigroup of X* generated by Ry ,z, is
o-invariant. It follows that the restriction of ¢ to this semigroup is a sub-

stitution, which we will denote by ¢ : Ry 2y — Ri_ 4,

Let wo, w1 € Ry_, 2, be the prefix of xgz; ... and athe suffixof ... z_sz_1,
respectively. The words ...z _sx_1 and zgx1 ... are o-invariants and are lim-
its of the words 0" (x_1) and 0" (z) for n — co0. Since every word w € Ry_, 4,
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starts with zo and ends with z_y, there exists k such that o*(w) starts with
wo and ends with w;. It follows by Proposition that the Vershik-
Bratteli diagram of ¢ is properly ordered. Let us add on top of this diagram
one more level associated with the substitution ¢g : Ry, — X* mapping
every word w € Ry_, 4, to itself (but as an element of X*). We get a station-
ary Vershik-Bratteli diagram such that its adic transformation is topolog-
ically conjugate to F,. This diagram is equivalent to the Vershik-Bratteli
diagram obtained from the diagram associated with ¢, ¢, ¢, ... by adding
one vertex on the top level and connecting it to each vertex w € R, _, 4, by
|w| edges.

Example 1.3.33. Let us consider the Fibonacci substitution
o(0) =01, o(l) =0.

Let us pass to the second iterate ¢2(0) = 010, 02(1) = 01, and consider the
corresponding o2-invariant sequence

...01001001.01001010.. ...
We have Ri9 = {wo = 01,w; = 001}, and
02(01) = 01]001 = wow;
02(001) = 01]001]001 = wow;w.
We get the substitution

¢ L Wo /> wowi, w1 — Wowi1wsi.

It follows that the subshift generated by the Fibonacci substitution is
conjugate to the adic transformation shown on the left-hand side part of
Figure [1.20] Note that it is equivalent to the diagram shown on the right-
hands side part of the same figure. Both diagrams are properly ordered.

1.3.8. Thue-Morse subshift. The Thue-Morse subshift 7 G 7T is gener-
ated by the substitution

o(0) =01,  o(1) =10,

see Example [[.2.21] The associated Vershik-Bratteli diagram is shown on
the right-hand side of Figure [I.19] Note that this diagram has two minimal
paths, corresponding to two infinite to the right limits of the words ¢"(0)
and o™(1), respectively:

wp = 0110100110010110.. ., w; = 1001011001101001 ... ..

They are represented on the Vershik-Bratteli diagram by the paths consist-
ing of vertical edges only.
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Figure 1.20. Vershik-Bratteli diagrams of the Fibonacci subshift

Similarly, it has two maximal paths, coresponding to two infinite to the
left limits:

w, = ...0110100110010110, w; =...1001011001101001.

They are represented by the paths consisting of diagonal edges only. Note
that o(wo) = wo, o(w1) = wy, o(wy ) = wy, and o(wy ) = wy .
For every word w € 7T there is a unique path in the Vershik-Bratteli

diagram producing w (or a one-sided infinite subword of w containing w(0))
as an inductive limit of words 6™ (z), = € {a, b}, in the way described in[1.3.7,

see Example

All four concatenations wy wo, wy w1, wy wo, w; wi belong to the subshift
generated by o. It follows that each of the maximal and minimal paths in the
Vershik-Bratteli diagram represents two points of the subshift. Moreover,
the adic transformation from the set of non-maximal paths to the set of
non-minimal paths does not admit a continuous extension to the space of
all paths.

Non-existence of a continuous extension can be easily corrected by “col-
laring”, i.e., applying a sliding block map (see Definition [1.2.15)) to the
substitution. Let us use the block map

P VR R 1o V0 3 [ e RPN (1‘721‘71) . (:Eflfl,‘())(l‘oibl) PN
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al ba ab bb

Figure 1.21. A continuous diagram of the Thue-Morse subshift

We will write the symbol xy of the block code as ,y in order to stress that
it replaces letter y in the original sequence. Applying o to two-letter words:

o(00) =01-01, o¢(11)=10-10,
o(10) =10-01,  ¢(01) =01-10

we see that the substitution induced on the block code is

0(00) = 1010,  o(11) =01 10,
0'(10) = 00 0].7 0'(0]_) = 1]_ 10.

The Vershik-Bratteli diagram of this substitution is shown on Figure[1.21
where minimal edges are red and maximal edges are black. Note that we
have four minimal and four maximal edges, but this time the corresponding
one-sided infinite paths are matched to each other in a unique way, since
each letter x; of the code remembers the previous letter of the original se-
quence w € T < {0,1}%, and the sequence wo, w; start with different letters.
Every path in this diagram corresponds to a unique point of the subshift.

Let us show how to construct a properly ordered Vershik-Bratteli dia-
gram for the Thue-Morse subshift, using the return words, as it is described
in the previous subsection. Since the substitution ¢ does not have fixed
points on T, we will need to consider its second interation

0?(0) = 0110,  &*(1) = 1001.
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Figure 1.22. A well ordered Bratteli-Vershik diagram of the Thue-
Morse subshift

Let us use the sequence wgy .wo as our fixed point, and consider the set
of return words Rqg. We have

wo = 011010/0110|01011010/010110|011010/0110] . . .

We get Roo = {011010,0110,01011010,010110}. Let us index them in the
order of their first appearance in wyg:

vy = 011010, w9 =0110, w3 =01011010, w4 = 010110.

We have
2

o%(vy) = 011010]0110/01011010/010110 = v vov3v4,

o2(v2) = 011010|0110[010110 = vy 204,

o?(v3) = 011010]01011010|0110/01011010]010110 = vy v3v9v3vy,
o?(v4) = 011010]01011010/0110/010110 = v} v3vvy.

The associated Vershik-Bratteli diagram is rather messy to draw. In-
stead, let us decompose the substitution ¢ = 02|R6u<0 into a composition
¢ = ¢ 0 ¢1 of two substitutions

$1(v1) = T1Y1, ¢1(v2) = w1Y2,
¢1(v3) = way1,  P1(va) = T2y2,
and
p2(1) = viva, P2(x2) = v1v3V2,
$2(y1) = vsva,  ¢2(y2) = va.

We get then the diagram shown on Figure (except for the first
level...).
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Recall that the Vershik-Bratteli diagram of the odometer is the diagram
consisting of one vertex and two edges on each level. Let us denote the edges
by 0 and 1 with the ordering 0 < 1. Then the adic transformation will be
the usual binary adding machine action.

We have a natural semiconjugacy = : 7 — {0,1}* from the Thue-
Morse subshift to the binary odometer. Namely, let w € T, and let v =
(e1,e€2,...) be the corresponding path in the Vershik-Bratteli diagram of the
substitution. Then 7(ey,es,...) = x122..., where x; = 0 if e; is minimal,
and x; = 1 if e; is maximal. It follows directly from the definition of the
adic transformation that 7 is a semiconjugacy.

Proposition 1.3.34. If the sequence w € {0,1}¥ is not eventually constant,
then 1 (w) consists of two elements. Otherwise it consists of four elements.

Proof. It is easy to see from the structure of the Vershik-Bratteli diagram
of the substitution o that for every w € {0,1}* there are exactly two paths
in the diagram (one starting in a and one starting in b) such that every
w € T corresponding to these paths is mapped by 7 to w. The statement
about the size of 7~ !(w) follows now from our analysis of the relation of the
diagram with 7. O

1.3.9. Vershik-Bratteli diagrams of irrational rotations. As an ex-
ample of application of Theorem|[1.3.20} let us find Vershik-Bratteli diagrams
realizing the minimal homeomorphisms Ry G Xy of the Cantor set defined

in{l.3.1.2)

Let 6 € (0,1) be an irrational number. Consider the continued fraction
expansion

(1.4) 0 =

as +
1
asz + —

The positive integers a; are found by the following recurrent rule. Set 67 = 0,
and then

ap = [Q;IJ, 0n+1 = 9;1 — An.

1
an+9n+l ’

Note that the last equality is equivalent to 6,, =

Let us change the recurrent rule by setting

(1.5) bn = w;lja Opt1=1— (9;1 — bn),
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1

= 57105, and

so that we have 0,

6:

b1 +1+

by +1+
bs +1+4+ —

The expansions (1.5)) are called negative-regular continued fractions.

We could also make different choices between 6,11 = 6, 1 _ @, and
0ni1 = 1 — (0, — ay). Such generalized continued fractions are called
semi-reqular continued fractions, see [Per54, Chapter V|, where they are
called halbregelmdjSige. An algorithm transforming semi-regular continued
fractions to the classical expansion is described in [Per54l V.40]. In
the particular case of the sequence (b,) from ((1.5)) we get the following.

Proposition 1.3.35. The sequence (by,bs,...) is equal to

a,1,1,...,1, a3+1, 1,1,...,1, a5+ 1, 1,1,...,1, ar +1,....
—_—— —_— —_—
as — 1 times aq — 1 times ag — 1 times

In particular, infinitely many entries of the sequence b, greater than 1.

Note that the negative-regular continued fraction (|1.5)) with the constant
sequence b, = 1 is equal to 1.

1 1 1 ¢
Proof. If - = &, then N =T =81 Conse-

1 1+§
az + ——— az+14+ —
3 1 3 1

ag + — ag + —

quently, the propositiori will follow from the identity

(1.6) 1 _ 1
. - ,

CL2+§ 1

where 2 appears as — 1 times on the right-hand side.
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It is easy to prove by induction on n that

1 n—(n-—1)z
1 T (n+1)—na’
1
2—x
where 2 appears n times on the left-hand side.

Consequently, if z = 1%, the right-hand side of (1.6]) is equal to
1

2 —

2—..

5
1 - 1
—1—(as—2 - 1—x

a;+1-— 7"2&2,(5531)f R e

Substitution x = gi—l into ar%;ﬁ gives
g
1- a1 _ 1 _ 1
az—(az—l)g% az(§ +1) — (a2 —1)§  as+¢
which finishes the proof. O

Theorem 1.3.36. Let 6 € (0,1) be an irrational number, and let (b1, ba, . ..)
be the sequences of positive integers such that

1
0:

by +1— 1
by +1—

1
b3 +1— —

Define the substitutions
Ur(0) = 0%, (1) = 0" 'L

Then the dynamical system Ry G Xp is topologically conjugate to the sub-
stitutional system generated by the sequence

¢b1;¢b27¢b37-~-

and to the adic transformation on the associated Vershik-Bratteli diagram.

The Vershik-Bratteli diagram of the substitution 13 is shown on the
left-hand side of Figure [I.23]

Proof. Let R be the partition [0,1—6],[1—0, 1] of the Cantor set Xy seen
as Rokhlin-Kakutani partitions with base equal to the whole space Xy. (We
will drop +0 and —0 from the interval notation, since it will be always clear
what are the intervals.)
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Figure 1.23. Vershik-Bratteli diagrams of a rotation

;ﬁ 20... _‘;“9

0 1-af 1—(a—1)0 (a—1)8 1

Figure 1.24. Rokhlin-Kakutani partition of a rotation

Let us construct a Rokhlin-Kakutani partition subordinate to Ry with
the base [0,6]. Let a = by = |5|. If z € [0,1—a#)], then the smallest positive
integer n such that R™(z) € [0, 0] is equal to a+1, while for x € [1—af, 0] it is
a. The first return map maps [0,1—af] to [(a+1)0—1,1—ab+(a+1)0—1] =
[(a +1)0 —1,60], and maps [1 — af,0] to [0, (a + 1)0 — 1]. Hence the first
return map swaps the intervals [0, 1 —a#] and [1—af, 0]. We define therefore
R2 as the Rokhlin-Kakutani partition with the base [0, 6] and two towers:

Tio,1-ag) = {[0,1 = af], R([0,1 — af]), R*([0,1 — ab],... R*([0,1 — af])}
and
T —ap0) = {[1 — a0, 6], R([1 — a,6]),..., R*"([1 — ab,0])},

see Figure [1.24] where the intervals of the first tower are black, and the
intervals from the second tower are red.

The interval [0,1 — 0] € Rq is equal to the union of the following 2a — 1
elements of Ro:

[0,1—ab] U R([0,1—ab]) U --- U R*([0,1 - ab])u
[1—ab,0] U R([1—ab,0])u---R*2([1—ab,b]) =
[0,1—ab]u[f,1—(a—1)0luU---U[(a—1)0,1—0]u
[1—ab,0]u|l—(a—1)0,20]U---[1—260,(a—1)0].

The interval [1—6, 1] € Ry is equal to the union of the following two elements
of Ro:

RY[1 — a#h,0]) u RY([0,1 — af]) = [1 — 6, ab] U [ab, 1].
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In other words, [1 — 6, 1] is the union of the two last elements of the towers,
while [0,1 — 6] is the union of all the remaining elements. See Figure [1.24]
where these decompositions are shown.

We see that the level of the Vershik-Bratteli diagram associated with
the pair Ry and Ry has a edges Tjo1—q¢] € V2 to {[0,1 — 0]} € V1, one edge
connecting 7o 1_qg] to {[1—0,1]} € V1, a—1 edges connecting T};_qg,¢) € V2
to {[0,1 — 6]}, and one edge connecting T};_qg,¢] to {[1 — 6,1]}. The edge
connecting a vertex of Vs to {[1—6, 1]} is greater (comes later in the ordering
of the diagram) than the edges connecting it to {[0,1 — 0]}.

In other words, it is the diagram of the substitution
g : 0 091, 10411,
if we label the towers [0,1 — 0] and Tjp ;4 by 0, and the towers [1 —6,1]
and T[17a9,0] by 1.

We can identify the base |0, 8] of Ra with the interval [0, 1] by the trans-
formation x +— x/6. Then the partition [0,1 — af], [1 — a#, 0] is transformed
to the partition [0,0~! —a], [0~ —a, 1], and the first return map swaps these
intervals, i.e., is a rotation by ¢ =1 — (6~ — a).

(Note that if we identify the base [0, 6] with the interval [0, 1] by the
transformation x — 1 — z/6, then the first return map is a rotation by
0 =0"'-a)

We apply our procedure again to the rotation by ¢'. We will get a

sequence R, of Rokhlin-Kakutani partitions such that its Vershik-Bratteli
diagram is the diagram associated with the sequence

¢b1a¢b2,¢)b37 B
The bases of the partitions (R,,) are the segments [0, 8,,], where 6,, are
defined by the condition 6,, = % Consequently, the intersection of
an+1—
n 9n+1

the bases consists of 0 only. As the length of the towers grow to infinity, for
every m there exists n such that images of [0,1 — a,,0,] under R’g belong to
Ry forall k =0,1,...,m. It follows that any two points ¢t — 0, 4+ 0, where
t is in the forward orbit of 0 under Ry are separated by some partition R,,.

The union of the top elements of the towers of R,, is the interval [1 —
0, 1], and intersection of these intervals is {1}. By the same argument as
above, this shows that any two points ¢t — 0, ¢+ 0, where ¢ is in the backward
orbit of 0 under Ry are separated by some partition R,,.

It follows that adic transformation of the Vershi-Bratteli diagram of (R,,)
is topologically conjugate to Ry. (]

Definition 1.3.37. We say that a subshift F < X% is Sturmian if pr(n) =
n + 1 for all n = 0, where pr is the complexity function, see...



1.3. Minimal Cantor systems 67

Note that since pr(1) = 2, we may assume that |X| = 2.

Theorem 1.3.38 (Hedlund-Morse). Suppose that a subshift F < {0,1}% is
minimal and satisfies pr(n) = n+ 1 for all n = 1. Then there exists an
irrational number 0 such that F = Fy.

Reference from Hedlund-Morse...

For the countable case, see...

Proof. Denote by W,, the set of words of length n belonging to Wx. Con-
sider the map vx — v from the W, 1 to W,,. It is surjective, and since
|[Whni1| = n+ 2 and |W,| = n + 1, there exists one word w, € W), (which
we will call special) that has two preimages. All the other words v € W),
have one preimage. Conversely, if for every n > 1 there exists exactly one
word w, € W,, with two preimages and all the other words have only one
preimage, then |W, 1| = |W,| 4+ 1, and |W,| = n + 1 for all n.

If w, € Wx is the special word, i.e., if w,,0,w,1 € Wx, then every its
suffix of w, is also special. Since there is only one special word of every
length, it follows that special words are suffixes of one left-infinite word
Wep = ...Tox1Tg € X~¥. We will call it the left-infinite special word.

Let k > 0 be the smallest number such that 10¥1 belongs to W. If the
word 0¥*1 does not belong to Wz, then there are exactly k letters 0 between
any two consecutive 1s. But then F is finite. Note also that no element of
F contains an infinite string of Os, since this would contradict minimality.
It follows that the words 0¥t110¥ and 0¥10%+! belong to Wx. Consequently,
all the words of the form 0°10*+1=% for i = 0,1,...,k+ 1 belong to Wr. We
also have 10¥1 € Wx. This is already a list of k + 3 words in W of length
k + 2. It follows that there are no other words of length k£ + 2 in Wx. In
particular 05+2 ¢ W, i.e., the number of zeros between any two consecutive
ones is either k or k + 1.

Consequently, every element of F can be written as a concatenation of
the words 01 and 0*11. Consider now the subshift F’ over the alphabet
{0%1,0%+11} consisting of sequences obtained by factoring sequences w € F
into concatenations of subwords 10* and 10¥*1,

Let us show that the obtained subshift ' is also Sturmian. It is enough
to show that for every n there exists a unique word v € Wz of length n such
that v - (0F1),v - (0¥*11) € F'. Let us show at first the existence. Let we
be the left-infinite special word for F. Then w«0 and w1 are subwords of
elements of F. It follows that 10% is a suffix of W, and wy can be factored
into a concatenation ...asa20*, where a; € {0F1,0"*'1}. But then both
...a3a20F1 and . ..aza20" 11 are subwords of elements of F’, hence ... azas
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is a left-infinite special word of F’. For every n the suffix of length n of this
word will be special for F.

In order to prove the uniqueness, it is enough to show that if vy, v € F’
are such that {v;(0%1),v1(0¥T11), v2(0F1), v (0¥+11)} € W, then one of the
words v, vg is a suffix of the other. Note that v;(0¥¥11) € W implies that
v;0F*1 € Wz, so that we have that {v10¥1, v;108T1 v,0F1, 1,081} < Wi,
i.e., that v10¥F and v,0* are special words for F. But we know that all special
words of F are suffixes of the unique left-infinite special word. It follows
that one of the words vy, vs is a suffix of the other.

We see that F' is also a Sturmian minimal subshift (minimality of F’
follows directly from the minimality of F by Proposition . Let us
relabel the letters of the alphabet {0F*11,0%1} by the letters 0,1 using the
substitution

Ypp1 2 0 0F LT, 1 0"1.
Note that this is the same substitution as in Theorem|[1.3.36] We will identify
then F’ with a Sturmian subshift of {0, 1}Z.

Continue the above construction with F replaced by the new F' <
{0,1}%. We will get a sequence of positive integers ki, ko, ..., a sequence
of subshifts F,, and a sequence of substitutions

Vg, 41 : 0> 0FnFl1, 1 0Fn1.

The elements of F,, are obtained from the elements of F,,+; by applying v,
(and then taking all shifts).

Let B be the Vershik-Bratteli diagram associated with the obtained se-
quence Yy, 11, and let us show that every path in B corresponds to exactly
one element of F. It is enough to check the minimal and the maximal paths.

But 11 is the substitution 0 +— 01, 1 +— 1 generating the subshift con-
sisting of the constant 1 sequence. Consequently, the sequence k, is not
eventually equal to zero, since then F would be finite.

It follows that the only minimal path is the unique path passing through
the vertices 0 € V,,. The corresponding right-infinite sequence is limit of the
words Y, 110Uk, 110 - - ¥r, +1(0). Note ¢¥2F1(0) that it begins with 0F»+11,
which has a unique allowed extension to the left 10¥» 711, since k, + 1 is the
maximal allowed number of zeros between two consecutive ones in F,,. It
follows that in every element of F the word g, 11 © Yk, 11 © - -k, +1(0) is
preceded by ¥, 41 © Yryt1 © Yk, _,+1(1). The length of this word goes
to infinity, since k,, is not eventually zero. Consequently, the right-infinite
sequence corresponding to the minimal path has a unique extension to an
element of F.

Let us show that the maximal path corresponds to a unique element of
F. It is enough to prove this statement for any F,. It follows that we may
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assume that k1 # 0. The only maximal path is the path passing through the
vertices 1 € V,,. The corresponding left-infinite sequence is the left-infinite
limit of the words ¢, 4109k, 110+~ Yk, +1(1). Then 1 is the last letter of this
word, and then the only possible one-letter continuation is 10, as k; > O.
The proof is finished in the same way as for the case of the minimal path.
This shows that the diagram B models the subshift /. Theorem
shows (together with its proof, as we have to check that the encodings by 0
and 1 agree) that F coincides with the system Ry G X, for

1
9:

ki+2—

1
ko + 2 —

1
ks +2— —

We want to consider now the classical continued fractions...
Let
Vg1 : 0 — 0FFL1, 1 0F1,
be the substitution from Theorem [[.3.36l Define also the substitutions
brs1 10— 0F1, 1 0FF11.
Proposition 1.3.39. The subshift generated by the sequence
¢k1+17 ¢k2+1) ¢k3+17 cee

coincides with the subshift generated by the sequence
k k k
¢k1+17 '¢12a "/}k3+27 ¢147 ¢k5+27 ¢167 ¢k7+2, cee

See Definition [I.3.26]of subshifts generated by sequences of substitutions.

Proof. Denote
n:0—0, 1~ 01.

: k
Then ¢y12 = nothgr1. Let us compare now ¢, 410,11 With g, 410972 on.
We have

Py 11 © Pyt 1(0) = g, 11(0721) = (0F11)F20R1 11

n
e Yk, 110 )2 0(0) = ¢y, 11(0172) = 01 F11(0M1 1)*2,
We have
Phy 41 © By 41(1) = g, 11 (01711) = (0B )R F1oh+1y
and

Vi1 0 Y™ 0 (1) = gy 41 09PF2(01) = ¢y, 41 (017271 = oF1H1 (0P 1)k T
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It follows that application of ¢y, 110¢g,+1 to a bi-infinite word produces,
up to a shift, the same word as application of 1, 1 0 ¥*2 o p(u) = 0F1 1y,
It follows that the subshift generated by the sequence

¢k1+1a ¢k2+17 ¢k3+17 ce

is the same as the subshift generated by the sequence

k k
¢k1+1ﬂ/’ 2777,¢k3+17¢ 47”)’

The last sequence is equivalent to

k k.
¢k1+17w 27¢k3+27¢ 47¢k5+2, e
|

Theorem 1.3.40. Let 6 € (0,1) be an irrational number, and let (a1, az, . ..)
be the sequence of positive integers such that

9:

Define the substitutions
ok(0) =011, (1) =01,

Then the dynamical system Ry G Xy is topologically conjugate to the
system generated by the sequence

¢a1)¢a27¢a37' s

If infinitely many of the values of a; are greater than 1, then it is also
topologically conjugate to the adic transformation of the Vershiki-Bratteli
diagram associated with the above sequence.

Example 1.3.41. Let ¢ = Lg/g be the golden mean, and consider the
rotation by ¢ = ¢ — 1_1%\/5 (mod 1).
The inverse rotation is by 0 =1 — ¢ = LQ/E We have

2 6+2v5  3+4/5

67! = =
3—+/5 4 2

hence a1 = 2, and

3445 345

5 5 =0.

O =3
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Figure 1.25. Two Vershik-Bratteli diagrams of the golden mean rotation

It follows that

0=1 L
2+1-—
24+1—
2+1— —
It is also well known that
1
v 1
1+
1
1+
1
1+ —

Consequently, the rotation by ¢ can be described by the Vershik-Bratteli
diagrams shown on Figure |[1.25 The left-hand side part is obtained by
changing to the opposite the ordering of the edges of the diagram associated
with the sequence (R,,) for the rotation by § = 1 — ¢, while the right-hands
side part shows the diagram associated with the sequence (R!,) for ¢. We
have highlighted the minimal edges. Note that there are two minimal paths
in the right-hand side diagram.

1.3.10. Linearly repetitive systems. By Proposition if (F,s)is a
minimal subshift, then for every finite word v € Wx there exists N, such
that for every w € F there exists 0 < k < N, — 1 such that the subword
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w' (D)w'(2) ... w'(Jv|) of w' = s¥(w) is equal to v. Denote by Rx(n) the
maximum of N, for all words v of length at most n.

Definition 1.3.42. We say that a subshift F is linearly repetitive if there
exists C' > 1 such that Rx(n) < Cn for all n > 1.

The following is straightforward.

Proposition 1.3.43. Suppose that F' < (X¥)Z is the image of a minimal
subshift F < X% under a sliding block map. Then

Ry/(n) = Re(n + k)
for alln = 1. In particular, F is linearly repetitive if and only if so is F'.

Theorem 1.3.44. Minimal substitutional subshifts are linearly repetitive.

Proof. It is shown in the proof of Proposition [I.2.27)that the image of every
minimal substitutional subshift under some sliding block map is generated
by a primitive substitution. It follows then from Proposition that it
is enough to consider only the case of a subshift F generated by a primitive
substitution ¢ : X — X*.

It was shown in the proof of Theorem that there exists a constant
C, depending only on F, such that for every n > 1 there exists k£ such that
for every x € X we have n < |0*(2)] < Cn. Then every word v € Wz of

length n is a subword of a word of the form o”(zy) for zy € Wx. It follows
that Rr(n) < Rx(2) - Cn. O

See another proof in [DL06, Theorem 1], where this theorem was proved
for the first time.

More generally, we have the following characterization of linearly repet-
itive subshifts, see [Dur03].

Theorem 1.3.45. A subshift is linearly repetitive if and only if it is topo-
logically conjugate to the subshift generated by a sequence of substitutions

o [op .
x=1'<(_1x>2*<(_2x§(_3...

such that
(1) the set {oy, : n=1,2,...} is finite;

(2) there exists s such that for every x € X,, and y € Xp1s41 the letter
x appears in the word oy, © Opt1 0+ 0 0pis(y);

(3) there exist an, by, € Xy, such that for every x € X, 1 the word op(x)
begins with a, and ends with b,,.
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Denote by pr(n) the complexity of the subshift F, i.e., the number
of subwords of length n in elements of F. We have an obvious estimate
pr(n) < Rxr(n), since every word v € Wx of length n appears as a subword
of every the word u € Wr of length n+Rz(n)—1. On the other hand, Rx(n)
can grow much faster than pr(n). For example, Rr can grow arbitrarily
fast even for Sturmian sequences. Namely, we have the following theorem,
see ...

Theorem 1.3.46. Let Xy < {0,1}” be the Sturmian shift defined by an
irrational number 6 € (0,1), as in Proposition and let ai,as, ... be
the terms of the continued fraction expansion of 6 (the partial quotients).
Then Xy is linearly repetitive if and only if a, is bounded (i.e., if 0 is of
bounded type).

Proof. (Sketch) Let ¢4, be as in Theorem Consider the matrix

B, = ( ZOO ZOI ), where by, is the number of letters x in the word ¢,, o
10 011
10

Gay © 0 g, (y). We have By = ( 01 ) It follows from the definition
of the morphism ¢,, that

a -1 a
Bn+1:Bn'< n+11 n1+1>‘

Consequently,

B - a1 —1 aq as—1 as an—1 ap
e 1 1 1 1 1 1 )

Denote by py,,q, the numerator and the denominator of the fraction

1
1 , respectively. We have then
ai +
1 K 1
a2

i 1

o
Qn

Pn+1 = Qn41Pn + Pn—1, Gn+1 = Gn4149n + gn—1.

It is easy to check by induction that then

B = dn —Pn 4n — Pn + dn—1 — Pn—1
n = .
Pn Pn + Pn—1

In particular, the lengths of ¢g, © g, 0+ -0 Dy, (0) and ¢g, © Gg, 0+« -0 g, (1)
are g, and ¢, + qn_1, respectively.
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Let r, = qq—"l. Then r1 = a1, and we have
—

An+19n + Gn—1 1
Thtl = ———————— = 0ap4+1 + —,
dn n
so that
1
rn = ap + 1 ,
ap—1 + 1
Qp—92 + 1
R
ai
which implies a,, < r, < a, + 1. We have
|¢a10¢a20"'o¢an(1)| _ Gn tQgn—1 _1 1
= =14+ —
|¢a10¢a20"'o¢an(0)| dn Tn

and
||$ay © Pay © - -+ 0 ¢4, (0)] _ I _ ,
||ay © Pay 00 ¢a, 1(0)]  Gn—1 "
It follows that these ratios are uniformly bounded away from zero and in-
finity if and only if a, is bounded from above. If this is the case, then the
proofs Theorems [1.2.34] and [1.3.44] can be repeated for Xy, which will show

the “if” direction.
For the “only if” direction it is enough to notice that the word between

two neighboring occurrences of ¢q, © ¢g, © -+ © Pq,, (1) is either ¢q, © Pg, ©
200 g, (09 +17 1) o1 @y 0 Pay 0+ -+ 0 By, (097+1) which shows that

Rx,)(qn + qn-1) = Gn + Gn—1 + Gn+1qn = @n + Gn+1-

We have
In + qnt1 _ L+rpg _ 1+ ans1 +1," > 1 4 Intl
o+ o1 1471 L+rt 7 2’
as r, = 1 and the expression is increasing with rné I(t )follows that if the
x, (0

O

sequence a,, is not bounded from above, then so is

1.4. Hyperbolic dynamics

General discussion.. Expanding maps are very well understood and have rich
analytic and algebraic structure. See, for instance [Haisinki-Pilgrim...] and...
One of the main subjects of Chapter [5] is the algebraic theory of expand-
ing maps, where we will establish a functorial bijection between expanding
covering maps and a class of groups (more precisely groups bisets...)... The
case of hyperbolic homeomorphisms (Ruelle-Smale spaces) is much less un-
derstood, and many questions that are relatively easy in the expanding case
are wide open in the case of homeomorphisms....
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1.4.1. Expanding maps: definitions and examples.

Definition 1.4.1. Let X be a compact space. A map f G X is expanding
if it generates an expansive action of the semigroup N, i.e., if there exists a
neighborhood U ¢ X x X of the diagonal such that (f*(z), f*(y)) € U for
all kK > 0 implies x = y.

Definition 1.4.2. We say that a map f G X on a compact metric space
is metrically expanding if there exist € > 0, L > 1 such that if z,y € X are
such that d(x,y) < € then d(f(x), f(y)) = Ld(x,y).

It is obvious that every metrically expanding map is expanding.

Example 1.4.3. Consider the circle R/Z and the self-covering f G R/Z
given by f(x) = kz (mod 1), for an integer k, |k| > 1. It is metrically
expanding, for example with L = |k| and € = 1/|k|.

It is easier in some cases to show that an iteration of a map is metrically
expanding. A simple change of the metric shows that then the map itself
expanding.

Lemma 1.4.4. Suppose that f G X is a map on a metric space (X,d) such
that f* G X is metrically expanding for some n = 1. Then there exists a
metric d' on X such that f G X is metrically expanding with respect to d'.

Proof. Suppose that f™ is expanding with respect to a metric d. Let € and
L be as in Definition for f".

Consider the metric

n—1
= 3 LHa(fH (), R ().

k=0
Then
HU@. 1) = 3 LI, ) -
- n—1
LD (a), £ () + L 3 LA (), ) 2
k=1
n—1
L Ld(e,y) + LY Y LM (), R (y) = LY ().
k=1
It follows that f is expanding with respect to d'. .

Example 1.4.5. An endomorphism f G M of a Riemannian manifold is
called expanding if there exist C' > 0 and L > 1 such that | D f"d| = CL"|J||
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for every tangent vector ¢. It follows from Lemma that every ex-
panding endomorphism of a compact Riemannian manifold is an expanding
self-covering.

Expanding endomorphisms of Riemannian manifolds were studied by
M. Shub in [Shu69, [Shu70, Hir70]. One of applications of M. Gromov’s
theorem on groups of polynomial growth is showing that all expanding en-
domorphisms of compact Riemannian manifolds are generalizations of Ex-
amle see |Gro81]. Namely, they are all topologically conjugate to
endomorphisms of infra-nil-manifolds. Here a manifold M is an infra-nil-
manifold if there exists a nilpotent connected Lie group L and a subgroup
G < L x Aut(L) such that G acts freely and properly on L, and M is dif-
feomorphic to L/G. If FF G L is an expanding automorphism such that
FGF~! < G, then F induces an expanding endomorphism of L/G = M.
We will revisit this result in ...

Example 1.4.6. We get many more examples of expanding self-coverings
f G X, if we do not require X to be a manifold. A big class of examples
is provided by holomorphic dynamics. Namely, every hyperbolic complex
rational function is expanding on its Julia set, see[1.5.3

Example 1.4.7. Let s G XY be the one-sided shift. Consider the metric
d(w1,ws) = 27", where n is the largest non-negative integer such that the
beginnings of length n of w; and wy coincide. Then s is expanding for e = 1/2
and L = 2. In particular, every one-sided subshift 7 < XV is expanding.
This shows that the class of all expanding maps is very big (for example,
there exists uncountably many conjugacy classes of one-sided shifts). On
the other hand, we will see later that the class of expanding self-coverings is
much more rigid. In particular, it contains only countably many topological
conjugacy classes, see...

1.4.2. Natural log-scale. Let f &G X be a map, where X is compact. If
U c X x X is an expansion entourage for f G X, then U~ = {(z,y)
(y,x) € U} is also an expansion entourage. Then U~ n U is a symmetric
expansion entourage. It follows that we may assume without loss of gener-
ality that expansion entourages are symmetric. We will also assume that
they are closed.

Suppose that U is an expansion entourage for a map f G X. Denote
n
Un = ﬂ fﬁk(U)
k=0
In other words, U, is the set pairs of points (x,y) such that (f*(z), f*(y)) €

U for all K =0,1,...,n. In particular, Uy = U. Denote U_1 = X x X. By
the definition of an expansion entourage, ﬂn>0 U, is equal to the diagonal.
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The following is a particular case of Lemma [1.2.7

Lemma 1.4.8. For every neighborhood V of the diagonal, there exists n
such U, c V.

For subsets A, B of X x X, denote by A o B the set of pairs (z,y) such
that there exists z such that (z,2) € A and (z,y) € B. Note that Ao B is
the image of the closed subset D = {((x1,91), (z2,¥y2)) : y1 = x2} of A x B
under the map ((z1,y1), (x2,y2)) — (21,y2). If A and B are compact, then
D is a closed subset of a compact space A x B, hence D is compact, which
implies that A o B is compact.

Lemma 1.4.9. There exists A € N such that U,.a o Upsn < Uy, for all
n = 1.

Proof. Suppose that there is no A such that Ua o Un < Int(U). Denote
By = (X2 Int(U)) n (U o Ug), for k = 0. Then the sets By are closed
non-empty, and By < Bi. It follows from compactness of X2 that the
intersection ("), By is non-empty. Let (x,y) be such that (z,y) € By for
all k. Let Z < X be the set of points z such that (z, z) € Uy and (z,y) € Uy.
Since Uy, is closed, the set Zj is closed. It is non-empty, by the choice of
(z,y). We also have Zy1 < Zj. It follows that the intersection of all Zj
is non-empty. Let zg € ﬂk>1 Zy. Then (z, z9) € Uy for all k, hence = = zp,
and (zg,y) € Uy for all k, hence zy = y, which implies z = y, which is a
contradiction.

We have shown that there exists A such that Ux o Ua < U. If (z,y) €
UA+n©UA+n, then there exists z such that (x, 2) € Uayy, and (z,y) € Uaip.
Then (f(z), f/(2)) € Unsn—i € Ua and (fl(z),fz(y)) € Uatn—i € Un for
all i = 0,1,...,n. It follows that (f*(z), f'(y)) € Ua o Un < U, hence
(z,y) € U,. We have shown that U,+a o Upin € U, for all n > 0. O

Definition 1.4.10. Denote, for (z,y) € X2, by /(x,y) the maximal value
of n such that (x,y) € Uy, and o if z = y.

Lemma [[.4.9] is reformulated then as follows.
Proposition 1.4.11. There exists A > 0 such that
Uz,y) = min(l(z, 2),l(z,y)) — A
forall z,y,z € X.
The function ¢(z,y) measures “closeness” of points of X. The closer

points x and y are, the bigger is the value of ¢(z,y). We will transform this
function into a metric in the next subsection.
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1.4.3. Log-scales and associated metrics. Generalizing Propositin[l.4.11
we adopt the following definition.

Definition 1.4.12. A [og-scale on a set X isamap £: X x X - R u {0}
satisfying the following conditions.
(1) l(x,y) = L(y,z) for all z,y € X;
(2) £(z,y) = oo if and only if z = y;
(3) there exists A > 0 such that ¢(z,y) > min(¢(x, z),¢(z,y)) — A for
all z,y,z € X.

We say that a metric d on X is associated with the log-scale ¢ if there
exist constants a > 0, ¢ > 1, such that

C—le—aﬁ(m,y) < d(x’ y) < Ce_af(xvy).
The number « is called the exponent of the metric.

It is easy to check that if d is any metric on X, then ¢(z,y) = — log d(z, y)
is a log-scale such that d is associated with /.

With this connection between log-scales and metrics in mind, we give
the following definition.

Definition 1.4.13. We say that two log-scales 1,6 on X are bi-Lipschitz
equivalent if

sup |l (x,y) — la(x,y)| < 0.
z,yeX, x#Y

Theorem 1.4.14. Let £ be a log-scale on a set X. Then there exists o, €
(0, 00] such that for every a € (0, o) there exists a metric d on X of exponent
a associated with £, and for every a > a. such a metric does not exist.

Proof. Consider, for every n € N the graph I', with the set of vertices X
in which two points x,y are connected by an edge if ¢(x,y) > n. Let d,, be
the combinatorial distance between the vertices of T'),.

Lemma 1.4.15. There exists o« > 0 and C > 0 such that
dp(,y) = Ce(n—H(z.y))
for allx,y e X and n € N.

Proof. Let A be as in Proposition [1.4.11] and let us prove the lemma for
In2

a = 3= If 29,21, 22 is a path in ', then £(zg, 2) = n — A, hence zq, 23 is
a path in T',_a. It follows that d,,—a(z,y) < 3(dn(z,y) + 1), or

dn+A(‘T’y) > an(fE,y) - L
If {(z,y) = m, then d,,1(x,y) = 2, and hence

dms1+a(z,y) =2 + 1.
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It follows that for every n and t = ["78(23/)7% > nfe(zy)fl — 1 we have
dp(z,y) > 2t > o(n—lzy)—1-A)/A _ cea(n—L(z.y))

where C' = 2(=1=2)/A and o = 1%. O

We say that o > 0 is a lower exponent if there exists C' > 0 such that
a and C satisfy the conditions of Lemma If o is a lower exponent,
then all numbers in the interval (0, «) are lower exponents. Hence, the set
of lower exponents is either an interval (0, o) (including the case a, = +)
or an interval (0, a.]. The number a. is called the critical lower exponent,
and we are going to prove the theorem for this value.

It is easy to see that if « is such that there exists a metric of exponent
a, then « is a lower exponent.

Let a be a lower exponent, and let 5 € (0,«). Let us show that there
exists a metric d of exponent . Denote by dg(z,y) the infimum of the
sum >0, e~ PUziTit1) gyer all sequences rg = T,T1,%2,...,L,m = Y. The
function dg obviously satisfies the triangle inequality, dg(x,y) = dg(y,x),
and dg(z,y) < e PUzY) for all 2,y € X. It remains to show that there exists
C > 0 such that Ce P ®¥) < dg(x,y). In other words, there exists C is
such that

m
i=1
for all sequences zg, z1, ..., Z,, such that x = xp and y = x,.

Let Cp € (0,1) be such that d,(z,y) = Coe=(n=Uzv) for all z,y € X
and n € N. Let us prove inequality (1.7)) for C' = exp (M)

a—p
Lemma 1.4.16. Let xg,x1,...,Tn be a sequence such that {(z;,x;+1) =n
forallt =0,1,...,m — 1. Let ng < n. Then there exists a sub-sequence
Yo = T0,Y1,- .- Yt—1,Yt = T of the sequence (z;)7", such that

no — 28 < Uy, yiv1) < no

foralli=0,1,...,t—1.

Proof. Let us construct the subsequence y; by the following algorithm.
Define yy = xg. Suppose we have defined y; = x, for r < m. Let s be
the largest index such that s > r and ¢(x,,zs) = mng. Note that since
Uz, Trr1) = n = ng, such s exists.

If s <m, then ¢(x,,zs41) < ng, and

Uxy, Tsr1) = min{l(z,, xs), (s, Ts+1)}—A = min{ng, {(xs, Ts11)}—A = ng—A.
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Define then 3,41 = x541. We have
no — k < £(yi, yi+1) < no.

If s + 1 = m, then we stop and get our sequence g, ..., ¥y, for t =17 + 1.

If s = m, then l(x,, ) = U(y;, Tm) = no, and
UYi—1, ) = min{l(yi—1, Yi), L(yi, Tm)} —A = min{ng—A,ng} —k = ng—2A

and

(Yi—1,Tm) < no,
since y; was defined and was not equal to x,,. Then we redefine y; = x,,
and stop the algorithm.

In all the other cases we repeat the procedure. It is easy to see that at
the end we get a sequence y; satisfying the conditions of the lemma. O

Let x9 = z,z1,...,2,, = y be an arbitrary sequence of points of X.
Let ng be the minimal value of ¢(x;, z;+1). Let yo = ,y1,...,y+ = y be a
sub-sequence of the sequence x; satisfying conditions of Lemma [1.4.16

Suppose at first that
2aA — InCy
a—p3

Remember that ng = ¢(z;, x;11) for some i, hence

a—f '

no < l(x,y) +

m
Z e~ BU@i—1,2:) > e~ Pno - exp (—Bﬁ(as,y) -
i=1

and the statement is proved.

Suppose now that ng > £(z,y) + %, which is equivalent to

(1.8) (a — B)ng — (a — B)l(z,y) — 2aA +1InCy = 0.

If t =1, then ng — 2A < ¢(x,y) < ng, hence

20A — 28A
a—p3

since In Cy < 0 < 28A. But this contradicts our assumption.

2aA — In Cy

no < U(z,y) + 24 = L(z,y) + o

< l(z,y)+

Therefore, we have ¢ > 1, so that the inductive assumption implies

m t—1
Z e~ Blzi—1,m:) > Z CePYiyi+1) 5 tCe=Pno.
! =0

—_

1=
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We have t = dy—2a(x,y) = Coe(mo—28—Lz.y)) hence
Z efﬁé(xi_l,mi) > CocefﬁnoJrcmonaAfaf(x,y) _
i=1
Cexp (InCy — fno + ang — 2aA — al(z,y)) =
Cexp (—B(z,y) + (a — B)ng — (a — B)(z,y) — 20 +1nCy) = Ce PHY),

by (1.8]). Which finishes the proof. O

1.4.4. Metrics associated with expanding maps.

Theorem 1.4.17. Let X be a compact space. A continuous map f G X
is expanding (in the sense of Definition if and only if [ is metrically

expanding for some metric on X.

Proof. Suppose that there exists a metric d and numbers € > 0 and L > 1
such that d(f(z), f(y)) > Ld(x,y) for all (x,y) € X? such that d(z,y) < e.
Then the set {(z,y) : d(x,y) < €} is an expansion entourage and the action
of N is expansive.

Suppose now that the action of N is expansive. Then there exists a
symmetric expansion entourage U. Suppose that d is a metric associated
with the log-scale defined by U, see Definition Let a be the exponent
of the metric d, and let C' > 1 be such that

Cflefaf(x,y) < d(l‘,y) < Cefaé(x,y)

for all x,y € X. Let k be a positive integer, and suppose that ¢(x,y) > k.
Then ((f*(z), f*(y)) = £(z,y) — k, and

d(f*(x), *(v))
d(z,y)

It follows that for any integer k greater than 1n0(;2 we have d(f*(z), f*(y)) <
Ld(z,y), where L = C?e=* < 1, for all (z,y) € Up. If ¢ < C~'e™*, then
lz,y) = k for all 2,5 € X such that d(x,y) < e. It follows that f* is

metrically expanding. Lemma [I.4.4] shows that f is also expanding. O

2 _ak
< Che™ ",

Let us investigate how canonical is the metric constructed in the proof

of Theorem

Proposition 1.4.18. Let U and V be expansion entourages for a map f G
X. Then the sets of lower exponents for U and V coincide. If dy and dy are
metrics associated with U and V' of exponent «, then there exists C > 1 such
that C~Ydy(z,y) < dy(x,y) < Cdy(x,y) (i.e., the metrics are bi-Lipschitz
equivalent ).
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Proof. Let ¢y and ¢y be defined by U and V, respectively. By Lemma[T.4.8|
there exists k such that Uy < V, hence U, < V,, for all n € N. It follows
that ¢y (z,y) = fy(x,y) + k. The same arguments show that (y(x,y) >
by (x,y) + k for some k, i.e., that |{y(z,y) — v (z,y)| is uniformly bounded.
The statements of the proposition easily follow from this fact. O

Proposition implies that for any expanding map f G X the criti-
cal lower exponent «. is well defined (i.e., does not depend on the choice of
the expansion entourage), and for every § € (0, «) the corresponding metric
of exponent 3 is uniquely defined, up to a bi-Lipschitz equivalence. Note
that if d is a metric of exponent 3, then any metric bi-Lipschitz equivalent
to d is also a metric of exponent 8. The map f is metrically expanding
with respect to some metric of exponent /3 for every 5 € (0, a.). This class
of metrics is studied in detail in the works of P. Haisinsky and K. Pilgrim
(see [HPO9] and references therein). The critical exponent «. is one of
several numerical invariants of expanding dynamical systems...

1.4.5. Expansive actions of Z. Recall that a homeomorphism f G X of
a metric space is said to be expansive if there exists a closed neighborhood
U c X x X of the diagonal such that ()., f™(U) is equal to the diagonal.

Let f G X be an expansive homeomorphism of a compact metric space,
and let U be the corresponding expansion entourage as above.

Define £(x,y) as the maximal n > 0 such that (f*(z), f*(y)) € U for
all —n < k < n. If such n does not exist, then we set ¢(z,y) = 0. It is
obvious that ¢(z,y) = ¢(y,x) and that {(z,y) = oo if and only if z = y.
Define, as in the expanding case, U,, = {(z,y) € X x X : {(z,y) = n}, ie.,
Un = a0

Lemma 1.4.19. The map ¢ is a log-scale on X compatible with the topology
(i.e., such that every metric associated with € is compatible with the topology
on X. The log-scale £ does not depend, up to bi-Lipschitz equivalence, on

the choice of U.

Proof. It is proved in the same way as for expanding maps that for ev-
ery neighborhood V' of the diagonal there exists n such that U, < V (see
Lemma . The statement of the Lemma is also true in our case
with the same proof (the only thing to change is to replace “t = 0,1,...,n”
by “—n < i <n”. These two lemmas imply that the metric associated with
the log-scale ¢ is compatible with the topology. Independence on the choice
of U is also proven in the same way as for the expanding case, see the proof
of Proposition [1.4.1§ U
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We see that, in the same way as for expanding maps, we have a canonical
class of metrics associated with an expansive homeomorphism f G X. These
metrics were defined by D. Fried in [Fri83].

Definition 1.4.20. We say that =,y € X" are stably equivalent if d(f"(x), f*(z)) —
0 asn — o0. We say that they are unstably equivalent if d(f~"(z), f~"(y)) —

0 as n — o0. Two points are homoclinic if they are simultaneously stably

and unstably equivalent.

It is easy to see that the defined relations are equivalences.

Lemma 1.4.21. Let U be the expansivity entourage for an expansive homeo-
morphism f G X. Two points x,y € X are stably (resp. unstably) equivalent
if and only if there exists ng € Z such that (f"(x), f"(y)) € U for alln = ng
(resp. all n < ng).

Proof. The “only if” direction is obvious. Suppose that (f"(x), f*(y)) € U
for all n = ng. Then £(f"(x), f"(y)) = n—ng for all n = ng. It follows that
for every metric associated with £ we have d(f™(z), f*(y)) < Ce=*(n=m0) —
0 asn — oo. g

Define, for x € X', and an expansivity entourage U
Wiv@)={yeX : (f"(z),["(y) eUVn=-A-1}
and
Wou@) = fye X 5 (f'(2), ' (5) e U ¥n < A+ 1},
where A satisfies the condition of Definition for the log-scale ¢ as-
sociated with U. Equivalently, W, () is the set of points y such that

0 f"(x), f"(y)) =2 A+1forall n >0, and W_ yy(z) is the set of points y
such that £(f"(x), f*(y)) = A + 1 for all n < 0.

Lemma 1.4.22. For every pair z,y € X the intersection Wy (x)nW_ 17 (y)
consists of at most one point.

Proof. Suppose that z1,20 € W y(z) n W_ y(y). Then for every n € Z
either

min(£(f"(z1), f"(2)), 0(f"(22), [" (%)) Z A + 1
or

min(E(f" (z1), [ (1)), €(f" (22), " () = A + 1,
depending on the sign of n. But this implies that £(f™(z1), f"(z2)) = 1
for all n € Z, i.e., that (f"(z1), f"(22)) € U for all n € Z. It follows that
zZ1 = 292. |

Definition 1.4.23. We will denote by [z,y]v or just [z,y] the unique in-
tersection point of W, 7(x) and W_ 17(y), if it exists.
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1.4.6. Local product structures.

1.4.6.1. Rectangles. A rectangle is a topological space R together with a
decomposition into a direct product R = A x B of two topological spaces.
In order to make this structure more intrinsic (so that we do not introduce
new spaces A and B), we can define the direct product structure as a binary
operation [(a1,b1), (a2,b2)] = (a1,b2) on A x B = R. Then the structure of
the direct product decomposition can be axiomatized in the following way.

Definition 1.4.24. A rectangle is a topological space R together with a
continuous map [+, -] : R x R — R such that

(1) [z,2] = for all x € R;
(2) |z, |y, z]] = [z, 2] and [|z,y], 2] = |z, 2] for all z,y, z € R.

Example 1.4.25. Let f G X be an expansive homeomorphism of a com-
pact space. We say that R < X is a rectangle for f if the map [-,-], given
in Definition is defined on whole R x R. Then, by Proposition 77,
(R, [,-]) is a rectangle in the sense of Definition

Suppose that (R, [-,-]) is a rectangle. Then plaques of x € R are defined
as

Pi(R,z) ={yeR : [z,y] =z}, Py(R,z) ={yeR : [z,y] =y}

Note that we have the implication

[z,y] = 2= [y, 2] = [y, [z, 9]l = [v,y] = v

It follows that [x,y] = = is equivalent to [y,z] = y. It is shown in the same
way that [x,y] = y is equivalent to [y,x] = z. In other words, y € P;(R, x)
is equivalent to x € P;(R,y) for every i = 1, 2.

Lemma 1.4.26. For every x € R the map [-,-] : P1(R,z) x Po(R,2) — R
18 a homeomorphism.

Proof. For every y € R we have |z, |y, x|] = x, hence |y, z] € P1(z). Simi-
larly, [[2,y], 2] = 2, hence [z, y] € Po(x). Then [[y, o], [z, 1] = [y, 2], y] =
y. It follows that y — ([y,z], [z, y]) is a continuous map R — P1(R,x) x
P2(R, z) inverse to the map [, -]. O

Note that if (a1,b1), (ag, b2) € P1(R, x) xPa(R, z), then [[a1, b1], [az, b2]] =
[a1,b2], i.e., the map [-,-], after the identification of R with Pi(R,x) x
P2(R, x), becomes [(a1,b1), (az,b2)] = (a1,b2). See Figure where the
structure of a rectangle is shown.

Note that two different plaques P;( R, z) and P;(R,y) are naturally iden-
tified by a canonical homeomorphism, so that the decomposition of R into
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PI(RVCC)/\l L [y’x]

<\

Po(R, z)

Figure 1.26. A rectangle

the direct product of plaques does not depend on the reference point (z or
y). Namely, the respective homeomorphisms are

Hl,w,y PR [Zvy] : Pl(va) - Pl(R)y)

and
Hyyy: 20 [y, 2] : P2(R, ) — Pa(R,y).

It is checked directly that Hy ., o Hiy, and Ha .0 Hyy . are identity
homeomorphisms, and that the decomposition of R into the direct product
Pi(R,z) x Pa(R,x) is transformed by the homeomorphisms H;,, to the
decomposition of R into the direct product of plaques of y.

We will therefore denote sometimes by Pi(R) and P2(R) the plaques of
R as abstract topological spaces, without any reference to points of R.

1.4.6.2. Local product structures.

Definition 1.4.27. Let X be a topological space. An atlas of a local product
structure on X is a cover of X by open subsets R;, ¢ € I, together with
structures of rectangles (R;, [-,-];) on each of them, such that for every pair
1,7 € I and every x € X there exists a neighborhood U of x such that
ly,2]i = [y, 2] forally,ze Ry n R; nU.

Two atlases are compatible if their union is also an atlas. A local product
structure on X is a compatibility class of atlases of local product structures
on X.

Note that the condition of Definition is void in the case when z
does not belong to the intersection of the closures of ; and R;.
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R;

Figure 1.27. Local product structure

An open subset R < X together with a rectangle structure [-,-] on R
is a rectangle of X if the union of an atlas of X with {(R,[-,-])} is an atlas
of X, i.e., if the structure of a rectangle on R is compatible with the local
product structure on X.

Example 1.4.28. Let ' : B — X be a locally trivial bundle with fiber
P. Tt means that for every point x € X there is a neighborhood U of z
and a homeomorphism ¢y : P x U — F~Y(U) such that F(éy(p,y)) =y
for all y € U and p € P. Moreover, the maps ¢y naturally agree with each
other, i.e., if U; and Uj intersect, then ¢y, (p,y) = ¢v,(p,y) for all p € P
and Y€ Ul M UQ.

It is easy to see that the set of the rectangles ¢y (P x U) defines a local
product structure on B.

Definition 1.4.29. Let X7, X5 be two spaces with local product structures
on them. We say that a continuous map f : X1 — X preserves the
local product structures if for every point x € X there exist rectangular
neighborhoods (Ry,[,-]1) and (Ra,[-,-]2) of  and f(z), respectively, such
that f([y, z]1) = [f(v), f(2)]2 for all y, z € R;.

Example 1.4.30. Consider a rectangle X = A x B, and let G be a group
acting properly and freely on X by homeomorphisms preserving the local
product structure on X. Then the quotient G\X by the action is naturally a
space with a local product structure. We call such local product structures
splittable. For example, for any decomposition of R™ into a direct sum of
subspaces, we get the corresponding local product structure on the torus
R™/Z™. See, for example, the decomposition into the direct sum of the
eigenspaces for the “Arnold’s Cat” map [1.1.5
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1.4.7. Ruelle-Smale systems. The following class of dynamical systems
was introduced by D. Ruelle in [Rue78]| as a generalization of basic sets of
hyperbolic diffeomorphisms.

Definition 1.4.31. A Ruelle-Smale system (also called Smale space) is a
homeomorphism f G X of a compact metric space with a local product
structure satisfying the following conditions.

(1) The map f preserves the local product structure.

(2) There exists A € (0,1) and a cover of X by a finite number of
rectangles (R;, [+, ]) such that for any two points z,y belonging to
one plaque P1(R;, z) = Po(R;,y) we have d(f(z), f(y)) < Ad(z,y);
and for any two points z,y belonging to one plaque Pyo(R;, x) =
Py(Ri,y) we have d(f~}(z), f71(y)) < Ad(z,y).

In other words, a homeomorphism is a Ruelle-Smale system if it is con-
tracting in one direction and expanding in the other direction of a local
product structure preserved by it.

We will denote Py = W, and Py = W_. The plaques W, (R, x) and
W_(R, x) are called the stable and the unstable plaques, respectively.

Note that by the Lebesgue’s covering lemma, if {(R;, [-,]i) }ier is a finite
atlas of the local product structure of a compact space X, then there exists
€ > 0 such that [z,y]|; = [z, y]; for all ¢, j € I and all x,y such that d(z,y) <
€ and the corresponding expressions are defined. It follows that we may
assume that we have one map [+, -] defined on a neighborhood of the diagonal
of X x X.

It follows from the definition that if x and y belong to the same stable
plaque, then the distance d(f"(x), f"(y)) exponentially converges to zero.
Similarly, if  and y belong to the same unstable plaque, then d(f~"(z), f"(y))
exponentially converges to zero.

Proposition 1.4.32. A homeomorphism f G X of a compact space is a
Ruelle-Smale system if and only if f is expansive and for every expansivity
entourage U the map [-,-]y from Deﬁnition 1s defined on a neighbor-
hood of the diagonal.

In particular, the local product structure satisfying the conditions of Def-
inition [1.4.531) is unique and depends only on the topological conjugacy class
of fG X.

Proof. Let us prove at first that every Ruelle-Smale systems is expansive.
Let € be a Lebesgue number of a finite cover { R;};e; of X’ by rectangles. Sup-
pose that x,y € X are such that d(f"(x), f"(y)) < efor alln € Z and = # y.
Then for every n there exists i, € I such that f"(z), f*(y) both belong
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to R;,. Consider then the corresponding point z, = [f"(z), f"(y)] € R;,
We have then f(z,) = 2,41 for all n € Z, i.e., z, = f"(29). The distance
d(f™(z), f*(20)) is bounded from above by the maximum of diameters of the
rectangles R;. But we must have d(f"(z), f*(z0)) = A~1d(f"1(x), "1 (20))
for all n € Z, which is a contradiction. It follows that € is an expansivity
constant for f G X.

The fact that the local product structure on the Ruelle-Smale system
coincides with the local product structure given in Definition for ex-
pansive systems is now straightforward.

In the other direction, suppose that f G X is an expansive homeomor-
phism of a compact space such that [-,-] is defined on a neighborhood of
the diagonal for every expansivity entourage U. Note that if U; < Us, then
[+, -]t is a restriction of [-,-]y,. We have (z,[z,y]) € U and (y, |z,y]) € U,
which implies that [-, -] is continuous. The axioms of a local product struc-
ture are checked directly using Lemma, [1.4.22

Let d be a metric on X associated with U (see beginning of . It
is checked directly that some iterate of f G X is Ruelle-Smale system with
respect to d. Using then the same trick as in Lemma [1.4.4] we can modify
the metric so that f G X is a Ruelle-Smale system. (]

1.4.8. Examples of Ruelle-Smale systems.
1.4.8.1. Shifts of finite type.

Proposition 1.4.33. A subshift S = A% is a Ruelle-Smale system if and
only if it is of finite type.

Proof. Two points (ay)nez and (bp)nez of X% are stably equivalent if and
only if there exists ng € Z such that a,, = b,, for all n > ng. Similarly, they
are unstably equivalent if and only if there exists ng such that a, = b, for
all n < ng.

Suppose that F < XZ is a subshift. Denote by Uy the entourage
consisting of all pairs (wy,w2) € F x F such that wi(n) = wa(n) for all
—-N<n<N.

Suppose that F is a Ruelle-Smale system. Then there exists N such
that for any pair of sequences (w1, ws2) € Uy the intersection W 17, (w1) N
W_ uy(w2) is non-empty. In other words, there exists N such that if se-
quences wy and wg from F coincide on the interval [—N, N], then the se-
quence w equal to w; on [—N, +0) and to wa on (—o0, N] also belongs to F.
The converse statement is also true: if F satisfies the last condition, then it
is a Ruelle-Smale system. We leave it to the reader to use this condition to
prove that every shift of finite type is a Ruelle-Smale system.
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Let L < X2N+2 be the set of all subwords of length 2N + 2 of elements
of F. Let us prove that if w € X% is a sequence such that every subword of
length 2N + 2 of w belongs to L, then w € F. This will prove that F is a
shift of finite type. It is enough to show that if v is finite word such that
every subword of v of length 2N + 2 belongs to L, then v is a subword of
an element of F. Let us prove this statement by induction on the length of
v. The statement is trivially true for |v| = 2N + 2. Suppose that we have
proved it of |v| = k, let us prove it for vz, where z € X. Write v = yu for
y € X. Then |v| = |uz| = k, so there exist sequences w;, w2 € F such that
the restriction of w; and wy onto an interval [a,b] = Z containing [-N, N|
is equal to u, wi(a —1) = y and wa(b+ 1) = x. Then there exists a sequence
w € F such that w|(_OO,N] = w1|(_OO’N] and w|[_N’OO) = w2|[_N700). Then
yur = vz is equal to w|g_1p41]- O

1.4.8.2. Anosov diffeomorphisms.

Definition 1.4.34. An Anosov diffeomorphism is a diffeomorphism f G M
of a compact Riemannian manifold such that there exists a decomposition
TM =T, ®T_ of the tangent bundle into a direct sum of f-invariant
sub-bundles, and constants C' > 0 and A € (0, 1) such that

(1) [|[Df™(0)| < CA*||U] for all n > 0 and v e 11,
(2) |Df ™) < CA"|¢| for all n > 0 and v e T_.

By classical theory (see, for example, [Sma67, Theorem 7.4], [BS02|
Theorem 5.6.4, Theorem 5.7.2]) every Anosov diffeomorphism is a Ruelle-
Smale system.

An example of an Anosov diffeomorphism is the Arnold’s Cat Map
from It can be generalized in the following way. Let £ be a sim-
ply connected nilpotent Lie group, and let ¢ : £ — £ be its automorphism
such that the differential D¢ at the identity 1 € £ is hyperbolic (i.e., its
spectrum is disjoint with the unit circle). Let G be a subgroup of the affine
group £ X Aut £ acting naturally on £, and suppose that the action G ~ £
is free and co-compact, so that G\£ is a compact manifold. Such manifolds
are called infra nil-manifolds. Assume also that the G-action is ¢-invariant,
so that ¢ induces a diffeomorphism of G\£. Then this diffeomorphism is
Anosov, see [Sma67, pp. 760-764]. We call such Anosov diffeomorphisms
algebraic.

All currently known Ansov diffeomorphisms are topologically conjugate
to algebraic diffeomorphisms. It is an open question if this is a complete
description. Moreover, the only known examples of Ruelle-Smale systems
f G X such that X is a connected and locally connected space are algebraic
Anosov diffeomorphisms.
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1.4.8.3. Hyperbolic sets. More generally, let M be a Riemanian manifold,
U c M a non-empty open subset, and let f : U — f(U) be a diffeo-
morphism. A closed totally f-invariant subset X < U (i.e., such that
f(U) = U = f~YU)) is said to be hyperbolic if there exist decomposi-
tions T, M = T4 (z) @ T_(x) of the tangent spaces at x € X and constants
C >0, € (0,1) such that

(1) DfT(2) = T (f(2)), DIT (x) = T(f(2));
(2) |Dfv| < CN| V| for all T e Ty (x), z € X, and n = 0;
(3) |IDf~"0| < CA"™||V] for all e T_(x), x € X, and n > 0.

A hyperbolic set X is locally maximal if there exists an open neighbor-
hood V o X such that A =), (V).

If X is a locally maximal compact hyperbolic set, then f G & is a Ruelle-
Smale system, see [BS02| Proposition 5.9.1, 5.9.3]. Examples of locally
maximal hyperbolic sets are the Smale horseshoe attractor W from [I.1.3]
and the solenoid from m (in its concrete version in R3).

1.4.8.4. DA attractors. We have seen in that there exists a semiconju-
gacy ¢ : F — R?/Z? from a shift of finite type F to the Anosov diffeomor-
phism A G R?/Z? defined by the matrix < i 1 ) We will see later that
this is true for any Ruelle-Smale system.

The shift of finite type F can be defined as a result of cutting the torus
along the boundaries of the elements of the Markov partition, and propagat-
ing the cuts by the Z-action of the dynamical system, exactly in the same
way as we did it with the circle rotation in

We could also cut, i.e., make slits in the torus, only along the stable
boundaries of the Markov partition. This will produce another Ruelle-Smale
system f G X with a semiconjugacy ¢ : X — R?/Z2. It is called a DA-
attractor (“Derived from Anosov”). We will give an alternative description
of this dynamical system later in....

The DA-attractor can be realized as a hyperbolic set of a diffeomorphism
by modifying the Anosov diffeomorphism in a small neighborhood of a point
(essentially by imitating the slits described above), see [Sma67, p. 788].

1.4.9. Natural extension of an expanding covering map.

Proposition 1.4.35. If f G X is an expanding map on a compact space,
then its natural extension f G X is expansive.

For the notion of a natural extension, see Definition [1.1.§

Proof. Let € > 0 be an expansivity constant for f G X with respect to a
metric d on X. Consider the entourage U < X x X consisting of pairs of
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sequences ((r1,22,...), (y1,¥y2,...)) such that d(x; Y1 ) < €. Suppose that
€ = (z1,29,...) and ¢ = (y1, v, ...) are such that (f(€), f*(¢)) € U for all
n € Z. Then for every ¢ > 1 we have d(f™(z;), f"(y;)) < e for all n > 0, since

e = (f (@), [M(®ig), ) and fPHHQ) = (F*(wi), [ (Yis1), - )
This implies, by expansivity of f G X, that x; = y; for all . ([

Theorem 1.4.36. Let f G X be an expanding covering map of a compact
space, and let f G X be its natural extension. Then X is a fiber bundle with
respect to the natural projection P : X — X: for every x € X there exists
a neighborhood U of x such that P~Y(U) is naturally homeomorphic to the
direct product C' x U, where C' is the inverse limit of the sets f~"(x).

The natural extension f G X is a Ruelle-Smale system, where the local
product structure coincides with the local product structure coming from the

described fiber bundle.

Proof. Let € > 0, L > 1 be such that d(f(z), f(y)) = Ld(z,y) for all
x,y € X such that d(x,y) <e.

For every x € X there exists an open neighborhood U of x that is evenly
covered, i.e., such that f~1(U) can be decomposed into a disjoint union
fYU)=U, Uy U -+ U U,y such that f : U; —> U is a homeomorphism
for every i. The decomposition is finite, since X' is compact (hence f~!(x)
is compact for every z € X).

Note that in general (if X’ is not locally connected) the decomposition is
not unique. But we can use the fact that f is expanding to choose canonical
decompositions for sets U of small diameter as follows.

Since X is compact, there exists a finite cover U of X by open evenly
covered sets. Then, by Lebesgue’s lemma, there exists dp > 0 such that for
every set B of diameter less than d§y there exists U € U such that Bc U. It
follows that every set of diameter less than Jg is evenly covered.

Consider decompositions of f~1(U), for U € U, into disjoint unions
U =U,vu---uUy,such that f : U; — U are homeomorphisms, and
consider the corresponding inverse maps f~!: U — U;. By the continuity
of the maps f~!: U — U;, there exists § < g such that for every set A of
diameter less than § the set f~1(A) can be decomposed into a disjoint union
of sets A1 u --- U A,, of sets of diameter less than €. Then the diameters
of A; will be less than L~'§. Note that then the distance between any two
different points of f~1(x) for € X is not less than e. Consequently, for any
x1 € A; and 9 € A; for i # j we have d(z1,22) > € — 2L716. If § is small
enough, then € — 2L 16 > §, and we get the following.

Lemma 1.4.37. If § > 0 is small enough, then for every set A < X of
diameter less than § the set f~Y(A) is decomposed in a unique way into a
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disjoint union f~1(A) = Ay U --- U A, such that f : A; —> A are home-
omorphisms, the sets A; have diameters less than &, and distance between
any two points belonging to different sets A; is greater than 6.

Definition 1.4.38. We say that ¢ is a strong injectivity constant of the
expanding covering f G X if it satisfies the conditions of Lemma

We will call the sets A; the components of f~1(A). For n > 1, the
components of f "(A) are defined inductively as components of f~1(A;),
where A; is a component of f~(1(A). Note that since components of
f1(A) are of diameter less than L' < §, we have a unique decomposition
of f~™(A) into components. If A is connected, then components of f~™(A)
are its connected components.

Fix some strong injectivity constant § > 0. Let U < X be a set of
diameter less than §. Consider the rooted tree Ty with the set of vertices
equal to the disjoint union of the sets of components of f~"(U) for n > 0,
where a component A of f~"(U) is connected to the component f(A) of
f~=D(U). The root is fO(U) = {U}.

Similarly, for every z € X, denote by T, the tree T, with the set of
vertices equal to the disjoint union of the sets f~"(x) for n > 0. For every
x € U the trees T, and Ty are naturally isomorphic: the isomorphism maps
a vertex t € f~"(x) of T, to the unique component of f~"(U) containing ¢.

The boundary 01y of the tree Ty is the inverse limit of the sets of
components of f~"™(U) with respect to the maps induced by f. Similarly,
0T, is the inverse limit of the sets f~"(x) with respect to f : f~"(x) —
f (),

For every set U ¢ X of diameter less than § we get a natural homeo-
morphism ¢ : P~H(U) < X —> U x 0Ty defined in the following way. Let
¢ = (to,t1,...) € X be a point of the inverse limit X, where ty € U = Uy.
Let U, be the component of f~"(U) such that ¢, € U,. Then ¢y (§) =
(to, (U, Un,...)). Recall that to = P(§). It is easy to see that this is a
homeomorphism.

It also follows from the fact that Ty is naturally isomorphic to T, for
every x € U, that the homeomorphisms ¢y agree on the intersections of the
sets U, i.e., that we have a fiber bundle.

If & = (ty,th,...), & = (¢, t],...) € U are such that the second coordi-
nates of ¢y (&1) and ¢y (&2) are equal, then t; and ¢! belong for every i to
the same component of f~"(U). This implies that d(¢},t/) — 0 as i — oo,
hence & and & are unstably equivalent.
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Suppose that & = (¢, t},...) and & = (3, ¢}, ...) are such that P(&;) =
P(&) € U. Consider the points f™(&1) and f™(£2). They are equal to

(f"(to), f*H(t0),- -, f(to) to, 1, 5, ..)
and
(f™(to), "1 (t0),- -, f(to), to, 11, 1, - ),
respectively, where g = t} = t}j. We see that the distance between f7(¢;)

and f"(ﬁg) in the inverse limit X goes to zero, i.e., that & and & are stably
equivalent.

We have shown that the local product structure defined by the homeo-
morphisms ¢y agrees with the stable and unstable equivalence classes, which
finishes the proof of the theorem. O

Example 1.4.39. Let f G X be an expanding endomorphlsm of a Rie-
mannian manifold. Then its natural extension f G X can be realized as
an attractor of a diffeomorphism, see [Sma67, p. 788]. We have seen an
example of such a realization in the case of the angle doubling map and the
solenoid in The general case is very similar to the solenoid example.

1.4.10. Williams solenoids. The natural extension of a map f G X is
a Ruelle-Smale system not only in the case of expanding coverings. As a
starting point of a more general setting, let us consider the following class
of examples.

Let o : X — X* be a substitution such that the length of o™ (z) goes
to infinity for all x € X. Let B, be the corresponding stationary Vershik-
Bratteli diagram, see[I.3.7] Suppose that B, is properly ordered, see Propo-
sition An example of such a substitution is

(1.9) o(0) =01,  o(1) =011,

The associated Vershik-Bratteli diagram is shown on Figure

Let X be a bouquet of |X| oriented loops labeled by the letters of X.
Consider the map f, G X realizing o: it maps every loop labeled by z to
the path in X on which the word o(x) is read. We parametrize each loop
by [0, 1], so that the common point of the loops is parametrized by 0 and 1,
and assume that the word o(z) is read in the positive (increasing) direction.

See, for instance Figure where the corresponding map f, for the
substitution (1.9)) is shown.

By choosing appropriate lengths of the loops in X, we can make f,
expanding on each loop. The map f, will be expanding the length of paths,
but it is not expanding on any neighborhood of the common point of the
loops, since it is not injective there.
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Figure 1.28. Geometric realization of a substitution

Note that for every positive n the map f G X is the realization of o™:
the loop labeled by x is mapped to the path on which ¢"(x) is read.

Proposition 1.4.40. The natural extension f, G X is a Ruelle-Smale
system. The space X is homeomorphic to the mapping torus of the adic
transformation defined by the Vershik-Bratteli diagram B,.

Proof. Let us denote by v, the loop of X labeled by x € X. Consider a
point (t1,te,...) € X. Suppose that t; belongs to the interior of 7, (i.e., is
not equal to the common point of the loops) for some z € X. Let a, € X
be such that ¢, belongs to 7,,. In particular, x = a;. Then f, maps 7,
to a path containing x,_1. We get an occurence of the letter a,_1 in the
word o(a,) corresponding to the segment of v,, mapped by f, to 7., , and
containing t,_1. Let e,_1 be the edge of the Vershik-Bratteli diagram B,
corresponding to this occurence. It is an edge connecting a,, to a,—1 in B,.
We get a path (e1,e2,...) in B,. It is clear that the point (¢1,t9,...) € X
is uniquely determined by t; and (e, eg,...). We will denote the point
(t1,t2,...) by (t;e1,e2,...), where t € (0, 1) is the parameter corresponding
to the point ;. We see that the subset of X consisting of points (t1, o, ...)
such that t; different from the common point of the loops 7, is naturally
identified with the product of the open unit interval (0, 1) with the space of
paths in B,. It is easy to show that this identification is a homeomorphism.

Denote by (0;e1,e2,...) and (1;e1,ea,...) the limits of (t;e1,es,...) as
t - 0 and t — 1, respectively. It follows from the construction that
(1;e1,€9,...) is equal to (0; f1, fa2,...), where (fi, fa,...) is the image of
(e1,e€2,...) under the adic transformation, provided (eq, eg, ...) is not max-
imal. If (e1,e9,...) is maximal, then the point (1;e1,e2,...) is equal to
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(p,p,...) € X where p is the common point of the loops of X. The same is
true for (0;eq,e9,...) if (€1, eg,...) is minimal.

We see that the space X can be obtained from the product of [0, 1] with
the space of paths P(B,) by identifying (1;e1,es,...) with (0; f1, fo,...),
where (f1, f2,...) is the image of (e, es,...) by the adic transformation. It
is not hard to check that fg expands the distances in the direction of the
unit interval and contracts them in the direction of P(B,). O

The construction from Proposition [1.4.40] and its generalizations were
studied by R. F. Williams in [Wil67] and [Wil74].

The main feature of this approaches is that even if the map f G X is
not an expanding covering in the sense of Definition [1.4.1] it is “eventually”
an expanding covering map.

R. F. Williams, for example, uses branched manifolds, i.e., spaces equal
to unions of closed pieces of R™ pasted together in such a way that every
point still has one well defined tangent space. We will not give a precise
definition, but note that the above example of a rose of loops in Proposi-
tion is a branced manifold (you should imagine it as a union of circles
tangent to each other at the common point). Then the expansion condition
can be defined in the same way as for manifolds (see Example [1.4.5)). The
covering condition is replaced by a “flattening” condition: for every x € X
there exists & > 1 and a neighborhood N of  such that f*(N) is contained
in a subset of X diffeomorphic to an open ball of R”. Note that this con-
dition is satisfied for the example shown on Figure [I.28] with & = 1: the
image of a neighborhood of the singular point (the common point of the two
circles) under the map is a smooth interval equal to the union of one black
and one red half-intervals; it is trivially true for the interior points of the
loops.

The following more combinatorial version of Williams’ conditions (in the
one-dimensional case) are given in [Yi01].

Definition 1.4.41. Let I' be a graph seen as a topological space (a one-
dimensional CW-complex) with a metric d compatible with the topology.
Consider the following conditions.

(1) Expansion: there exist constants C' > 0 and L > 1 such that if
x,y are points on an edge of I', and f", for n = 1 maps the interval

[z,y] < T to an edge of ', then d(f™(zx), f"(y)) = CL"d(z,y).

(2) Markov: The set V' of vertices of I' is forward-invariant: f(V) <
V.

(3) Nonfolding: The map f" : I'\V— I'\V is locally one-to-one for
every n = 1.
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(4) Flattening: There exists k& > 1 such that for every x € I' there
exists an open neighborhood N of z such that f*(N) is homeomor-
phic to an open interval.

It is proved in [Yi01] that if f G T satisfies the conditions of Defini-
tion 1, then the natural extension f G I'is a Ruelle-Smale system. (The
paper includes additional irreducibility and non-wandering conditions.)

More general conditions are given in S. Wieler’s paper [Wield]. We
present here a modified version.

For an entourage U and x € X', we denote by B(U, z) the “ball of radius
U” with center in z:

B(U,z)={ye X : (z,y)e U}.

Theorem 1.4.42. Let f G X be a map, where X is compact and Hausdorff.
Suppose that the following conditions hold:

(1) Eventual expansion: There exists an entourage U and a number
k > 1 such that if (f"(z), f*(y)) € U for all n = 0, then f*(x) =
).

(2) Eventually open map: For every entourage U there exists an
entourage V. U and k = 1 such that for every x € X we have

HB(f* (@), V) < fH(B(x,V)).

Then the natural extension f G X is a Ruelle-Smale system.

Proof. Let us prove at first that the first condition implies that the nat-
ural extension is expansive. The proof essentially repeats the proof of
Proposition Consider the entourage U c X x X consisting of all
pairs ((z1,22,...), (y1,¥2,...)) such that (z1,y1) € U. Suppose that { =
(z1,29,...) and ¢ = (y1,y2,...) are such that (f"(€), f*(¢)) € U for all
n € Z. Then we have (f™(z;), f"(y;)) € U for all n > 0 and ¢ > 1. It follows
from eventual expansion of f that f*(z;) = f"’(yl) hence z;_p = y;_y for
all ¢ = k. The latter implies that £ = (, i.e., that f is expansive.

Let us prove now that the map [-,-] from Definition is defined
on a neighborhood of the diagonal of X x X, if the map f G X satisfies
both conditions of the theorem. Let U be an entourage satisfying the first
condition of the theorem, and let V' be an entourage satisfying the second
condition and such that V < U and f(V) c U. We can replace f by f*, so
it is enough to prove the statement for the case k = 1.

Let &€ = (z1,29,...) and ¢ = (y1,y2,...) be points of X such that
(zi,y;) eV fori=1andi=2.

Let us construct by induction a sequence y; such that (z;,y}) € V
and f2(yl.,) = f(y}) for all i > 1. Set y} = y1 and y5 = y». Then
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since y; € B(x;, V) = B(f(2i+1),V), we have f(y;) € f(B(f(zi+1),V)) <
fA(B(zit1,V)). It follows that we can choose y},; € B(zi+1,V) such that
F2(Yie1) = f(y}). Denote y! = f(yi, ;). Then we have f(y,;) = f*(yjss) =
Fi) = v, = fh) = fly2) = 1, and (w5, 9)) = (f(wir1, f(is1)) €
f(V)c U for all i > 1.

We have found a point ¢” = (y7,44,...) € X such that 3/ = y; and
(xi,y!) € U for all i. We have [£,(] = ¢” (check the order....), hence [-, -]
is defined on a neighborhood of the diagonal, i.e., f G X is a Ruelle-Smale
system. [l

S. Wieler proved in [Wiel4] that for every Ruelle-Smale system g G S
with totally disconnected stable direction there exists a map f G X on a
compact metric space X satisfying the conditions of Theorem [I.4.42] such
that f G X is conjugate to g G S.

Example 1.4.43. Consider a map f G X defined on a domain in R? as
it is schematically shown on the left-hand side of Figure [1.29] We can
choose f in such a way that it is contracting along an f-invariant foliation
consisting of vertical lines in the orange rectangle and radial lines in the
semi-annular shapes. We also may assume that iterations of f are expanding
in a transversal foliation, so that the intersection of the ranges of " is a
hyperbolic set in the sense of [1.4.8.3] This set is locally maximal, and is
called the Plykin attractor [Ply74].

If we collapse the domain of f along the leaves of the stable foliation, i.e.,
collapse the orange rectangle to a horizontal segment, and the semianular
regions to loops, we will get a graph shown on the top part of the right-
hand side of Figure Since the foliation is f-invariant, f induces a
well-defined self-map of the graph, as it is shown schematically on the lower
part of the right-hand side of the figure. This map satisfies the conditions
of Definition [[.4.41] and its natural extension is topologically conjugate to
the Plykin attractor.

Example 1.4.44. DA attractor...

1.4.11. Symbolic encoding and shadowing. Let H ~ X} and H ~ Xy
be topological dynamical systems, where H is a semigroup. Recall that a
semiconjugacy from the first system to the second one is a continuous map
¢ : X1 —> Ao such that

¢(h(z)) = h(o(x))
for all x € X7 and h € H. If there exists a surjective semiconjugacy ¢ :
X — Xy, then H ~ X, is called a factor of H ~ Xj.

The kernel of the semiconjugacy is the set

Ey = {(x,y) € X2 ¢ ¢(z) = d(y)}.
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Figure 1.29. Plykin attractor and its one-dimensional model

It is a subset of X7 invariant under the diagonal action of H: if (z,y) € &,
then (h(x), h(y)) € £4. We consider the kernel as the topological dynamical
system H ~ Ey.

Definition 1.4.45. We say that a system H ~ X is finitely presented if
there exists a subshift of finite type H ~ S, S < X, and a surjective
semiconjugacy ¢ : S —> X such that the kernel H ~ &, is also a shift of
finite type. Here we naturally identify X# x X with (X x X)#, so that
Ep = (X x X)H.

The terminology is attributed to M. Gromov... references...

Proposition 1.4.46. Let H ~ S © XH be a subshift, and let ¢ : S — X
be a surjective semiconjugacy to a dynamical system H ~ X. If H ~ X

is expansive, then the kernel H ~ &y is a subshift of relative finite type in
H~SxS.

For the notion of relative finite type, see Definition [1.2.13]

Proof. Let U € X x X be an expansion entourage. Consider its full preim-
age ¢ 1(U) € 8 x 8. We have £ < ¢ Y(U). Since &4 is compact, and
S x 8 is zero-dimensional, there exists a clopen set U’ < & x S such that
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Es < U < ¢ 1(U). Let us prove that & = (e h (U'). We obviously
have €y < (\pey h 1 (U"), since & < U’ and €, is H-invariant. Suppose
that (w1, ws) € h=Y(U’) for all h. Then (h(w1),h(ws)) € U = ¢~1(U) for
all h € H, hence (h(¢(wi)), h(¢(w2))) € U for all h € H, which implies
d(wr) = d(w2), ie., (w1, wz) € Ey. This proves that &, is of relative finite
typein § x S. (]

Example 1.4.47. A subshift F < X% is called sofic if there exists a shift of
finite type FcYZanda surjective semi-conjugacy F —> F. Tt follows from
Proposition that every sofic subshift is finitely presented. Consider,
for example, the even subshift F < {0,1}” consisting of all sequences (2, )nez
such that there is an even number of 1s between any two consecutive 0s. It
is nor hard to show that it is not a shift of finite type (exercise ...). On
the other hand, if F is the shift of finite type consisting of all sequences
(1) nez € {0,1}” with no subword 11, then the sliding block map defined by
(00) - 0, (01) — 1, (10) — 1 maps F surjectively to F. Exercise... describe
&4 in this case...

Example 1.4.48. Let f G R/Z be the angle doubling map =z — 2z
(mod 1). We have seen in that it admits a surjective semiconjugacy
{0,1}* — R/Z from the one-sided full shift. The system f G R/Z is expan-
sive, therefore it follows from Proposition that it is finitely presented.
Check that the corresponding kernel is of finite type...

It follows from Proposition that a system H ~ X is finitely
presented if and only if it is expansive and is a factor of a shift of finite type.
The following approach to factors of shifts of finite type is due to R. Bowen,
see...

Definition 1.4.49. Let H be a semigroup generated by a finite set S < H
(our main examples willbe H = Nand H = Z with S = {1}), and let H ~ X
be an action on a metric space. We say that a sequence h+— zp : H — X
is an e-pseudo-orbit if
d(s(zn), zsn) <€

forall he H and s € S.

We say that a system H ~ X satisfies the shadowing property if for
every § > 0 there exists a positive number ¢ > 0 such that for every e-

pseudo-orbit z, there exists a point y € X' such that d(xp, h(y)) < ¢ for all
heH.

Picture of a pseudo-orbit...

Proposition 1.4.50. Fvery Ruelle-Smale system satisfies the orbit shad-
owing property.
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Proof. Let x,,n € Z be an e-pseudo-orbit for a Ruelle-Smale system f G X,
where € will be selected later. We assume that the metric d on X belongs
to the canonical class of metrics ... Let A € (0,1) be as in the definition

Let 0 be such that the §-neighborhood every point of X is contained
in a rectangle. We assume that € < §. Choose for every n a rectangle R,
containing the d-neighborhood of x,.

Let us choose a metric d,, on R,, equal to the direct product metric of
the expanding and the contracting directions:

dn(x7 y) = maX{d([$na SL‘], [xna y]), d([l‘, $n]a [ya $n])}
This metric is compatible with the topology on R,, (in fact, it is bi-Lipschitz
equivalent to d).

Define x;{p = x,, and then inductively, for k& > 0,

x;,kﬂ = [‘T:Lr,kv f(xZ—l,k)]'

Then all ka belong to the stable plaque of x,, and we have

A s T 1) S ATy ) ),

see Figure... It follows that there exists C' > 0 such that d(z,},,z;, ) <

)

CONE for all k for some C' depending only on the metric d. It follows that
the sequence m;k, k=1,2,... converges, provided all x;rk are defined. Each
point x:{k and the limit are on the distance not more than 1C_—€/\ from x,. It
follows that if € is small enough, the points ka are defined and converge
in R,. Let 2} be its limit. Note that it follows from the definitions that
[, (@) = a7y

Changing the direction, we will find a sequence x, . satisfying x

n,k+1 =

f @ 1) Uns) = [f (2,1 4)s @] and converging to a point x,, on dis-
tance not more than << from z,,. We will also have [f~(z;,),2,,_,] = z;_;.
Then y, = [z;}, ;] is an orbit such that d(z,,y,) < 2 for alln. O

Proposition 1.4.51. Suppose that H ~ X is an expansive dynamical sys-
tem on a compact metric space satisfying the shadowing property. Then
H ~ X is a factor of a shift of finite type, and hence is finitely presented.

Corollary 1.4.52. Every Ruelle-Smale system is finitely presented.

Proof. Let 6 > 0 be a number less than half of the expansivity constant ...
Let € > 0 be the corresponding constant from Definition Let Nc X
be a finite e-net. Consider the set S © N consisting of all e-pseudo-orbits,
i.e., all sequences w : H —> N such that d(s(w(h)),w(sh)) < e for every
he H, se S. It is a topological Markov shift, see... In particular, it is a
shift of finite type. For every w € S, by Definition there exists y € X
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such that d(w(h),h(y)) < §. Define ¢p(w) = y. Note that if 3’ is another
point satisfying this condition, then d(h(y), h(y')) < 26 for all h € H, hence
y =1/, by expansivity.

We get a well defined map ¢ : S —> X such that ¢(h(w)) = h(p(w))
for all we & and h € H. The map ¢ is surjective, since for every y € X and
h € H we can choose w(h) such that d(w(h),h(y)) < e. It is continuous,
since if wy, wy € S are such that wy(h) = we(h) forall h e Aforaset A c H,
then d(h(¢p(w)), h{p(ws))) < 2€ for all h € A. By increasing A, we can get
an arbitrarily small upper estimate of d(¢(w1), ¢(ws)), by Lemma It
follows that ¢ : S —> X is a surjective semiconjugacy. O

Example 1.4.53. We have seen that the binary solenoid from has a fi-
nite presentation given by the semiconjugacy from the two-sided shift {0, 1}%.

The corresponding kernel consists of the diagonal, the pair (...111...,...000...

and all the pairs of the form (...zp_12,0111...,...2,-12,1000...). It is
easy to check that this set is a subshift of finite type.

Suppose that ¢ : F —> X is a surjective semi-conjugacy from a subshift
of finite type s G F < X% to a Ruelle-Smale system f & X. Consider
the cylindrical subsets C, = {(zp)nez € F : w9 = z} for z € X. If
the corresponding subsets ¢(C,) have disjoint interiors, then we say that
{p(Cy)} is a Markov partition of f G X. Note that the subshift F is
uniquely determined by the Markov parition. Namely, for every generic
t € X the point f"(t) belongs to the interior of a unique element Cy,, of
the Markov partition for every n € Z (by Bair’s Category Theorem). The
sequence (&, )nez is the itinerary of t, and we obviously have ¢((zp)nez) = t.
Then F is equal to the closure of the set of such itineraries. The subshift F
can be seen as a result of “cutting” X along the boundaries of the elements
of the Markov partition, and then propagating the cuts by the dynamics,
similarly to what we did with an irrational rotation in (compare it
with the definition of Ay in Proposition .

It was proven by R. Bowen that every Ruelle-Smale system has a Markov
partition, see [Bow70] (he proved it for hyperbolic sets of diffeomorphisms,
but the proof of the general statement is the same).

The class of finitely presented actions of Z is wider than the class of
Ruelle-Smale systems. The following theorem of D. Fried [Fri87] clarifies
the relation between these two classes.

Theorem 1.4.54. An expansive system f G X is finitely presented if and
only if X can be covered by a finite number of closed rectangles.

Here a rectangle is a subset R < X such that the operation [-, -] given in
Definition is defined and continuous on R x R and takes values in R.
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Example 1.4.55. Consider the Arnold’s Cat map f G R?/Z? defined by
2 1

the matrix 11 ) Note that f(—x) = —z, so f induces a well defined
homeomorphism of the space obtained from the torus by identifying every
element € R?/Z? with —xz. This space is homeomorphic to the sphere, and
can be visualized as a result of folding the rectangle [0,1/2] x [—1/2,1/2]
into a square pillow, see Figure..., where the foliation by the stable and
unstable equivalence classes (manifolds) are shown... Show the partition
into a finite number of rectangles... This is an example of a pseudo-Anosov
diffeomorphism, see...

Example 1.4.56. Consider the even subshift F from Example It
is the set of all sequences (y,)nez € {0, 1}% such that there is an even num-
ber of 1s between any two consecutive 0s. Let Rg and R; be the sets
of sequences (x,)nez such that the number of leading 1s of xgzixs... is
even and odd, respectively (where infinity is considered to be even and
odd). If wy = (zp)nez, w2 = (Yn)nez € Ri, then the sequence [wi,ws] =
.. Y—2Y_1 . ToT1T2 ... belongs to R; < F. It follows that F is a union of
two closed rectangles Ry and Ry. Their intersection is the set of all sequences
(n)nez € F such that zoxizy... = 111....

1.4.12. Structural stability. Corollary implies that Ruelle-Smale
systems can be described, up to topological conjugacy, by a finite amount of
information: by a shift of finite type F and a shift of finite type £ ¢ FxF. A
shift of finite type is, by definition, described by a finite number of prohibited
subwords. In particular, there only countably many Ruelle-Smale systems,
up to topological conjugacy. The same is true for expanding self-coverings
(write more above)...

In other words, hyperbolic dynamical systems are essentially combina-
torial objects. One of aspects of the combinatorial nature of hyperbolic
dynamical systems is their rigidity, or structural stability. It can be formu-
lated, for example in the following way.

Theorem 1.4.57. Let f G X be a Ruelle-Smale system, and let d be a
metric on X. Then there exists € > 0 such that if f' G X is another Ruelle-
Smale system such that d(f(x), f'(x)) < € for all z € X, then f G X and
f' G X are topologically conjugate.

Proof. (Sketch.) If d(f(x), f'(x)) < € for all x € X, then the f-orbit
(f™(x))nez is an e-pseudo-orbit for £/, since we have d(f'(f"(z)), f"*(z)) =
d(f'(f™(x)), f(f"(x))) < e. By Proposition for every 0 > 0 we can
find € > 0 such that if f and f’ satisfy the condition of the theorem for e,
then for every z € X there exists 2’ € X such that d((f')"(z'), f*(x)) < ¢ for
all n € Z. If § is smaller than the expansivity constant for f’, the point z’ is
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unique. Consider the map ¢ : x — 2. It follows from the definition that ¢ is
a semiconjugacy from f G X to f' G X. On the other hand, z and 2’ play
the same role in the definition, so it follows from the uniqueness that ¢ is a
bijection conjugating the systems. It remains to show that ¢ is continuous.
This can be deduced from the proof of Proposition where the orbit
shadowing a pseudo-orbit was constructed as y, = [z}, z, |, where z;} and
x,, were constructed as limits of sequences defined using the map and the
operation [-,-]. Using uniform continuity of f, f’, and [+, -], one can show
that ¢(z) depends continuously on z. O

Structural stability suggests that one should be able to describe and
study hyperbolic dynamical systems using some algebraic or combinatorial
techniques. Finite presentations and symbolic dynamics is in some sense
such technique, though it is not easy to work with it, and to deduce topo-
logical properties of a dynamical system from its symbolic presentation. We
will see later in Chapter [ that there exists an algebraic approach to ex-
panding covering maps, which have computationally efficient encoding by a
self-similar group (or a biset). A similar encoding of Ruelle-Smale systems
is still missing...

1.5. Holomorphic dynamics

Here we present a very short collection of classical introductory results in
holomorphic dynamics, which will be used later. For a more detailed expo-
sition, see the books [Mil06), Bea91]...

1.5.1. Preliminaries from complex analysis.

Theorem 1.5.1 (Uniformization Theorem). Any simply connected Rie-
mann surface (i.e., a one dimensional smooth complex manifold) is con-
formally isomorphic to exactly one of the following surfaces.

(1) The Riemann sphere C.

(2) The (Euclidean) plane C.

(3) the open unit disc D = {z € C : |z| < 1}, or, equivalently, the
upper half plane H={z€ C : Iz > 0}.

Theorem 1.5.2 (Schwarz Lemma). If f G D is holomorphic and f(0) = 0,
then |f'(0)] < 1. If |f/(0)] = 1, then f is a rotation z — cz about O (for
le] =1). If |f'(2)| <1, then |f(2)| < |z| for all z # 0.

As a corollary we get

Theorem 1.5.3 (Liouville Theorem). If f G C is holomorphic and bounded,
then it is constant.
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The automorphism groups (i.e., groups of bi-holomorphic automorphisms)
of the simply connected Riemannian surfaces are as follows:

~

(1) Aut(C) is the group of all Mébius transformations z +— %+°

cz+d for

a,b,c,d € C such that # 0. It is isomorphic to PSL(2, C).

a
c d
(2) Aut(C) is the group of all affine transformations z — az + b for
a,beC, a+#0.
(3) Aut(H) is the group of all transformations z +—
a b
d
ery automorphism of I is of the form z — e i—=>, where 0 € R,
la| < 1.

az+b
cz+d?’

where a, b, c,d €

R are such that

‘ > 0. It is isomorphic to PSL(2,R). Ev-

If S is a connected Riemann surface, then its universal covering S is
one of the simply connected surfaces @,(C,ID), and the fundamental group
m1(5) acts on S by conformal automorphisms. We say that S is Euclidean
or hyperbolic, if S is isomorphic to C or D, respectively.

Note that the action of 71 (S) on S is fixed point free. Since every non-
identical M6bius transformation has a fixed point, the only surface with
universal covering C is the sphere C itself.

Any transformation z +— az + b for a # 1 has a fixed point, hence in
the Euclidean case the fundamental group acts on the universal covering C
by translations. It is easy to see that this implies that a Euclidean surface
is isomorphic either to the cylinder C/Z, or to a torus C/A, where A is
the subgroup of the additive group of C generated by two non-zero com-
plex numbers a,b such that a/b ¢ R. All the other Riemann surfaces are
hyperbolic.

It is a direct corollary of the Liouville theorem that every holomorphic
map from C to a hyperbolic surface is constant (since we can lift it to the
universal covering). In particular, every holomorphic map f G C such that
C \ f(C) has more than one point is constant (Picard’s Theorem).

Theorem 1.5.4 (Poincaré metric). There exists a unique Riemannian met-
ric (up to multiplication by a constant) on D invariant under every conformal
2|dz|
1—[z]2"
isometry of D is a conformal automorphism.

automorphism of D. It is given by ds = Every orientation preserving

Every hyperbolic surface S has then a unique Poincaré metric coming
from the Poincaré metric on the universal covering S =~ D of S (since the
fundamental group m;(S) acts on S by conformal automorphisms).

The following is a corollary of Schwarz Lemma.
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Theorem 1.5.5 (Pick Theorem). Let f : S —> S’ be a holomorphic map
between hyperbolic surfaces. Then exactly one of the following cases is taking
place.

(1) f is a conformal isomorphism and an isometry with respect to the
Poincaré metrics.

(2) f is a covering map and is a local isometry.

(3) f s strictly contracting, i.e., for every compact set K < S there
is a constant cx < 1 such that d(f(x), f(y)) < cxd(z,y) for all
z,y € K.

1.5.2. Fatou and Julia sets.

Definition 1.5.6 (Compact-open topology). Let X be a locally compact
space, and let ) an arbitrary topological space. Compact open topology on
the space Map(X,)Y) of continuous maps X —> ) is given by the basis of
neighborhoods of a map f : X — ) consisting of sets

Ni(f) ={9€ Map(X,Y) : d(f(x),g(z)) < e for all z € K}

where K ¢ &X' is compact and € > 0.

In fact, the compact-open topology does not depend on the metric on ).
Convergence in the compact-open topology is called the uniform convergence
on compact subsets.

Definition 1.5.7. A set F of holomorphic functions from a Riemann surface
S to a compact Rieman surface T is called a normal family if its closure is
compact in Map(S,T). In the case when T is not compact, we replace T by
its one-point compactification.

Thus, a family F < Hol(S,T) is normal if every sequence f, of ele-
ments of F has either a subsequence f,, convergent uniformly on compact
subsets, or a subsequence f,, converging to infinity uniformly on compact
subsets (i.e., such that for all compact K; < S and Ko < S the intersection
frp (K1) n K3 is empty for all k big enough).

Definition 1.5.8. Let f G C be a rational function. The Fatou set of fis
the set of points z € C such that there exists a neighborhood U of z such
that f°": U — @, for n = 0, is normal. The complement of the Fatou set
is called the Julia set.

Example 1.5.9. Consider the function f(z) = 2" for n > 2. If |2| < 1,
then f™(z) uniformly converges on a neighborhood of zy to the constant 0
function, hence zy belongs to the Fatou set. If |z9| > 1, then f™(z) uniformly
converges to o0 on a neighborhood of zg, hence zy also belongs to the Fatou
set in this case. On the other hand, if |zp| = 1, then for any neighborhood U
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of zp and any sequence ny — oo the sequence f™ : U — C does not have
a continuous limit. Consequently, the Julia set of z™ is the unit circle.

It easily follows from the definitions that the Julia set J is totally in-
variant, i.e., f(J) = J = f~1(J). The Julia sets of f and f™ coincide. It is
always non-empty (unless f is a Mobius transformation) and compact. On
the other hand, the Fatou set can be empty.

Another possible definition of the Julia set is given by the following
theorem (see, for instance [Mil06, Theorem 14.1].

Theorem 1.5.10. Let f(z) be a rational function of degree > 1. Then the
Julia set of f is equal to the closure of the union of its repelling cycles.

Here a cycle zg = f(zn-1),21 = f(20),22 = f(21)y.--,2n-1 = f(zn—2)
is called repelling if the multiplier df;z(z) = f'(z0)f'(z1) -+ f'(zn—1) 18

z=2z;
greater than one in absolute value. It is called attracting if the multiplier is

less than one in absolute value.

A Fatou component of a rational function f(z) is a connected component
of the Fatou set of f. If U is a Fatou component, then f(U) is also a Fatou
component. By D. Sullivan’s Nonwandering Theorem... the forward orbit of
every Fatou component is finite, i.e., eventually belongs to a cycle. It follows
that every Fatou component is a branched covering of a Fatou component
fixed under some iteration of f. The fixed Fatou components are classified
in the following way.

Theorem 1.5.11. Let U be a Fatou of f such that f(U) = U. Then one of
the following four cases takes place.

(1) U is the immediate basin of attraction of an attracting fized point.
(2) U is one petal of a parabolic fized point of multiplier 1.
(3) U is a Siegel disc.
(4)

4) U is a Herman ring.

Here the immediate basin of attraction of a fixed point zy is the con-

nected component containing zq of the set of points z € C such that lim,,_,o f™(2)

20. Similarly, if zq is a fixed point such that f’(zp) = 1, then there is a Fatou
component, called a petal of points whose forward orbits converge to zg. A
Siegel disc is an open domain such that the action of f on it is biholomor-
phically conjugate to an irrational rotation of a disc. Similarly, a Herman
ring is domain the action of f on which is conjugate to an irrational rotation
of an annulus. For more detail, see [Mil06], in particular Section 16.

1.5.3. Hyperbolic rational functions.
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Definition 1.5.12. A rational function f is hyperbolic if it is expanding on
a neighborhood of its Julia set.

Hyperbolic rational functions are important examples of expanding dy-
namical systems in the sense of Definitions and

A post-critical set of f is the set of all points of the form f"(c), where ¢
is a critical point of f, and n > 1.

Theorem 1.5.13. Let f be a rational function of degree = 2. Then the
following conditions are equivalent.

(1) f is hyperbolic.

(2) The closure of the post-critical set of f is disjoint from its Julia
set.

(3) The orbit of every critical point converges to an attracting cycle.

Sketch of the proof. It is easy to see that (3) implies (2), since basins of
attraction belong to the Fatou set. Let us show only that (2) implies (1) in
the case when P has more than two points. Then X' = C\Pisa hyperbolic
surface containing the Julia set. Note that f(P) c P, hence f 1(X) c X.
The map f: f 1(X) — X is a covering. Consider the Poincaré metrics on
X and f1(X). The map f is a local isometry with respect to these metrics.
The inclusion map Id : f 1(X) — X is not a covering map, hence it is
strictly contracting, see Theorem It follows that if we consider the
restriction of the Poincaré metric of X onto the subset f~'(X), then the
map f : f~}(X) — X is expanding. Since the Julia set is compact and
contained in f~!(X), the map f will be uniformly expanding on the Julia
set.

If closure of the post-critical set has less than three points, then they
belong to attracting cycles, and we can take X equal to C minus a small
neighborhood of P, and repeat the proof.

Let us show that (1) implies (2). Let W be a neighborhood of the Julia
set J such that f is expanding on W. Taking an e-neighborhood of J in W,
we get an open neighborhood U of J such that f is expanding on U, and
fY(U)cU. Then f ™(U) c U for all n > 1. The set U does not contain
critical points of f, since otherwise f is not one-to-one, hence not expanding
on any neighborhood of a critical point. If ¢ is critical, and f™(c) € U, then
ce f~™(U) c U, which is a contradiction. Consequently, U does not contain
any post-critical points. This implies that intersection of U with the closure
of the post-critical set is empty.

The fact that (2) implies (3) follows from classification of components
of the Fatou set, see Theorem [1.5.11 O
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Figure 1.30. Julia set of a hyperbolic rational function

If f is a hypebolic rational function, then all its Fatou components belong
to the basins of attraction to attracting cycle. In other words, only the first
type in the classification of Fatou components in Theorem [I.5.11]is possible
in this case.

See examples of Julia sets of hyperbolic rational functions on Figure
and Figure

1.5.4. Subhyperbolic rational functions. Post-critically finite rational
functions in general, orbifolds and orbifold metrics... (define using the uni-
versal cover and lengths of paths)...

1.5.5. Quadratic polynomials and the Mandelbrot set. Let f(z) be
a complex polynomial. Its critical points are zeros of the derivative and
the infinity. The infinity is totally invariant, i.e., f(o0) = f~!(0) = ©
and superattracting. It follows that the basin of attraction of infinity is
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Figure 1.31. A Sierpinski carpet Julia set

connected. Points belonging to it escape to infinity. The filled Julia set of
the polynomial is the complement of the basin of attraction of infinity. In
other words, it is the set of points whose forward orbit is bounded. The
filled Julia set is compact. The Julia set is its boundary.....

Every quadratic polynomial is conjugate (by an affine transformation)
to a polynomial of the form z? + c. It has only one finite critical point O.

Theorem 1.5.14. The Julia set of 2% + c is connected if and only if the
orbit of the critical point 0 is bounded. Otherwise it is homeomorphic to the
Cantor set.

Proof. If the orbit of 0 is not bounded, then ¢ belongs to the basin of infinity.
Consider a curve v connecting c to infinity inside the basin of infinity. Then
f~1(~) disconnects the complex plane in two connected components, both
of which are homeomorphically mapped onto the complement of . Since
the Julia set of f is totally invariant, and does not intersect -, it follows
that f~!(y) disconnects the Julia set J into two closed subsets Jy and J;
such that f: Jy — J and f:.J; — J are homeomorphisms....
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Figure 1.32. The Mandelbrot set

The main ideas of the proof... ([

Definition 1.5.15. The Mandelbrot set M, see Figure [1.32] is the set of
points ¢ such that the Julia set of 22 + ¢ is connected. In other words, it is

the set of points ¢ such that the orbit of 0 under the iterations of z? + ¢ is
bounded.

It is known, see... that the Mandelbrot set is connected, and that its
complement in the complex plane is homeomorphic to the complement of the
closed unit disc. External angles... rational angles, hyperbolic components,
their parametrization by the multiplier of the attracting cycle, Misiurewicz
points, external angles in the dynamical plane...

1.5.6. Lyubich-Minski lamination. The natural extension, leaves, con-
formal type of the leaves...
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Figure 1.33. Julia set of 2% — 1

Figure 1.34. Julia set of 2% +i

Figure 1.35. “Airplane” and “Rabbit”

Exercises

1.1. Prove that an action of a group G on a space & is minimal if and only
if the space of orbits G\X has trivial (i.e., antidiscrete) topology.

1.2. Let (an)nez be the sequence defined in Let d,, be the number of
letters d in the sequence (a1, a2, ..., ay,). Find lim, 4 %”.
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1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.
1.10.
1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

1.17.
1.18.
1.19.

Find a number x € R/Z such that the closure of its orbit under the angle
doubling map is homeomorphic to the Cantor set.

Show that for the one-sided shift s G X*“ there is no nonempty proper
closed subset ' < X“ such that s™'(F) c F.

Tent map and a semiconjugacy with the one-sided shift... Describe the
identifications...

Prove that the natural extension of the one-sided shift s G X% is topo-
logically conjugate to the two-sided shift G XZ2.

Prove Proposition [1.1.11

Prove that a point of the torus is represented by at most three sequences
in the encoding of the map A G R?/Z? constructed in Subsection m
for the Markov partition given in Figure [1.11

Prove Proposition [1.2.3]
Prove that {0,1}” has uncountably many subshifts.

Prove that for every subshift of finite type F < X% the union of finite
orbits is dense.

Let s G F be a subshift of finite type. Let p, be the number of points w €
F such that s"(w) = w. Prove that the formal power series > _q ppz"
is a rational function.

Prove that the intersection of two shift of finite type is a shift of finite
type.
Let xgx122 ... = 01101... be the Thue-Morse word from Example(1.2.21

Prove that x, is equal to the sum modulo 2 of the digits of the binary
expansion of n.

Let zgz1x2 ... be, as in the previous problem, the Thue-Morse sequence.
Let A and B be the sets of numbers ¢ = 0,1,2,... such that z; = 0
and z; = 1, respectively. Prove that for every k£ = 1,2,..., the sets
Ay = An{0,1,2,...,2"1 — 1} and B, = B n {0,1,2,...2F1 — 1}
satisfy > ,ca, zf = 2weB, z? foralld =0,1,2,...,k. (solve...)

Prove that the Thue-Morse word is cube-free, i.e., that it has no subwords
of the form vvv for a non-empty v € {0,1}*.

Show that the Fibonacci substitutional shift is palindromic...
Prove that every Sturmian subshift is palindromic...

Let A be a dense countable subset of [0, 1] disjoint from {0, 1}. Replace
every point a € A by two copies a — 0 and a + 0 with the natural order
on the obtained set X. Prove that X is homeomorphic to the Cantor
set with respect to the order topology.
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1.20.

1.21.
1.22.
1.23.

1.24.

1.25.

1.26.

1.27.

1.28.

1.29.

Consider the substitution
c:a—aca, br—d, c—b d—c

from [Lys85]. Show that it generates a minimal subshift. Find a prim-
itive substitution generating a conjugate subshift.

Prove that the subshift from the previous problem is Toeplitz.
Paper folding sequence... Prove that it is Toeplitz.

Let o : X* — X* be a substitution such that for every x € X the word
o(x) is non-empty (such substitutions are called non-erasing). Let (g
be a block code (see ...), and let F, be the subshift defined by the
substitution . Prove that Sg(F,) is a substitutional subshift.

Let W be a non-empty set of words. Show that W is the set of all finite
subwords of elements of a subshift 7 — XZ if and only if the following
conditions are satisfied. (1) Every subword of an element of W belongs
to W. (2) For every v € W there exists a word vivva € W, where
v1, U2 € X* are non-empty.

Formulate a similar criterion for one-sided subshifts.

We say that a dynamical system Z ~ X is essentially minimal if there
exists a unique closed Z-invariant set ) < X such that Z ~ )Y is mini-
mal. Prove that a dynamical system Z ~ X, where X is totally discon-
nected compact and metrizable, is essentially minimal if and only if there
exists a properly ordered Vershik-Bratteli diagram B such that Z ~ X
is topologically conjugate to the system generated by the adic transfor-
mation on P(B). In other words, prove Theorem for essentially
minimal systems without the condition that B is simple.

Let G ~ R/Z be an action of a group on the circle by homeomorphisms.
Prove that either G ~ R/Z has a finite orbit, or G ~ R/Z is essentially
minimal. Give an example of an action Z ~ R/Z that has no finite
orbits but is not minimal.

Prove the statement of Example i.e., construct and explicit isomor-
phism of the direct limit with the group of continuous maps P(B) — G.

Find a properly ordered Vershik-Bratteli diagram realizing the Lysenok
subshift from Propblem

Suppose that B is a properly ordered Vershik-Bratteli diagram such that
the sizes of the sets of vertices V; and the sets of edges F; are uniformly
bounded, and the adic transformation generates an expansive Z-action.
Show then that the complexity pr(n) of the adic transformation (see
Definition is bounded from above by a linear function. (Hint:
generalize the proof of Theorem )
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1.30. Prove the converse S. Ferenczi, Rank and symbolic complexity, Ergodic
Theory Dyn. Systems 16 (1996) 663—682....

1.31. Complexity of Toeplitz subshifts... (realizability of a particular class of
functions)...

1.32. Consider the sets of words Wy = {0"10™ : n,m = 0}, W; = {1"01™ :
n,m = 0}, Wa = {0"1™ : n,m = 0} and W3 = {1"0™ : n,m > 0}.
Prove that if X is a countable subshift of complexity py(n) = n + 1,
then there exists a finite sequence ki, ko, ..., k, and ¢ € {0,1, 2,3} such
that the Wy = g, +1Uky+1 - - - Vi, +1 (Wi U {@}), where 1y, 41 are as in
Theorem (Such subshifts are called skew-Sturmian, see...).

1.33. Show that Toeplitz subshifts can have arbitrarily large repetitivity func-
tions...

1.34. Prove that the critical exponent a. (see Theorem [1.4.17) is infinite for
every one-sided subshift.

1.35. Find the critical exponent of the circle doubling map = — 2z (mod 1).

1.36. Prove that every map satisfying the conditions of Definition [1.4.41] sat-
isfies the conditions of Theorem [[.4.42]

1.37. Consider the following endomorphism o of the free group

a+—b, b b~ teb, ¢ cac .

Consider a rose X of three circles labeled by a,b,c, and a map f G X
realizing the substitution ¢ similarly to Proposition|1.4.40} i.e., mapping
the circle labeled by z to the path o(x) in X. Choose a realization
such that iterations of f expz}nd the lengths of paths in X. Show that
the natural extension f G X is topologically conjugate to the Plykin
attractor (see Exampe [1.4.43)).

1.38. Find the set of values of ¢ € C such that 22 + ¢ has an attracting fixed
point (i.e., a cycle of length 1).

1.39. Find the set of values of ¢ € C such that 22 + ¢ has an attracting cycle
of length 2.

1.40. Show that every repelling cycle belongs to the Julia set.

1.41. Consider the Tchebyshev polynomials Ty(z) = cos(d arccos ). Describe
the Julia sets of Ty for d > 1.

1.42. Let C/Z[i] be the torus, and let A G C/Z[i] be the map given by
A(z) = (1 +14)z. Find the Julia set of A. Using the fact that any
holomorphic map f G C/A on a torus is induced by a linear map on C,
describe all possible Julia sets of holomorphic maps on the torus.

1.43. Consider the group G of all maps of the form z — (—1)*z + a + ib,
where k € {0,1}, and a,b € Z. Show that C/G is homeomorphic to a
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1.44.

1.45.

1.46.

1.47.

sphere. Consider the map A(z) = (1 + i)z. Show that it induces a well
defined map on the sphere C/G. Since the group G and the map A
act by holomorphic maps, there is a well defined structure of a complex
manifold on C/G, and A induces a holomorphic map on C/G, hence is
can be realized by a rational function. What is the Julia set of this
rational function?

Prove that f.(z) = 1+ 5 has a unique cycle of length 2 consisting of
the roots of the polynomial 22 — cx + ¢ (except for the case ¢ = 4 when
it degenerates to a fixed point). Show that this cycle is attracting if and
only if |c| > 4.

Prove that the set of values ¢ such that z — 14 5 has an attracting fixed
point is equal to the image of the open unit disc under the transformation

(inz)g. It is the largest “cardioid” on Figure

Let ce (—1,—-4/27), denote f.(z) =1+ 5.
a) Prove that for every positive real number x we have f.(z) < z and
that there exists n such that f"(z) <0.
b) Prove that for every n > 1 there exists ¢, such that the sequence
ap = fF(1) satisfies 1 > a; > as > ... > a, = 0.
c¢) Find the limit lim,, o ¢;.

u —

Prove that every quadratic polynomial can be conjugated by an affine
map to z2 + ¢ for some c.
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