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Chapter 2

Group actions

2.1. Structure of orbits

2.1.1. Orbital graphs and defining groups by graphs. Let G be a
group acting by permutations on a set X. Suppose that S is a finite gener-
ating set of G.

Definition 2.1.1. The graph of the action is the graph ΓX,S with the set of
vertices X, the set of edges S �X, the source and range maps spg, xq � x,
rpg, xq � gpxq, and the labelling pg, xq ÞÑ g.

The orbital graph Γx,S (or Γx) for x P X is the subgraph of ΓX,S spanned
by the G-orbit of x. In other words, it is the graph with the set of vertices
equal to the orbit Gpxq in which for every y P Gpxq and g P S there is an
arrow from y to gpyq labeled by g.

For example, if H is a subgroup of G, then we can consider the natural
action of G on the set G{H � tgH : g P Gu of left cosets of G modulo
H. The corresponding graph of the action is called the Schreier graph of G
modulo H.

Conversely, every orbital graph Γx is naturally isomorphic to the Schreier
graph of G modulo the stabilizer Gx of the point x. The isomorphism maps
a coset hGx to the vertex hpxq of Γx.

Describing the action of the generators of a group on a set is identical
to describing the corresponding graph of the action. (In fact, the graph of a
function g ü X is, by definition, the subset tpx, gpxqq : x P Xu of X �X,
and it is customary to identify functions with their graphs.)

Let A be a finite set. An edge-labeling of a graph Γ by A is called perfect
if for every vertex v of Γ and for every s P S there exists exactly one arrow
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118 2. Group actions

e1 labeled by s starting at v and exactly one arrow e2 labeled by s ending
in v.

Suppose that a graph Γ is perfectly labeled by a finite set S. Let s P S
be a label. For every vertex v of Γ there exists a unique arrow starting at
v and labeled by s. Denote the end of this arrow by spvq. Then the map
v ÞÑ spvq is a permutation of the set of vertices of Γ, by the definition of a
perfect labeling. The set of all permutations s : v ÞÑ spvq generates a group
(a subgroup of the symmetric group on the set of vertices of Γ). We call it
the group defined by the labeled graph Γ.

If s1s2 . . . sn is a group word over S, i.e., an element of the free group
FS generated by S, and v is a vertex of Γ, then s1s2 . . . snpvq is obtained by
traveling along the arrows of Γ. Namely, first find the arrow starting in v
and labeled by sn or the arrow ending in v and labeled by s�1

n , depending
whether sn P S or s�1

n P S. The other end of the arrow will be snpvq.
After that find the arrow starting in snpvq labeled by sn�1 or the arrow
ending in snpvq labeled by s�1

n�1, and so on. At the end you will find a
path in Γ corresponding to the word s1s2 . . . sn starting in v and ending in
s1s2 . . . snpvq.

The graph Γ is also the graph of an action of the free group FS generated
by the set S. If Γ is connected, then for every vertex v of Γ the graph Γ
is naturally the Schreier graph of the free group FS by the fundamental
group π1pΓ, vq of the graph, since the fundamental group is precisely the
set of elements g P FS defining loops at v, i.e., the stabilizer of v for the
action defined by Γ. So, describing the graph Γ is equivalent to describing a
subgroup of the free group. Note that the group defined by Γ is the quotient
of the free group FS by the intersection of all conjugates of the stabilizer
π1pΓ, vq.

Defining groups by labeled graphs is a surprisingly effective way of con-
structing groups with special properties. We give here several examples,
whose properties will be studied later in more detail.

2.1.1.1. Linear graphs. Let X be a finite set. Consider a bi-infinite sequence
w � . . . A�1A0A1A2 . . . of sets An � X such that An X An�1 � H for every
n P Z. Let Γw be the graph with the set of vertices Z in which for every pair
of the form pn, n� 1q we have |An| edges from n to n � 1 labeled by every
element of An. In order to have a perfectly labeled graph, we also add loops:
at every vertex n we have loops labeled by all elements of XzpAn Y An�1q.
Here and later, a non-oriented edge labeled by a symbol a connecting two
different vertices represents two oriented edges (one in each direction) both
labeled by a. The graph Γw defines a group Gw. Note that all generators
are of order two.



2.1. Structure of orbits 119

Figure 2.1. Grigorchuk group

Figure 2.2. Graph substitution

2.1.1.2. Substitutional subshifts. The groups from the previous example are
defined by a sequence pAnq of subsets of a finite set X. A natural approach
to define such a sequence is by using substitutions, see Subsection 1.2.4.
For example, consider X � ta, b, c, du, the set tA � tau, B � tc, du, C �
tb, du, D � tb, cuu of subsets of X and the substitution σ given by

A ÞÑ ADA, B ÞÑ D, C ÞÑ B,D ÞÑ C.

Consider the subshift generated by σ (see Exercise 1.20). Recall, that it
means considering iterations of σ, and taking all bi-infinite sequences w
such that every subword of w is a subword of the word σnpAq for some
n ¥ 1. For example,

σ4pAq � DACADABADACADADADACADABADACADA,

and the graph shown on Figure 2.1 is a part (corresponding to the word
ADACADABADACA) of an infinite graph defining a group Gw, as in the
previous example.

The group will not depend on the choice of w and is the first Grigorchuk
group from [Gri80]. Figure ... Some other examples of groups that can be
defined this way are studied in 5.3.3 and 6.4.

2.1.1.3. Substitutional graphs. The previous class of examples can be natu-
rally generalized by using substitutions that not only produce the labeling,
but also to produce the graphs. For example, consider the following trans-
formation. If Γ is a graph whose oriented edges are labeled by symbols a
and b, denote by φpΓq the graph obtained from Γ by subdividing every edge
e of Γ into two edges labeled by the same letter as e and adding a loop at
the new middle vertex labeled by the other label, see Figure 2.2.
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Figure 2.3. IMG
�
p�z3 � 3zq{2

�

Start with the graph Γ shown on in the upper left corner of Figure ??.
Note that there is an isomorphic embedding of Γ to (the central part of)
φpΓq. It follows that φnpΓq is naturally embedded into φn�1pΓq, and we
can pass to the inductive limit of the graphs φnpΓq, in the same way as
we did it when generated sequences by substitutions. The inductive limit
will be a perfectly labeled graph, and it will define a group generated by two
permutations a and b. We will see later that this group is related to the post-

critically finite polynomial �z3�3z
2 , see 4.1.3.3. In fact, the substitution φ

and the defined group are closely related to the dynamics of this polynomial.

2.1.1.4. Houghton’s groups. The following groups were defined in [Hou79].
Consider the set t0, 1, 2, . . . , n�1u�N and permutations gi for i � 1, 2, . . . , n�
1 acting by gip0, nq � p0, n � 1q, gp0, 1q � pi, 1q, gipi, nq � pi, n � 1q, and
gpj, nq � pj, nq for j � i. Let Gn be the group generated by g1, g2, . . . , gn.
In other words, consider the graph shown on Figure 2.4 (for n � 4) and the
group defined by it.

Properties...
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Figure 2.4. Houghton’s groups

2.1.1.5. Long range graphs. Let w � x0x1 . . ., xi P t0, 1u, be an infinite
sequence. Denote wk � x0 � 2x1 � 22x2 � � � � � 2kxk P Z, for k � 0, 1, . . ..
Let us construct a graph Λw with the set of vertices Z perfectly labeled by
the set S � ta, bu. The arrows labeled by the letter a will start in n and end
in n�1, so that the corresponding permutation a acts by the shift n ÞÑ n�1.

The arrows labeled by b will start in wk � 2kp2n � 1q and end in wk �
2kp2n � 3q for k � 0, 1, 2, . . ., and n P Z. If the sequence xi is eventually
constant, then, by following the above rule, we will get one vertex not con-
nected to any other vertex by an arrow labeled by b. In this case we add a
loop labeled by b to this vertex.

It is not hard to see that the graph Λw can be also described in the
following way. Construct the edges labeled by a as before, connecting n to
n�1 in Z. Then connect every other vertex by b-labeled arrows, then among
the remaining vertices connect every other vertex, and so on, see Figure 2.5.
The choice of vertices that are connected on each stage is done in such way
that on the stage number k (starting with k � 0) we do not connect the
vertex wk. After ω steps we either connect all vertices by b-labeled arrows,
or there will remain one vertex. In the latter case we attach to it a loop
labeled by b.

The corresponding permutations of the set of vertices Z of the graph Λw
are:

a : n ÞÑ n� 1, b : wk � 2kp2n� 1q ÞÑ wk � 2kp2n� 3q.

Let G be the group generated by the permutations a and b. We will see later
that it is not defined by a finite set of relations (it is not finitely presented),
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Figure 2.5. Graph Λw

Figure 2.6. Graph defining Thompson group

that it has no non-abelian free subgroups, and that moreover, it is amenable.
Not very much more is known about this group.

For some first properties of the graphs Λw and the group G, see Exer-
cises... For more, see the papers...

2.1.1.6. The Thompson group. Let S � tg0, g1u, and consider the binary
rooted tree with the set of vertices equal to the set of finite words over the
alphabet S (including the empty word ∅), where for every x P S and v P S�

we connect the vertex v to the vertex vx by an arrow labeled by x. We get
a graph in which every vertex has two outgoing arrows (labeled by 0 and
1) and one incoming arrow, unless it is ∅, when it has no incoming arrows.
This is not a perfectly labeled graph. In order to correct this, let us attach
to every vertex that is missing an incoming arrow labeled by x an infinite
ray of edges labeled by x together with loops at every vertex labeled by the
other label 1� x, so that we get a perfectly labeled graph. Attach two such
rays to the root ∅, as it is missing both incoming arrows. See Figure 2.6 for
the result. We get a perfectly labeled graph defining a group F .
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Figure 2.7. Generators of Thompson group

It is isomorphic to the Thompson’s group F , which is defined as the
group of piecewise affine homeomorphisms f ü r0, 1s of the unit interval
such that f is differentiable everywhere except for a finite set of points
Bf � Z

�
1
2

�
and such that f 1pxq is an integer power of 2 for every x P r0, 1s

where f 1pxq exists. It was introduced by R. Thompson in [Tho80], see also
an expository paper [CFP96]. The orbital graph shown on Figure ?? was
described by D. Savchuk in [Sav15]. It is the orbital graph of the action
of F on Z

�
1
2

�
X p0, 1q. Note that our graph is given for the generating set

x1, x1x
�1
0 (in the left action notation), where x0, x1 are the generators for

the graph in [Sav15]. This choice of the generators producing the graph 2.6
was suggested by K. Juschenko. It is natural to represent them as acting on
the real line by the maps

g0ptq �

$&%
t t P p�8, 0s,
t
2 t P r0, 2s,
t� 1 t P r2,�8q,

g1ptq �

$&%
t� 1 t P p�8, 0s,
t
2 � 1 t P r0, 2s,
t t P r2,�8s,

see Exercise 2.8

The graphs of the functions g0 and g1 are shown on Figure 2.7.

2.1.2. Local containment and covering. Let Γ be a graph perfectly
labeled by a set S. If s1s2 . . . sn is an element of the free group FS of length
n, then the vertex s1s2 . . . snpvq depends only on the ball of radius n around
v in the graph Γ, since this ball will contain the path corresponding to
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s1s2 . . . sn and starting in v. (As usual we measure distances in Γ ignoring
the orientation of the edges.)

Definition 2.1.2. Let Γ1,Γ2 be labeled graphs. We say that Γ1 is locally
contained in Γ2 (and denote it Γ1 � Γ2) if every finite subgraph of Γ1 can
be isomorphically embedded into Γ2 (as a labeled oriented graph). We say
that Γ1 and Γ2 are locally isomorphic if Γ1 � Γ2 and Γ2 � Γ1.

Suppose that Γ1 and Γ2 are perfectly labeled by S, and let G1 and G2

be the groups they define. An element s1s2 . . . sn of the free group FS is
non-trivial in the group defined by Γi if and only if there exists a vertex v
of Γi such that s1s2 . . . snpvq � v, i.e., if there exists a path corresponding
to the word s1s2 . . . sn which is not a loop. It follows that if Γ1 � Γ2, then
every element of FS which is non-trivial in G1 will be also non-trivial in
Γ2. It follows that the identity map FS ÝÑ FS induces an epimorphism
G2 ÝÑ G1. It also follows that if Γ1 and Γ2 are locally isomorphic, then the
identity map on FS induces an isomorphism of G1 with G2. In particular,
locally isomorphic graphs define isomorphic groups.

Example 2.1.3. Let Γw1 and Γw2 be graphs from Example 2.1.1.1 defined
by some bi-infinite sequences w1 and w2. We have Γw1 � Γw2 if and only if
every finite subword of w1 is a subword of w2, i.e., if and only if the subshift
generated by w1 is contained in the subshift generated by w2. In particular,
if F is a minimal subshift, and w1, w2 P F , then the groups Gw1 and Gw2

defined by Γw1 and Γw2 are naturally isomorphic. For example, this proves
that the Grigorchuk group as defined in 2.1.1.2 does not depend on the
sequence w, as the subshift generated by σ is minimal, see Exercise 1.20.

Example 2.1.4. Let T be a tree such that every vertex of T has exactly one
incoming arrow labeled by g0 or g1 and two outgoing arrows labeled g0 and
g1. Add to T infinite rays, in the same way as in ??, so that we get a perfectly
labeled graph ΓT . Then ΓT is locally contained in the graph Γ from ?? and
its local isomorphism class does not depend on T , see Exercise 2.10.

Note that every morphism f : Γ1 ÝÑ Γ2 of perfectly labeled graphs is a
covering (i.e., is bijective on the sets of outgoing and incoming edges at every
vertex). The image of every path corresponding to a word s1s2 . . . sn P FS
under f is also a path corresponding to the same word, and if the former path
was a loop, then so is the latter. It follows that if G1 and G2 are groups
defined by Γ1 and Γ2, then we have a natural epimorphism G1 ÝÑ G2

(induced by the identity map on FS). See Exercise 2.11 for an example of
application of this fact.

2.1.3. Orbital graphs on topological spaces. Let G be a group acting
by homeomorphisms on a topological space X . Suppose that S is a finite
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generating set of G. Then the graph of the action can be seen as a topological
graph. Namely, its set of vertices X and the set of arrows S�X are topolog-
ical spaces, while the source and the range maps spg, xq � x, rpg, xq � gpxq,
and labeling pg, xq ÞÑ g are continuous.

We may consider the topological realization of the graph of the action,
i.e., consider the space obtained by taking the quotient of the space r0, 1s �
S � X by the identifications p0, g, xq � p1, h, yq for all g, h P S and x, y P X
such that gpxq � y. We also may consider it as an abstract graph, i.e., ignore
the topology on X (and S � X ).

The abstract connected components (i.e., the connected components of
the abstract graph of the action) coincide with the path-components of the
topological action graph and are the orbital graphs of the action, see Defi-
nition 2.1.1.

Denote by Gpxq the neighborhood stabilizer of the point x P X , i.e., the
set of all elements g P G such that the interior of the set of fixed points
of g contains x. In other words, g P G belongs to Gpxq if there exists a
neighborhood N of x such that g fixes every point of N . It is obvious that
Gpxq is a normal subgroup of Gx.

Definition 2.1.5. The Schreier graph of G modulo Gpxq is called the graph

of germs of x, and is denoted rΓx.

The vertices of rΓx can be identified with germs of the action of G.

Definition 2.1.6. A germ is the equivalence class of a pair pg, xq P G�X ,
where two pairs pg1, x1q, pg2, x2q are equivalent (define the same germ) if
x1 � x2 and there exists a neighborhood N of x1 such that g1|N � g2|N .

For a germ pg, xq, we denote by spg, xq � x and rpg, xq � gpxq its source
and range. If g1px1q � x2, then the product

pg2, x2qpg1, x1q � pg2g1, x1q

is well defined. The operation of taking inverse pg, xq � pg�1, gpxqq is also
well defined, and these two operations define a structure of a groupoid on
the set of all germs of G y X . Groupoids of germs will be main examples
of groupoids studied in Chapter 3 and will be an important tool for defining
and studying groups in Chapters 5 and 6.

The set of vertices of rΓx is naturally identified (via the bijection gGpxq ÝÑ
pg, xq) with the set of germs of Gy X with the source equal to x. For every
generator s P S and every vertex pg, xq we have an arrow from pg, xq to
psg, xq labeled by s.
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Since Gpxq is a normal subgroup of Gx, the map hGpxq ÞÑ hGx is a

well defined Galois covering of graphs rΓx ÝÑ Γx with the group of deck
transformations isomorphic to Gx{Gpxq.

Definition 2.1.7. A point x P X is said to be G-regular (or regular, for
short) if Gx � Gpxq. Otherwise it is said to be G-singular.

If a point x P X is G-regular, then the graphs Γx and rΓx coincide, i.e.,
the natural covering map is an isomorphism.

Proposition 2.1.8. The set of G-regular points is G-invariant.

Proof. We obviously have gGxg
�1 � Ggpxq and gGpxqg

�1 � Gpgpxqq, hence
Gx � Gpxq is equivalent to Ggpxq � Gpgpxqq. �

Proposition 2.1.9. Suppose that X is a Baire space (e.g., locally compact
Hausdorff or completely metrizable). If G is at most countable (e.g., is
finitely generated), then the set of G-regular points is co-meager.

Proof. A point x P X is regular if and only if for every g P G either gpxq � x
or x belongs to the interior of the set of fixed points of g. It follows that
the set of singular points is equal to the union of the boundaries of the sets
of fixed points of the elements of G. But the boundary of the set of fixed
points of an element g P G is a closed set with empty interior. It follows
that the set of singular points is a countable union of closed nowhere dense
sets, i.e., is meager. �

2.1.4. Space of rooted labeled graphs. Let SA be the set of all isomor-
phism classes of connected rooted perfectlyA-labeled graphs. Let pΓ1, v1q, pΓ2, v2q P
SA, and let R be the supremum of the radii r such that the balls pBv1prq, v1q
and pBv2prq, v2q of radius r with centers in the roots of the graphs are isomor-
phic as rooted labeled graphs. Define then the distance dppΓ1, v1q, pΓ2, v2qq
as 2�R. It is easy to see that this is an ultrametric on SA.

The metric introduces a natural topology on SA. Two rooted labeled
graphs are close to each other in this topology if big neighborhoods around
their roots are isomorphic.

Proposition 2.1.10. The space SA is compact and 0-dimensional.

Proof. Denote by BpRq the set of all isomorphism classes of balls pBvpRq, vq
of elements pΓ, vq P SA. The sets BpRq are finite, and we have natural maps
BpR � 1q ÝÑ BpRq mapping a ball pBvpR � 1q, vq to the ball pBvpRq, vq in
the same graph pΓ, vq. We claim that SA is homeomorphic to the inverse
limit of the sets BpRq with respect to these maps. This will prove both
statements of the proposition, since inverse limit of finite discrete sets is a
compact 0-dimensional space.
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For a given graph pΓ, vq P SA the sequence of balls pBvp1q, vq, pBvp2q, vq, . . .
is a point of the inverse limit. This defines a map ι from SA to the inverse
limit of the sets BpRq. It follows directly from the definitions that this map
is continuous and injective.

On the other hand, for every sequence pB1, B2, . . .q P Bp1q � Bp2q � . . .
representing an element of the inverse limit we have a sequence of root-
preserving embeddings B1 ãÑ B2 ãÑ � � � . The direct limit of these em-
beddings (i.e., the increasing union of the balls BR) is an element of SA.
This defines the map inverse to ι. It is also easy to see that this map is
continuous. �

Let G y X be an action of a group on a topological space, and let S
be a finite generating set of G. For every x P X we have the rooted orbital
graph pΓx, xq, hence we get a map x ÞÑ pΓx, xq from X to SS .

The following proposition appears in [Vor12].

Proposition 2.1.11. The map x ÞÑ Γx : X ÝÑ SS is continuous at x if
and only if x is G-regular.

Proof. Let R be a positive integer. The ball BxpRq � Γx of radius R is
described by a system of equalities and inequalities of the form g1pxq � g2pxq
or g1pxq � g2pxq for all pairs g1, g2 P G of products of length at most R of
elements of S Y S�1. If x is a G-regular point, then every such an equality
or inequality holds on a neighborhood of x. It follows that there exists a
neighborhood N of x such that BxpRq is isomorphic to BypRq for all y P N .
But this precisely means that the map x ÞÑ pΓx, xq is continuous at x. .... �

Example 2.1.12. Consider the action of the infinite dihedral group D8 on
R generated by the transformations

a : x ÞÑ �x, b : x ÞÑ 1� x.

The group consists of transformations of the form x ÞÑ �x�n, for n P Z.
The transformations of the form x ÞÑ x� n are fixed point free (for n � 0).
The transformation x ÞÑ �x�n has a unique fixed point x � n{2. It follows
that the points RrZ{2Z are regular, while the points of Z{2Z are singular.

The orbital graph of a regular point x P R is a bi-infinite chain of edges
alternatively labeled by a and b, see the top part of Figure 2.8. The orbital
graphs of singular points are shown on the two lower parts of Figure 2.8.
We see that the map x ÞÑ pΓx, xq is constant on the set of regular points,
but is discontinuous at singular points.

Note, however, that in the previous example the graphs rΓx are pairwise

isomorphic, so that the map x ÞÑ prΓx, xq is constant and hence continuous.
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Figure 2.8. Orbital graphs of D8

Definition 2.1.13. We say that a point x P X has a Hausdorff group of
germs for the action G y X if for every g P Gx r Gpxq the interior of the
set of fixed points of g does not accumulate on x.

In particular, every regular point x has Hausdorff group of germs, since
we have then Gx rGpxq � H.

Proposition 2.1.14. If a point x P X has a Hausdorff group of germs, then

the map x ÞÑ prΓx, xq : X ÝÑ SS is continuous at x.

Proof. If the group of germs of x is Hausdorff, then for every g P G there
exists a neighborhood N of x such that either g|N is identical, or all germs
pg, xq for x P N are non-trivial (i.e., not equal to the germs of the identical
map). Then the same argument as in the proof of Proposition 2.1.11 shows

that the map x ÞÑ prΓx, xq is continuous at points with Hausdorff groups of
germs. �

Example 2.1.15. Consider the space Y obtained from r0,�8q�t1, 2, 3u by
identifying the points p0, 1q, p0, 2q, and p0, 3q, and consider the action of the
symmetric group Spt1, 2, 3uq acting on the second coordinate of the direct
product. The only singular point is the common point y � p0, 1q � p0, 2q �
p0, 3q of the three rays. Let us take the generating set S � tp1, 2q, p2, 3qu

of the symmetric group. Then the graphs Γx � rΓx for regular points x are
all isomorphic to each other, and are chains of three vertices connected by
pairs of arrows, see Figure 2.9. The orbital graph Γy of the singular point

consists of a single vertex, while the graph of germs rΓy of the singular point
is the Cayley graph of the symmetric group.

2.1.5. Topological transitivity and minimality.

Definition 2.1.16. A group action Gy X is said to be topologically tran-
sitive if for any two non-empty open sets U, V � X there exists g P G such
that gpUq X V � H.
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Figure 2.9. Non-Hausdorff singularity

An action Gy X is minimal if the only open G-invariant subsets of X
are X and H.

In other words, G y X is minimal if and only if the space GzX of G-
orbits has trivial (i.e., antidiscrete) topology: the only open subsets of GzX
are the empty set and the whole space. The action G y X is topologically
transitive if and only if every two non-empty open subsets U, V � GzX have
a non-empty intersection.

For every x P X the closure of the G-orbit of x is a closed G-invariant
set, and its complement is an open G-invariant set. It follows that an action
Gy X is minimal if and only if every G-orbit is dense in X .

Topological transitivity can be also formulated in terms of topological
properties of G-orbits as follows.

Proposition 2.1.17. Let X be a second-countable complete metrizable space
(e.g., a second countable locally compact Hausdorff space). An action G y
X is topologically transitive if and only if there exists x P X such that the
orbit Gx is dense in X . The set of such points x is co-meager.
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Proof. If the action Gy X is topologically transitive, then for every non-
empty open subset U � G the set

�
gPG gpUq is a dense open set. Let B be

a countable basis of topology of X . Consider the set B �
�
UPB

�
gPG gpUq.

It is a countable intersection of open dense sets, hence, by Bair’s Category
Theorem, the set B is co-meager. For every open set W � X there exists
U P B such that U � W . Then for every x P B there exists g P G such
that x P gpUq, hence g�1pxq PW . We have shown that the G-orbit of every
point x P B is dense in X . �

We saw examples of minimal and topologically transitive actions of the
infinite cyclic group Z in Section 1.1. The action generated by an irrational
rotation of the circle is minimal, the action generated by the two-sided shift
is topologically transitive, but not minimal.

The following proposition shows that orbital graphs of a regular point
of minimal actions on compact spaces are locally contained in every orbital
graph, i.e., every finite subgraph of the orbital graph of a regular point is
contained (as an isomorphic copy) in every orbital graph. In particular, two
orbital graphs of regular points are locally isomorphic.

Proposition 2.1.18. Let Gy X be a minimal action on a compact space,
and let S be a finite generating set of G. Then for every n ¡ 0 there exists
Rn ¡ 0 such that for every regular point x P X and every point y P X there
exists a vertex z of the orbital graph Γy on distance not more than Rn from
y such that the rooted labeled balls Bxpnq and Bzpnq are isomorphic.

Proof. Every ball Bxpnq is described by a finite set of equations and in-
equalities of the form g1pxq � g2pxq or g1pxq � g2pxq, where g1, g2 P G are
products of length at most n of the elements of S Y S�1. If x is regular,
then every such an equation or inequality holds on a neighborhood of x. It
follows that there exists a neighborhood N of x such that for every z P N
the balls Bxpnq and Bzpnq are isomorphic. Since the action is minimal, the
sets hpNq for h P G cover the space X . By compactness, there exists a finite
set h1, h2, . . . , hm P G such that X �

�m
i�1 hipNq. Let Rn be the maximal

length of the elements hi as products of the generators and inverses. Then
for every y P X there exists hi such that z � h�1

i pyq P N , and then Bzpnq
and Bxpnq are isomorphic and the distance from y to z is not more than
Rn. �

2.1.6. Hull of a graph. At the first glance, orbital graphs defining infi-
nite groups as in 2.1.1 seem to be discrete objects without any interesting
topological dynamics. But groups defined by orbital graphs have a canonical
action on a compact topological space and studying these groups unavoid-
ably leads to the study of the associated topological dynamical systems.
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Let Γ be a connected graph perfectly labeled by a set A, and let G be
the group it defines. Consider the set of rooted labeled graphs pΓ, vq, where
v runs through the set of all vertices of Γ. Let Γ be the closure of this set in
the space SA rooted perfectly labeled graphs. We call it the hull of Γ. The
hull is a compact totally disconnected space.

The hull consists of all connected rooted graphs pΓ1, vq such that for
every R ¡ 0 the ball BvpRq of Γ1 is isomorphic as a rooted labeled graph
to a ball of Γ. In other words, it is the space of all rooted perfectly labeled
graphs that are locally contained in Γ (see Definition 2.1.2). Consequently,
the group defined by every graph Γ1 belonging to the hull is a quotient of
the group G, and G acts on the set of vertices of Γ1. Note that this action is
transitive, and the graph Γ1 is equal to the graph of the action of G on its
set of vertices.

We also get a natural action of G on Γ mapping for every g P G a rooted
graph pΓ1, uq P Γ to the rooted graph pΓ1, gpuqq. Note that the orbital graphs
of the action Gy Γ may be quotients of the elements of Γ, since two rooted
graphs pΓ1, u1q and pΓ1, u2q may be isomorphic even if u1 � u2.

Example 2.1.19. The hull of the graph Γ defined the Houghton’s group Hn

(see 2.1.1.4) is a compact metrizable space consisting of an infinite countable
set of isolated points accumulating on n points. Note that these conditions
defined the space uniquely up to a homeomorphism. So, for example, it can
be realized as the set t0, 1, . . . , n�1uYi�0,1,...,n�1 ti�1{n : n � 2, 3, 4, . . .u.
The points of the countable set correspond to different choices of the root
in Γ. The limit points correspond to the limits pΓ, vq as v goes to infinity in
one of the rays of Γ. The limit will be a bi-infinite version of the ray.

The following is straightforward.

Proposition 2.1.20. The natural action of G on Γ is continuous and does
not depend, up to topological conjugacy on the choice of the generating set
S. The orbit of Γ is dense, hence the action is topologically transitive. The
stabilizer of a point pΓ1, vq P Γ is isomorphic to the automorphism group of
the labeled graph Γ1. The orbital graph of the action of G on the orbit of
Γ1 P Γ is isomorphic to the quotient of Γ1 by the automorphism group of Γ1.

Proposition 2.1.21. All points of Γ are regular with respect to the natural
G-action.

Proof. If g is a product of n elements of SYS�1, and gpvq � v for a vertex
v of Γ, then gpuq � u for all vertices u such that Bupnq is isomorphic to
Bvpnq. This proves that if g fixes a point pΓ1, vq P Γ, then it fixes all points
of a neighborhood of pΓ1, vq. �
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Let G y X be an action of G on a topological space, where G is,
as above a group generated by a finite set S. We have the natural map
∆ : X ÝÑ SS : x ÞÑ pΓx, xq. For every x P X the closure of the image
∆pGpxqq of the orbit Gpxq coincides with the hull Γx of the orbital graph
of x. We have the natural action on the closure, and taking union of these
actions we get a natural action of G on the closure of ∆pX q.

Definition 2.1.22. A labeled graph Γ P SS is said to be repetitive if for
every ball BxpRq of Γ there exists N ¡ 0 such that for every vertex v of
Γ there exists a vertex v1 such that dpv, v1q ¤ N and the ball Bv1pRq is
isomorphic to the ball BxpRq.

Note that since the number of possible isomorphism classes of balls of
a given radius is finite, we may assume that N � NR depends only on R.
The smallest NR satisfying the conditions of Definition 2.1.22 is called the
repetitivity function of the graph Γ, compare with 1.3.10.

Proposition 2.1.23. Let Γ P SS, and let Γ be its hull. The action of the
group G defined by Γ on the space Γ is minimal if and only if the graph Γ
is repetitive.

Proof. The “only if” direction was proved in Proposition 2.1.18, since every
point of the action of G on Γ is regular, see Proposition 2.1.21. Let us prove
the “if” direction.

Suppose that Γ is a repetitive graph, and let Γ1 P Γ be an arbitrary
graph in its hull. It is enough to show that Γ belongs to the hull of Γ1

(since hulls coincide with the closures of the G-orbits). Let v1 be the root of
Γ1, and let BvpRq be an arbitrary ball in Γ. Denote by NR the repetitivity
function of Γ. Then the ball of Γ1 of radius NR � R with center in v1 is
isomorphic to a ball of Γ (since Γ1 belongs to the hull of Γ), hence it contains
(by repetitivity of Γ) an isomorphic copy of BvpRq. We proved that every
ball of Γ is contained in a ball of Γ1, i.e., that Γ belongs to the hull of Γ1. �

Example 2.1.24. The long range graphs notice the behavior of the singular
point....

Example 2.1.25. Neither the graph Γ from Figure 2.6 nor the graph Γ0

from Figure 2.26 defining the Thompson group are repetitive, due to the
“hairs” attached at every vertex. If vn is a sequence of vertices going to
infinity along one of the “hairs”, then pΓ, vnq converges to a bi-infinite chain
of edges labeled by one generator with loops labeled by the other. We get
thus two special elements of Γ that are global fixed points of the Thompson
group (the group acts on each of the limit graphs as a translation by one
generator and identically by the other.)
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If the sequence vn stays inside the rooted binary subtree of Γ (i.e., does
not enter any of the “hairs”) and goes to infinity, then the limit of pΓ, vnq is
one of the graphs described in Exercise 2.10. Each such a limit is uniquely
described by the sequence of labels of the unique path starting in the root
and going against the arrows in the corresponding tree. We conclude that
the set C of such limits can be naturally identified with the space tg0, g1u

ω.
Denote by Ci the subset of C consisting of sequences with the first symbol
equal to gi.

If the sequence vn belongs to the “haris” and stays on a fixed distance d
from the binary subtree of Γ, then the limit will be a graph obtained from
an element of C by moving the root on distance d to a vertex on the “hair”.

It follows that Γ is a union of a dense set of isolated points (the set of
rooted graphs pΓ, vq), the space C�t0, 1, 2, . . .u and two points Lg0 and Lg1 ,
where the sets Ci�tn, n�1, n�2, . . .u form a basis of neighborhoods of Lgi .

The hull Γ0 is obtained from Γ by removing all isolated points. In other
words, Γ0 is homeomorphic to the direct product of a Cantor set and the
subspace t�8, . . .�2,�1, 0, 1, 2, . . . ,�8u of the two-point compactification
of the real line. See Exercises 2.21 and 2.22 for an interpretation of the
action of the Thompson group on the real line in terms of Γ0.

2.1.7. Chabauty space of a group. The above construction of the hull
of an action does not depend on the generating set S, and it is more natural
to define it without using any generating sets. In particular, it can be
generalized to the case of arbitrary (i.e., not necessarily finitely generated)
groups.

Let G be a (discrete) group. Consider the set 2G of subsets of G with
the direct product topology (coming from the identification of the set of all
sets with the set of maps G ÝÑ t0, 1u).

We leave the proof of the next lemma as an exercise.

Lemma 2.1.26. The set of subgroups and the set of normal subgroups of G
are closed subsets of 2G.

Denote by SG the set of all subgroups of G with the topology induced
from 2G. By definition, a basis of topology on SG consists of the set of the
form

CA,B � tH ¤ G : A � H,B XH � Hu,

where A and B are finite subsets of G. The defined topology on SG is a
particular case of a more general Chabauty topology, see...

Suppose that G is generated by a finite set S. Then for every positive
integer n and for every H ¤ G the isomorphism class of the rooted ball in
the Schreier graph ΓpG{H,Sq of the radius n with the center 1H is uniquely
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determined by the conditions of the form g1 � g2 P H or g1 � g2 R H, where
g1 and g2 are elements of length n of the group G. It follows that the space
of all Schreier graphs of G with topology induced from the space SS of all
perfectly S-labeled graphs is naturally homeomorphic to the space SG.

The space SS of perfectly labeled graphs is naturally isomorphic to the
space SFS

of subgroups of the free group FS generated by S. Every rooted
graph pΓ, vq P SS defines an action of the free group FS on the set of its
vertices, and the corresponding point of SFS

is the stabilizer of v, which is
naturally identified with the fundamental group π1pΓ, vq, since every element
of the stabilizer corresponds to a loop based at v.

If G y X is a group action, then we have a natural map x ÞÑ Gx from
X to SG. The proof of the following proposition is essentially the same as
the proof of Proposition 2.1.11.

Proposition 2.1.27. The map ∆ : x ÞÑ Gx is continuous at G-regular
points of X . The map x ÞÑ Gpxq is continuous at all regular points and all
Hausdorff singularities.

Recall that Gpxq is the subgroup of elements of G acting trivially on a
neighborhood of x.

Proof. Let CA,B be a neighborhood of Gx in SG. Then we have gpxq � x
for every g P A and gpxq � x for every g P B. Since x is G-regular, there
exists a neighborhood U of x such that gpyq � y for every g P A and y P U ,
and gpyq � y for every g P B and y P U . Consequently, Gy P CA,B for every
y P U . We showed that ∆ is continuous at x. The statement about the map
x ÞÑ Gpxq is proved in a similar way, see Proposition 2.1.14. �

In general, the map x ÞÑ Gx is only upper semi-continuous on X : if xi is
a net of points converging to x P X , then all partial limits of the net Gxi are
contained in Gx. The map x ÞÑ Gpxq is lower semi-continuous: all partial
limits of Gpxiq contain Gpxq. Moreover, Gpxq can be reconstructed from the
partial limits of Gxi in the following way.

Proposition 2.1.28. Let G y X be an action of a countable group on a
compact Hausdorff space, and let x be an arbitrary non-isolated point of X .
Let L be the set of the limits of all convergent nets Gpxiq, where xi P X rtxu
converges to x. Then Gpxq �

�
HPLH.

Proof. Denote K �
�
HPLH. Suppose that g P Gpxq. Then g acts trivially

on a neighborhood of U of x. Then for every net xn converging to x we have
xn P U for all n big enough, which implies g P Gpxnq. It follows that g P H
for every H P L, hence g P K.
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Suppose now that g R Gx. Then gpxq � x, and hence there exists a
neighborhood U of x such that gpUq X U � H. Then for every xi P U we
have gpxiq � xi, hence gi R H for every H P L, hence g R K.

Suppose now that g P GxrGpxq. Then gpxq � x, but for every neighbor-
hood U of x there exists y P U such that gpyq � y. It follows, by compactness
of the space of subgroups, that there exists a net yi P X r txu such that
Gpyiq is convergent and gpyiq � yi for every i. Then g does not belong to
the limit of Gpyiq, hence g R K. We have shown that g P Gpxq if and only if
g P K. �

2.1.8. Minimal invariant subsets of the Chabauty space. Follow-
ing [GW15], we define a uniformly recurrent subgroup of G (a URS) as a
closed subset C of SG such that action of G on C by conjugation is minimal.
Similarly, it is a topologically transitive subgroup if the action is topologicaly
transitive.

URS is a generalization of the notion of a normal subgroup. Namely, a
singleton is a URS if and only if it is consists of a normal subgroup. More
generally, if a subgroup H has a finite number of conjugates (i.e., if index
of the normalizer of H in G is finite), then the set of conjugates of H is an
example of a URS.

The notion of a URS is a topological analog the notion of an invariant
random subgroup, which is defined as a G-invariant probability measure on
SG....

The following theorem from [GW15] shows that every minimal action
of a countable group defines a URS.

Theorem 2.1.29. Let G y X be a minimal action of a countable group
on a compact topological space. Let C be the closure in SG of the set of
stabilizers Gx of G-regular points of X . Then C is a URS. Moreover, it is a
unique URS contained in the closure of the set ∆pX q � tGx : x P X u.

Proof. Let us reprove Proposition 2.1.18 in terms of the Chabauty space
by dropping the condition that G is finitely generated and talking about the
stabilizers instead of orbital graphs. Namely, we want to prove that if x is
a G-regular point, then the closure of the set tGgpyq : g P Gu for any y P X
contains Gx. Equivalently, we want to prove that every neighborhood of Gx
contains Ggpyq for some g P G. A basis of neighborhoods of Gx is formed
by the sets of the form tH ¤ G : A � H,B X H � Hu, where A and
B are finite subsets of G. If A and B are finite subsets such that A � Gx
and B X Gx � H, then, by the definition of a regular point, there exists a
neighborhood U � X of x such that A � Gz and B X Gz � H for every
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z P U . By minimality, there exists g P G such that gpyq P U , which finishes
the proof of the claim.

We have shown that the closure of the every G-orbit of Gy contains C,
which implies that C is the unique minimal subset in the closure of ∆pX q. �

Note that if C is a uniformly recurrent subgroup, then ∆pCq is in general
different from C, since the stabilizer for the action by conjugation of a sub-
group H ¤ G is its normalizer and it can be different from H (i.e., H may
not be self-normalizing. So, it is not immediately clear if all uniformly recur-
rent subgroups of G can be obtained using Theorem 2.1.29. The fact that it
is true (that for every URS C of G there exists a minimal action Gy X such
that C is the closure of the set of stabilizers of G-regular points of X ) was
shown for finitely generated groups by G. Elek [Ele18] and in general (even
for locally compact groups) by N. Matte Bon and T. Tsankov [MBT17].

Note also that ∆pX q in general erases a lot of information about the
action G y X . In fact, a group may have many minimal free actions on
compact spaces, when ∆pX q is a singleton......

2.1.9. Space of marked groups. By Lemma 2.1.26, the set of normal
subgroups of a group G is a closed subset of 2G. Let us denote it QG. We
can identify QG with the set of all epimorphisms G ÝÑ H.

An interpretation in terms of marked Cayley graphs, different historical
remarks and overview...

2.2. Localizable actions and Rubin’s theorem

We present here a result from the paper [Rub89] by M. Rubin. The paper
contains several theorems describing classes of group actions such that if
G1 y X1 and G2 y X2 belong to such a class, then for every isomorphism
φ : G1 ÝÑ G2 there exists a homeomorphism F : X1 ÝÑ X2 conjugating
the actions, i.e., such that F pg � xq � φpgq � F pxq for all x P X1 and g P G.
In fact, the theorems show how to reconstruct the action G y X from the
algebraic structure of an abstract group G. Such theorems make it possible
to distinguish abstract groups using invariants of dynamical systems such as
quasi-isometry classes of orbital graphs, entropy, groupoids of germs, etc..
This will be useful for us in many instances.

M. Rubin’s paper does not define one big class of group actions, rather
several closely related classes. Finding the most general “Rubin’s theorem”
is an interesting open problem. We will not present all results of [Rub89].
Moreover, we will make some substantial simplifications. But most examples
that are of interest for us will be covered.
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Theorems similar to [Rub89] were proved in different generality in sev-
eral other papers. For example, Fremlin shows in [Theorem 383D] that if
a group of automorphisms of a complete Boolean algebra “contains many
involutions” then the Boolean algebra can be reconstructed from the group
structure. Giordano, Putnam, and Skau proved a rigidity theorem for topo-
logical full groups of minimal homeomorphisms, see .... K. Medynets proved
in... that isomorphisms full groups of actions on Cantor sets are realized by
homeomorphisms. In the context of full groups it was proved in... Check also
results of Matui... We will also prove a reconstruction theorem from [LN02]
for groups acting on rooted trees, see Theorem 2.4.39, which is very similar
to Rubin’s theorems, though does not follow directly from them.

2.2.1. Localizable actions. Let G be a subgroup of the homeomorphism
group of a Hausdorff topological space X .

Definition 2.2.1. Denote, for an open subset U � X , by GrU s the set of
all elements of G acting trivially on X r U .

We say that the action G y X is localizable if X for every non-empty
open set U the subgroup GrU s is non-trivial.

Note that if Gy X is localizable, then X has no isolated points.

Denote, for g P G, by varpgq the interior of the closure of the set of
points x P X such that gpxq � x. The set of points moved by g is contained
and is dense in varpgq.

We start with a property of localizable actions which is often used to
study normal structure of groups of homeomorphisms. Analogs of this
proposition appeared in many papers as a lemma for proving simplicity
of just-infiniteness of groups acting on topological spaces, see...

Lemma 2.2.2. Let N C G be a normal subgroup. If g P N and an open
set U � X are such that gpUq X U � H, then the derived subgroup GrU s1 �
rGrU s, GrU ss of GrU s is contained in N .

Proof. Let h1, h2 P GrU s r t1u. The element h1gh
�1
1 g�1 acts trivially

on X r pU Y gpUqq, as h1 on U , and as gh�1
1 g�1 on gpUq. Therefore,

rh1gh
�1
1 g�1, h2s � rh1, h2s. But h1gh

�1
1 � g�1 P N , hence rh1gh

�1
1 g�1, h2s P

N . We have proved that rh1, h2s P N for all h1, h2 P GrU s. �

Let us prove a simple lemma, which will be used later several times.

Lemma 2.2.3. Let g1, . . . , gn P G and x P X be such that gipxq � gjpxq for
all i � j. Then there exists an open neighborhood U of x such that gipUq
are pairwise disjoint.
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Proof. For every pair i � j there exist neighborhoods Ui,j Q gipxq and
Vi,j Q gjpxq of x such that gipUi,jq X gjpVi,jq � H. Consider the intersection
U of the neighborhoods Ui,j and Vi,j for all i � j. Then gipUq � gipUi,jq
and gjpUq � gjpVi,jq, hence gipUq X gjpUq � H. �

As a corollary of Lemmas 2.2.2 and 2.2.3, we get the following proposi-
tion.

Proposition 2.2.4. Let G be a group acting on a Hausodorff topological
space X . If N CG is a non-trivial normal subgroup of G, then there exists
a non-empty open subset U � X such that the normal closure of GrU s1 in
G is contained in N .

It is clear that not every group admits a localizable action (e.g., such a
map must contain many commuting elements). Results of M. Abért [Abé05],
for instance, imply that no group adimiting a localizable action can satisfy
a non-trivial group law. A group law is a word wpx1, x2, . . . , xnq in the free
group generated by x1, x2, . . . , xn such that wpg1, g2, . . . , gnq for all gi P G.

Theorem 2.2.5. If Gy X is a localizable action, then G satisfies no non-
trivial group law.

Proof. We approximately follow the proof of [Abé05, Theorem 1.1]. Let
wpx1, x2, . . . , xnq � gmgm�1 � � � g1 be a word in the free group generated
by tx1, x2, . . . , xnu, where gi P tx1, x2, . . . , xnu Y tx�1

1 , x�1
2 , . . . , x�1

n u. We
assume that it is reduced, i.e., that gi�1gi is not of the form xx�1 or x�1x
for any i � 1, 2, . . . , n � 1. Denote by wkpx1, x2, . . . , xnq � gkgk�1 � � � g1 its
suffix of length k.

Let us prove by induction on m that there exist elements h1, h2, . . . , hn P
G and a point p P X such that all the points pi � wiph1, h2, . . . , hnqppq, for
i � 1, 2, . . . ,m are pairwise different. This, of course, will imply that the
law wpx1, x2, . . . , xnq is not satisfied in G. The statement is obviously true
for m � 1: if g1 � xi or g1 � x�1

i , choose h P G, and x P X such that
hpxq � x. Then the statement is true for any collection h1, h2, . . . , hn P G
such that hi � h.

Suppose that the statement is true for m� 1, let us prove it for m. By
the hypothesis, there exists a point p P X and a collection ph1, h2, . . . , hnq P
Gn such that pi � wiph1, h2, . . . , hnqppq are pairwise distinct for all i �
1, 2, . . . ,m � 1. By Lemma 2.2.3, there exists a neighborhood U of p such
that the sets Ui � wiph1, h2, . . . , hnqpUq are pairwise disjoint for all i �
1, 2, . . . ,m� 1.

If wmph1, h2, . . . , hnqppq R tpi : 1 ¤ i ¤ m � 1u, then we are done.
Suppose that wmph1, h2, . . . , hnqppq � pi0 for some 1 ¤ i0 ¤ m� 1.
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Figure 2.10. Proof of Theorem 2.2.5

Then the intersection Um XUi0 contains pi0 , hence it is non-empty, and
there exists a neighborhood V � Ui0 of pi0 such that gmgm�1 � � � gi0�1pV q �
Ui0XUm. If gmgm�1 � � � gi0�1|V is not the identity map, then there exists p1i0 P

V such that gmgm�1 � � � gi0�1pp
1
i0
q � p1i0 . Let p1 � pgi0gi0�1 � � � g1q

�1pp1i0q.
Then p1 P U , and the points p1k � pgkgk�1 � � � g1qpp

1q, for k � 1, 2, . . . ,m� 1,
belong to pairwise disjoint sets Uk, hence are pairwise distinct. The last
point p1m belongs to V � Ui0 , hence can not be equal to p1i for i � i0, but it
is also different from p1i0 . It follows that all points p1k are distinct.

Suppose now that gmgm�1 � � � gi0�1|V is identical. Denote V0 � pgi0gi0�1 � � � g1q
�1pV q,

and Vi � gigi�1 � � � g1pV0q. Note that V � Vi0 .

Choose f P GrV s r t1u. Let j0 be such that gm � xj0 or gm � x�1
j0

.

Replace then hj0 by h1j0 � fhj0 if gm � xj0 and by h1j0 � hj0f
�1 if gm �

x�1
j0

, so that gm is replaced by fgm. Denote by ph11, h
1
2, . . . , h

1
nq the new

collection of the values of the variables (so that h1i � hi for i � j0). Consider
the restriction of wkph

1
1, h

1
2, . . . , h

1
nq to V0 � wi0ph1, h2, . . . , hnq

�1pV q, and
denote Vi � gigi�1 � � � g1pV0q. The sets Vi are pairwise disjoint.

If i0 � 1 � m � 1, then gi0�1 � g�1
m , since the word gmgm�1 � � � g2g1 is

reduced. If i0�1   m�1, then gi0�1pUi0qXUm�1 � H but Ui0XgmpUm�1q �
H. Hence, we always have gi0�1 � g�1

m .

If gm � xj0 , then the map hj0 was modified only on Vm. If gm �

x�1
j0

, then the map hj0 was modified only on Vi0 . Since the sets Vi are

pairwise disjoint, and gi0�1 � g�1
m , restrictions of the maps gi to Vi�1

for i � 1, . . . ,m � 1 were not changed, see Figure 2.10. Consequently,
wkph

1
1, h

1
2, . . . , h

1
nq|V0 � wkph1, h2, . . . , hnq|V0 for k � 1, 2, . . . ,m � 1, and

wmph
1
1, h

1
2, . . . , h

1
nq|V0 � f � wmph1, h2, . . . , hq|V0 . Since f � 1, there exists

p2 P V0 such that f �wmph1, h2, . . . , hqpp
2q � wmph1, h2, . . . , hnqpp

2q and then
the points wkph

1
1, h

1
2, . . . , h

1
nqpp

2q are pairwise distinct. �

Corollary 2.2.6. If Gy X is localizable, then G1 y X is localizable.

Proof. If G y X is localizable, then GrU s y U is localizable for every
non-empty open subset U � X . Since GrU s y U is localizable, it is not
commutative, by Theorem 2.2.5. It follows that GrU s1 is non-trivial for
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every non-empty open subset U . We obviously have GrU s1 ¤ G1rU s, hence
G1 y X is localizable. �

Examples of localizable actions... (full homeomorphism groups of man-
ifolds, and the Cantor set, Thompson group

2.2.2. Boolean algebras. Here we present a very short overview of the
theory of Boolean algebras. For more, see (Sikorski, Koppelberg)...

A Boolean algebra is a set A with two binary operations _,^ and one
unary operation � satisfying the following axioms for all a, b, c P A:

(1) a_ b � b_ a and a^ b � b^ a;

(2) a_ pb_ cq � pa_ bq _ c and a^ pb^ cq � pa^ bq ^ c;

(3) pa^ bq _ b � b, pa_ bq ^ b � b;

(4) a^ pb_ cq � pa^ bq _ pa^ cq, a_ pb^ cq � pa_ bq ^ pa_ cq;

(5) pa^ � aq _ b � b, pa_ � aq ^ b � b.

One can show that the axioms imply the following properties.

(6) For every a P A we have a_ a � a, a^ a � a.

(7) Write a � b if a ^ b � a. Then a � b if and only if a _ b � b, and
the relation a � b is a partial order on A.

(8) The elements a^ � a and a_ � a do not depend on a. We will
denote them by O and I, respectively. The elements O and I are
the minimal and the maximal element of A with respect to �.

(9) For every a P A we have �� a � a.

(10) For every a, b P A we have � pa^bq � p� aq_p� bq and � pa_bq �
p� aq ^ p� bq.

Basically, any algebraic statement which is true for the usual operations
X,Y, X rA on the set 2X of all subsets of a set X (on the Boolean of X) is
true for every Boolean algebra. More precisely, one has the following Stone
Representation Theorem, see (Sikorski Theorem 8.2).

Theorem 2.2.7. Every Boolean algebra A is isomorphic to the Boolean
algebra of clopen subsets of a compact totally disconnected space S (with
respect to the operations A ^ B � A X B, A _ B � A Y B, � A � S r A.
The space S is called the Stone space of the algebra and it is the space of
all ultrafilters of A.

The Stone space S of ultrafilters is defined in the following way.

Definition 2.2.8. A filter on a Boolean algebra A is a set δ � A such that

(1) if a, b P δ, then a^ b P δ;
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(2) if b P α and a � b, then a P δ.

For example, for a given a P A the set of elements b P A such that a � b
is a filter. Such filters are called principal. A filter is called proper if it does
not coincide with A, i.e., if it does not contain O.

An ultrafilter is a maximal (with respect to inclusion) proper filter. An
easy application of Zorn’s lemma shows that every proper filter is contained
in an ultrafilter.

A set α � A is an ultrafilter if and only if it is equal to the preimage of
I under a homomorphism h : A ÝÑ tO, Iu onto the two-element Boolean

algebra (which is isomorphic to the Boolean 2t�u of a one-point set). In
particular, if α is an ultrafilter, then for every a P A either a P α or � a P α.

Let S be the set of all ultrafilters of the algebra A. For an element
a P A, let Ua be the set of ultrafilters α P S such that a P α. The set of all
sets Ua is a basis of topology on S. We have Sr Ua � U�a, hence the sets
of the form Uα are clopen. The space S is the Stone space of the algebra,
and it is the space from Theorem 2.2.7.

Example 2.2.9. Let X be a discrete set, and let 2X be the Boolean algebra
of all subsets of X. Then the space of ultrafilters S of the algebra 2X is the
Stone-Čech compactification βX of X. Here X is naturally identified with
the set of principal ultrafilters of the form tU � X : x P Uu for x P X.

For a subset A � A an upper bound (resp. lower bound) of A is an
element b P A such that a � b (resp. b � a) for every a P A. The supremum�
A (resp. infimum

�
A) of A is the smallest (resp. largest) upper (resp.

lower) bound of A. Suprema and infima do not always exist.

Definition 2.2.10. A Boolean algebra A is said to be complete if for every
set A � A the supremum

�
A exists.

If the algebra is complete, then for every set A � A the infimum
�
A

exists.

2.2.3. Reconstructing the Boolean algebra of regular sets. Let X
be a topological space. A subset U � X is said to be a regular open set (or
just a regular set) if it is equal to the interior of its closure. Denote by RpX q
the set of all regular subsets of X .

For A,B P RpX q, denote by A_B the interior of the closure of AYB,
by A ^ B the intersection A X B, and by � A the interior of X r A. We
denote A � B � A X p� Bq. This defines a structure of a Boolean algebra
on RpX q.

The Boolean algebra RpX q is complete, see [Fre04, Theorem 314P]. If
U is a subset of RpX q, then its supremum is the set

�
UPU U equal to the
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interior of the closure of
�
UPU U , and its infimum

�
UPU U is the interior of�

UPU U . Note that if U is finite, then
�
UPU U �

�
UPU U .

Our first goal is to show that if an action G y X is sufficiently rich
(if GrU s are sufficiently big), then the structure of G as an abstract group
uniquely determines the Boolean algebra RpX q of regular open subsets of
X .

Definition 2.2.11. We say that an action Gy X is locally transitive if for
every open set W � X there exists an open subset U � W such that the
action GrU sy U is topologically transitive.

The following theorem is proved in [Rub89, Theorem 0.2]. We have
simplified it a bit, by imposing a stronger condition on Gy X .

Theorem 2.2.12. If the action Gy X is locally transitive and X is Haus-
dorff, then the Boolean algebra RpX q and the action of G on it are uniquely
determined by G.

In particular, if G1 y X1 and G2 y X2 are locally transitive actions
on Hausdorff spaces, and φ : G1 ÝÑ G2 is an isomorphism of groups, then
there exists an isomorphism of Boolean algebras Φ : RpX1q ÝÑ RpX2q such
that ΦpgpUqq � φpgqpΦpUqq for all U P RpX1q and g P G1.

Proof. The main idea of the proof is to model regular sets U P RpX q by
the subgroups GrU s. The Boolean operations in RpX q can be modeled by
group-theoretic operations on subgroups of G in the following way.

We denote by ZGpAq the centralizer of A � G, i.e., the subgroup of all
elements g P G commuting with every element of A.

Proposition 2.2.13. a) For different U1, U2 P R the subgroups GrU1s and
GrU2s are different.

b) For every U P RpX q we have

Gr� U s � ZGpGrU sq.

c) For every set U � RpX q we have G r
�
UPU U s �

�
UPU GrU s.

Proof. Let us prove at first the following two lemmas.

Lemma 2.2.14. If U is regular, then

GrU s � tg P G : varpgq � Uu

and

Gr� U s � tg P G : varpgq X U � Hu.

Proof. Let Dg be the set of points moved by g. Then varpgq is the interior
of the closure of Dg. Since the set Dg is open, Dg � varpgq. We defined
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GrU s as the set of elements g P G such that Dg � U . If varpgq � U , then
Dg � U . On the other hand, if Dg � U , then the interior of the closure of
Dg is a subset of the interior of the closure of U , which is equal to U . It
follows that Dg � U is equivalent to varpgq � U for regular U . �

Lemma 2.2.15. If U is open and U X varpgq � H, then there exists h P
GrU s such that rg, hs � 1.

Proof. There exists x P U such that gpxq � x. Then, by Lemma 2.2.3,
there exists an open neighborhood N such that N and gpNq are disjoint.
Let h be any non-trivial element of GrN s. Then ghg�1 P GrgpNqs, and
GrN sXGrgpNqs � t1u, hence h and ghg�1 are different, i.e., g and h do not
commute. �

Let us prove statement (a) of the proposition. If U1 � U2, then one of
the sets U1 � U2, U2 � U1 is non-empty. Suppose that V � U1 � U2 is
non-empty. Then GrV s ¤ GrU1s and GrV s X GrU2s � t1u, which implies
that GrU1s � GrU2s, thus proving (a).

Let us prove (b). We obviously have Gr� U s ¤ ZGpGrU sq. Suppose
that g R Gr� U s. Then g moves a point in the complement of � U , i.e., in
the closure of U . Since the set of points moved by g is open, it follows that
g moves a point of U , and by Lemma 2.2.15, there exists h P GrU s such that
g and h do not commute, i.e., g R ZGpGrU sq.

Let us prove (c). The set
�
UPU U is, by definition, the interior of�

UPU U . It follows that G r
�
UPU U s is equal to the set of elements g P G

such that varpgq � U for every U P U , i.e., to
�
UPU GrU s, see Lemma 2.2.14.

�

Proposition 2.2.13 shows that if we can describe subgroups of the form
GrU s for U P RpX q in purely group-theoretic terms, then we can reconstruct
the Boolean algebra RpX q from the abstract groupG. Moreover, it is enough
to find some subset U � RpX q such that the groups of the form GrU s for
U P U have a group-theoretic characterization, and RpX q is the smallest
complete Boolean subalgebra of RpX q containing U .

In the original proof by M. Rubin [Rub89] the groups GrU s were con-

structed in the form ZGpgZGphqq for pairs g, h P G satisfying a rather com-
plicated condition. We simplify his construction by formulating it in terms
of subgroups rather than group elements. (We will loose, however, some
model-theoretic properties of the interpretation of RpX q in G.)

Definition 2.2.16. We say that a non-trivial proper subgroup H   G is
flexible if its center is trivial and the following two conditions are satisfied.

(1) If g1, g2 P GrZGpHq then there exists f P H such that rgf1 , g2s � 1.
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(2) If g P GrH then there exist f1, f2 P ZGpHq such that rf1, f2s � 1
and rfg1 , f2s � 1.

Conditions (1) and (2) of Definition 2.2.16 are analogous to the predi-
cates ψ1 and ψ2 of [Rub89], respectively.

Note that the first condition of Definition 2.2.16 is equivalent to the
condition that for every g P G r ZGpHq we have ZG

�
gH
�
¤ ZGpHq. In

particular, this implies that for every non-trivial normal subgroup N C H
we have ZGpNq � ZGpHq.

We leave it as an exercise to the reader to check that in any group the
equality rfg1 , f2s � 1 is equivalent to rrg, f1s, f2s � rf1, f2s.

Proposition 2.2.17. A subgroup H   G is flexible if and only if there
exists a proper non-empty regular subset U � X such that H � GrU s and
GrU sy U is topologically transitive.

Proof. Let us prove at first a series of lemmas.

Lemma 2.2.18. If H is flexible, then ZGpZGpHqq � H.

Proof. We obviously have ZGpZGpHqq ¥ H. Suppose that there exists
g P ZGpZGpHqq r H. By the second condition of Definition 2.2.16, there
exist f1, f2 P ZGpHq such that rf1, f2s � 1 and rfg1 , f2s � 1. The latter
equality is equivalent to rrg, f1s, f2s � rf1, f2s, but we have g P ZGpZGpHqq,
so that rg, f1s � 1, hence rrg, f1s, f2s � 1, which is a contradiction. �

Note that, as a part of Definition 2.2.16, we assume that for every flexible
H we have H X ZGpHq � t1u.

Lemma 2.2.19. If U is a regular non-empty set such that GrU s y U
is topologically transitive, then GrU s satisfies the first condition of Defini-
tion 2.2.16.

Proof. Recall that ZGpGrU sq � Gr� U s. Let g P G r Gr� U s. We have

to prove that ZGpgGrUsq � Gr� U s . Suppose that, on the contrary, there

exists h P ZGpgGrUsq such that h R Gr� U s.

We have g, h R Gr� U s, hence varpgq and varphq have non-empty in-
tersections with U . Then there exist open sets Wg,Wh � U such that
gpWgq X Wg � hpWhq X Wh � H. For any h1, h2 P GrWgs we have

rh1, h2s � rrg, h1s, h2s P xg
GrWgsy, as in Lemma 2.2.2. Since GrWgs ¤ GrU s

and h P ZGpgGrUsq, we conclude that GrWgs
1 commutes with h. Moreover,

since the action of GrU s on U is topologically transitive, there exists a non-
empty open subset W 1 � Wg and f P GrU s such that fpW 1q � Wh. The

group GrW 1s1 is non-trivial by Lemma 2.2.15. We have GrfpW 1qs ¤ xgGrUsy,
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hence GrfpW 1qs commutes with h, but this is a contradiction with the fact
that the sets hpfpW 1qq and fpW 1q are subsets of hpWhq and Wh, and there-
fore are disjoint, see Lemma 2.2.15. �

Let us denote, for H � G, by varpHq the set
�
hPH varphq, i.e., the

interior of the closure of the set
�
hPH varphq.

Lemma 2.2.20. If H satisfies the first condition of Definition 2.2.16, then
it is topologically transitive on varpHq.

Proof. If H is not transitive on varpHq, then there exist disjoint non-empty
H-invariant subsets U1, U2 of varpHq. By Lemma 2.2.15, there exist gi P
GrUis such that gi do not commute with some elements of H, hence do not
belong to ZGpHq. Consider the subgroup ZGpgH1 q. By the first condition of
Definition 2.2.16, it must be contained in ZGpHq. We have then ZGpHq ¥
ZGpgH1 q ¥ Gr� U1s. But it implies H ¤ GrU1s, which is a contradiction
with U2 � varpHq. �

Lemma 2.2.21. For every proper open subset W the group GrW s satisfies
the second condition of Definition 2.2.16.

Proof. Let g P G r GrW s. Then varpgqX � W � H. It follows that
there exists a non-empty open set V �� W such that g�1pV q X V � H.
Let h1, h2 P GrV s ¤ Gr� W s � ZGpGrW sq be arbitrary elements such
that rh1, h2s � 1. They exist by Lemma 2.2.15. Then, in the same way
as in Lemma 2.2.2, the element rg, h1s � g�1h�1

1 gh1 � g�1h�1
1 g � h1 acts

as g�1h�1
1 g on g�1pV q, as h1 on V , and trivially everwhere else. It follows

that rrg, h1s, h2s acts as rh1, h2s on V and trivially everywhere else, i.e., that
rrg, h1s, h2s � rh1, h2s. �

It remains to prove that if H ¤ G is flexible then H � GrvarpHqs. We
know that if H is flexible, then it acts topologically transitively on varpHq.
Let us show that ZGpHq acts identically on varpHq, i.e., that varpZGpHqq
and varpHq are disjoint.

Lemma 2.2.22. An element g P ZGpHq can not act non-trivially on varpHq
but trivially on a non-empty open subset U of ZGpHq.

Proof. Suppse that g acts non-trivially on varpHq and trivially on a non-
empty open subset U � ZGpHq. Then for every h P H the element gh � g
acts trivially on h�1pUq, which, by topological transitivity of H y varpHq,
implies that g is trivial. �

Suppose that there exists x P varpHqXvarpZGpHqq. Since H acts topo-
logically transitively on varpHq, the H-orbit of x is infinite, and therefore
there exist four elements h1, . . . , h4 P H such that x, h1pxq, h2pxq, . . . , h4pxq
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are pairwise different. Then by Lemma 2.2.3, there exists a non-empty
open neighborhood W of x such that W,h1pW q, h2pW q, . . . , h4pW q are pair-
wise different and contained in varpHq. Since x is moved by an element
of ZGpHq, there exists a neighborhood W 1 � W of x such that every non-
trivial element of GrW 1s does not commute with ZGpHq (see Lemma 2.2.15).
Then, by the second condition of Definition 2.2.16, for any non-trivial el-
ement g P GrW 1s there exist elements f1, f2 P ZGpHq such that 1 �
rf1, f2s � rrg, f1s, f2s. We have varprrg, f1s, f2sq � varpgq Y f�1

1 pvarpgqq Y

f�1
2 pvarpgqq Y f�1

2 f�1
1 pvarpgqq �W Y f�1

1 pW q Y f�1
2 pW q Y f�1

2 f�1
1 pW q. If

W Y f�1
1 pW q Y f�1

2 pW q Y f�1
2 f�1

1 pW q � varpHq, (note varpHq is ZGpHq-
invariant, since an element of ZGpHq can not move a global fixed point of
H to a point of varpHq), then rf1, f2s acts identically on an open subset
of varpHq and is supported inside varpHq, which is a contradiction with
Lemma 2.2.22. It follows that W Y f�1

1 pW q Y f�1
2 pW q Y f�1

2 f�1
1 pW q �

varpHq.

Note that rf1, f2s � rf1, f2s
h�1
i � rrgh

�1
i , f1s, f2s for i � 1, 2, . . . , 4. It

follows then by the same argument as above that hipW q Y f�1
1 phipW qq Y

f�1
2 phipW qq Y f�1

2 f�1
1 phipW qq � varpHq. Consider an arbitrary point y P

varpHq. It belongs to at most one of the sets hipW q, to at most one of the
sets f�1

1 phipW qq, to at most one of the sets f�1
2 phipW qq, and to at most one

of the sets f�1
2 f�1

1 phipW qq. But then it follows that it belongs to at most

four of the sets hipW q Y f�1
1 phipW qq Y f�1

2 f�1
1 phipW qq, for i � 0, 1, . . . , 4

(where h0 � 1), which is a contradiction. �

Let F be the set of all open regular subsets of X such that GrU s y U
is topologically transitive. It remains to show, in order to finish the proof
of Theorem 2.2.12, that RpX q is generated by F as a complete Boolean
algebra.

Let W P RpX q, and consider the supremum

W 1 �
ª

U�W , GrUs y U topologically transitive

U.

Suppose that W � W 1. Then W � W 1 is a non-empty open subset of W ,
and there exists a subset U �W �W 1 such that GrU sy U is topologically
transitive. But this is a contradiction with the choice of W 1. Consequently,
W �W 1, and F generates RpX q.

Note that we actually proved that H ¤ G satisfies H � GrvarpHqs if
and only if H is equal to the intersection of a collection of centralizers of
flexible subgroups of G. �
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Another, in some cases more general, way of reconstructing the Boolean
algebra of regular open sets is given by the following theorem of D.H. Frem-
lin, see [Fre04, Theorem 384.D].

Definition 2.2.23. Let G be an automorphism group of a Boolean algebra
A. We say that G has many involutions if for every non-zero a P A there
exists an involution g P G such that gpbq � b for all b �� a. (We say then
that a supports g.)

Theorem 2.2.24. Suppose that Ai are complete Boolean algebras, and
Gi y Ai are faithful actions by automorphisms with many involutions. Then
every isomorphism φ : G1 ÝÑ G2 is induced by an isomorphism of Boolean
algebras Φ : A1 ÝÑ A2.

2.2.4. Reconstructing X from G. The next step is to show how one can
reconstruct the action G y X from the Boolean algebra RpX q of regular
subsets of X and the action of G on it. Again, we are not formulating the
most general condition, but a condition sufficient for all our examples.

Consider the following condition for an action Gy X .

(R) For every x P X and every neighborhood U of x the GrU s-orbit of
x is somewhere dense.

Theorem 2.2.25. Suppose that the actions Gi y Xi on locally compact
Hausdorff spaces are locally transitive and satisfy condition (R). Then every
isomorphism φ : G1 ÝÑ G2 is induced by a homeomorphism X1 ÝÑ X2.

For example, if for the action G y X on a locally compact Hausdorff
space there exists a basis of neighborhoods of X consisting of sets U such
that GrU sy U is minimal, then Gy X is uniquely determined by G.

Local transitivity is not enough, see Exercise 2.24.

Proof. Let G y X be a locally transitive action satisfying Condition (R),
and X is a locally compact Hausdorff space. We are going to show how the
space X and the action of G on it can be reconstructed from the Boolean
algebra RpX q and the action of G on it.

Let S be the Stone space of RpX q. The group G acts on it naturally by
homeomorphisms. This action and the subgroups GrU s for U P RpX q are
uniquely determined by the algebraic structure of G (see Theorem 2.2.12
and its proof).

For every α P S the set
�
UPα U is either empty, or consists of a single

point, which we will denote by xα (if it exists). Note that if U is a regular
set such that xα P U , then U P α, since xα R� U . Similarly, if U P α, then
xα must belong to the closure of U . Also note that if α contains an element
U such that U is compact, then xα exists.
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Definition 2.2.26. We say that an element U of an ultrafilter α P S is an
X -neighborhood of α if there exists V P RpX q such that V � U and for every
V 1 P RpX q such that V 1 � V there exists g P GrU s such that gpV 1q P α.

Note that the condition of U being an X -neighborhood of α P S is
formulated in purely group-theoretic terms.

Lemma 2.2.27. An element U P RpX q is an X -neighborhood of α P S if
and only if xα exists and belongs to U .

Proof. If xα exists and belongs to U , then there exists an open regular set
V � U such that the GrU s-orbit of xα is dense in V . It is easy to see that
then the conditions of Definition 2.2.26 are satisfied.

Conversely, suppose that U is an X -neighborhood of an ultrafilter α,
and let V be as in Definition 2.2.26. Then there exists an open regular set
V 1 � V such that V 1 is compact. It follows that α contains an element gpV 1q
with compact closure, hence xα exists. It follows then from Definition 2.2.26
that the GrU s-orbit of xα is somewhere dense. We have xα P U , but since
the interior U of U is GrU s-invariant, this actually means that xα belongs
to the interior of U , i.e., to U . �

Note that for every x P X the set of all elements U P RpX q containing
x is a filter, hence it is contained in an ultrafilter α. Since there exist sets
U P RpX q such that x P U and U is compact, the point xα exists. But it
can be equal only to x, since for every point y different from x there exists
U P RpX q such that x P U and y P� U .

Note that xα1 � xα2 if and only if there exist U1, U2 P RpX q such that
Ui is a neighborhood of αi, and U1 � U2 � H.

We have described in group-theoretic terms all ultrafilters α for which xα
exists, when two points xα1 , xα2 are different, and when a point xα belongs
to a given regular open set. Since the set of regular open sets is a basis
of topology of X (see the conditions of the theorem), we get a complete
description of the action Gy X in group-theoretic terms. �

Corollary 2.2.28. Let G y X be an action satisfying the conditions of
Theorem 2.2.25. Then every automorphism of G is induced by a conjugation
by a homeomorphism of X . In other words, the automorphism group of G
coincides with its normalizer in the homeomorphism group of X .

Example 2.2.29. Let G be the group of all homeomorphisms of the circle
R{Z. It is easy to see that if U is an open arc of the circle, then GrU s
acts transitively on U . It follows that G y R{Z satisfies the conditions of
Theorem 2.2.25, hence all automorphisms of G are inner.
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Example 2.2.30. Another example of a group satisfying the conditions of
Theorem 2.2.25 is the Thompson group F , see...

2.3. Automata

2.3.1. Definitions. Let X and Y be finite alphabets, and let f : Xω ÝÑ Yω

be a continuous map. Then for every x1x2 . . . P Xω and every n there exists
m such that the first n letters of fpx1x2 . . . xmam�1am�2 . . .q do not depend
on am�1am�2 . . . P Xω. If we interpret the transformation f as a work of
a machine that reads x1x2 . . . and prints y1y2 . . ., then it has to read only
a finite beginning of x1x2 . . . in order to be able to write a beginning of
arbitrary length of fpx1x2 . . .q. This can be formalized in the following way.

Definition 2.3.1. An automaton is a tuple A � pX,Y, Q, q0, π, λq, where

 X, Y are finite alphabets (called the input and the output alphabets,
respectively),

 Q is a set (called the set of states of the automaton,

 q0 P Q (called the initial state),

 π : Q� X ÝÑ Q is a map (called the transition function),

 λ : Q� X ÝÑ Y� is a map (called the output funciton).

We interpret A as a machine that being in state q and reading x P X on
the input prints the word λpq, xq on the output, and then changes its state
to πpq, xq. According to this interpretation, we extend the maps π and λ to
Q� X� by the inductive rules

πpq, x1x2 . . . xnq � πpπpq, x1q, x2x3 . . . xnq,

λpq, x1x2 . . . xnq � λpq, x1qλpπpq, x1q, x2x3 . . . xnq.

Then πpq, x1x2 . . . xnq is the state of the automaton after reading the word
x1x2 . . . xn and λpq, x1x2 . . . xnq is the total output word.

If w � x1x2 . . ., then since the word λpq, x1x2 . . . xnq is a beginning of
the word λpq, x1x2 . . . xnxn�1q, we can define the word λpq, wq as the limit
of the words λpq, x1x2 . . . xnq. Note that since λpq, xq can be an empty word,
the word λpq, wq is infinite or finite.

Definition 2.3.1 describes what is sometimes called asynchronous au-
tomata, which refers to the fact that the length of the output can be different
from the length of the input, so that the input and output “tapes” are not
synchronized. We will study later in 2.4.6 the class of synchronous automata
for which all values of λ : Q� X ÝÑ Y are one-letter words. bibliography...
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Definition 2.3.2. The transformation defined by the automaton A � pX,Y, Q, q0, π, λq
is the map w ÞÑ λpq0, wq : X� Y Xω ÝÑ Y� Y Yω. We say that A is non-
degenerate (or almost positive [Eil74]) if for every w P Xω the word λpq0, wq
is infinite.

Proposition 2.3.3. Every transformation f : Xω ÝÑ Yω defined by a non-
degenerate automaton is continuous. Every continuous map f : Xω ÝÑ Yω

is defined by a non-degenerate automaton.

Proof. Continuity of the maps defined by automata is straightforward.
Conversely, let f : Xω ÝÑ Yω be a continuous map. Let P pAq for a subset
A � Yω denote the longest common prefix of the words in A. Consider the
following automaton with the set of states X�, initial state ∅, the transition
function πpv, xq � vx, and the output function given by the condition that
if P pfpvYωqqλpv, xq � P pvxYωq. Note that λpv, xq may be infinite in this
definition. It is easy to see that then λp∅, wq � fpwq for all w P Yω.

The constructed automaton can give infinite outputs in one step. This
happens only when f is constant on vYω. But then λpvw, xq is empty for
all w P Yω, so we can modify the automaton so that it produces the word
λpv, xq letter by letter independently of the input after the state v. �

Definition 2.3.4. An automaton A � pX,Y, Q, q0, π, λq is said to be finite
if the set of states Q is finite.

It is obvious that the set of all maps f : Xω ÝÑ Yω defined by finite
automata is countable.

Composition of two maps defined by finite automata is defined by a finite
automaton that can be constructed in the following way.

Proposition 2.3.5. Let A1 � pX1,X2, Q, q0, π1, λ1q and A2 � pX2,X3, P, p0, π2, λ2q
be automata. Consider the automaton A2 �A1 with the input and output al-
phabets X1,X3, respectively, the set of states P �Q, the initial state pp0, q0q,
and the transition and output functions given by

πppp, qq, xq � pπ2pp, λ1pq, xqq, π1pq, xqq, λppp, qq, xq � λ2pp, λ1pq, xqq.

Then the transformation defined by A2�A1 is equal to the composition of the
transformation Xω1 ÝÑ Xω2 defined by A1 with the transformation Xω2 ÝÑ Xω3
defined by A2.

We leave the proof as an exercise. Note that in the definition of the
maps π and λ we use extensions of the maps πi, λi to finite words.

The set of maps defined by finite automata can be described in the
following way.
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Proposition 2.3.6. Let f : Xω ÝÑ Yω be a continuous map. For a word
v P X�, let Wv be the longest common beginning of all words belonging to
fpvXωq. If Wv is finite, then fpvwq � Wvfvpwq for some continuous map
fv : Xω ÝÑ Yω. Otherwise, we say that fv is empty. The map f is defined
by a finite automaton if and only if the set tfv : v P X�u is finite and every
infinite word Wv is eventually periodic.

Proof. We can modify the definition of a finite automaton by allowing it
to give on output an infinite eventually periodic word w and moving after
that to a state qt such that πpqt, xq � qt and λpqt, xq � ∅ for all x P X.
Namely, every such an automaton can be transformed to a finite automaton
in the usual sense by adding a loop producing the eventually periodic word
w independently of the input letters. We will use this modified definition in
this proof.

Suppose that f is defined by a finite automaton A � pX,Y, Q, q0, π, λq. It
follows directly from the definitions that the map fv is uniquely determined
by the state πpq0, vq. Consequently, the set tfv : v P X�u is finite. Note
that if the output w P Yω of a finite initial automaton does not depend on
the input, then w is eventually periodic.

Suppose now that the set tfv : v P X�u is finite. Take it as the
set of states Q, set the initial state q0 � f � f∅, the transition function
πpfv, xq � pfvqx � fvx, and the output λpfv, xq equal to the longest common
beginning of the words in the set fvpxX

ωq (it will be infinite if fvx is empty).
It is easy to see that the constructed automaton will define f . �

If A � pX,Y, Q, q0, π, λq is a finite automaton, then we depict it using
its Moore diagram. It is a rooted labeled directed graph with the set of
vertices Q, in which for every q P Q and x P X there is an arrow starting
in q, ending in πpq, xq, labeled by x|λpq, xq. The root is q0. Given such
a Moore diagram Γ, the image of a word x1x2 . . . under the action of the
automaton is computed by finding an oriented path e1e2 . . . such that e1

starts in the root q0, and ei is labeled by xi|vi for some vi P Y�. Then the
image of x1x2 . . . is equal to the concatenation v1v2 . . . of the second halves
of the labels of the arrows in the path.

Example 2.3.7. Consider the automaton with the Moore diagram shown
on on the left-hand side of Figure 2.11. The initial state is marked by a
double circle. It is easy to see that this automaton defines the one-sided
shift x1x2 . . . ÞÑ x2x3 . . . over the alphabet X � t1, 2, 3u.

The automaton on the right hand side of Figure 2.11 appends the letter
1 to every infinite word. change the figure...
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Figure 2.11. The one-sided shift

It follows from Proposition 2.3.5 that composition of two maps defined
by finite automata is defined by a finite automaton. Consequently, the set
of all maps f : Xω ÝÑ Xω defined by finite automata is a semigroup.

The following is proved in [GNS00].

Theorem 2.3.8. The set of all homeomorphisms f : Xω ÝÑ Xω defined
by finite automata is a group. There are algorithms which given a finite
automaton decide if the map defined by it is identity, and if it is invertible. In
particular, the word problem is solvable for every finitely-generated subgroup
of the group of homeomorphisms defined by finite automata.

The algorithms for computation with asynchronous automata are imple-
mented in the GAP package...

The following proposition from ... shows that the group of homeomor-
phisms defined by finite automata does not depend on the alphabet.

Proposition 2.3.9. For any two finite alphabets X,Y there exists a finite
automaton defining a homeomorphism Xω ÝÑ Yω.

Proof. It is enough to prove the proposition for X � t0, 1u and Y �
t0, 1, 2, . . . , du for every d ¥ 2. Consider the homomorphism φ : Y� ÝÑ X�

of free monoids given by φpkq � 11 . . . 1loomoon
k times

0 for k � 0, 1, . . . , d � 1 and

φpdq � 11 . . . 1loomoon
d times

. Denote also by φ its extension to Xω ÝÑ Xω. It is defined

on infinite sequences by φpx1x2 . . .q � φpx1qφpx2q . . .. The map φ is defined
by a finite automaton with one state q0 and output function λpq0, xq � φpxq.
It is easy to see that φ is a homeomorphism and that the inverse φ�1 is given
by the automaton with the Moore diagram shown on Figure 2.12. �

Definition 2.3.10. The group QpXq of all homeomorphisms f : Xω ÝÑ Xω

defined by finite automata is called the group of rational homeomorphisms
of the Cantor set.
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Figure 2.12. A homeomorphism t0, 1, . . . , duω ÝÑ t0, 1uω

It follows from Proposition 2.3.9 that the group Q � QpXq of rational
homeomorphisms does not depend (up to a conjugacy of the action, and
hence up to an isomorphism) on the size of the alphabet.

The group R was introduced in [GNS00]. We know (see Theorem 2.3.8)
that every finitely generated subgroup of R has solvable word problem. On
the other hand, it is proved in [BB17] that the order problem for R is
unsolvable, i.e., that there is no algorithm deciding whether a given element
of R has finite or infinite order. It is shown in [BMH17] that the group of
rational homeomorphisms is simple (see also Theorem...) and not finitely
generated.

2.3.2. Examples of subgroups of Q.

2.3.2.1. The Higman-Thompson group.

Definition 2.3.11. For any two sequences v1, v2, . . . , vn and u1, u2, . . . , un
such that tviX

ωu and tuiX
ωu are partitions of Xω define a homeomorphism

f , denoted f �

�
v1 v2 . . . vn
u1 u2 . . . un



, by

fpviwq � uiw

for all i � 1, . . . , n and w P Xω. The set of all such homeomorphisms is a
group called the Higman-Thompson group V pXq.

It is easy to check that V pXq y Xω satisfies the conditions of The-
orem 2.2.25. In fact, for every v P X� the action V pXqrvXωs y vXω is
conjugated by the map vw ÞÑ w with the whole action V pXq y Xω, and is
minimal. In particular, it follows that the automorphism group of V pXq is
naturally isomorphic to the normalizer of V pXq in the homeomorphism group
of Xω. It is shown in [BCM�16] that the normalizer is naturally embedded
into RpXq, and the image of the embedding has a nice automata-theoretic
description.

2.3.2.2. Partial automata and adic transformations. It is convenient in some
cases to consider partial automata, i.e., automata pX,Y, Q, q0, π, λq, where
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the maps π, λ are defined on a (common for both maps) subset of Q � X.
Such an automaton accepts an infinite word x1x2 . . . P Xω if all the maps
values of π in the formula

πp. . . πpπpπpq0, x1q, x2q, x3q, . . . , xnq

for computation of πpq0, x1x2 . . . xnq are defined for all n. In other words,
the word x1x2 . . . is accepted by the automaton if there exists a path in
the Moore diagram of the automaton starting in q0 and such that the word
x1x2 . . . is read on the first halves of the labels x|v of the arrows. We say
that a subset L � Xω is rational if there exists a finite automaton such that
the set of all infinite words accepted by it is equal to L. The following is
proved in [GNS00, Proposition 2.11].

Proposition 2.3.12. A set L � Xω is rational if and only if there exists a
map f : t0, 1uω ÝÑ Xω defined by a finite automaton such that fpt0, 1uωq �
L. If L has no isolated points, then we can choose f to be a homeomorphism
onto its range.

In particular, if L is a rational set without isolated points, and G is a
group of homeomorphisms of L defined by (partial) finite automata, then
the action Gy L can be conjugated by a map defined by a finite automaton
to an action G y t0, 1uω by rational homeomorphisms. Consequently, G
can be embedded into R.

Let us consider some examples coming from dynamics. Let σ : X ÝÑ X�

be a substitution, and let Bσ be the associated Vershik-Bratteli diagram,
see 1.3.7, and suppose that Bσ is properly ordered, see Proposition 1.3.31.

Let E be the set of edges of one level of Bσ. For every x P X the set
r�1pxq is in a bijection with the letters of the word σpxq � x1x2 . . . xn.
The ordering of the edges e1, e2, . . . , en P E corresponding to the letters
x1x2 . . . xn is the natural one: e1   e2   . . .   en, and we have speiq � xi.

We identify the set of vertices V with X. The space PpBσq is a Markov
subshift of the full one-sided shift Eω consisting of all sequences pe1, e2, . . .q
such that rpeiq � spei�1q.

It follows from Proposition 1.3.31 that after replacing σ by σk for some
k ¥ 1 we may assume that there exist x0, x1 P X such that σpxq starts with
x0 and ends with x1 for all x P X.

Let τ ü PpBσq be the associated adic transformation. If e1 P E is not
maximal, then

(2.1) τpe1e2e3 . . .q � e11e2, e3 . . . ,

where e1 is the next edge after e.
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If e1 is maximal, but e2 is not, then τpe1e2e3 . . .q � pe21e
1
2e3 . . ., where e12

is the next edge after e2 in the ordering, and e11 is the unique minimal path
ending in the beginning of e12. Note that we have

(2.2) τpe1e2e3 . . .q � e21τpe2e3 . . .q

in this case, and that e21 depends only on e2.

If both e1 and e2 are maximal, then

(2.3) τpe1e2e3 . . .q � e21τpe2e3 . . .q,

where e21 is the unique minimal edge ending in x0, since the first edge of
τpe1e2e3 . . .q will be minimal.

We see that the adic transformation can be described by the following
automaton.

Proposition 2.3.13. Let σ : X ÝÑ X� be a primitive substitution and
x0 P X are such that σpxq starts with x0 for all x P X. Let Bσ be the
associated Vershik-Bratteli diagram. Then the adic on the space of paths
PpBσq is equal to the transformation defined by the initial state q0 of the
following automaton.

The states of the automaton are q0, 1x, and τx, where x are letters of X.
The output function λ and the transition function π are given by:

If e is not maximal, then λpq0, eq is the next edge after e and πpq0, eq �
1rpeq. If e is maximal, then λpq0, eq � ∅ and πpq0, eq � τrpeq.

If e is not maximal, then λpτspeq, eq � e1e2, πpτspeq, eq � 1rpeq, where e2

is the next edge after e, and e1 is the minimal edge ending in spe2q.

If e is maximal, then λpτspeq, eq is the minimal edge ending in x0 and
πpτspeq, eq � τrpeq.

We have λp1speq, eq � e and πp1x, eq � 1rpeq.

The automaton does not accept the input in the cases not covered by the
above rules.

See, for example, the automaton on Figure 2.13 defining the adic trans-
formation τ for the substitution σpaq � ab, σpbq � abb. The corresponding
diagram Bσ is shown on Figure 2.14. The edges corresponding to the letters
a, a, b of σpaq are denoted a1, a2, a3, and the edges corresponding to the let-
ters a, b of σpbq are denoted b1, b2, see Figure 2.14. The green states form
an automaton acting identically on the sequences and accepting only the
sequences belonging to the space of paths of the Bratteli diagram.
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Figure 2.13. Adic transformation

Figure 2.14.

The corresponding recursive definition of τ is

τpa1wq � a2w,

τpa2wq � b1τpwq,

τpb1wq � b2w,

τpb2wq � b3w,

τpb3a2wq � a1τpa2wq,

τpb3b2wq � b1τpb2wq,

τpb3b3wq � a1τpb3wq.
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Compare the recursive definition of τ with the automaton on Figure 2.13.
Note that the output of the automaton is sometimes delayed by one symbol
comparing to the input, since the first letter of τpx1x2 . . .q depends not only
on x1 but also on x2.

Definition 2.3.14. Let τ ü X be a homeomorphism of the Cantor set. Its
topological full group rrτ ss is the group of all homeomorphisms f ü X such
that for every x P X there exists a neighborhood U of x and an integer n P Z
such that f |U � τn|U .

It follows directly from Proposition 2.3.6 that if τ ü Xω is rational, then
rrτ ss is a subgroup of the group QpXq of rational homeomorphisms of Xω.
This gives us the following interesting class of subgroups of Q. We will study
the properties of topological full groups later in ...

Theorem 2.3.15. Let τ be the adic transformation defined by a stationary
properly ordered Vershik-Bratteli diagram. Then its topological full group
rrτ ss can be embedded into Q. In particular, the word problem in rrτ ss is
solvable.

2.3.2.3. Transformations associated with Smale spaces. From my paper on
Smale spaces....

2.3.2.4. Hyperbolic groups. J. Belk, C. Bleak, and F. Matucci proved the
following theorem, see [BBM17]. (For a definition of Gromov hyperbolic
groups and their boundaries see...)

Theorem 2.3.16. If G is a Gromov hyperbolic group acting faithfully on
its boundary BG, then G can be embedded into R.

One can show that for any non-elementary Gromov hyperbolic group G
the kernel of the action of G on BG is finite. In particular, every torsion-free
Gromov hyperbolic group is a subgroup of R.

The proof of 2.3.16 is based on a G-equivariant symbolic encoding of BG
by one-sided sequences.

2.3.3. Non-deterministic automata and dual Moore diagrams. An-
other formalism for describing rational homeomorphisms of the Cantor set,
is given by the notion of non-deterministic finite automata. Here we allow
several initial states and several arrows starting in the same state with la-
bels x|v1 and x|v2 for the same x, so that the output λpq, xq is not unique.
We require, however, that for every infinite sequence x1x2 . . . there exists
at most one oriented path starting in an initial state with the labels of the
form x1|v1, x2|v2, . . .. We say that such automata are ω-deterministic). The
formal definition is as follows.
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Figure 2.15. An ω-deterministic automaton

Definition 2.3.17. A non-deterministic automaton is a set T � Q � Q �
X � Y� of transitions and a subset I � Q of initial states. Here Q is
the set of internal states, X and Y are input and output alphabets. If
t � pq1, q2, x, vq, then we say that t is a transition from q1 to q2 with input
x and output v. The automaton is said to be ω-deterministic if for every
sequence x1x2 . . . P Xω there exists at most one sequence of transitions of the
form pq0, q1, x1, v2q, pq1, q2, x2, v2q, . . . such that q0 P I. The concatenation
v1v2 . . . is the image of x1x2 . . . under the map defined by the automaton.
The automaton is synchronous if T is a subset of Q�Q� X� Y.

We also represent non-deterministic automata by their Moore diagrams.
Its set of vertices is Q, set of edges T , where pp, q, x, vq P T is an arrow from
p to q labeled by x|v. All non-deterministic automata in our book will be
synchronous.

As an example, consider again the adic transformation τ defined on
the space of paths of the diagram Bσ for σ : a ÞÑ aab, b ÞÑ ab. We can
interpret the recurrent formulas in Proposition 2.3.13 as the work of a non-
deterministic automaton with the Moore diagram shown on Figure 2.15.
Note that it has three initial states (shown red) and that it preserves the
length of finite words, unlike the asynchronous automaton on Figure 2.13.

The state τ2 of the automaton is non-deterministic: if it gets b3 on the
input, the automaton can go either to τ2 or to τ3. But the next letter of the
input will be accepted only by one of these two states: a2 and b3 by τ2, and
b2 by τ3. So, the first letter of the output is unique after reading a two-letter
word. It is easy to check that this non-deterministic automaton defines the
transformation τ .
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Figure 2.16. The binary adding machine and its dual Moore diagram

Sometimes it is more convenient to draw the dual Moore diagrams of
automata instead of the usual Moore diagrams. Suppose we have a finite
ω-deterministic automaton, and suppose that it is synchronous. We also
assume that the input and the output alphabets coincide. Then the dual
Moore diagram is obtained by switching the role of the alphabet and the set
of states: for every transition from q1 to q2 with input and output x1|x2 we
have an arrow from x1 to x2 labeled by q1|q2 in the dual Moore diagram. As
the arrows of the dual Moore diagram describe the action of the automaton
on the letters, the dual Moore diagram is often more natural than the usual
Moore diagram.

See the Moore diagram of the binary adding machine and its dual Moore
diagram on Figure 2.16.

The dual Moore diagram of the automaton from Figure 2.15 is shown
on Figure 2.17.

We can compose non-deterministic automata, in a way similar to com-
position of deterministic automata. The composition is formulated in terms
of the dual Moore diagrams in the following way. If Γ1 and Γ2 are dual
Moore diagrams of synchronous automata with the same set of states Q,
then their composition Γ1 b Γ2 is the graph with the set of vertices equal
to the direct product of the sets of vertices of Γ1 and Γ2, where we have an
arrow from px1, x2q to py1, y2q labeled by q1|q2 if and only if there exists an
arrow from x1 to y1 labeled by q1|p and an arrow from x2 to y2 labeled by
p|q2 for some state q P Q.

In particular, if Γ is the dual diagram of an automaton over the alphabet
X, then Γbn � Γ b Γ b � � � b Γ is the dual Moore diagram of the same
automaton over the alphabet Xn. The associated action on infinite sequences
will be the same. The automaton over Xn interprets a sequence x1x2 . . . P Xω

as the sequence px1x2 . . . xnqpxn�1xn�2 . . . x2nq . . . P pX
nqω.
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Figure 2.17. Dual Moore diagram of an adic transformation

Note that we have natural maps Γbpn�1q ÝÑ Γbn erasing the last letter
in Xn�1 P Γbpn�1q inducing a map of the oriented graphs, preserving the
first half of the edge labels (see the definition of Γ1 b Γ2 above). It follows
from the definitions that the inverse limit of the graphs Γbn with respect to
these maps is the graph of the action of the states on Xω.

There is a natural topological interpretation of dual Moore diagrams.
Let Γ be a dual Moore diagram of an automaton over the alphabet X and
with the set of states Q. Let Γ0 be the graph with one vertex and the set of
loops X. The labels of Γ define two maps π1,Γ, π2,Γ : Γ ÝÑ Γ0 mapping an
arrow labeled by q1|q2 to the loop qi by πi. Then the product Γ1bΓ2 of dual
Moore diagrams is interpreted as the fiber product : it is the subset of the
direct product Γ1 � Γ2 consisting of points px1, x2q such that π2,Γ1px1q �
π1,Γ2px2q. The corresponding maps are π1,Γ1bΓ2px1, x2q � π1,Γ1px1q and
π2,Γ1bΓ2px1, x2q � π2,Γ2px2q.

Note that the automaton is deterministic if and only if the the map π1,Γ1

is a covering of graphs.

The pair of maps π1,Γ, π2,Γ : Γ0 ÝÑ Γ is called the correspondence asso-
ciated with the automaton. In general, a topological correspondence is a pair
of maps f1, f2 : M ÝÑ M0 between topological spaces. Correspondences
can be iterated in the same way as dual Moore diagrams of automata. Define
Mn to be the subspace of the direct power Mn consisting of all sequences
px1, x2, . . . , xnq such that f2pxiq � f1pxi�1q for all i � 1, 2, . . . , n�1. We have
then the maps px1, x2, . . . , xnq ÞÑ f1px1q and px1, x2, . . . , xnq ÞÑ f2pxnq from
Mn to M0. We also have the natural erasing maps px1, x2, . . . , xn�1q ÞÑ
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px1, x2, . . . , xnq and px1, x2, . . . , xn�1q ÞÑ px2, x3, . . . , xn�1q from Mn�1 to
Mn...

Example 2.3.18. The adding machine and the circle doubling map as a
dual Moore diagram...

2.3.4. Time-varying automata and topological Bratteli diagrams.
It is convenient in some cases to consider automata whose set of states and
input-output alphabet change with time. Transformations and groups de-
fined by such automata were considered in ... Namely, consider a sequence of
alphabets X1, X2, . . ., a sequence of sets of states Q1, Q2, . . ., and a sequence
of transitions T1, T2, . . ., where Tn � Qn �Qn�1 �Xn �Xn. The definition
of ω-deterministic automata is analogous to Definition 2.3.17.

Note that each time the output is from the same alphabet as the input,
while the next state is from the next set of states. Every initial state q P Q1

defines a partial transformation of the set of sequence X1 �X2 �X3 � � � � .

We will usually describe such time-varying automata by the correspond-
ing sequence of dual Moore diagrams. It is a sequence of graphs Γ1,Γ2, . . .,
where Γn is the graph with the set of vertices Xn and the set of edges Tn
in which every pp, q, x, yq P Tn is an arrow from x to y labeled by p|q. If
∆n is a bouquet of loops labeled by Qn, then the labels define a sequence of
morphisms of graphs

∆1
s1ÐÝ Γ1

r1ÝÑ ∆2
s2ÐÝ Γ2

r2ÝÑ ∆3 . . . ,

where an arrow of Γn labeled by p|q is mapped by sn, rn to p and q, respec-
tively.

We may relax the definition of the dual Moore diagram by considering
more general graphs ∆n and more general maps sn, rn (for example, by
allowing arrows to be mapped to vertices, and considering vertices as states
defining partial identity transformations)....

Example 2.3.19. Consider the constant sequence of alphabets Xn � t0, 1u
and sets of states Q � ta, b, cu, and a sequence of (deterministic) automata
A1,A2, . . ., where each of Ai is given by one of the two dual Moore diagrams
R or A shown of Figure ??.

Every sequence Ai will define three transformations a, b, c of the space
t0, 1uω generating a group. We get an uncountable set of group actions. We
will study this and similar constructions in ...

Example 2.3.20. Vershik-Bratteli diagrams are naturally interpreted as
time-varying automata. Let B be a Vershik-Bratteli diagram. Consider the
time-varying automaton with sequence of alphabets equal to the sequence
En of sets of edges of B. For every vertex v P Vn we have the corresponding
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trivial state 1v P Qn. For every pair of vertices v1, v2 P Vn we have the
corresponding state τv1,v2 . The states τv1,v2 for v1, v2 P V0 are the initial
states defining the adic transformation.

The set of transitions consists of the trivial transitions p1speq, 1rpeq, e, eq
for all e P En, and the set of active transitions of two types:

 pτspeq,spe1q, 1rpeq, e, e
1q, where e is a non-maximal edge, and e1 is the

next edge in the ordering;

 pτspeq,spfq, τrpeq,rpfq, e, fq, where e is a maximal edge, and f is a min-
imal edge.

Note that some of the states τv1,v2 will not accept any infinite sequences,
so we may remove them from the automaton and all the transitions involving
them.

We leave it to the reader as an exercise to show that this automaton
defines the adic transformation.

The corresponding dual Moore diagrams can be described in the follow-
ing way. The graphs ∆n have Vn as the set of vertices, where each vertex v
also represents the state 1v. For every state τv1,v2 we have the corresponding
arrow from v1 to v2.

The graph Γn has En as the set of vertices. If e is a non-maximal edge,
then we have an arrow from e to the next edge e1 mapped by sn to τspeq,spe1q
and by rn to 1rpeq. If e is a maximal, and f is a minimal edge, then we have
an arrow from e to f mapped by sn to τspeq,spfq and to τrpeq,rpfq by rn. Note
that we may also remove the arrows corresponding to states τv1,v2 that do
not accept infinite sequences.

As an example, consider again the Vershik-Bratteli diagram shown on
Figure 2.14 and the corresponding adic transformation. According to the
above, it is given by the dual Moore diagram shown on Figure 2.18. Com-
pare it with the diagram on Figure 2.17. We have labeled the states τv1,v2
according to their labels on Figure 2.17. Namely, we have τ1 � τa,b, τ2 � τb,a,
and τ3 � τb,b. Note that the state τa,a is removed, as it will not accept any
letter.

The automaton (and the Vershik-Bratteli diagram) are stationary in this
case, i.e., do not depend on the level.

Definition 2.3.21. A topological Bratteli diagram B is a sequence of com-
pact spaces and continuous maps

V0
s1ÐÝ E1

r1ÝÑ V1
s2ÐÝ E2

r2ÝÑ V2 . . . .

Its space of paths PpBq is the subspace of
±
n¥1En consisting of all sequences

pe1, e2, . . .q such that rpenq � spen�1q for all n ¥ 1.
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Figure 2.18. Dual Moore and Vershik-Bratteli diagrams

If B is the topological Bratteli diagram consisting of dual Moore dia-
grams of a time-varying automaton, then the space of paths is the graph of
the action of its states on the space of infinite sequence.

Example 2.3.22. Note that the map r in the stationary diagram on Fig-
ure 2.18 is a homotopy equivalence... The space of paths can be therefore
identified with the inverse limit of .... reference to...

2.4. Groups acting on rooted trees

2.4.1. Rooted trees. Let T be a rooted tree with the root v0. Its nth level
is the set Ln of vertices on distance n from the root. Every automorphism
of the rooted tree T preserves the levels, since it preserves the root and is
an isometry of T .

If v1 and v2 are vertices of T such that the unique simple path from the
root to v2 passes through v1, then we write v1 ¨ v2. It is easy to check that
¨ is a partial order on the set of vertices of T . In fact, the tree T is the
Hasse diagram of the order ¨.

For a vertex v of T , we denote by Tv the subtree consisting of all vertices
w such that v ¨ w. We consider Tv to be a rooted tree with the root v, see
Figure 2.19. The branching index of the vertex v is the number of vertices
in the first level of Tv.

The boundary BT of the tree T is the set of all infinite simple paths
starting in the root. In other words, it is the inverse limit of the levels Ln
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Figure 2.19. Rooted tree

with respect to the natural maps Ln�1 ÝÑ Ln mapping a vertex v P Ln�1

to the unique vertex v1 P Ln (its parent) such that v1 ¨ v.

The boundary BTv is naturally identified with the set of paths pv0, v1, . . .q P
BT containing v. The collection of all subsets of BT of the form BTv is a
basis of the natural topology on BT . This topology obviously coincides with
the inverse limit topology of the discrete sets Ln with respect to the natural
maps defined above.

The space BT is compact and totally disconnected. A path pv0, v1, . . .q P
BT is an isolated point if and only if the branching index ni of the vertex vi
is equal to 1 for all i big enough. So, if the branching indices of all vertices
of T are greater than 1, then BT is homeomorphic to the Cantor set.

A rooted tree T is spherically homogeneous (or level-transitive) if the
automorphism group of T acts transitively on each level Ln, or, equivalently,
if for every Ln the branching indices of all vertices v P Ln are equal.

Let T be a spherically homogeneous tree, and let κ � pm1,m2,m3, . . .q
be the sequence of numbers such that mk is the branching index of points of
Lk�1. Then the rooted tree is uniquely determined, up to an isomorphism
by the sequence κ.

Namely, let X � pX1, X2, . . .q be a sequence of finite sets. Denote Xn �
X1 �X2 � � � � �Xn for n ¥ 1, and X0 � t∅u. Let X� �

�8
n�0 X

n. The set
X� has a natural structure of a rooted tree, where a vertex x1x2 . . . xn P Xn

is connected to the vertices of the form x1x2 . . . xna for a P Xn�1. The
vertex ∅ is the root. Every spherically homogeneous tree of branching index
p|X1|, |X2|, . . .q is isomorphic to X�.
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Note that for every vertex v P Xn the tree pX�qv is isomorphic to pXnq
�,

where Xn � pXn�1, Xn�2, . . .q, and that the boundary BX� is naturally home-
omorphic to the direct product Xω �

±8
n�1Xn, where the homeomorphism

maps a sequence x1x2 . . . P Xω to the path p∅, x1, x1x2, x1x2x3, . . .q P BX
�.

The space Xω has a unique AutX�-invarian probability measure equal to the
direct product of the uniform distributions on Xn.

Special examples of spherically homogeneous trees are regular rooted
trees, i.e., trees in which the branching indices are the same for all vertices.
Every regular rooted tree is isomorphic to the tree X� for a constant sequence
X � pX,X, . . .q. In this case we identify X with X, and consider X� as the
set of all finite words over the alphabet X (i.e., the free monoid generated by
X). A vertex v P X� is connected to every vertex of the form vx for x P X.

Let g be an automorphism of the spherically homogeneous tree X�, where
X � pX1, X2, . . .q, and let v P X1 � X2 � � � � � Xn be a vertex of the nth
level. Then there exists a unique automorphism g|v of the tree X�n satisfying

gpvwq � gpvqg|vpwq

for every w P X�n. We call g|v the section of g in v. It is easy to see that
sections satisfy the following conditions

(2.4) g|v1v2 � g|v1 |v2 , pg1g2q|v � g1|g2pvqg2|v.

Every automorphism g P AutX� can be uniquely described by the map
x ÞÑ g|x and the permutation α P SpX1q it defines on the first level. Namely,
we have

gpxwq � αpxqg|xpwq

for every w P X�1 . The map x ÞÑ g|x is an element of the direct power
pAutX�1q

X1 , and we get a map g ÞÑ α � pg|xqxPX1 from AutX� to the semidi-
rect product SpX1qn pAutX�1q

X1 . Properties (2.4) imply that this map is a
homomorphism. It easily follows from the definitions that it is a bijection,
i.e., an isomorphism. This isomorphism is called the wreath recursion, since
the semidirect product SpX1qn pAutX�1q

X1 is, by definition, the (permuta-
tional) wreath product of SpX1q with AutX�1 .

If the alphabet X1 is identified with the set t1, 2, . . . , |X1|u (or, some-
times, t0, 1, . . . , |X1|�1u, then we write the elements of the wreath product
as αpg1, g2, . . . , g|X1

q, where gi � g|i.

Example 2.4.1. The wreath recursion notation can be used to give recur-
rent definitions of automorphisms of trees. For example, let X � t0, 1u, and
let σ be the transposition p0, 1q. Then there exists a unique automorphism
a of the rooted tree X� such that its image under the wreath recursion is
σpId, aq. By definition, it acts on the words v P X� by the recurrent rules:

ap0wq � 1w, ap1wq � 0apwq.
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We will write such recurrent definition just a � σpId, aq or a � σp1, aq, iden-
tifying automorphisms of trees with their images under the wreath recursion
isomorphism.

2.4.2. Group actions on rooted trees. Let G be a group acting on
a locally finite rooted tree T . Its nth level stabilizer is the subgroup of
elements acting trivially on the nth level Ln of the tree. We denote it
StabnpGq. The quotientG{StabnpGq is naturally isomorphic to the subgroup
of SpLnq consisting of permutations defined by elements of G on Ln. If
the action G y T is faithful, then every element g is uniquely determined
by the sequence pα1, α2, . . .q of permutations it defines on the levels of the
tree T , i.e., the natural homomorphism G ÝÑ

±
n¥1 SpLnq is injective. In

particular, G is residually finite.

Every group element g P G maps a point pv0, v1, . . .q P BT to the point
pgpv0q, gpv1q, . . .q P BT , thus we get a natural action of G on BT . This action
is an action by homeomorphisms, since gpTvq � Tgpvq.

An action Gy T is said to be level-transitive if its is transitive on every
level Ln of the tree T . If the action is level-transitive, then the tree T is
spherically homogeneous, hence isomorphic to the tree X� for some sequence
X � pX1, X2, . . .q of finite sets.

Proposition 2.4.2. Let Gy T be an action by automorphisms on a rooted
tree. Then the following conditions are equivalent:

(1) The action Gy T is level-transitive.

(2) The action Gy BT is topologically transitive.

(3) The action Gy BT is minimal.

Proof. Suppose that G y T is level transitive. Let ξ P BT and let v be a
vertex of T . Then the path ξ contains a vertex v1 on the same level as v, so
there exists g P G such that gpv1q � v. But then gpξq P BTv, which shows
that the orbit of ξ intersects every set of the form BTv, hence it is dense in
BT , and Gy BT is minimal.

Minimality implies topological transitivity, so it is enough to show that
topological transitivity implies level-transitivity. Let v1, v2 be two vertices
of the same level. By topological transitivity, there exists g P G such that
gpBTv1q X BTv2 � H. We have gpBTv1q � BTgpv1q. Since gpv1q and v2 belong
to the same level, the sets BTgpv1q and BTv2 are either disjoint or coincide.
Since they have a non-empty intersection, they coincide, but this implies
gpv1q � v2, which shows that Gy T is level-transitive. �

Proposition 2.4.3. Let G y T be a level-transitive action (not necessar-
ily faithful), and let w P BT . Then the kernel of the action is equal to�
gPG g

�1Gwg.
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Proof. We have g�1Gwg � Gg�1pwq, hence the elements of XgPGg
�1Gwg

fix the G-orbit of w pointwise. Since the action G y BT is minimal, this
implies that they act trivially on BT , hence trivially on T . �

If the actionGy T is level-transitive, then for every v P Ln the stabilizer
Gv has index |Ln| in G. Note also that if w � pv0, v1, . . .q P BT is a simple
path starting in the root, then we have G � Gv0 ¥ Gv1 ¥ Gv2 ¥ . . ., and
rGvn : Gvn�1s is equal to the branching index of vertices of the nth level.
The intersection

�
n¥1Gvn is equal to the stabilizer of w.

Conversely, if G0 � G ¥ G1 ¥ G2 ¥ � � � is a sequence of subgroups of
finite index, then we can construct a spherically homogeneous tree T and
an action of G on it such that each subgroup Gn is the stabilizer of a vertex
vn of a path pv0, v1, . . .q P BT . Namely, define the nth level Ln of the tree
T as the set of cosets G{Gn, and connect two cosets gGn and hGn�1 by an
edge if and only if gGn ¥ hGn�1. We leave it as an exercise for the reader
to prove that we really get a rooted tree and that the natural actions of G
on the sets of cosets G{Gn define a level transitive action of G on T , and
that Gn is the stabilizer of the vertex vn equal to the coset 1Gn. We call T
the coset tree for the chain G ¥ G1 ¥ G2 ¥ . . ..

Theorem 2.4.4. Let G be a countable group. Then the following conditions
are equivalent.

(1) There exists a faithful action of G on a rooted tree.

(2) There exists a faithful level-transitive action of G on a rooted tree.

(3) The group G is residually finite.

Proof. If there exists a faithful action of G on a rooted tree, then the level
stabilizers StabnpGq are finite index subgroups such that the intersection�8
n�0 StabnpGq is trivial, which proves that G is residually finite. This shows

that (1) or (2) implies (3).

If G is residually finite and countable, then there exists a descending
sequence G � G0 ¥ G1 ¥ G2 ¥ . . . of finite index normal subgroups with
trivial intersection. Consider the action of G on the associated coset tree.
It is level-transitive, and Gi is equal to the ith level stabilizer, hence the
action is faithful. We proved that (3) implies (1) and (2). �

2.4.3. Action of cyclic groups of tree automorphisms. According to
Proposition 2.4.2 an action of an automorphism g of a rooted tree T on the
boundary BT is minimal if and only if the action of g is transitive on the
levels of T .

The following is straightforward.
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Lemma 2.4.5. Let X� be a level-homogeneous tree defined by a sequence
X � pX1, X2, . . .q. An automorphism g of T is level-transitive if and only

if for every n the section g|X1�����Xn||v acts transitively on Xn�1, where
v P X1 �X2 � � � �Xn is arbitrary.

There is a particular class of automorphisms of rooted trees for which it
is easy to decide if they are level transitive or not.

Consider the sequence X � pZ{d1Z,Z{d2Z, . . .q of alphabets identified
with cyclic groups. We say that an automorphism g of the rooted tree X�

acts by cyclic permutations at vertices if for every v P X� the action of g|v
on the first level Z{d|v|�1Z is by x ÞÑ x� a for some a P Z{d|v|�1Z. The set
of all such automorphisms is a group isomorphic (basically, by definition) to
the infinite wreath product on¥1Z{dnZ see....

If g P on¥1Z{dnZ, then we denote by αnpgq, for n � 0, 1, . . ., the sum°
vPXn av, where av P Z{dn�1Z are such that g|vpxq � x � av for every

x P Z{dn�1Z. Denote αpgq � pα0pgq, α1pgq, . . .q. It is easy to check that
α : on¥1Z{dnZ ÝÑ

±
n¥1pZ{dnZq is a homomorphism of groups. In fact, it

is the abelianization homomorphism.

Proposition 2.4.6. An automorphism g P on¥1Z{dnZ of X� is level-transitive
if and only if αnpgq is a generator of Z{dn�1Z for every n ¥ 0.

Proof. A direct corollary of Lemma 2.4.5. �

Let g be an automorphism of an arbitrary locally finite rooted tree T .
Let xgyzT be the graph whose vertices are g-orbits of the action on the set
of vertices of T , and where two vertices are connected by an edge if and
only if the corresponding orbits contain vertices connected by an edge in T .
Note that every g-orbit belongs to one level of T , hence the vertices of xgyzT
are also naturally partitioned into levels, and vertices connected by an edge
belong to neighboring levels. Since every vertex of T except for the root is
connected to a unique vertex of the previous level, the same is true for the
graph xgyzT , hence it is also a tree. Let us label the vertices of xgyzT by the
cardinalities of the corresponding orbits. The obtained rooted labeled tree
is called the tree of orbits of g.

The following is proved in ...

Theorem 2.4.7. Two automorphisms g1, g2 of a rooted tree T are conjugate
in AutT if and only if their trees of orbits are isomorphic. In particular,
any two level-transitive automorphisms of T are conjugate.

Each point of the boundary of xgyzT is an infinite rooted path in the tree
of orbits, and its preimage in T is a g-invariant rooted subtree of T on which
g acts level-transitively. The boundary of this subtree is a minimal closed
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g-invariant subset of BT . We see that BT is decomposed into a disjoint union
of closed minimal g-invariant subsets, and the boundary of the tree of orbits
xgyzT can be interpreted as the set of minimal closed g-invariant subsets of
BT .

The action of Z on the coset tree of a sequence Z ¥ d1Z ¥ d1d2Z ¥
d1d2d3Z ¥ . . . is level-transitive for every sequence di of positive integers.
The branching index of a vertex of the nth level of this tree is equal to
dn�1. It follows that every level-transitive cyclic group of automorphisms of
a rooted tree is conjugate by an isomorphism of rooted trees with the action
of Z on some of its coset trees.

2.4.4. Residually finite actions. Actions of groups on boundaries of
rooted trees can be characterized in purely topological terms in the following
way.

Definition 2.4.8. A group action G y X on a Cantor set X is said to be
residually finite if the G-orbit of every clopen subset of X is finite.

The following is proved in [GNS00, Proposition 6.4].

Theorem 2.4.9. An action G y X on a Cantor set is residually finite
if and only if it is topologically conjugate to the action G y BT for some
action of G by automorphisms of a rooted tree T .

Proof. Let us prove at first the following lemma.

Lemma 2.4.10. Let G y X be a residually finite action. Then for every
finite clopen cover of X there exists a subordinate finite G-invariant clopen
partition of X .

Proof. Since the G-orbit of every clopen set is finite, every finite clopen
cover F is contained in a G-invariant finite clopen cover F1. Consider the
Boolean algebra generated by F1 (for the usual set-theoretic operations).
It is finite, and is equal to the set of all unions of its atoms. The set of
all atoms will be a finite clopen partition of X . It is G-invariant, since the
algebra is G-invariant. �

Let U � tU1, U2, . . . , u be a countable basis of topology on X . Define
inductively G-invariant partitions Ln of X into clopen subsets in the fol-
lowing way. Set L0 � tX u. If Ln, for n ¥ 0, is defined, consider the set
L1n�1 � Ln Y tUn�1u, and find a finite clopen G-invariant partition Ln�1

subordinate to L1n�1, which exists by Lemma 2.4.10.

The partition Ln�1 is a refinement of Ln, and the set Un�1 is a union
of elements of Ln�1. It follows that

�8
n�0 Ln is a basis of topology on

X . Consider the ordering of
�8
n�0 Ln by inclusion, and let T be the Hasse
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diagram of the ordering. Since Ln�1 is a refinement of Ln for every n, the
diagram T is a rooted graph. We have V1 ¨ V2 if and only if V1 � V2.

The group G acts on T , since the sets Ln are G-invariant. The action
is faithful, since the union of the sets Ln is a basis of topology on X , and
the action Gy X is faithful. Every point w P BT is a sequence pU0, U1, . . .q
of elements of Li such that Ui�1 � Ui. Since each cover Ln is disjoint, and
their union is a basis of topology, the intersection

�
n¥0 Un is a singleton,

which we will denote ψpwq. We get a map ψ : BT ÝÑ X . It is easy to see
that it is G-equivariant. We leave it to the reader as an exercise to show
that ψ is a homeomorphism. �

Example 2.4.11. Let G be a profinite group, i.e., a compact group with a
basis of neighborhood of the identity consisting of subgroups of finite index.
A clopen subset U � G is hence a union of cosets giH of a subgroup H ¤ G
of finite index. It follows that every set of the form gU , g P G, is a union
of cosets of H. Consequently, the orbit of U is finite. It follows that if G
is homeomorphic to the Cantor set, then the action of G on itself by left
multiplication is residually finite, i.e., conjugate to an action of G on the
boundary of a rooted tree. Similarly, the action of any subgroup of G on G
is residually finite.

Example 2.4.12. A particular instance of Example 2.4.11 is the odometer
or adding machine action defined in 1.1.4. It is the action of Z on the
profinite group Z2 of dyadic integers. The corresponding action on the
tree can be defined as the action on the coset tree defined by the sequence
Z ¡ 2Z ¡ 22Z ¡ 23Z ¡ . . ..

Another classical description of residually finite actions uses the notion
of an equicontinuous action.

Definition 2.4.13. An action Gy X of a group on a metric space is said to
be equicontinuous if for every ε ¡ 0 there exists δ ¡ 0 such that if dpx, yq   δ
for x, y P X , then dpgpxq, gpyqq   ε for all g P G.

Note that equicontinuity depends only on the uniformity defined by the
metric. In particular, if X is compact, then it does not depend on the choice
of the metric. Any action by isometries is obviously equicontinuous. On the
other hand, an expansive action is not equicontinuous.

Proposition 2.4.14. An action G y X of a group on a Cantor set is
residually finite if and only if it is equicontinuous.

Proof. Since the Cantor set is compact, equicontinuity does not depend on
the choice of the metric. In particular, we may assume that the metric d
is an ultrametric, i.e., that it satisfies dpx, zq ¤ maxpdpx, yq, dpy, zqq for any



2.4. Groups acting on rooted trees 171

x, y, z P X (for instance, the classical metric ... is an ultrametric). Define
dGpx, yq � supgPG dpgpxq, gpyqq. Since X is compact, dGpx, yq is bounded.
We also have for any x, y, z P X :

dGpx, zq � sup
gPG

dpgpxq, gpzqq ¤ sup
gPG

maxpdpgpxq, gpyqq, dpgpyq, gpzqqq

� max

�
sup
gPG

dpgpxq, gpyqq, sup
gPG

dpgpyq, gpzqq

�
� maxpdGpx, yq, dGpy, zqq,

i.e., dG is an ultrametric.

For every ε ¡ 0 there exists δ ¡ 0 such that if dpx, yq   δ, then dGpx, yq  
ε. We also have dGpx, yq ¥ dpx, yq for all x, y P X . It follows that d and dG
define the same topologies on X .

It follows from the definition of an ultrametric that if dGpx, yq   ε, then
the open balls of radius ε with centers in x and y coincide. In other words,
two open balls of radius ε either coincide or are disjoint. Moreover, two
balls of different radii either are disjoint or one is a subset of the other. In
particular, the set of all open balls of radius ε is finite. The metric dG is
G-invariant, so G permutes the balls of a given radius. Also not that every
clopen subset of X is a finite union of open balls. Consequently, the G-orbit
of every clopen set is finite. �

2.4.5. Graphs of action. Let G be a group acting on a rooted tree T ,
and let S be a finite generating set of G. The group G acts by permutations
on each of the levels Ln of the tree T . Denote by Γn the graph of the action.
If the action is level-transitive, then Γn is the Schreier graph of G modulo
the stabilizer of a point of Ln.

Let pn : Ln�1 ÝÑ Ln be the natural map defined by the condition
that pnpvq is the parent of v (i.e., the unique vertex of Ln such that the
path connecting the root with v passes through pnpvq). The following is
straightforward.

Lemma 2.4.15. The map pn : Ln�1 ÝÑ Ln extended to the sets of edges
of Γn by the rule pnps, vq � ps, pnpvqq is a covering of labeled graphs.

We get thus an inverse sequence of coverings of finite graphs

Γ0
p0ÐÝ Γ1

p1ÐÝ Γ2
p2ÐÝ � � �

The inverse limit of this sequence is the graph of the action of G on the
boundary BT of the tree.

Example 2.4.16. Consider the adding machine action of Z on the coset tree
of the sequence Z ¡ 2Z ¡ 22Z ¡ 23Z ¡ . . ., and the generating set S � t1u
of Z. Then the graphs Γn are cycles of 2n vertices coinciding with the Cayley
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Figure 2.20. Odometer graphs

graphs of the cyclic groups Z{2nZ. The coverings pn : Γn�1 ÝÑ Γn are the
natural double covering maps x ÞÑ x : Z{2n�1Z ÝÑ Z{2nZ, i.e., the natural
epimorphisms from Z{2n�1Z to Z{2nZ. See the graphs Γn for n � 1, 2, 3, 4
on Figure 2.20.

We see that the inverse limit of the graphs Γn, i.e., the graph of the
action of Z on the boundary Z2 of the coset tree coincides with the Smale-
Williams solenoid described in 1.1.4.

The abstract connected components of the inverse limit are the orbital
graphs of the action of G on BT .

Proposition 2.4.17. Let pv0, v1, . . .q be a path representing a point w P BT ,
where vn P Ln. Then the rooted graph Γw of the action of G on the orbit of
w is isomorphic to the limit of the rooted orbital graphs Γvn of the action of
G on the orbit of vn.

Proof. If g P G fixes w, then it fixes vn for every n. On the other hand, if
g P G moves w to a different point of the boundary, then there exists n such
that gpvnq � vn. �

Conversely, suppose that

Γ0
p0ÐÝ Γ1

p1ÐÝ Γ2
p2ÐÝ � � �

is a sequence of perfectly labeled by a set S graphs and covering maps, such
that Γ0 has one vertex. Let G be the group defined by the disjoint union of
the graphs Γn (see 2.1.1). Consider the tree T whose set of vertices is the
disjoint union of the sets of vertices of the graphs Γn, and where a vertex
v P Γn�1 is connected to the vertex pnpvq. Then T is a tree and G acts on
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it by automorphisms. The graph Γn is the graph of the action of G on the
nth level of the tree.

Example 2.4.18. Consider the punctured plain M � Czt0,�1u. Check
that for fpzq � z2�1 we have f�1pMq �M, and that fn : f�npMq ÝÑM
are covering maps. Choose a point t P M, and consider two generators a
and b of the fundamental group π1pM, tq, which are loops going around 0
and �1. Let Γ0 be the graph with one vertex t and two loops a and b, labeled
accordingly. Then f : f�npMq ÝÑ f�pn�1qpMq restricts to a covering map
of labeled graphs Γn ÝÑ Γn�1, where Γn � f�npΓ0q. The obtained sequence
of graphs and maps defines a group acting on a binary rooted tree, called
the iterated monodromy group of z2� 1. We will study iterated monodromy
groups in Chapter 4.

Example 2.4.19. This is an example from ... Consider the left Cayley
graph K of the free product G � xa, b, c | a2 � b2 � c2 � 1y � C2 � C2 � C2

with the labeling of the edges by the generators a, b, c. Choose a bijection
nØ en of the set of edges of K with natural numbers. We will construct a
sequence of subtrees of K spanned by finite subsets An � T in the following
recurrent way. Let A0 � t1u. If An is defined, then let emn � pgn, xngnq for
g P G and x P ta, b, cu be the edge connecting a vertex of An with a vertex
not in An with the smallest possible m. Then define An�1 � AnYA

�1
n xngn,

see Figure... Let Γn be the graph obtained from the tree spanned by An by
attaching the necessary loops to the leaves, so that we get a graph perfectly
labeled by ta, b, cu. We have then natural covering maps pn : Γn�1 ÝÑ Gn
folding the edge emn into a loop, and mapping to the vertex h P An the
vertices h and h�1xngn of An�1.

We get hence an action of G on a binary rooted tree defined by the
sequence of graphs and coverings pn�1 : Γn�1 ÝÑ Γn. One of the ends of
this rooted tree is the constant sequence 1, 1, . . . of identity element of G.
Since all edges of K are eventually included into Γn, the orbital graph of
this end coincides with the Cayley graph K of the group G. In particular,
the action of G on the binary rooted tree is faithful. Note that this proves
that G is residually finite.

2.4.6. Finite-state automorphisms of rooted trees.

Definition 2.4.20. An automaton A � pX,Y, Q, q0, π, λq is said to be syn-
chronous if the values of the output function λpq, xq is always a single-letter
word, i.e., if λ is a map from Q� X to Y.

It is easy to see that composition of two synchronous automata, as de-
fined in Proposition 2.3.5 is synchronous.

If the automaton is synchronous, then for every input word x1x2 . . . xn
and every state q P Q the output word λpq, x1x2 . . . xnq is a word y1y2 . . . yn
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of the length equal to the length of the input word. Moreover, the beginning
of length k of y1y2 . . . yn depends only on q and the beginning of the length
k of the input word x1x2 . . . xn. It follows that the map λpq, �q : X� ÝÑ Y�

is level-preserving morphism of rooted trees. If it is invertible, then it is an
isomorphism of the rooted trees.

Conversely, it is easy to see that every level-preserving morphism of
rooted trees X� ÝÑ Y� is defined by an initial synchronous automaton. The
group of all automorphisms of the rooted tree X� is therefore isomorphic
to the group of all invertible transformations defined by synchronous au-
tomata with the input and output alphabet X. A synchronous automaton
pX, Q, q0, π, λq defines an invertible transformation (of X� or, equivalently,
of Xω) if and only if for every state q accessible from q0 (i.e., such that
q � πpq0, vq for some v P X�) the transformation x ÞÑ λpq, xq is a permuta-
tion of X, see...

The set of all automorphisms X� ÝÑ X� defined by finite synchronous
automata is a group, which we call the group of finite-state automorphisms
of the tree, or the group of finite synchronous automata over the alphabet
X.

Examples of groups that can be embedded into the group of finite syn-
chronous automata....

Example 2.4.21. Free abelian groups...

Example 2.4.22. Linear groups...

Example 2.4.23. Free groups (Aleshin and Belaterra examples)...

2.4.7. Self-similar groups. Refer to [Nek05]...

Definition 2.4.24. Let X be a finite alphabet. A faithful action of a group
G y X� on the rooted tree X� is self-similar if for every g P G and x P X
the element g|x belongs to G.

Recall that g|x is the automorphism of X� uniquely determined by the
condition that

gpxvq � gpxqg|xpvq

for all v P X�, see 2.4.1.

Suppose that Gy X� is self-similar. We can interpret then G as the set
of states of an automaton with the output function λpg, xq � gpxq and the
transition function πpg, xq � g|x. Then the action of the automaton with
the initial state g on finite words coincides with the original action of g P G.
We call this automaton the full automaton of the action.
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Example 2.4.25. The full automorphism group AutX� of the rooted tree
X� is obviously self-similar. In particular, the section g|v is defined for any
g P AutX�.

Example 2.4.26. A subset S � AutX� is self-similar if g|x P S for every
g P S and x P X. If S is self-similar, then the group generated by S is
self-similar.

Self-similar sets are basically the same as invertible non-initial automata.
So, if A � pX, Q, π, λq is an invertible non-initial automaton, then the group
generated by the initial automata Aq � pX, Q, q, π, λq for all q P Q is self-
similar. This is a standard method of defining self-similar groups, especially
if the automaton A is finite. Self-similar groups obtained this way are called
sometimes automaton groups.

Example 2.4.27. Aleshin free group?...

2.4.8. Wreath recursion. Let H y X be a group acting on a set, and
let G be a group. The permutational wreath product of the action H y X
and the group G is the semidirect product H n GX, where H acts on GX

by permuting the coordinates by the action H y X. It is usually denoted
G oXH, though sometimes there is inconsistency in the order of the factors.

In particular, if H is the symmetric group SpXq, then we have the natural
permutational wreath product SpXqnGX. We leave the next proposition as
an exercise for the readers.

Proposition 2.4.28. Let G y X� be a self-similar action. For g P G, let
σg P SpXq be the action of g on the first level X � X� of the tree. Then the
map

ψ : g ÞÑ pσg, pg|xqxPXq

is a homomorphism ψ : G ÞÑ SpXq n GX. Here pg|xqxPX is considered to
be an element of GX (as the function x ÞÑ g|x). The homomorphism ψ is
injective.

Definition 2.4.29. The homomorphism from Proposition 2.4.28 is called
the wreath recursion associated with the self-similar group.

Wreath recursions are convenient compact ways of describing the au-
tomaton generating a self-similar group. The values of the wreath recur-
sion on the generators uniquely determine the wreath recursion, hence they
uniquely determine the action of the group on the first level, and the sections
of the elements, i.e., they completely determine the output and transitions
in the full automaton of the action. Therefore, every finitely generated self-
similar group is uniquely determined by a finite collection of equalities of
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the form $'''&'''%
ψps1q � σ1pg1,1, g2,1, . . . , gd,1q
ψps2q � σ2pg1,2, g2,2, . . . , gd,2q

...
ψpskq � σkpg1,k, g2,k, . . . , gd,kq,

where ts1, s2, . . . , sku is a generating set of the group, σi P Spdq, and gi,j are
elements of the group, i.e., products of the generators si and their inverses.
Here we identify X with t1, 2, . . . , du, and write the elements of GX as ordered
strings of elements of G. Sometimes we identify X with t0, 1, . . . , d� 1u.

2.4.9. Weakly branch groups.

Definition 2.4.30. Let Gy T be an action on a rooted tree. For a vertex
v P T , the rigid stabilizer Grvs is the group of elements g P G acting trivially
on the complement of Tv. The nth level rigid stabilizer RistnpGq is the group
generated by

�
vPLn

Grvs.

Note that RistnpGq is naturally isomorphic to the direct product
±
vPLn

Grvs,
since Grv1s and Grv2s commute if v1 and v2 are incomparable. Note also
that Grvs � GrBTvs, where GrBTvs is defined for the action G y BT as in
Definition 2.2.1. The nth level rigid stabilizer RistnpGq is a normal subgroup
of G.

Definition 2.4.31. A subgroup G ¤ AutT is weakly branch if it is level-
transitive and Grvs is non-trivial for every vertex v. It is called branch if
RistnpGq has finite index in G for every n.

A level-transitive action is weakly branch if and only if it is level transi-
tive and localizable in the sense of Definition 2.2.1.

Example 2.4.32. The group of all automorphisms of a level-transitive tree
is obviously branch, since in this case the level stabilizers coincide with the
rigid level stabilizers.

Example 2.4.33. This example is a particular case of a construction by
Peter Neumann... Let A be a transitive subgroup of SpXq. Suppose that
the stabilizers Ax of points x P X are perfect, i.e., that rAx, Axs � Ax. Also
suppose that the union of the subgroups rAx1 XAx2 , Ax1 XAx2s for x1 � x2

generates A. For instance, we can take A � ApXq for |X| ¥ 6.

For every g P A and a P X such that gpaq � a, define an automorphism
tpa,gq of the tree X� by the recurrent rules

tpa,gqpxvq �

"
atpa,gqpvq if x � a,

gpxqv otherwise.

Let PA be the group generated by all the elements tpa,gq.
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Let us show that PA is branch. Let h1, h2 P Ax1XAx2 for x1 � x2. Then
it is easy to check that rh1, h2s changes only the first letter of every word
v P X�. Since the derived subgroups of Ax1 X Ax2 for all x1 � x2 generate
A, we conclude that PA contains the group acting as A on the first letter,
and not changing the remaining letters. We identify this group with A. It
follows that PA contains the elements g�1tpa,gq, which act identically on the
first level and all subtrees xX� for x � a, and as tpa,gq on the subtree aX�.

Conjugating the elements g�1tpa,gq by elements of A, we conclude that the
first level stabilizer of PA coincides with the first level rigid stabilizer, and
is naturally identified with PX

A. This proves by induction that all rigid level
stabilizers in PA coincide with the corresponding level stabilizers, hence PA
are brach.

Example 2.4.34. As an example of a weakly branch group, consider the
group G (isomorphic to IMG

�
z2 � 1

�
, see...) generated by two automor-

phisms a, b of the binary tree X� � t0, 1u� satisfying the conditions

a � σp1, bq, b � p1, aq,

see Example 2.4.1 and a comment before it for an explanation of this nota-
tion.

Note that as a2 � pb, bq, b � p1, aq, a�1ba � pa, 1q, the restriction of
the first level stabilizer to the subtrees 0X� and 1X� contains G, and hence
coincides with G. We have ra2, bs � p1, rb, asq. Conjugating ra2, bs by all
elements of the first level stabilizer, we will get all elements of the form
p1, rb, asgq for g P G. It follows that rG,Gs contains p1, rG,Gsq. Conjugating
by a, we conclude that rG,Gs contains prG,Gs, 1q, hence rG,Gs contains the
subgroup rG,Gs � rG,Gs of the first level rigid stabilizer. We conclude by
induction that the derived subgroup rG,Gs contains the subgroup rG,GsX

n

of the nth level rigid stabilizers, hence all rigid stabilizers are non-trivial,
and the group G is weakly branch.

Example 2.4.35. Let us analyze in a similar way the group G (isomorphic
to IMG

�
z2 � i

�
, see...) generated by the elements

a � σ, b � pa, cq, c � pb, 1q.

We have the following elements of the first level stabilizer: b � pa, cq, c �
pb, 1q, ca � p1, bq, which, in the same way as in the previous example shows
that restrictions of the first level stabilizer to the subtrees 0X� and 1X�

coincide with G. Let N be the normal closure of tra, bs, rb, csu, i.e., the group
generated by the union of the conjugacy classes of these two elements. We
have rb, cs � pra, bs, 1q, rba, cs � prc, bs, 1q. Note that rba, cs belongs to N ,
since commutation of b with a and c implies rba, cs � rb, cs � 1. In the
same way as in the previous example, we conclude that N contains N �N ,
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and hence the nth level rigid stabilizer contains NXn
. Let us show that

G{N is finite, which will imply that G is branch. It is easy to see that
a2 � b2 � c2 � 1. As b commutes with a and c, we can write every element
of G modulo N as a product of the form gb or g for g P xa, cy. But it is
checked directly that pacq4 � 1 in G, hence the group xa, cy is of order 8. It
follows that G{N is at most of order 16.

We will see more examples of branch and weakly brach groups later...

2.4.10. Normal subgroups. The following is a direct corollary of Propo-
sition 2.2.4.

Proposition 2.4.36. Suppose that G ¤ AutT is weakly branch, and let
N be a non-trivial normal subgroup of G. Then there exists n such that
rRistnpGq,RistnpGqs ¤ N .

Note that it follows that if rRistnpGq,RistnpGqs has finite index in G
(equivalently, in StabnpGq) for every n, then every proper quotient of G is
finite. Groups which have only finite proper quotients are called just-infinite.

We will see later that, for example, the Grigorchuk group ... is an
example of a branch just-infinite group.

Example 2.4.37. Let us show that the group from Example 2.4.35 is just-
infinite. We know that RistnpGq contains the subgroup NXn

, where N is
the normal closure of rb, as and rb, cs in G. We know that N has finite
index in G, so it is enough to show that rN,N s has finite index in N .
The group N is generated by conjugates of the elements ra, bs � abab and
rb, cs � bcbc. It is checked directly that pbcq4 � ppabq4, c4q � ppabq4, 1q and
pabq4 � pσpa, cqq4 � pca, acq2 � ppcaq4, pacq4q, and pacq4 � pσpb, 1qq4 �
pb, bq2 � 1, hence ra, bs2 � rb, cs2 � 1, so that N is generated by elements of
order 2, which implies that all elements of the abelian group N{rN,N s are
of order 2. The group N is finitely generated, since it has a finite index in
a finitely generated group G. Consequently, N{rN,N s is finitely generated
abelian in which all elements are of order two, hence it is finite.

Example 2.4.38. Not every branch group is just-infinite. For example,...

For more on just-infinite and branch groups, see [BGŠ03].

2.4.11. Rigidity. The following theorem is proved in [LN02, Proposi-
tion 6.2]. We use a shorter argument from [Röv99, Lemma 5.7]. See its
exposition in [Nek05, Theorem 2.10.1]. We also rewrite it in the spirit of
the proof of Theorem 2.2.12, and instead of just finding the homeomorphism
conjugating the actions, we show how the topological space (the boundary
of the tree) can be reconstructed from the algebraic structure of the group.
We hope that this makes the original proofs more natural.
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Theorem 2.4.39. Let Gi ¤ AutTi be weakly branch groups. Then every
isomorphism φ : G1 ÝÑ G2 is induced by a homeomorphism BT1 ÝÑ BT2.

Note that, contrary to what is said in [Nek05, p. 51], it actually seems
that Theorem 2.4.39 in its full generality does not follow from Rubin’s the-
orems [Rub89] directly.

Proof. Let G y X be a minimal localizable residually finite action on a
Cantor set.

Definition 2.4.40. Let G y X be a residually finite action on a Cantor
set. A basic clopen set is a subset U � X such that for every g P G either
gpUq � U or gpUq X U � H.

For example, if G y T is an action on a rooted tree, then for every
vertex v the subset BTv of BT is a basic clopen set. Note that it follows
from Lemma 2.4.10 that every clopen subset of X is a disjoint union of a
finite number of basic sets. In particular, the set of basic sets is a basis of
topology of X .

We want to characterize in purely group-theoretic terms all subgroups
of the form GrU s, where U is a basic clopen subset of X . Here, as in 2.2,
GrU s denotes the set of elements of G acting trivially on the complement of
U . If X � BT and G acts on the rooted tree T by automorphisms, then we
have Grvs � GrBTvs for vertices v of T .

Definition 2.4.41. We say that a subgroup H ¤ G is a basic subgroup if
the following conditions are satisfied.

(1) The number of subgroups of G conjugate to H is finite.

(2) Two subgroups conjugate to H commute if and only if they do not
coincide, if and only if their intersection is trivial.

(3) If h R H, then there exists g P G such that Hg � H and rHg
1 , hs � 1

for every finite index subgroup H1 of H.

Equivalently, we can define an abstract rigid stabilizer as a non-abelian
normal subgroupRCG together with a decompositionR � H1�H2�� � ��Hn

into a direct product of subgroups such that

(1) The group G acts transitively on the set of factors Hi by conjuga-
tion.

(2) For every j P t1, 2, . . . , nu and every finite index subgroups H̃i   Hi

the centralizer ZGp
±
i�j H̃iq is equal to Hj .

It is easy to see that H ¤ G is a basic subgroup if and only if it is a
factor of an abstract rigid stabilizer.
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Lemma 2.4.42. For every basic clopen subset V � BT the subgroup GrV s
is a basic subgroup.

Proof. We have gGrV sg�1 � GrgpV qs for every V � BT and g P G. Conse-
quently, the number of subgroups conjugate to GrV s is not more than the
size of the orbit of V , which is finite for every clopen subset V � BT . This
proves condition (1) of Definition 2.4.41.

The subgroups GrV s and GrgpV qs obviously coincide if V � gpV q. If
V � gpV q, then by definition of basic clopen subsets, V XgpV q � H, so GrV s
and GrgpV qs act on disjoint sets, hence they commute and their intersection
is trivial. On the other hand, for every non-trivial element g P GrV s there
exists a basic clopen set U � V such that gpUq X U � H, since the set of
basic sets is a basis of the topology of X . Let h P GrU s ¤ GrV s be any non-
trivial element (which exists, since G is weakly branch). Then rg, hs � 1, see
the proof of Lemma 2.2.15. It follows that rGrvs, Grvss � 1, which finishes
the proof of condition (2).

Suppose that h R GrV s. Then h moves a point of BT r V , hence there
exists a basic clopen set U such that hpUq � U , and pUYhpUqqXV � H. Let
V 1 be an element of the orbit of V such that V 1XU � H (which exists, since
we assume that the action of G on BT is level-transitive, hence topologically
transitive). Let g P G be such that gpV 1q � V . Then GrV sg � GrV 1s. Let
H1 be any finite index subgroup of GrV s. Then Hg

1 is a finite index subgroup
of GrV 1s. We want to show that rHg

1 , hs � 1. Let f be a non-trivial element
of GrV 1 X U s XHg

1 . It exists, since GrV 1 X U s ¤ GrV 1s is infinite, and Hg
1

has finite index in GrV 1s. Then rf, hs � 1, hence rHg
1 , hs � 1. �

Let H ¤ G be an arbitrary basic subgroup. Denote by LH the set
of subgroups of G conjugate to H. It is a finite set, by condition (1) of
Definition 2.4.41. Denote mH � |LH |. The group G acts on LH by conju-
gation. Denote by StabH the kernel of the action. It is the intersection of
the normalizers of the elements of LH . Denote by RistH the subgroup of G
generated by all conjugates of H. We have RistH � HmH . If H � Grvs,
then LH is the level of v, StabH is the level stabilizer, mH is the number of
the vertices in the level of v, and RistH is the rigid stabilizer of the level of
v.

We say that a subgroup H2 moves a subgroup H1 if there exists g P H2

such that Hg
1 � H1.

Lemma 2.4.43. Suppose that H1 and H2 are basic subgroups. If H2 moves
H1, then

H1 X StabH2 ¤ H2.
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Proof. Suppose that, on the contrary, there exists g P pH1 X StabH2qrH2.

Since g R H2, there exists f P G such that Hf
2 � H2 and rHf

2 XStabH1 , gs � 1

(see condition (3) of Definition 2.4.41). Let h1 P H
f
2 X StabH1 be such that

rg, h1s � 1.

We have rg, h1s � g�1 � h�1
1 gh1, and h1 P StabH1 , g P H1, hence rg, h1s P

H1.

Let h2 P H2 be such that Hh2
1 � H1. Then Hh2

1 X H1 � t1u, hence
rrg, h1s, h2s � 1.

On the other hand, rh1, H2s � 1, since h1 P Hf
2 and Hf

2 � H2. We

also have g P StabH2 , hence Hfg
2 � Hf

2 , hence hg1 P H
f
2 and rhg1, H2s � 1.

It follows that rg, h1s � g�1h�1
1 g � h1 commutes with H2. But h2 P H2, so

rrg, h1s, h2s � 1, which is a contradiction. �

Lemma 2.4.44. Let H1 and H2 be basic subgroups of G. If mH1 ¥ mH2,
then RistH1 ¤ StabH2.

Proof. Consider the actions of the conjugates Hh
1 of H1 on LH2 . If Hg

2 P
LH2 is moved by Hh

1 , then, by Lemma 2.4.43, we have

Hg
2 X StabHh

1
¤ Hh

1 .

Note that StabHh
1
� StabH1 and conjugates of H1 are disjoint when they

are not equal. It follows that if Hg
2 is moved by some conjugate of H1, it is

fixed by the other conjugates of H1. Since mH1 ¥ mH2 , it follows that there
exists a conjugate Hh

1 of H1 such that it fixes all subgroups Hg
2 , i.e., is such

that Hh
1 ¤ StabH2 . But since StabH2 is normal, we get Hh

1 ¤ StabH2 for all
h P G, hence RistH1 ¤ StabH2 . �

Corollary 2.4.45. Suppose that H1, H2 are basic subgroups, and suppose
that mH1 ¥ mH2. If H1 is moved by H2, then H1 ¤ H2.

We are ready now to show how to reconstruct G y BT from the group
structure of G. Consider the set of all infinite chains H1 ¡ H2 ¡ H3 ¡ . . . of
basic subgroups of G such that

�8
n�1 StabHn � t1u. (Note that we have then

mn Ñ8.) We introduce an equivalence relation on such chains, saying that

two chains H1 ¡ H2 ¡ H3 ¡ . . . and H̃1 ¡ H̃2 ¡ H̃3 ¡ . . . are equivalent if
and only if for every n there exists m such that Hn ¥ H̃m and H̃n ¥ Hm.
It is easy to see that this is an equivalence relation. Let X be the set of
equivalence classes. For a basic subgroup H, let CH � X be the set of all
equivalence classes of chains containing H.

The group G acts on chains by conjugation. This action obviously agrees
with the equivalence relation, so that we get an action of G on X . We also
have gpCHq � C

Hg�1 .
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Proposition 2.4.46. There is a G-equivariant bijection φ : BT ÝÑ X such
that for every vertex v of T we have φpBTvq � CGrvs, and for every vertex

subgroup H ¤ G the set φ�1pCHq is open.

Proof. Let ξ � pv0, v1, v2, . . .q be a point of BT . Define φpξq as the equiv-
alence class of the chain Grv0s ¡ Grv1s ¡ Grv2s ¡ . . .. Note that not two
such chains are equivalent to each other, hence we get an injective map
φ : BT ÝÑ X .

Suppose that H1 ¡ H2 ¡ H3 ¡ . . . be a chain representing an element
of X . Let vn be a vertex of nth level of the tree T , and let g P Grvns be
a non-trivial element. Then there exists m such that g R StHm . We will
have then g R StHk

for all k ¥ m, so we may assume that mHm is bigger
than the number of vertices of the nth level of T . Then there exists h P G
such that Hh

m is moved by g P Grvns, hence Hm is moved by Grhpvnqs.
Then Corollary 2.4.45 implies that Hm ¤ Grhpvnqs. We proved that there
exists a vertex un of the nth level such that Hm ¤ Gruns for all m big
enough. Note that the vertex un is uniquely defined by this condition, since
Gruns X Gru1ns � t1u for any two different vertices un, u1n of the nth level.
It is also clear that un�1 P Tun , so that we get a path pu0, u1, u2, . . .q P BT .

Let us show that the chains H1 ¡ H2 ¡ H3 ¡ . . . and Gru0s ¡ Gru1s ¡
Gru2s ¡ . . . are equivalent. By construction, we already have that for every
n there exists m such that Hm ¤ Gruns.

By the same argument as above, there exists a unique chain H̃1 ¡ H̃2 ¡
H̃3 ¡ . . . of basic subgroups H̃n P LHn such that Grums ¤ H̃n for all m big
enough. Then for all n and all m1,m2 big enough we have Hm2 ¤ Grum1s ¤

H̃n. Let k be the first index such that Hk � H̃k. Then rHk, H̃ks � 1, and

for all n1, n2 ¥ k we have rHn1 , H̃n2s � 1, since Hn1 ¤ Hk and H̃n2 ¤ Hn2 .

But this implies, by condition (1) of Definition 2.4.41, that Hn1X H̃n2 � t1u
for all n1, n2 ¥ k. This is a contradiction with the condition that for all n
and all m2 big enough we have Hm2 ¤ H̃n. It follows that Hn � H̃n for all
n, and since Grums ¤ Hn for all n and all m big enough, we proved that
H1 ¡ H2 ¡ H3 ¡ . . . and Gru0s ¡ Gru1s ¡ Gru2s ¡ . . . are equivalent.

We proved that φ : BT ÝÑ X is a bijection. Its equivariance is straight-
forward.

According to the given above description of equivalence of elements of
X to points of BT , the set φ�1pCHq � BT consists of sequences pu0, u1, . . .q
such that Grums ¤ H for all m big enough. Note that if Grums ¤ H, then
Grvs ¤ H for all v P Tum , hence the set CH is open. It follows from the
same description that φpBTvq � CGrvs, since Grv1s ¤ Grv2s is equivalent to
v1 P Tv2 . �
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It follows from Proposition 2.4.46 that the action G y BT can be re-
constructed from the structure of G. Namely, we consider the set X with
the topology given by the basis of open sets of the form CH for all basic
subgroups H. Then G y X is topologically conjugate to G y BT . This
finishes the proof of the theorem. �

Let us describe now a method of reconstructing the tree structure from
the action on the boundary of the tree.

Theorem 2.4.47. Let Gi y Ti, for i � 1, 2, be weakly branch actions of
groups on rooted trees. Suppose that φ : G1 ÝÑ G2 is an isomorphism (of
abstract groups), and there exist sequences H1,i ¥ H2,i ¥ . . . of subgroups of
Gi such that for every n we have Hn,i ¤ StabnpGiq, the group Hn,i acts level-
transitively on every subtree Ti,v for v in the nth level of Ti, and φpHn,1q �
Hn,2. Then the isomorphism φ is induced by an isomorphism T1 ÝÑ T2 of
trees.

Proof. We know that there exists a homeomorphism f : BT1 ÝÑ BT2 in-
ducing the isomorphism φ. Since the groups Hn,i act level-transitive on the
subtrees growth from the nth level, the set of minimal closed Hn,i-invariant
subsets of BTi is the set of boundaries BTi,v for v in the nth level of Ti. Since
φpHn,1q � Hn,2, and f is induced by φ, the homeomorphism φ maps BT1,v

to some BT2,u, where v, u are vertices of the nth level of the trees T1 and T2,
respectively. We get a map v ÞÑ u from the set of vertices of T1 to the set of
vertices of T2. It is easy to check that it is an isomorphism inducing φ. �

Corollary 2.4.48. Let Gy T be a weakly branch group action on a rooted
tree. Suppose that there exists a decreasing sequence of characteristic sub-
groups Hn ¤ G such that Hn ¤ StabnpGq and Hn acts level-transitively on
the subtrees Tv for all v in the nth level of T . Then every automorphism of
G is induced by an automorphism of T , i.e., the automorphism group of G
is its normalizer in AutT .

Example 2.4.49. Consider the group IMG
�
z2 � i

�
generated by

a � σ, b � pa, cq, c � pb, 1q,

see example 2.4.35. We know that it is branch. Define H0 � G, and define
Hn as the group generated by the squares of the elements of Hn�1. It is clear
that Hn ¤ Stabn and that they are characteristic. The group H1 contains
pabcq2 � pcab, abcq, pbcaq2 � pabc, cabq, and pcabq2 � pbca, abcq. It follows by
induction that the restriction of Hn to the subtrees of the nth level (after
their natural identification with X�) contain the elements abc, bca, cab. But
each of them is level-transitive. It follows that IMG

�
z2 � i

�
satisfies the

conditions of Corollary 2.4.48
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Example 2.4.50. Consider the following two groups Gi � xai, bi, ciy, for
i � 1, 2:

a1 � σp1, b1q, b1 � p1, c1q, c1 � p1, a1q,

and

a2 � σp1, b2q, b2 � p1, c2q, c2 � pa2, 1q.

They are iterated monodromy groups of two quadratic polynomials fpzq �
z2 � c such that f3p0q � 0.

It is not hard to check (similarly to Example 2.4.34) that for both of
these group the derived subgroup rGi, Gis contains rGi, Gis

X, so that they are
weakly branch. Similarly to the previous example, consider the subgroups
Hi,n defined inductively as the groups generated by the squares of the ele-
ments of Hi,n�1, where Hi,0 � Gi. Then Hi,n ¤ StabnpGiq, and we have that
H1,1 contains a2

1 � pb1, b1q, pa1b1q
2 � pb1c1, b1c1q and pa1c1q

2 � pb1a1, b1a1q.
It follows that the restriction of H1 to the trees of the first level contain
the group generated by b1, b1c1, b1a1, i.e., the whole group G1. By induc-
tion, the restrictions of Hn to the trees of the nth level are equal to G1,
hence are level transitive. The same is true for H2,n, since a2

2 � pb2, b2q,
pa2b2q

2 � pb2c2, b2c2q, and pa2c2q
2 � pb2c2, c2b2q.

It is clear that any isomorphism φ : G1 ÝÑ G2 must map H1,n to H2,n,
hence must be induced by an automorphism of X�. We will see later that
this is impossible, and thus prove that G1 and G2 are not isomorphic, see...

Proposition 2.4.51. Suppose that G1, G2 are groups acting faithfully on a
tree T . Suppose that the rigid stabilizers RistnpGiq act level-transitively on
all subtrees Tv such that v is in the nth level of T . Then any isomorphism
φ : G1 ÝÑ G2 is induced by an automorphism of T .

Proof. By Theorem 2.4.39, the isomorphism φ is induced by a homeomor-
phism f : BT ÝÑ BT . It follows from Lemma 2.4.44 that for every vertex v
of the nth level of the tree T we have φpG1rvsq ¤ StabnpG2q. By the condi-
tions of the proposition, G1rvs acts level-transitively on Tv. It follows that
the minimal closed G1rvs invariant subsets of BT are the set BTv and the
singletons outside of BTv. The homeomorphism f will map them to minimal
closed φpG1rvsq-invariant subsets. Since φpG1rvsq ¤ StabnpG2q, the set BTv
must be mapped into a set BTu for some vertex u of the nth level. We have
shown that for every vertex v of T there exists a vertex u of the same level
as v such that fpBTvq � BTu. Since f is a homeomorphism, and the sets
BTv for v in the nth level of T form a partition of BT , it follows that there
is a permutation fn of the nth level of T such that fpBTvq � BTfnpvq. It is
easy to see that the sequence fn defines an automorphism of T inducing f
on the boundary and the isomorphism φ : G1 ÝÑ G2. �
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Example 2.4.52. The full automorphism group AutT of a spherically ho-
mogeneous tree T satisfies the conditions of Proposition 2.4.51, hence every
automorphism of AutT is inner.

Example 2.4.53. Similarly, the P. Neumann’s groups 2.4.33 satisfy the
conditions of Proposition 2.4.51.

2.4.12. Free subgroups of groups acting on rooted trees. Every-
where in this subsection “free group” is “free non-abelian group”.

Since free groups are residually finite (see, for example Exercise 2.23),
we can use the construction of Theorem 2.4.4 to find a faithful action of
the free groups on rooted trees, namely the action on the coset tree of a
sequence G0 ¡ G1 ¡ G2 ¡ . . . of subgroups of finite index with trivial
intersection. For such an action the stabilizer of the point of the boundary
of the tree corresponding to the sequence of cosets 1Gn has trivial stabilizer.
Note that the points with trivial stabilizers are regular (see Definition 2.1.7).
Therefore, if the action on the tree is level-transitive, then the set of points
with trivial stabilizers is co-meager, see Proposition 2.1.18.

On the other hand, it is possible to construct a faithful action of the
free group without free orbits on the boundary. Take an arbitrary faithful
action τ : F y X� of the free group F on a regular rooted tree X� for some
alphabet X. (For example, the action from Example 2.4.19.) Consider the
action τn : F y X� given by the rule

τnpgqpvwq � gpvqw,

for every word v of length n. In other words, the action τn copies the
original action on the first n levels, and then extends them “rigidly”, by
acting identically on all letters beyond the n first ones. The image of F
under the action τn is finite. Choose two letters x, y P X, and define a new
action ψ : Gy X� of F on X� by the rules

ψpgqpynxwq � ynxτnpgqpwq,

and identically everywhere else. In other words, we “hang” the actions τn
along the path yω, as it is shown on Figure...

Then the F -orbit of every point of the boundary Xω of X� for the new
action is finite. But the action is faithful, since every element of F acts
non-trivially on some vertex of X� for the original action τ , hence it will act
non-trivially on points arbitrarily close to yω. In particular, the stabilizer
Fyω is the whole group F , whereas the germ stabilizer Fpyωq (see...) is trivial.

The next theorem shows that every faithful action of the free group on
a rooted trees contains actions similar to the above two types of actions.

Theorem 2.4.54. Let G ¤ AutT . Then one of the following cases takes
place.
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(1) The group G does not contain non-abelian free subgroups.

(2) There exists a non-abelian free subgroup F ¤ G and a point ξ P BT
such that Fξ is trivial.

(3) There exists a point ξ P BT and a non-abelian free subgroup F of
the group of germs Gx{Gpxq.

Note that the cases (2) and (3) are not mutually exclusive.

Proof. Suppose that the theorem is not true. Then there exists a group G
acting faithfully on a locally finite rooted tree T , containing free subgroups,
and such that the groups Gx{Gpxq do not contain free subgroups, and for
every free subgroup F ¤ G and every ξ P BT the stabilizer Fξ is non-trivial.

Choose a free subgroup F ¤ G. For every ξ P BT the stabilizer Fξ
is non-trivial. It is not cyclic, since otherwise we can find a free subgroup
F1   F having trivial intersection with Fξ, which is impossible by the choice
of G (as the stabilizer of ξ in F1 will be trivial).

It follows that the homomorphism Fξ ÝÑ Gx{Gpxq has a non-trivial ker-
nel, i.e., there exists g P F rt1u such that g acts trivially on a neighborhood
Uξ of ξ. We get a covering tUξu of a compact space BT , hence we can find
a finite cover U1, U2, . . . , Un of BT by open sets such that for every Ui there
exists gi P F r t1u acting trivially on Ui. Note that the set of all elements
of F acting trivially on U is a subgroup of F .

The F -orbits of Ui is finite, hence there exists a finite-index subgroup
F̃ of F such that F̃ leaves each of the sets Ui invariant. Since intersection
of any subgroup of finite index of F with any non-trivial subgroup of F is
non-trivial, for every Ui there exists g P F̃ acting trivially on Ui.

Let us prove the following classical fact...

Lemma 2.4.55. Let φ : F ÝÑ G1 �G2 � � � � �Gn be a homomorphism of
a free group to a direct product of groups. If composition of φ with every
projection Pi : G1 � G2 � � � � � Gn ÝÑ Gi has a non-trivial kernel, then φ
has a non-trivial kernel.

Proof. It is clear that it is enough to prove the lemma for n � 2. The
general case will follow by induction. Suppose that g1, g2 are non-trivial
elements of F such that φpg1q � p1, h1q and φpg2q � ph2, 1q. If one of hi is
trivial, then we are done. Otherwise, consider rg1, g2s. We have φprg1, g2sq �
rp1, h1q, ph2, 1qs � 1. If rg1, g2s � 1, then we are done. Otherwise, there
exists g P F such that g1 � gn1 and g2 � gn2 for some non-zero integers
n1, n2, see... Then gn2

1 � gn1
2 , hence p1, hn2

1 q � phn1
2 , 1q. But this implies

hn2
1 � 1 and hn1

2 � 1, hence φpgn2
1 q � 1. �



2.4. Groups acting on rooted trees 187

Consider now the homomorphism φ : g ÞÑ pg|U1 , g|U2 , . . . , g|Unq from

F̃ to the direct product of homeomorphism groups of the spaces Ui. By
the above, each coordinate of this homomorphism has a non-trivial kernel.
The homomorphism φ is injective, since the sets Ui cover BT . But this is a
contradiction with the lemma above. �

2.4.13. Example: almost finitary groups. Let X� be the tree of words
defined by the sequence X � pX1, X2, . . .q, see 2.4.1. Let µ be the AutX�-
invariant measure on the boundary Xω of the tree. It is defined by the
condition that the measure of the set of sequences with a given beginning
of length n is equal to |Xn|�1 � |X1|

�1|X2|
�1 � � � |Xn|

�1.

Definition 2.4.56. Let g P AutX�. Denote by Σg the set of points w �
x1x2 . . . P Xω such that for every n ¥ 1 the automorphism g|x1x2...xn of the
tree X�n is non-trivial. We say that g is almost finitary if Σg has measure
zero.

As a corollary of (2.4) in 2.4.1, we get that the set of all almost finitary
automorphisms of X� is a group.

If the set Σg is empty, then we say that g is finitary. If g is finitary,
then there exists n such that g|v � 1 for all v P Xn, by compactness of Xω.
Then the element g is uniquely determined by its action on the nth level
Xn of the tree X�. For a given n the set of such automorphisms is a group
isomorphic to the automorphism group of the finite subtree of X� consisting
of the levels Xk for k � 0, 1, . . . , n. The set of all finitary automorphism is
an increasing union of these finite groups.

Denote, for g P AutX� and n ¥ 0, by θgpnq the number of vertices
v P Xn of the nth level of T such that g|v is non-trivial. More generally, if T
is a rooted subtree of X� (i.e., a subtree containing the root of X�), then we
denote by θg,T pnq the number of vertices v of the nth level of T such that
g|v is non-trivial.

If T is a spherically-homogeneous tree, then we denote by mT the unique
AutT -invriant probability measure on the boundary BT of the tree. It is de-
fined by the condition that mT pBTvq is equal to the inverse of the cardinality
of the level of v.

Proposition 2.4.57. Let T be a spherically homogeneous rooted subtree of
X�, and let g P AutX�. Then

mT pΣg X BT q � lim
nÑ8

θg,T pnq

|Ln|
,

where Ln � T X Xn is the nth level of the tree T .
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Proof. The set Σg is closed in Xω, hence Σg X BT is closed both in BT and
Xω. A point ξ P BT belongs to Σg if and only if for every beginning v of ξ
we have g|v � 1. It follows that ΣgXBT is the intersection of the decreasing

set of clopen subsets Sn �
�
vPLnXT,g|v�1 BTv. We have mT pSnq �

θg,T pnq
|Ln|

,

by definition of the measure mT . The statement of the proposition follows
from continuity of measures. �

Definition 2.4.58. Let Γ be a graph of bounded valency. We say that Γ is
amenable if there exists a sequence of finite subsets An of the set of vertices
of Γ such that

lim
nÑ8

|BAn|

|An|
� 0,

where BA denotes the set of edges connecting a vertex in A to a vertex in
the complement of A.

Alternatively, we may define BA as the vertices of A adjacent to the
vertices in the complement of A. The definition will be equivalent to the
given above, since the valency of the vertices of Γ is assumed to be uniformly
bounded.

The next proposition is a particular case of a more general statement,
see [Kai01, GN05].

Proposition 2.4.59. Suppose that G is a finitely generated group, and let
T � X� be a G-invariant subtree such that the action of G on T is level-
transitive. Suppose that for every g P G we have mT pΣg X BT q � 0, where
mT is the G-invariant probability measure on BT . Then all orbital graphs
of the action of G on BT are amenable.

Proof. Let S be a finite generating set of G such that S � S�1. Let Γn
be the graph of the action of G on the nth level Ln of T (with respect
to the generating set S). Let Γ1n be the subgraph consisting of all edges
ps, vq P S � Ln such that s|v � 1. Note that if ps, vq P Γ1n, then the inverse
arrow ps�1, spvqq is also in Γ1n. The number of edges of Γn not included into
Γ1n is equal to

°
sPS θs,T pnq.

Let Φ1,Φ2, . . . ,Φk be the sets of vertices of the connected components
of Γ1n. Then

|BΦ1| � |BΦ2| � � � � � |BΦk| �
¸
sPS

θs,T pnq

and

|Φ1| � |Φ2| � � � � � |Φk| � |Ln|,

hence there exists in such that

|BΦin |

|Φin |
¤

°
sPS θs,T pnq

|Ln|
Ñ 0
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as nÑ8.

Consider an arbitrary orbital graph Γξ for the action G y BT . Since
the action Gy BT is minimal, there exists a vertex vnξ P BT of Γξ passing
through a vertex vn of Φin . Every vertex u of Φin can be reached from vn
by a path inside Γ1n. Taking a product of the generators along such a path,
we find an element g P G such that gpvnq � u and g|vn � 1. It follows
that gpvnξq � uξ. It also follows that the map u ÞÑ uξ is an isomorphic
embedding of Γ1n into Γξ. Let An be the image of Φin under this embedding.

Then |BAn| ¤ |BΦin |, |An| � |Φin |, hence |BAn|
|An|

Ñ 0 as nÑ8. �

Proposition 2.4.60. Suppose that G ¤ AutX� is such that Σg is countable
for every g P G. Then G has a free non-abelian subgroup if and only if
there exists a point w P BT such that the group of germs Gw{Gpwq has a free
non-abelian subgroup.

Proof. If Σg is countable, then mT pT X Σgq � 0 for every subtree of X�.
It is well known and easy to check that the Cayley graph of a free group
is non-amenable. Therefore, Proposition 2.4.59 eliminates the possibility of
a free subgroup of G with a free orbit on the boundary. Theorem 2.4.54
finishes the proof. �

Example 2.4.61. Consider the group IMG
�
z2 � 1

�
from Example 2.4.34.

It is easy to see that Σa � Σb is the singleton t1ωu, which implies that Σg is
finite for every g P G. One can also show that for every g P G there exists n
such that g|v P t1, a, b, a

�1, b�1, ab�1, ba�1u for all v P Xn. (It is enough to
check this for all elements of t1, a, b, a�1, b�1, ab�1, ba�1u � ta, b, a�1, b�1u.)
It follows that the groups Gw{Gpwq are trivial. Consequently, IMG

�
z2 � 1

�
has no free subgroups.

Example 2.4.62. The group IMG
�
z2 � i

�
from Example 2.4.35 also can

be analyzed in a similar way. We have Σa � H, Σb � tp10q8u, and Σc �
tp01q8u. We also have that for every g P G the sections g|v belong to the
set t1, a, b, cu for all v long enough. This can be used to show that Gw{Gpwq

is a group of order at most two.

Example 2.4.63. The following group from ... models the Hanoi tower
game. The game...

If ai,j is the move involving the pegs number i and j, then we have

ai,jpxvq �

$&%
jv if x � i,
iv if x � j,
xai,jpvq otherwise.

Denote by Hn the group generated by the transformations ai,j for all 1 ¤
i   j ¤ n. It is known that the orbital graphs of the action of Hn on Xω
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have sub-exponential growth (see...). In particular, Hn can not have a free
subgroup with a free orbit.

It follows from the definition of the generators that if ai,jpwq � w, then
for some long enough beginning v of w we have ai,j |v � 1 (namely v is the
beginning such that its last letter is the first occurrence of i or j in w). We
have ai,jpwq � w if and only if w does not have neither i nor j as its letters.
In this case ai,j |v � ai,j for all beginnings v of w.

Consequently, if g P Hn and gpwq � w, then for all long enough begin-
nings v of w the section g|v belongs to a group generated by elements ai,j
such that neither i nor j appears infinitely many times in w. Consequently,
for any subgroup G of Hn and any sequence w P Xω the group of germs
Gw{Gpwq is a quotient of a subgroup of Hm for m   n. Since H2 is a group
of order two, this gives us an inductive proof that Hn have no free subgroups.

2.4.14. Activity growth. Let g P AutX�, and denote θgpnq � |tv P Xn :
g|v � 1u|, see 2.4.13.

Definition 2.4.64. We say that g is of polynomial activity growth of degree
d if the sequence θgpnq is bounded from above by a degree d polynomial in
n.

Note that θg1g2pnq ¤ θg1pnq�θg2pnq and θg�1pnq � θgpnq. It follows that
the group of all automorphisms of g of degree d polynomial activity growth
is a subgroup of AutX�.

Denote by PdpXq the group of finite state automorphisms of X� with
degree d polynomial activity growth. For example P0pXq is the group of
bounded automata, i.e., finite state automorphisms g P AutX� such that
θgpnq is a bounded sequence. The groups PdpXq were defined and studied
for the first time by S. Sidki in [Sid00].

Let Ag be the automaton defining g, i.e., the automaton with the set of
states tg|v : v P X�u, initial state g, and the transition and output functions
πph, xq � h|x, λph, xq � hpxq. Then θgpnq is equal to the number of paths
of length n in the Moore diagram of A starting in the initial state of A and
not ending in the trivial state. If A is the adjacency matrix of the Moore
diagram, then θgpnq is equal to the sum of all but one entries in a column
of An. It follows that

θgpnq � v1A
nv2
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Figure 2.21. The automaton generating the Grigorchuk group

for a column vector v2 and a vector v1. Namely, assuming that the first
coordinate corresponds to the initial state, and the last coordinate corre-

sponds to the trivial state, then v2 �

�������
1
0
...
0
0

������, and v1 � p1, 1, . . . , 1, 0q. As a

corollary of the Jordan normal form theorem, we get the following.

Proposition 2.4.65. If g is a finite state automorphism of a rooted tree,
then θgpnq is equal to a finite sum of complex functions of the form ppnqan,
where p is a polynomial and a is a complex number. In particular, if θgpnq
grows sub-exponentially, then it is bounded from above by a polynomial.

In fact, we have the following description of the elements of PdpXq in
terms of the structure of their Moore diagrams, see....

Proposition 2.4.66. Let Γ be graph obtained from the Moore diagram of
the automaton Ag by removing the trivial state and all arrows adjacent to
it. Then g P Pdpnq if and only if the oriented cycles of Γ are disjoint. The
number d� 1 is equal to the maximal length of a sequence of oriented cycles
C1, C2, . . . , Cd�1 of Γ such that Ci is connected by an oriented path to Ci�1

for all i � 1, 2, . . . , d.

Example 2.4.67. The Grigorchuk group is generated by the automaton
shown on Figure 2.21. The only non-trivial cycle is highlighted.

It follows that the Grigorchuk group is a subgroup of P0pt0, 1uq.

Example 2.4.68. Another classical example of a group generated by bounded
automata is the group IMG

�
z2 � 1

�
generated by all states of the automa-

ton shown on Figure 2.22. We have introduced it already in 2.4.34. Compare
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Figure 2.22. The Basilica group

Figure 2.23. Hanoi tower group

the wreath recursion with the automaton.

Example 2.4.69. The Hanoi tower group H3, see 2.4.63, is generated by
the automaton shown on Figure 2.23. We did not show the loops at the
trivial state, which is in the center.

We also see that it is a subgroup of P0pt0, 1uq. The groups Hn for n ¥ 4
are not generated by bounded automata.

Example 2.4.70. Consider the group generated by the wreath recursion
a � σp1, aq, b � pa, bq. We leave it to the readers as an exercise to show that
the orbital graphs of the action of this group on the boundary of the binary
tree are the graphs Λw described in 2.1.1.5.

The wreath recursion defining the generators of this group correspond
to the automaton shown on Figure 2.24. We see that the automaton has
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Figure 2.24.

two non-trivial cycles connected by an edge. It follows that this group is a
subgroup of P1pt0, 1uq.

The following theorem was proved by S. Sidki in [Sid00]. We give here a
shorter proof based on Theorem 2.4.54. (Note that [Sid00] is more general
as it also considers the case of an infinite alphabet.)

Theorem 2.4.71. The groups PdpXq have no free subgroups.

Proof. It follows from Proposition 2.4.66 that a finite automaton belongs
to PdpXq for some d if and only if the number of infinite paths in its Moore
diagram that does not pass through the trivial state is countable. In par-
ticular, if g P PdpXq, then the set Σg of sequences x1x2 . . . P Xω such that
g|x1x2...xn � 1 for all n is countable. Consequently, it follows from Proposi-
tion 2.4.60 that if there exists a free subgroup in PdpXq, then there exists a
finitely generated group G ¤ PdpXq and a point w P Xω such that Gw{Gpwq

has a free subgroup. .. �

More examples of subgroups of PdpXq and their relation to dynamics are
discussed in 6.6.8.

Exercises

2.1. Describe all possible Schreier graphs of the infinite dihedral group D8

with the usual generating set.

2.2. Describe, using Schreier graphs, all subgroups of index 4 in the free
group F2.

2.3. Let Γ be an unlabeled oriented graph such that for every vertex v the
number of incoming arrows and the number of outgoing arrows are both
equal to some fixed number d. Prove that Γ can be perfectly labeled by
a set S such that |S| � d.
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2.4. Let X � A\B be a finite set partitioned into two non-empty subsets. Let
w � . . . A�1B�1A0B0A1B1 . . . be a random sequence such that An �
A and Bn � B are independent and uniformly distributed in the set
of all subsets of A and B, respectively. Prove that, with probability
one, the group Gw (defined in 2.1.1.1) is isomorphic to the free product

pZ{2Zq|A| � pZ{2Zq|B|.
2.5. Let G � xa, by be the group defined in 2.1.1.3. Prove that the map

a ÞÑ a2, b ÞÑ b2 extends to an endomorphism of G.

2.6. Transform the substitution σ given in 2.1.1.2 into a graph substitution
generating the orbital graphs of the Grigorchuk group G, and prove that
the map a ÞÑ aca, b ÞÑ d, c ÞÑ b, d ÞÑ c extends to an endomorphism of
G.

2.7. The following example of a group is from [Kotowski,Virág] ... Let
α0, α1, . . . be a sequence of positive integers. Consider a binary rooted
tree T . Replace each vertex by a cycle of length three with edges la-
beled by b, and replace each edge connecting a vertex of level n � 1
to a vertex of level n by a cycle of length 2αn labeled by letters a, so
that two opposite (i.e., on distance αn) vertices of the cycle also belong
to the three-cycles corresponding to the vertices. Also add a cycle of
length 2α0 attached to the root, and add loops so that the obtained
graph is perfectly labeled, see Figure 2.25, where the graph is shown for
α0 � 2, α1 � 3, α2 � 4, . . ..

Prove that if αn Ñ8, then the group G defined by the constructed
graph has a locally finite normal subgroup N such that G{N � Z.

2.8. Let g0, g1 be the homeomorphisms of R defined in 2.1.1.6. a) Prove that
gakgak�1

� � � ga0p0q � a0�
a1
2 �� � ��

ak
2k

for every sequence a0, a1, . . . , ak P

t0, 1u. b) Prove that g�1
0 g1gakgak�1

� � � ga1p0q ¥ 2 and g�1
1 g0gakgak�1

� � � ga1p0q ¤
0. c) Prove that the orbital graph Γ0 of the group xg0, g1y is isomorphic
to the graph shown on Figure 2.6. d) Prove that the group xg0, g1y is
isomorphic to the group defined by the graph. (Use the fact that Z

�
1
2

�
is dense in R.)

2.9. Note that if we switch the labels in the graph on Figure 2.6, then we get
an isomorphic graph. It follow that the transposition of the generators
of the group defined by it extends to an automorphism of the group.

Let g0, g1 be the homeomorphism of R given in ??. Find an order
two homeomorphism of R conjugating g0 to g1 and g1 to g0.

2.10. Consider an tree T for which every vertex has one incoming arrow la-
beled by g0 or g1 and two outgoing arrows labeled by g0 and g1. Add
infinite paths with loops, as in 2.1.1.6, and let ΓT be the obtained per-
fectly labeled graph. a) Prove that any two graphs ΓT1 and ΓT2 con-
structed in this way are locally isomorphic and locally contained in the
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Figure 2.25. Kotowski-Virág groups

graph Γ from 2.1.1.6. b) Prove that the rooted graph pΓT , vq, where v is
a vertex of T � ΓT , is uniquely determined, up to isomorphism, by the
sequence of the labels along the unique infinite path in T going against
the arrows and starting in v.

2.11. Let pT, vq be the tree from the previous problem such that the labels of
the unique path against the arrows starting in a vertex v are all equal
to g0, and let Γ0 be the corresponding graph ΓT , see Figure 2.26.

Let Γ be the graph from 2.1.1.6, see Figure 2.26. Prove that Γ0 both
covers Γ and is locally contained in Γ. Conclude that the groups defined
by Γ0 and Γ are isomorphic.

2.12. Let a and b be permutations of Z defined by the graph Λw, see 2.1.1.5.
Prove that a2b�1 and ab�1a commute.

2.13. Let us identify a sequence x0x1 . . . P t0, 1u
ω with the diadic number

x0 � 2x1 � 22x2 � � � � .

Show that Λw1 and Λw2 are isomorphic as non-rooted trees if and only
if w1 � w2 P Z.
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Figure 2.26.

2.14. Show that the realization of the topological graph of the action of a
finitely generated group G on a topological space X is connected if and
only if the action is topologically transitive.

2.15. Let |A| � 1. Prove that the space SA is homeomorphic to the set
t0u Y tn�1 : n P N u.

2.16. Prove that pΓ, vq is an isolated point of SS if and only if Γ is finite.

2.17. Find a subset of R homeomorphic to the space SZn .

2.18. Prove that if a minimal action G y X on a compact space has a free
orbit, then the orbit of every G-generic point is free.

2.19. Prove that Λw1 and Λw2 (see 2.1.1.5) are locally isomorphic if w1, w2 R Z.
Conclude that the group defined by the graph Λw does not depend on
w.

2.20. Prove the statements of Example 2.1.25.

2.21. Consider the realization of the hull Γ0 as the direct product tg0, g1u
ω �

t0, 1, 2, . . .u with two added points Lg0 , Lg1 , where the second coor-
dianate n P t0, 1, 2, . . .u is the distance from the root to the closest
vertex of the tree T .... Show that gi, for i � 0, 1, acts on Γ0 according
to the following rules:

ppgi1 , gi2 , . . .q, 0q ÞÑ ppgi, gi1 , gi2 , . . .q, 0q,

ppgi, gi2 , . . .q, nq ÞÑ ppgi, gi2 , . . .q, nq,

ppg1�i, gi2 , . . .q, nq ÞÑ ppg1�i, gi2 , . . .q, n� 1q.
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2.22. In the conditions of the previous problem, consider the map

λppgi0 , gi1 , . . .q, nq �

" °8
k�0

ik
2k
� n if gi1 � 1,°8

k�0
ik
2k
� n if gi1 � 0.

a) Prove that λ : tΓ0uztLg0 , Lg1u ÝÑ R is continuous, surjective, and
|λ�1pxq| � 1 for all x except for x P Z

�
1
2

�
, when |λ�1pxq| � 2. b) Prove

that

λpgipξqq � gipλpξqq,

where gi : R ÝÑ R on the right-hand side is the function defined in ??.

2.23. Consider the set P of all non-empty subsets of the set X � ta, b, cu. Let
F � PZ be the subshift consisting of all sequences pxnqnPZ such that
xn X xn�1 � H for every n P Z. It is a subshift of finite type. For
every sequence w P F consider the graph Γw as defined in 2.1.1.1. a)
Show that for a co-meager set of sequences u P F the graph Γu locally
contains all graphs Γw, w P F and the group Gu defined by the graph
Γu is the free product xay � xby � xcy of groups of order 2. b) Show that
the set of periodic sequences is dense in F . c) Use this to prove that the
free product of three groups of order two is residually finite. (Remark:
this is very close to the first proof of residual finiteness of a free group,
see....)

2.24. Consider the action of the Thompson group F on the interval and on
the Cantor set. Show that the first action is locally minimal, while the
second action is only locally transitive. Deduce that local minimality
condition in Theorem 2.2.25 can not be replaced by local transitivity.

2.25. Prove that two manifolds are homeomorphic if and only if their home-
omorphism groups are isomorphic as abstract groups. Prove that ev-
ery automorphism of the homeomorphism group of a manifold is inner.
See ...

2.26. Let T be a spherically homogeneous tree. Prove that there exists only
one level-transitive action of the infinite dihedral group on T , up to
conjugacy in AutT .

2.27. Find an embedding of the additive groups Q and Q{Z into the group Q
of rational homeomorphisms of the Cantor set.

2.28. Prove that a transformation defined by a finite ω-deterministic automa-
ton can be defined by a finite deterministic automaton.

2.29. Find the distance in the graph of the action of the Hanoi towers game
(see...) from the vertex 1n to the vertex 2n.

2.30. Show that the set of almost finitary automorphisms of X� is a group.
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Figure 2.27. Golden mean rotation

2.31. Show that the group of almost finitary automorhpisms of a regular
rooted tree X� contains an isomorphic copy of the group of all auto-
morphisms of X�.

2.32. Let G y X be a minimal action on a compact space. Prove that if the
orbital graph Γx of the action is amenable for a G-regular point x P X ,
then all orbital graphs of Gy X are amenable.

2.33. Prove that GLnpZq can be embedded into the group of finite-state au-
tomorphisms of X� (a) for some X, (b) for X� consisting of two letters.
(Hint: use the action of GLnpZq on the set of n-dimensional dyadic
vectors.)

2.34. Find an embedding of Q into the group of rational homeomorphisms of
the Cantor set.

2.35. The diagram on Figure 2.14 is equivalent to the Vershik-Bratteli diagram
shown on Figure 2.27.

Label the paths in this diagram by sequences of 0 and 1 according
to the vertices it passes, as labeled on the figure. Show that in this
encoding the adic transformation is given by the automaton shown on
Figure 2.28.
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Figure 2.28.
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