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Chapter 3

Groupoids

The notion of a topological groupoid is an interpolation of the notions of a
group and of a topological space, and therefore fits well into the main subject
of this book. They will be also important technical tools in the subsequent
chapters. We will use groupoids in two different situations: as generaliza-
tions of dynamical systems and as “non-commutative spaces”. The first
approach will be also a source for construction of groups with interesting
properties in Chapter 5. The non-commutative spaces appear naturally (as
orbispaces, e.g., Thurston orbifolds for rational functions) in the study of
sub-hyperbolic dynamical systems. They also naturally appear in the study
of foliated spaces (e.g., in the case of Ruelle-Smale systems). Foliation the-
ory is one of the main historical sources of the interest in groupoid theory,
see.... The other important direction in theory of topological groupoids
comes from the theory of C˚-algebras, see...

3.1. Basic definitions

3.1.1. General definition and terminology.

Definition 3.1.1. A groupoid is a set G with a partially defined multi-
plication and everywhere defined operation of taking inverse satisfying the
following conditions.

(1) If g1g2 and g2g3 are defined, then pg1g2qg3 “ g1pg2g3q and both
products are defined.

(2) For every g P G the products gg´1 and gg´1 are defined.

(3) If g1g2 is defined, then pg´11 g1qg2 “ g2 and g1pg2g
´1
2 q “ g1 and the

corresponding products are defined.
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202 3. Groupoids

Lemma 3.1.2. For every g P G we have pg´1q´1 “ g´1. If g1g2 is defined,
then pg1g2q

´1 “ g´12 g´11 .

Proof. We have

gg´1pg´1q´1 “ pgg´1qpg´1q´1 “ pg´1q´1

and

gg´1pg´1q´1 “ gpg´1pg´1q´1q “ g,

hence pg´1q´1 “ g.

We also have

g1g2g
´1
2 g´11 g1 “ g1pg2g

´1
2 qg´11 g1 “ g1g

´1
1 g1 “ g1

Multiplying by pg1g2q
´1 from the left side, we get

g´12 g´11 g1 “ pg1g2q
´1g1.

Multiplying by g´11 from the right side, we get

g´11 g´11 “ pg1g2q
´1.

�

Elements of the form gg´1 are called units of the groupoid. Define

spgq “ g´1g, rpgq “ gg´1.

The units spgq and rpgq are called the source and the range of g, respectively.

Lemma 3.1.3. A product g1g2 is defined if and only if rpg2q “ spg1q. If
g1g2 is defined, then spg1g2q “ spg2q and rpg1g2q “ rpg1q.

Proof. If a product g1g2 is defined, then the product g´11 g1g2g
´1
2 is also

defined, by the conditions of Definition 3.1.1. We have

rpg2q “ g2g
´1
2 “ pg´11 g1qg2g

´1
2 “ g´11 g1pg2g

´1
2 q “ g´11 g1 “ spg1q.

We also have

spg1g2q “ pg1g2q
´1g1g2 “ g´12 g´11 g1g2 “ g´12 g2 “ spg2q

and

rpg1g2q “ pg1g2qpg1g2q
´1 “ g1g2g

´1
2 g´11 “ g1g

´1
1 “ rpg1q.

�

We imagine, therefore, units of the groupoid as points, and elements g
of the groupoid as arrows from spgq to rpgq. A composition g1g2 of elements
of the groupoid is defined if the arrows are aligned so that the end of the
arrow g2 is the beginning of the arrow g1, see Figure 3.1. This leads to
another formulation of Definition 3.1.1: a groupoid is a small category of
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Figure 3.1. Product g1g2

isomorphisms, i.e., a category in which all morphisms are isomorphisms, and
the classes of objects and morphisms are sets.

We denote by Gp0q the set of all units of Γ, and by Gp2q “ tpg1, g2q P
GˆG : spg1q “ rpg2qu the set of all composable pairs.

Definition 3.1.4. A functor (or a homomorphism) of groupoids is a map

φ : G1 ÝÑ G2 such that for every pg1, g2q P G
p2q
1 we have pφpg1q, φpg2qq P G

p2q
2

and φpg1g2q “ φpg1qφpg2q.

Two groupoids G1,G2 are said to be isomorphic if there exists an in-
vertible map φ : G1 ÝÑ G2 such that φ and φ´1 are functors.

We will often consider groupoids as “atlases” of quotients of spaces by
equivalence relations. From this point of view, Definition 3.1.4 is too restric-
tive, and a different more flexible notion of a morphism between groupoids
will be used, see 3.2.

Example 3.1.5. A groupoid is said to be trivial if it consists of units only.
Trivial groupoids are just sets.

Example 3.1.6. A group is a groupoid with one unit (and hence with
everywhere defined multiplication).

Example 3.1.7. Let E be an equivalence relation on a set X, seen as a
subset of X ˆ X. Then E has a natural groupoid structure with product
defined by

px1, x2qpx2, x3q “ px1, x3q,

and px1, x2q
´1 “ px2, x1q. We have then spx1, x2q “ px2, x2q and rpx1, x2q “

px1, x1q. We usually identify a unit px, xq with the point x.

As a mixture of the last two examples, we get the following general
description of abstract groupoids.

Example 3.1.8. Let tGiuiPI be a collection of groups. Let X be a set with
an equivalence relation E, and let P : X ÝÑ I be a map constant on the
E-classes. Let G be the set of all triples pg, x1, x2q, where px1, x2q P E, and
g P GP px1q. Define multiplication and taking inverse on G by the rules

pg1, x1, x2qpg2, x2, x3q “ pg1g2, x1, x3q, pg, x1, x2q
´1 “ pg´1, x2, x1q.
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Then G is a groupoid. Every groupoid is isomorphic to a groupoid of this
class.

Example 3.1.9. As a partical case of Example 3.1.8, consider the following
groupoid. Let G be a group, and let H be its subgroup. Consider the cate-
gory whose objects are the left cosets of G modulo H, and whose morphisms
are maps x ÞÑ gx between cosets hH ÝÑ ghH given by the left multipli-
cation by elements of G. This is a small category of isomorphisms, i.e., a
groupoid. We call it the coset groupoid of G modulo H.

Definition 3.1.10. Let G be a groupoid. We say that two units x, y P Gp0q

belong to the same orbit if there exists g P G such that spgq “ x and
rpgq “ y.

It follows from Lemma 3.1.3 that belonging to one orbit is an equiv-
alence relation. The corresponding equivalence classes are called orbits of
the groupoid. For example, the orbits of the groupoid from Example 3.1.7
coincide with the equivalence classes of E.

Definition 3.1.11. A subset A Ă Gp0q is a G-transversal if it intersects
every G-orbit.

Definition 3.1.12. Let x P Gp0q. The isotropy group of x is the group

Gx “ tg P G : spgq “ rpgq “ xu.

An element g P G is called isotropic if spgq “ rpgq. A groupoid is called
principal if all its isotropy groups are trivial.

A groupoid is principal if and only if it is isomorphic (as an abstract
groupoid) to the groupoid associated with an equivalence relation (as in
Example 3.1.7).

Definition 3.1.13. For A Ă Gp0q, the restriction G|A of G to A is the
groupoid tg P G : spgq, rpgq P Au.

3.1.2. Topological groupoids. Abstract groupoids, without any addi-
tional structure are not very interesting. Every one of them is isomorphic to
a groupoid of the form described in Example 3.1.8, so it is a rather straight-
forward mixture of groups and equivalence relations. We will be interested
in a much richer theory of topological groupoids.

Definition 3.1.14. A topological groupoid is a groupoid G with a topology
on it such that the operations of multiplication pg1, g2q ÞÑ g1g2 : Gp2q ÝÑ G
and taking inverse g ÞÑ g´1 : G ÝÑ G are continuous, and the maps s, r :
G ÝÑ Gp0q are open. Here Gp2q is taken with the relative topology of a
subset of the direct product GˆG.
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We assume (as a part of the definition) that a topological groupoid and
its unit space are locally compact and locally Hausdorff, and that the maps
s, r : G ÝÑ Gp0q are open.

(We will drop the condition of local compactness in one instance 3.4.3.)

We do not assume that G is Hausdorff. Note also that we do not include
Hausdorffness into the definition of a compact set.

Example 3.1.15. Let f ü X be an expansive homeomorphism, where X
is a compact metric space. Recall, that it means that f is ε ą 0 such that
dpfnpxq, fnpyqq ď ε for all n P Z implies that x “ y, see 1.4.5.

Consider the stable equivalence relation

x „ y ðñ lim
nÑ8

dpfnpxq, fnpyqqq “ 0.

As any equivalence relation, it defines a groupoid with the set of units X
consisting of pairs of equivalent points. A näıve definition of a topology on
this groupoid would be the relative topology of a subset of X ˆ X . Note,
however, that this topology is not locally compact. On the other hand, the
set ∆ Ă X ˆ X of pairs px, yq such that dpfnpxq, fnpyqq ď ε for all n ě 0 is
compact, and the stable equivalence relation is equal to the increasing union
of the sets f´np∆q, n ě 0, see Lemma 1.4.21.

It is natural to consider the stable equivalence relation as the direct limit
of the spaces f´np∆q and nÑ8, and to consider the inductive limit topol-
ogy. We get hence two topological groupoids naturally associated with the
stable and the unstable equivalence relations for an expansive homeomor-
phism.

Lemma 3.1.16. Let G be a topological groupoid. If A,B Ă G are open,
then AB is open. If A,B Ă G are compact, then AB is compact.

Proof. Suppose that A and B are open, and let g P AB. Let a0 P A
and b0 P B be such that g “ a0b0. Since s is an open map, spBq is an open

neighborhood of spb0q in Γp0q. Let U be a neighborhood of g such that spUq Ă
spBq (which exists, by continuity of s). By continuity of multiplication, there
exist neighborhoods U 1 Ă U and B1 Ă B of g and b0, respectively, such that
spU 1q Ă spB1q and for every h P U 1 and b P B1 such that spbq “ sphq we
have hb´1 P A. For every element h P U 1 there exists b P B1 such that
sphq “ spbq, and by the choice of U 1 and B1 we have then a “ hb´1 P A,
hence h “ ab P AB. We prove that U 1 Ă AB, i.e., that a neighborhood of g
is contained in AB.

Suppose that A and B are compact. We can represent A and B as a finite
union of compact Hausdorff sets such that their images under s and r are
Hausdorff. Therefore, we may assume that A, B, spAq, rpBq are Hausdorff.
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Figure 3.2. A bisection

Then the set AˆB Ă GˆG is compact and Hausdorff, and AˆBXGp2q is
its closed subset, hence it is also compact. Then AB is a continuous image
of a compact set, hence it is also compact. �

History and literature for general topological groupoids....

Definition 3.1.17. A subset F Ă G is a bisection (or a G-bisection) if the
maps s : F ÝÑ spF q and r : F ÝÑ rpF q are homeomorphisms.

A topological groupoid G is said to be étale if there is a basis of topology
on G consisting of open bisections.

G-bisections are called sometimes G-sets, see...

In other words G is étale if the maps s and r are local homeomorphisms.

Example 3.1.18. Let G be a discrete group acting by homeomorphisms on
a space X . Then Gˆ X has a natural groupoid structure defined by

spg, xq “ x, rpg, xq “ gpxq,

and
pg1, g2pxqq ¨ pg2, xq “ pg1g2, xq.

For every g P G and every open subset U Ă X the set tpg, xq : x P Uu is
an open bisection. We call the constructed groupoid groupoid of the action,
and denote it Gn X .

3.1.3. Groupoids of germs. Let G be a (discrete) group acting by home-
omorphisms on a space X . A germ is an equivalence class of a pair pg, xq P
G ˆ X , where two pairs pg1, x1q and pg2, x2q are equivalent if x1 “ x2 and
there is a neighborhood U of x1 such that the restrictions g1|U and g2|U are
equal maps. The germ pg, xq “remembers” only the action of g on arbitrarily
small neighborhood of x.

The set of germs has a natural groupoid structure with the same mul-
tiplication rule as for the groupoid of the action. It is easy to see that the
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equivalence relation in the definition of germs agrees with the groupoid op-
erations, so that the groupoid of germs is a quotient of the groupoid of the
action.

The natural topology on the groupoid of germs is given by the basis of
open sets consisting of sets of the form Fg,U “ tpg, xq : x P Uu, where
g P G and U is an open subset of X . It is easy to see that the groupoid of
germs is étale with respect to this topology.

Groupoids of germs can be defined not only for group actions, but for
arbitrary pseudogroups.

Definition 3.1.19. A pseudogroup of local homeomorphisms G of a space
X is a set of homeomorphisms between open subsets of X containing the
identity homeomorphism Id : X ÝÑ X and closed under the following
operations.

(1) Composition.

(2) Taking inverse.

(3) Restricting onto an open subset of the domain.

(4) Taking unions: if F : U1 ÝÑ U2 is a homeomorphism between open
subsets of X such that there exists a cover U of U1 by open subsets
such that F |U P G for all U P U , then F P G.

If G is a pseudogroup, then we can define its groupoid of germs in the
same way as we defined the groupoid of germs of a group action. Note that
the pseudogroup can be reconstructed from its groupoid of germs in the
following way.

Let G be an étale groupoid, and let F Ă G be an open bisection. Then
F naturally defines a homeomorphism r ˝ s´1 : spF q ÝÑ rpF q between the
domain and the range of F . Note that if G is a groupoid of germs of a
pseudogroup G, and F is an element of G, then the set of germs of F is an
open bisection defining F . The following is straightforward, and is left as
an exercise.

Proposition 3.1.20. Let G be an étale groupoid. The set of all homeo-
morphisms defined by open bisections of G is a pseudogroup. If G is the
groupoid of germs of a pseudogroup G, then the set of homeomorphisms de-
fined by open bisections of G is equal to G.

We call the pseudogroup of open bisections of an étale groupoid G the
associated pseudogroup of G. If G is an arbitrary étale groupoid, then the
groupoid of germs of the associated pseudogroup of G is a quotient of G. We
call it the effective quotient of G. Groupoids of germs of pseudogroups are
thus called effective groupoids. They can be characterized in the following
way.
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Proposition 3.1.21. An étale groupoid is effective (i.e., is a groupoid of

germs of a pseudogroup) if and only if for every g P G r Gp0q and every
neighborhood U of g there exists h P U such that sphq ‰ rphq.

We have thus two equivalent terminological approaches to the same ob-
ject: pseudogroups of local homeomorphisms and effective groupoids. Dif-
ferent terminologies are convenient in different situations. But considering
general (non-effective) groupoids is in some cases necessary even in the study
of effective groupoids. For example, a restriction G|A of an effective groupoid
is not always effective (though it is always étale).

Note that groupoids of germs are not always Hausdorff even if the space
of units is Hausdorff. The following proposition gives some criteria of Haus-
dorfness that will be useful later.

Proposition 3.1.22. A pseudogroup G acting on a Hausdorff space X has
a Hausdorff groupoid of germs if and only if for every F P G the interior of
the set of fixed points of F is relatively closed in the domain of F .

Proof. Let G be the groupoid of germs of G. If g, h P G are such that spgq ‰
sphq, then there exist neighborhoods Ug Q g and Uh Q h such that spUgq and
spUhq are disjoint neighborhoods of spgq and sphq, respectively. Similarly,
if rpgq ‰ rphq, then g and h can be separated by disjoint neighborhoods.
If g and h do not have disjoint neighborhoods, then h´1g and g´1g “ spgq
do not have disjoint neighborhoods. Consequently, if G is not Hausdorff,
then there exists F P G and x P spF q such that every neighborhood of the
germ pF, xq and every neighborhood of pId, xq have a non-empty intersection
while pF, xq ‰ pId, xq. This is equivalent to the condition that for every
neighborhood U of x the interior of the set of fixed points of F |U is non-
empty, which in turn is equivalent to the condition that x belongs to the
closure of the interior of the set of fixed points of F . On the other hand
pF, xq ‰ pId, xq is equivalent to the condition that x does not belong to the
interior of the set of fixed points of F . We have proved that the groupoid of
germs G is non-Hausdorff if and only if there exists x P X and F P G such
that x is the boundary point of the set of fixed points of F . �

It is easy to construct therefore examples of pseudogroups and group
actions with non-Hausdorff groupoid of germs. It follows from Proposi-
tion 3.1.22 that the groupoid of germs of a group action is Hausdorff if
and only if all points have Hausdorff groups of germs in the sense of Def-
inition 2.1.13. In particular, the action described in Example 2.1.15 has a
non-Hausdorff groupoid of germs.

3.1.4. Examples of étale groupoids.
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3.1.4.1. Groupoids generated by local homeomorphisms. Let f ü X be a
local homeomorphisms (e.g., a covering map). Consider the set F of all
homeomorphisms of the form f : U ÝÑ fpUq, where U is an open subset of
X . By the definition, the domains of the elements of F cover X .

Definition 3.1.23. The groupoid of germs generated by f ü X is the
groupoid of germs of the pseudogroup generated by F .

Informally, the groupoid of germs Ff generated by f is the groupoid
generated by the germs of f .

Every element of the groupoid Ff is equal to the product pfn, yq´1pfm, xq,
where pfn, yq and pfm, xq are the germs of the maps fn and fm at the points
y and x, respectively, and x, y P X are such fmpxq “ fnpyq.

The orbits of Ff are called the grand orbits of the map f ü X : they are
the classes of the equivalence relation generated by x „ fpxq. A point x P X
has a non-trivial isotropy group in Ff if and only if it is eventually periodic,
i.e., if there exist m ą n ě 0 such that fmpxq “ fnpxq. The isotropy groups
are always cyclic.

A related étale groupoid was defined by ....

3.1.4.2. Holonomy groupoids of local product structures and foliations. Let
X be a topological space, and let R “ tpRi, r¨, ¨siq : i P Iu be an atlas
of a local product structure on X , see Definition 1.4.27. Let Ri “ Ai ˆ Bi
be the canonical decomposition of Ri into the direct product. We assume
that the spaces Ai are connected. Then the space X is partitioned into
the leaves, where two points x, y P X belong to one leaf if there exists
a sequence P1pRi1 , x1q,P1pRi2 , x2q, . . . ,P1pRin , xnq, where x P P1pRi1 , x1q,
y P P1pRin , xnq, and P1pRik , xkq X P1pRik`1

, xk`1q ‰ H for all k. The
partition into the leaves depends only on the local product structure, and
does not depend on the choice of the atlas.

Typically, the quotient of X obtained by identifying all points belonging
to the same leaf is a non-Hausdorff space, and the topology of the quotient
space does not carry much useful information about the local product struc-
ture. Accordingly, the right thing to consider is not the quotient space, but
the associated groupoid.

Let x P Ri XRj . Then there exists a rectangular open neighborhood U
of x such that the restrictions of r¨, ¨si and r¨, ¨sj to U X Ri X Rj coincide.
It follows that the sets P2pRi, xq X U and P2pRj , xq X U coincide. They are
identified with the subsets Ui ˆ tx1u Ă Bi and Uj ˆ tx2u Ă Bj , and we
get a natural homeomorphism H : Ui ÝÑ Uj between the corresponding
subsets of Bi and Bj , see Figure 3.3. The homeomorphism may depend on
the choice of U , but its germ γx,i,j depends only on x and Ri, Rj . All germs
of the homeomorphism H are of the form γy,i,j for some y P P1pRi, xq X U .
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Figure 3.3. Generators of the holonomy groupoid

The holonomy groupoid of the first direction of the local product struc-
ture is the groupoid of germs of the pseudogroup of local homeomorphisms
of the disjoint union

Ů

iPI Bi generated by the homeomorphisms of the form
H : Ui ÝÑ Uj , as defined above.

If γ is an element of the holonomy groupoid, and spγq P Ri, rpγq P Rj ,
then γ describes how the fiber P2pRi, spγqq is locally mapped to the fiber
P2pRj , rpγqq as a point travels from spγq to rpγq along the leaf containing
these points. Namely, there exists a rectangle R “ A ˆ B and a local
homeomorphism f : R ÝÑ X preserving the local product structures (see
Definition 1.4.29) such that there exist a1, a2 P A, and b P B such that spγq “
fpa1, bq, rpγq “ fpa2, bq, and γ is the germ of the local homeomorphism the
neighborhood U1 “ fpta1uˆBq of spγq in P2pspγq, Riq to the neighborhood
U2 “ fpta2u ˆ Bq of spγq in P2prpγq, Rjq mapping fpa1, yq to fpa2, yq for
y P B. The rectangle R is a “thin” neighborhood in X of the leaf containing
spγq and rpγq, see Figure 3.4.

The definition of the holonomy groupoid does not use the full strength of
Definition 1.4.27. We only use the fact that every plaque P1py,Riq intersects
at most one plaque P1pz,Rjq. More precisely, the map from a subset of the
direct product Ai ˆBi to Aj ˆBj identifying U XRi with U XRj does not
have to be of the from fpa, bq “ pf1paq, f2pbqq. It is enough to require that
the map is of the form fpa, bq “ pf1pa, bq, f2pbqq, so that we still have a well
defined map from a subset of Bi to a subset of Bj .
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Figure 3.4. Holonomy groupoid

This weaker condition holds in the case of foliations, see... Holonomy
groupoids of foliations is historically one of the main sources of interest in
groupoid theory...

3.1.4.3. Groupoids associated with Ruelle-Smale systems. Let f ü X be a
Ruelle-Smale dynamical system. Suppose that x, y P X are stably equiva-
lent. Then there exists n ě 0 such that fnpxq and fnpyq belong to one small
rectangle. The germ at fnpxq of the holonomy from the unstable leaf of
fnpxq to the unstable leaf of fnpyq does not depend on the rectangle for big
n, since the direct product structure is locally unique. Applying f´n to it,
we get a well defined germ Sx,y at x of the holonomy from the unstable leaf of
x to the unstable leaf of y. If the stable leaves are path connected, then this
germ of the holonomy is uniquely determined by the local product structure
on X and coincides with the germ define in the previous example 3.1.4.2.

It follows from the uniqueness of the germ Sx,y that if x, y, z are stably
equivalent to each other, then Sx,z “ Sy,zSx,z and that S´1x,y “ Sy,x. It
follows that the set of all germs of the form Sx,y is a groupoid, which we will
denote U.

For open every rectangle R of X and any two unstable plaques W´pR, xq
and W´pR, yq we have the corresponding set of germs St,rt,ysR of the holo-
nomy from W´pR, xq to W´pR, yq inside R. We declare the collection of
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such sets a basis of topology on the groupoid U. Then the sets of germs of
holonomies inside rectangles of X become open bisections of U. The space
of units of U is the disjoint union of the unstable leaves of X with inductive
limit topology on the leaves.

The groupoid U is an étale version of the groupoid of the stable equiva-
lence relation defined in 3.1.15. They both represent the “non-commutative
space” of the stable equivalence classes. In fact, we will see later that these
two groupoids are equivalent in a rigorous sense.

It is natural to replace U by its restriction onto a transversal (for in-
stance in order to make it second countable). For example, we can cover
X by a finite number of open rectangles, choose an unstable plaque of each
rectangle, and restrict U to their union.

The groupoid S of germs of the holonomies between stable leaves of X
is defined in the same way (by changing f to f´1 in the definition).

Example 3.1.24. Let f ü XZ be the full shift. Two sequences pxnqnPZ, pynqnPZ
are stably equivalent if and only if xn “ yn for all n ě n0 for some n0. The
unstable leaf of pxnqnPZ is the set of sequences pznqnPZ such that xn “ zn
for all n smaller than some index n0. The set of all such pznqnPZ for a given
index n1 is a neighborhood of pxnqnPZ in the unstable leaf (the neighbor-
hood becomes smaller as n1 becomes bigger). The germ SpxnqnPZ,pynqnPZ is
the germ of the transformation replacing every coordinate zn for n ă n0 by
the coordinate yn.

The local product structure on XZ is generated by the direct product
structure of one rectangle X´ωˆXω given by the identification p. . . x´2x´1, px0x1 . . .q ÞÑ
p. . . x´2x´1 . x0x1 . . .q. If we restrict U onto the unstable plaque of this rec-
tangle, and identify it with Xω, then the restriction becomes identified with
the groupoid of germs of the transformations of the form Sv1,v2v1w ÞÑ v2w :
v1X

ω ÝÑ v2X
ω, where v1, v2 P X

˚ are finite words of equal lengths.

One can also consider the groupoid of germs generated by U and the
action of f on the unstable leaves, since the leaves are the stable equiva-
lence relation are f -invariant. We call the obtained groupoid the unstable
Ruelle groupoid of the system f ü X . The stable Ruelle groupoid is defined
analogously.

Example 3.1.25. The unstable Ruelle groupoid of the full Z-shift from the
previous example, in its version restricted to Xω is the groupoid of germs
of the transformations of the form v1w ÞÑ v2w : v1X

ω ÝÑ v2X
ω, where

v1, v2 P X
˚ are arbitrary finite words (of possibly different lengths).

3.1.5. Proper groupoids. The space of orbits of a groupoid with the
quotient topology is usually not very well behaved (e.g., has anti-discrete
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topology if every orbit is dense). Here we describe a class of groupoids for
which the space of orbits is Hausdorff.

Recall that a map f : X1 ÝÑ X2 is said to be proper if for every compact
subset C Ă X2 the set f´1pCq is compact.

Definition 3.1.26. A topological (not necessarily étale) groupoid G is said

to be proper if the map ps, rq : G ÝÑ Gp0q ˆGp0q is proper.

A subset C Ă Gp0q ˆ Gp0q is compact if and only if it is closed and is
contained in a set of the form C1ˆC2 for some compact sets C1, C2 Ă Gp0q.
It follows that the map ps, rq is proper if and only if for every two compact

subsets C1, C2 of Gp0q the set of elements g P G such that spgq P C1 and
rpgq P C2 is compact. The next lemma then easily follows.

Lemma 3.1.27. A groupoid G is proper if and only if for every compact set
C Ă Gp0q the set of elements g P G such that tspgq, rpgqu Ă C is compact.

Example 3.1.28. An action pG,X q of a discrete group on a topological
space is called proper if for every compact set C Ă X the set of elements
g P G such that gpCq X C ‰ H is finite. It is easy to see that the action is
proper if and only if the groupoid of the action is proper. The properness
of the action is also equivalent to the properness of the groupoid of germs.

The following property of proper groupoids is a generalization of a well
known fact about group actions.

Proposition 3.1.29. Suppose that G is proper and Gp0q is Hausdorff. Then
the space of orbits of G is Hausdorff with respect to the quotient topology.

Proof. The quotient topology on the space of orbits is the smallest topology
such that the quotient map from Gp0q to the set of orbits is continuous. In
other words, a subset of the set of orbits is open if and only if its preimage
in Gp0q is open.

Let x, y P Gp0q be two units belonging to different orbits. We have
to show that there exist disjoint open neighborhoods Ux, Uy Ă Gp0q equal
to unions of G-orbits and such that x P Ux, y P Uy. Let Vx and Vy be
disjoint compact neighborhoods of x and y, respetively. They exist by local
compactness and Hausodrffness of Gp0q. Let Bx “ tg P G : spgq “ x, rpgq P
Vyu and By “ tg P G : spgq “ y, rpgq P Vxu. These sets are compact, by
properness of the groupoid. It follows that the sets rpBxq and rpByq are
compact (as continuous images of compact sets). We have x R rpByq and
y R rpBxq, since x and y belong to different G-orbits.

Since compact Hausdorff spaces are regular, there exist compact neigh-
borhoods V 1x Ă Vx and V 1y Ă Vy such that V 1xX rpByq “ H and V 1y X rpBxq “

H. Consider the set A “ tg P G : spgq P V 1x, rpgq P V
1
yu. It is compact,
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and x R spAq, since otherwise there exists g P G such that spgq “ x and
rpgq P V 1x Ă Vx, hence g P Bx and V 1xX rpBxq ‰ H, which is a contradiction.
Similarly, y R rpAq, since otherwise there exists g such that spg´1q “ y,
rpg´1q P V 1y Ă Vy. Let Wx and Wy be interiors of the sets V 1x r spAq and

V 1y r rpAq, respectively. They are disjoint and, by the definition of A, there
does not exist an element h P G such that sphq PWx and rphq PWy.

Let Ux be the set of all points that can be represented as rpgq for g P G
such that spgq P Wx. Define Uy in the same way. Then Ux and Uy are
unions of G-orbits. They are disjoint, since otherwise there exist elements
g1, g2 P G such that rpg1q “ rpg2q and spg1q PWx, spg2q PWy, which implies

sphq PWx and rphq PWy for g2g
´1
1 . It remains to show that Ux and Uy are

open. But we have

Ux “ rps´1pWxqq, Uy “ rps´1pWyqq,

and since s, r are continuous and open, the sets Ux and Uy are open. �

3.2. Actions and correspondences

3.2.1. Actions. The notion of an action of a groupoid on a topological
space (see [MRW87] and [BH99, III.G Definition 3.11]) is a generalization
of the notion of a group action. It is naturally modified to take into account
the fact that groupoids have many units.

Definition 3.2.1. A (right) action X x G of a groupoid G on a topological

space X over a continuous map P : X ÝÑ Gp0q (called the anchor of the
action) is a continuous map X ˆP G ÝÑ X : px, gq ÞÑ x ¨ g, where

X ˆP G “ tpx, gq : P pxq “ rpgqu,

such that P px¨gq “ spgq, and px¨g1q¨g2 “ x¨g1g2 for all x P X and g1, g2 P G
such that P pxq “ rpg1q and rpg2q “ spg1q, see Figure 3.5.

In the same way as for groupoids, we always assume that the space X
is locally compact and locally Hausdorff.

The left action G y X is defined in a similar way. It is a map pg, xq ÞÑ
g ¨ x from GˆP X “ tpg, xq : P pxq “ spgqu to X satisfying P pg ¨ xq “ rpgq
and g1 ¨ pg2 ¨ xq “ g1g2 ¨ x.

Note that it follows from the definition of a right action that P pX q is a

G-invariant subset of Gp0q.

Example 3.2.2. The natural right action of G on itself is defined for X “ G
over the map P pgq “ spgq, and is given by multiplication px, gq ÞÑ x ¨g “ xg.

Example 3.2.3. Every groupoid G acts naturally on its space of units.
Both actions are defined over the identical embedding Gp0q ÝÑ G and are
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Figure 3.5. A right action

given by g ¨ x “ spgq for the left action and by x ¨ g “ rpgq for the right
action.

Example 3.2.4. Let G be a pseudogroup of local diffeomorphisms of a
manifold X , and let G be its groupoid of germs. Let P : TX ÝÑ X be
the tangent bundle. Then the map p~v, gq ÞÑ Dgp~vq for ~v P TrpgqX is a well
defined action of G on the tangent bundle.

The notion of a groupoid of a group action (see...) has a natural gener-
alization to actions of groupoids.

Definition 3.2.5. Suppose that we have a right action of a groupoid G with
anchor P : X ÝÑ Gp0q. The corresponding groupoid of the action, denoted
X oG, is the space X ˆP G “ tpx, gq : P pxq “ rpgqu with multiplication

px1, g1q ¨ px2, g2q “ px1, g1g2q,

where the product is defined if and only if x2 “ x1 ¨ g1.

Similarly, the groupoid G n X of a left action G y X with the anchor
P : X ÝÑ Gp0q is the space G ˆP X “ tpg, xq : P pxq “ spgqu with
multiplication

pg1, x1q ¨ pg2, x2q “ pg1g2, x2q,

where the product is defined if and only if x1 “ g2 ¨ x2.

The source and range maps are given in X oG by

spx, gq “ px ¨ g, spgqq, rpx, gq “ px, rpgqq



216 3. Groupoids

and in Gn X by

spg, xq “ pspgq, xq, rpg, xq “ prpgq, g ¨ xq.

The units of X o G (resp. G n X ) are of the form px, P pxqq (resp.
pP pxq, xqq), hence the space of units of X oG is naturally identified with X .

Note that every right action X x G can be transformed into a left action
by the rule

g ¨ x “ x ¨ g´1.

Then the corresponding groupoid of the action Gn X is isomorphic to the
groupoid of the original action X oG under the isomorphism

pg, xq ÞÑ px ¨ g´1, gq.

We will call the maps px, gq ÞÑ g : X o G ÝÑ G and pg, xq ÞÑ g :
GnX ÝÑ G the natural projections. It is easy to see that they are functors
of groupoids.

We say that x1, x2 P X belong to one orbit of an action X x G if there
exists g P G such that x2 “ x1 ¨g. It is easy to see that this is an equivalence
relation on X . In fact, the orbits of the action coincide with the orbits of
the groupoid of the action. We denote the set of orbits of the action by X {G
for right actions and by GzX for left actions.

Definition 3.2.6. A right action of G over P : X ÝÑ Gp0q is free if x ¨g “ x
implies that g is a unit (i.e., that g “ P pxq).

The action is said to be proper if the groupoid of the action is proper,
i.e., if the map

px, gq ÞÑ px ¨ g, xq : X oG ÝÑ X ˆ X

is proper.

The action is free if and only if the groupoid of the action is principal.
If the action is proper and X is Hausdorff then, by Proposition 3.1.29, the
space of orbits X {G is Hausdorff.

Example 3.2.7. The (right or left) action of a groupoid on itself is free. It
is also proper, by Lemma 3.1.16.

Example 3.2.8. The (right or left) action of a groupoid on its space of
units is free if and only if the groupoid is principal. It is proper if and only
if the groupoid is proper.

Example 3.2.9. Let G be a groupoid, and let F be a topological space.
Suppose that Gy F is a topological group acting (from the left) by home-
omorphisms on F , and we have a cocycle σ : G ÝÑ G, i.e., a continuous
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functor. The cocycle σ defines then a natural left action of G on F ˆ Gp0q

(over the projection P : F ˆGp0q ÝÑ Gp0q) by the rule

g ¨ py, spgqq “ pσpgqpyq, rpgqq.

Similarly, for a right action F x G and a cocycle σ : G ÝÑ G the natural
right action of G on Gp0q ˆ F is defined by

prpgq, yq ¨ g “ pspgq, pyq ¨ σpgqq.

We denote the groupoid of the left action by σoG, and the groupoid of the
left action by Gn σ.

The natural projection σoG ÝÑ G (respectively, Gnσ ÝÑ G) is called
the fiber bundle associated with the cocylce σ.

Example 3.2.10. Let G be a groupoid of germs of a pseudogroup of local
diffeomorphisms of Rn. Then for every germ pg, xq the differential Dg eval-
uated at x is a well defined cocycle from G to GLnpRq (acting on Rn). The
associated fiber bundle is, by definition, the tangent bundle of G.

3.2.2. Biactions. The most straightforward notion of a morphism between
groupoids is the notion of a functor, i.e., a map F : G1 ÝÑ G2 which is con-
tinuous and preserves the groupoid operations, see Definition 3.1.4. This
approach is satisfactory in many situations. On the other hand, if we con-
sider groupoids as non-commutative quotient spaces, then the same quotient
space can be described by different equivalent groupoids. It becomes natural
from this perspective to relax the definition of a morphism. A convenient
definition is via the notion of a biaction (analogous to the notion of a bi-
module over a C˚-algebra, see...).

Definition 3.2.11. A biaction G y M x H consists of two actions: right
action M x H over PH : M ÝÑ Hp0q and a left action G y M over
PG : M ÝÑ Gp0q such that the actions commute, i.e.,

pg ¨ xq ¨ h “ g ¨ px ¨ hq

for all g P G, h P H, x PM such that PHpxq “ rphq and PGpxq “ spgq.

Definition 3.2.12. We say that biactions G y M x H and G y M1 x H
are isomorphic if there exists a homeomorphism F : M ÝÑM1 such that

F pg ¨ x ¨ hq “ g ¨ F pxq ¨ h

for all g P G, h P H, x PM such that the left-hand expression is defined (and
the expression on the left-hand side is defined if and only if the expression
of the right-hand side is defined).

Every biaction G y M x H defines a relation between Gp0q and Hp0q

equal to the image of M in Gp0q ˆ Hp0q by the map pPG, PHq. We say
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Figure 3.6. Biaction

that x P Gp0q and y P Hp0q are M-related if there exists e P M such that
x “ PGpeq and y “ PHpeq. It is useful to imagine M as a set of “connections”
between units of G and H, and to interpret the left and the right actions
of the groupoids on M as post- and pre-compositions of these connections
with the elements of the groupoid, see Figure 3.6.

Note that the relation between the unit spaces defined by a biaction is G-
and H-invariant: if spgq and sphq are M-related for some g P G and h P H,
then rpgq and rphq are also M-related. In other words, the biaction induces
a relation (a correspondence) between the set of G-orbits and the set of
H-orbits. In the same way as groupoids uniformize the quotient spaces, the
biactions uniformize correspondences between the quotient spaces. There-
fore, we consider biactions as correspondences between groupoids.

Correspondences can be naturally inverted in the following way. If G y
M x H is a biaction, then we denote by M´1 the biaction consisting of a
set M´1 which is in a homeomorphic bijection a ÞÑ a´1 : M ÝÑM´1 with
M, and actions H y M´1 x G given by

h ¨ a´1 ¨ g “ pg´1 ¨ a ¨ h´1q´1.

Let G y M x H be a biaction. For every open set U Ă Gp0q the set
P´1G pUq Ă M is open and H-invariant. Consequently, the map PG induces

a continuous map from the quotient space M{H to Gp0q. By the same

argument, the map PH induces a continuous map from GzM to Hp0q.

Let us show how to compose correspondences. Suppose G2 y M1 x G1

and G3 y M2 x G2 are biactions. Let they be defined over the maps

P1 : M1 ÝÑ G
p0q
1 , P 12 : M1 ÝÑ G

p0q
2 , P 22 : M2 ÝÑ G

p0q
2 , P3 : M2 ÝÑ G

p0q
3 .
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Figure 3.7. Composing biactions

Since we consider a point e1 P M1 as an arrow from P1pe1q to P 12pe1q, and
a point e2 P M2 as an arrow from P 22 pe2q to P3pe2q, the set of composable
pairs of arrows is

M2 P 22
ˆP 12

M1 “ tpe2, e1q : P 22 pe2q “ P 12pe1qu ĂM2 ˆM1.

We have to identify the composable pairs pe2, e1q producing the same corre-
spondence from P1pe1q to P3pe2q. These identifications are produced by the
actions of G2: the pair pe2, e1q is equivalent to pe2 ¨g

´1, g ¨e1q, see Figure 3.7.

We will denote the quotient G2z

´

M2 P 22
ˆP 12

M1

¯

by M2 bG2 M1 or

just M2 bM1. The groupoids G1 and G3 act naturally on M2bM1 since
their actions commute with G2. We get a biaction G3 y M2 bM1 x G1.

The role of the identical correspondence G ÝÑ G is played by the
groupoid G itself with the natural left and right actions, i.e., the natural
biaction G y G x G. Note that both actions of G on itself are proper and
free.

The next statement follows directly from the definitions.

Proposition 3.2.13. Let G1 y M x G2 be a biaction. Then the map
x b g ÞÑ x ¨ g induces an isomorphism of the biaction M b G2 with M.
Similarly, the biaction G1 bM is naturally isomorphic to M.

The process of taking a quotient used in the definition of M1 bG2 M2

maybe not well behaved topologically. However, if one of the actions of G2

on M1 or M2 is free and proper, it is not problematic. Namely, we have
the following.

Proposition 3.2.14. Suppose that the action of G2 on M1 is free and
proper. Then the action of G2 on M2 P 22

ˆP 12
M1 over the map pe2, e1q ÞÑ

P 12pe1q given by
g ¨ pe2, e1q “ pe2 ¨ g

´1, g ¨ e1q,

is free and proper.

Proof. The action of G2 on M2 P 22
ˆP 12

M1 is free, since the action of
G2 on M1 is free. Let us show that it is proper. For every compact set
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K Ă M2 P 22
ˆP 12

M1 the projection K1 of K to M1 is compact as a
continuous image of a compact set. The element g is uniquely determined
by a pair pe1, g ¨ e1q, i.e., by its action on the projection K1, since the action
of G2 on M1 is free. It follows that the set of elements g P G1 such that
g ¨K XK ‰ H is compact, i.e., that the action of G1 on M2P 22

ˆP 12
M1 is

proper. �

We see that biactions can be naturally composed if one of the middle
actions is proper and free.

Maps are particular cases of correspondences, namely they are such that
every point of one set is in a correspondence with exactly one point of the
other set. This condition (that the correspondence is a map from the space
of G-orbits to the space of H-orbits) can be naturally formulated in terms
of biactions in the following way.

Definition 3.2.15. We say that a biaction G y M x H is a univalent
correspondence from G to H (or a morphism), which we will denote G y
M
ÝÑ

x H, if the action of H on M is free and proper, and the map PG{H :

M{H ÝÑ Gp0q induced by PG is a homeomorphism.

The choice of the sides in the conditions of Definition 3.2.15 is arbitrary.
If G y M is free and proper, and the map GzM ÝÑ Hp0q induced by PH is
a homeomorphism, then we write G y M

ÐÝ
x H. In particular, we identify

the morphism G y M
ÝÑ

x H with the morphism H y M´1
ÐÝÝÝ

x G.

It is not always convenient to check that PG{H is a homeomorphism.
Instead, one can use the following reformulation of the definition of a mor-
phism.

Proposition 3.2.16. A biaction G y M x H is a univalent correspon-
dence G y M

ÝÑ
x H if and only if the following conditions are satisfied:

(1) The action of H on M is free and proper.

(2) The action of H is transitive on the set P´1G pxq for every x P Gp0q.

(3) The map PG : M ÝÑ Gp0q is onto and open.

Proof. The conditions that PG{H : M{H ÝÑ Gp0q is one-to-one and onto
are equivalent to the conditions that action of H is transitive on the sets
P´1G pxq and that PG is onto, respectively. Since PG is continuous, the map
PG{H is continuous, i.e., preimages by PG{H of open subsets of M{H are
open. The map PG{H is a homeomorphism if and only if it is a bijection
and open. It is open if and only if PG is open, since preimages in M of open
subsets of M{H are precisely open H-invariant subsets of M. �
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Figure 3.8. Functor as a biaction

Proposition 3.2.17. Suppose that G1 y M1
ÝÝÑ

x G2 and G2 y M2
ÝÝÑ

x G3

are morphisms. Then the biaction G1 y M1 bM2
ÝÝÝÝÝÝÝÑ

x G3 is a morphism.

Proof. .... �

Suppose that G y M x H is a biaction, and let A Ă Gp0q. Denote
by M|A the subspace P´1G pAq. Then the action G y M naturally restricts
to an action G|A y M|A. The set M|A is H-invariant, hence we get a
biaction G|A y M|A x H. If the action M x H is free and proper, then its
restriction to any H-invariant subset is also free and proper. Consequently,
if G y M

ÝÑ
x H is a morphism, then for any subset G|A we get a morphism

G|A y M|A
ÝÝÑ

x H. We call it the restriction of the morphism G y M
ÝÑ

x H

to A.

3.2.3. Functors as biactions. Let φ : G1 ÝÑ G2 be a functor. Set

M “ tpx, gq P G
p0q
1 ˆG2 : φpxq “ rpgqu with the biaction with the anchors

PG1px, gq “ x, PG2px, gq “ spgq, and given by

g1 ¨ px, gq ¨ g2 “ prpg1q, φpg1qgg2q,

see Figure 3.8.

The action M x G2 is free and proper, since the right action of G2 on
itself is free and proper. If PG1px1, g1q “ PG1px2, g2q, then x1 “ x2, hence
rpg1q “ φpx1q “ φpx2q “ rpg2q. Then we have px1, g1q ¨ g

´1
1 g2 “ px2, g2q,

which shows that the action of G2 is transitive on the fibers of PG1 . The
map PG1 is obviously onto. For every open neighborhood U of px, gq there
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exists open neighborhoods Ug and Ux of g and x in G2 and G
p0q
1 , respectively,

such that tpx1, g1q : x1 P Ux, g
1 P Ug, rpg

1q “ φpx1qu Ă U . The set U 1x “
Ux X φ

´1prpUgqq is an open neighborhood of x, since φ is continuous and r
is open. Then PG1ptpx

1, g1q : x1 P U 1x, g
1 P Ug, rpg

1q “ φpx1quq contains U 1x.
We have shown that every point of PG1pUq is internal, i.e., that PG1 is an
open map.

We see that the defined biaction is a morphism. We say that G1 y
M
ÝÑ

x G2 is the morphism defined by the functor φ.

If G1 y M
ÝÑ

x G2 is a morphism defined by a functor φ : G1 ÝÑ G2,

as above, then the map x ÞÑ pφpxq, xq is a section (i.e., a right inverse) of

the map PG1 : M ÝÑ G
p0q
1 , since PG1pφpxq, xq “ x. Conversely, existence of

such a section is equivalent to the condition that the biaction is defined by
a functor.

Proposition 3.2.18. Suppose that G1 y M
ÝÑ

x G2 is a morphism, and

suppose that there exists a section ψ : G
p0q
1 ÝÑM of the map PG1 : M ÝÑ

G
p0q
1 . Then for every g P G1 the point g ¨ ψpspgqq can be written in a unique

way as ψprpgqq ¨ h for some h P G2.

The map φ : g ÞÑ h is a continuous functor and the morphism G1 y
M
ÝÑ

x G2 is isomorphic to the morphism defined by the functor φ.

Proof. ....

�

We leave the following as an exercise.

Proposition 3.2.19. Let φ1 : G1 ÝÑ G2 and φ2 : G1 ÝÑ G2 be functors,

and suppose that there exists a continuous map δ : G
p0q
2 ÝÑ G2 such that

φ2pgq “ δprpφ1pgqqq ¨ φ1pgq ¨ δpspφ1pgqqq
´1.

Then the functors φ1 and φ2 define isomorphic morphisms.

Note that every continuous map δ : Gp0q ÝÑ G defines an inner auto-
morphism of G equal to the map

g ÞÑ δprpgqq ¨ g ¨ δpspgqq´1.

The above proposition tells us that the isomorphism class of the biaction de-
fined by a functor depends only on the functor modulo inner automorphisms
of G2.

Example 3.2.20. Suppose that groupoids G1 “ G1 and G2 “ G2 are
discrete groups, and let G1 y M

ÝÑ
x G2 be a morphism. The maps PG1 :

M ÝÑ G
p0q
1 and PG2 : M ÝÑ G

p0q
2 are constant, since G

p0q
1 and G

p0q
2 are
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singletons (units of the groups). It follows that any map ψ : G
p0q
1 ÝÑ M :

1G1 ÞÑ e is a section of PG1 .

After we choose the point e “ ψp1G1q, we transform G1 y M
ÝÑ

x G2 into
a homomorphism of groups φ : G1 ÝÑ G2 uniquely defined by the condition

g ¨ e “ e ¨ φpgq,

since the action of G2 on M is free and transitive (properness follows from
freeness for discrete groups).

We see that the notion of a groupoid morphisms between groups is equiv-
alent to the notion of a group homomorphism (except for the fact that dif-
ferent choices of e PM produce homomorphism that differ from each other
by an inner automorphism of G2).

3.2.4. Examples of morphisms.

3.2.4.1. Morphism from a groupoid to a space. Suppose that H is a trivial
groupoid, i.e., a topological space X . Then every H-action H y M is trivial,
i.e., h ¨ x “ x for all h P G “ X , x PM such that PGpxq “ sphq “ h.

Every H-action is free, since H contains only units. It is also proper,
since the map PH is continuous, so maps compacts sets to compact sets.

Proposition 3.2.21. Let G y M
ÝÑ

x X be a morphism to a trivial groupoid.

Then there exists a continuous map f : Gp0q ÝÑ X constant on G-orbits such
that M is isomorphic to the biaction G y Gp0q x X , where G y Gp0q is the
natural action and Gp0q x X is the trivial action over the map f : Gp0q ÝÑ
X .

In particular, a morphism between two trivial groupoids is just a con-
tinuous map.

Proof. As the action of X is trivial and has to be transitive on the fibers of
PG, the fibers of PG are singletons. The map PG : M ÝÑ Gp0q is therefore
bijective and open, hence homeomorphism. Moreover the groupoid pG n
Mq{X “ G n M is naturally isomorphic to G (see Exercise 7). It follows
that G y M is the natural action of G on its unit space, and the morphism
G y M

ÝÑ
x X is given by a continuous map PH : Gp0q ÝÑ X . �

3.2.4.2. Morphisms from a space to a groupoid. Suppose that H is a principal
proper groupoid, and denote by X the associated space Hp0q{H of H-orbits.

We have then a natural morphism X y Hp0q
ÝÝÑ

x H, where X y H is defined

by the anchor mapping a unit to its orbit, and the action Hp0q x H is
natural. Note that the inverse correspondence is also a morphism. (It is an
equivalence of groupoids, see 3.2.5.)
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This gives us a method of constructing morphism from topological spaces
to groupoids. If X is a topological space, then we can take a principal proper
groupoid H with the space of orbits homeomorphic to X , and then compose
the morphism X y Hp0q

ÝÝÑ
x H with a morphism HM

ÝÑ
x G (for example,

defined by a functor H ÝÑ G).

In fact, this described method is general. Suppose that X y M
ÝÑ

x G is
a morphism from a trivial groupoid. Then G acts on the fibers of PX , and
its action on M is free and proper. The map PX induces a homeomorphism
from the space of orbits M{G to X , by definition of a morphism. The
natural projection px, gq ÞÑ g is a functor from the action groupoid MoG
to G. The space of orbits of the action M x G is naturally identified with
the space of orbits of the principal proper groupoid M x G. It is not hard
to check that the biaction X y M

ÝÑ
x G is isomorphic to the composition

of the natural morphism from X to the space of orbits M{G of MoG with
the morphism defined by the projection functor MoG ÝÑ G.

A particular case X “ r0, 1s, i.e., of paths, will be studied in more detail
in 3.3.

3.2.4.3. The natural morphism from the unit space to the groupoid. Let G
be a groupoid. Then we have a natural morphism Gp0q y G

ÝÑ
x G, where

the action Gp0q y G
ÝÑ

is defined by the anchor s : G ÝÑ Gp0q, and G x G
is the natural right action of G on itself. The latter is free and proper,
see Example 3.2.7. The constructed morphism from Gp0q to G can be seen
as the natural “quotient map” from Gp0q to the non-commutative space of
G-orbits.

3.2.4.4. Fundamental group of a space. Let X be a path connected and

semilocally simply connected space. Let rX be its universal covering, and
let π1pX q be the fundamental group. Let G1 “ X be the trivial groupoid,
and let G2 “ π1pX q be the group seen as a groupoid (with one unit). Let

P1 : rX ÝÑ X be the universal covering map, let P2 : rX ÝÑ G
p0q
2 be the only

possible map: the constant identity element of the fundamental group. Take
the trivial action of G1 and the natural action of the fundamental group on
the universal covering for G2. Both actions are free and proper. We get a

biaction X y rX x π1pX q.
The action of π1pX q on rX is transitive on the fibers of P1, and the map

P1 : rX ÝÑ X is onto and open. We see that there is a natural groupoid

morphism X y rX
ÝÑ

x π1pX q from a space to its fundamental group.

3.2.5. Equivalence of groupoids.

Definition 3.2.22. An equivalence between groupoids G and H is a biaction
G y E x H such that both E and E´1 are morphisms.
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Let us spell out Definition 3.2.22, using Proposition 3.2.16. An equiva-
lence is a biaction G y E x H satisfying the following properties.

(1) The actions G y E and E x H are free and proper.

(2) The action of G is transitive on the fibers of PH, and the action of
H is transitive on the fibers of PG.

(3) The maps PG and PH are onto and open. Moreover, they define

homeomorphisms M{H ÝÑ Gp0q and GzM ÝÑ Hp0q.

The above definition of equivalence coincides with the one given in [MRW87].

Proposition 3.2.23. Composition of equivalences is an equivalence. If E is
an equivalence, then the compositions E b E´1 and E´1 b E are isomorphic
to the identical morphisms.

Proof. The first statement follows directly from Proposition 3.2.17.

Let G y E x H be an equivalence. Consider an element of E b E´1
represented by the pair pe1, e

´1
2 q of EPH

ˆPH
E´1. Then PHpe1q “ PHpe2q,

hence there exists a unique g P G such that g ¨ e1 “ e2. Note that g depends
only on the corresponding element of E b E´1, since the action of G on
EPH

ˆPH
E´1 is by the transformations pe1, e

´1
2 q ÞÑ pe1 ¨h, pe2 ¨hq

´1q, so that
g ¨ e1 “ e2 is equivalent to g ¨ pe1 ¨ hq “ pe2 ¨ hq. Let us denote the defined
element g by φpe1 b e

´1
2 q. We want to prove that the map φ : E b E´1 is an

isomorphism. It is easy to check that φ agrees with the left and right actions
of G on E b E´1, so it is enough to show that φ is a homeomorphism. Let
g P G. Since PG is onto, there exists e P E such that PGpeq “ spgq. We have
PHpeq “ PHpg ¨eq, so that pg ¨eqbe´1 is an element of EbE´1. Suppose that
e1 P E is another element such that PGpe

1q “ spgq. Then there exists h P H
such that e1 “ e¨h, and we have pg ¨e1qbpe1q´1 “ g ¨e¨hbpe¨hq´1 “ g ¨ebe´1.
We have shown that g ¨ebe´1 does not depend on e. The map g ÞÑ g ¨ebe´1

is inverse to the map φ. Let us show that both maps are continuous.... �

It is sometimes more convenient to define equivalence of groupoids using
functors, so we need to understand when a functor defines an equivalence of
groupoids.

Proposition 3.2.24. Let φ : G ÝÑ H be a functor. It defines an equivalence
if and only if the following conditions are satisfied.

(1) If x, y P Gp0q and h P H are such that φpxq “ sphq and φpyq “ rphq
then there exists a unique g P G such that φpgq “ h.

(2) The map φ : Gp0q ÝÑ Hp0q is open and onto.
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Proof. Recall that the morphism G y F
ÝÑ

x H defined by φ is the space

F “ tpx, hq P Gp0q ˆ H : rpgq “ φpxqu with the biaction

g1 ¨ px, hq ¨ h1 “ prpg1q, φpg1qhh1q.

We have to understand when F´1 is a morphism, i.e., when the action of G
on F is free, proper, and transitive on the PH-fibers, and when the map PG

is onto and open.

Freeness of the action means that g ¨ px, hq “ px, hq is equivalent to

g P Gp0q. The equality g ¨ px, hq “ px, hq is equivalent to spgq “ x, rpgq “ x,
φpgqh “ h, i.e., that g belongs to the isotropy group of x and that φpgq is
a unit. It follows that the freeness of G y F is equivalent to the condition
that φ is injective on isotropy groups.

Transitivity on the PH-fibers means that whenever px1, h1q and px2, h2q P
F are such that sph1q “ sph2q, then there exists g P G such that g ¨px1, h1q “
px2, h2q. Recall that we have rphiq “ φpxiq, spgq “ x1, and g ¨ px1, h1q “
prpgq, φpgqh1q. We need rpgq “ x2 and h2 “ φpgqh1, i.e., φpgq “ h2h

´1
1 . It

follows that G is transitive on the PH-fibers if and only if for any h P H and
x1, x2 P Gp0q such that φpx1q “ sphq and φpx2q “ rphq, there exists g P G
such that spgq “ x1, rpgq “ x2 and φpgq “ h. Uniqueness of the element g
is equivalent to injectivity of φ on the isotropy groups.

We see that freeness and transitivity of of the G-action is equivalent
to the condition that the map Φ : g ÞÑ pspgq, rpgq, φpgqq from G to the

space tpx, y, hq P Gp0q ˆ Gp0q ˆ H : φpxq “ sphq, φpyq “ rphqu is bijective.
Since the spaces are locally compact and locally Hausdorff, the inverse is
also continuous if it exists. So, freeness and transitivity is equivalent to the
condition that this map is a homeomorphism.....

The action of G on F is proper if and only if the map

pg, x, hq ÞÑ prpgq, φpgqh, x, hq

from tpg, x, hq : spgq “ x, rphq “ φpxqu to F ˆ F is proper. Let K Ă F
be compact. The preimage of K ˆ K under the map is the set of triples
pg, x, hq such that px, hq P K and prpgq, φpgqhq P K. We have φpgqh, h P K
if and only if h P K and φpgq P KK´1. Since the ... Using the fact that Φ
is a homeomorphism... �

3.2.6. Equivalence as an ambient groupoid. Let G y E x H be an
equivalence.

Suppose that e1, e2 P E are such that PGpe1q “ PGpe2q. Then there exists
a unique element h P H such that e1 ¨ h “ e2. Similarly, if PHpe1q “ PHpe2q,
then there exists a unique element g P G such that g ¨ e1 “ e2.
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Let us rename PG : E ÝÑ G, PH : E ÝÑ H by r, s, respectively, and
define spe´1q “ rpeq and rpe´1q “ speq for e´1 P E´1. We also define
pe´1q´1 “ e. Let us denote the disjoint union G\E\E´1\H by G_EH. We

have defined maps s, r : G_EH ÝÑ Gp0q\Hp0q. Suppose that h1, h2 P G_EH
are such that sph1q “ rph2q. Define then the product h1h2 in the following
way:

(1) if h1, h2 P G, or h1, h2 P H, then h1h2 is the usual product in G or
H;

(2) if h1 P G and h2 P E , or h1 P E and h2 P H, then h1h2 is the result
of the action of G or H on E ;

(3) if h1 P E´1 and h2 P G, or h1 P H and h2 P E´1, then h1h2 is the
result of the action of G or H on E´1;

(4) if h1 P E and h2 P E´1, then h1h2 is the unique element of G such
that h1h2 ¨ h

´1
2 “ h1;

(5) if h1 P E´1 and h2 P E , then h1h2 is the unique element H such
that h´11 ¨ h1h2 “ h2.

Proposition 3.2.25. The set G_E H with the above defined multiplication
is a topological groupoid with respect to the topology of the disjoint union of
the topological spaces G\ E \ E´1 \ H.

Proof. We leave it to the reader to check that the above multiplication
introduces a structure of a groupoid on G _E H. We only prove here that
it is topological, i.e., that multiplication is continuous. Continuity of the
operation of taking inverse is obvious. Continuity of multiplication at pairs
ph1, h2q P pG _E Hqp2q from the cases (1)–(2) follow from the continuity of
multiplication in G and H, continuity for the cases (3)–(6) follow from the
continuity of the actions.

Let us prove the continuity at a pair ph1, h2q P EˆE´1 such that sph1q “
rph2q, i.e., P2ph1q “ P2ph

´1
2 q. Consider the map µ : pg, hq ÞÑ pg ¨ h, h´1q

from GˆP2 E to tph1, h2q P E ˆ E´1 : P2ph1q “ P2ph
´1
2 qu. It is continuous,

by continuity of the G-action. It is invertible, by freeness of the action.
The inverse map is given in terms of the groupoid G _E H by ph1, h2q ÞÑ
ph1h2, h

´1
2 q. By the definition of proper actions, the map µ is proper. It

is known that a proper bijective continuous map between locally compact
locally Hausdorff spaces is a homeomorphism. Consequently, the inverse
map µ´1, which is the multiplication in G _E H, restricted to E ˆ E´1, is
continuous. Continuity of the multiplication restricted to E´1ˆ E is proved
in the same way, using properness of the H-action. �

Conversely, the notion of equivalence of groupoids can be defined in the
following way. Recall that a subset A of a topological space X is said to be
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locally closed if it is equal to the intersection of an open and a closed subsets
of X .

Proposition 3.2.26. Topological groupoids G1 and G2 are equivalent if and
only if there exists a topological groupoid H and homomorphisms φ1 : G1 ÝÑ

H and φ2 : G2 ÝÑ H such that the following conditions hold.

(1) The maps φi : Gi ÝÑ φipGiq are isomorphisms of topological
groupoids.

(2) The groupoids φipGiq are equal to the restrictions of H to φipG
p0q
i q.

(3) The sets φipG
p0q
i q are locally closed H-transversals.

In other words, two topological groupoids are equivalent if and only if
they can be realized as restrictions of one groupoid to locally closed transver-
sals.

Proof. We have already proved the “only if” part in by constructing the
groupoid G_E H, which satisfies all the conditions of the proposition, see....

Conversely, suppose that H is a topological groupoid, and let G1,G2 be

restrictions of H to locally closed H-transversals G
p0q
1 and G

p0q
2 . Let E “

th P H : sphq P G
p0q
2 , rphq P G

p0q
1 u. Then G1 and G2 act on E from the

left and the right, respectively, by multiplication. The actions commute, are
obviously free, and satisfy condition (2) of Definition 3.2.22. Properness of

the actions follows from Lemma 3.1.16. The unit spaces G
p0q
1 and G

p0q
2 are

locally compact, since they are locally closed subsets of a locally compact
locally Hausdorff space. Local compactness of G1 and G2 follows from the

local compactness of H and the fact that G
p0q
1 and G

p0q
2 are locally closed. �

Example 3.2.27. Let f ü X be a homeomorphism, and consider the corre-
sponding action pZ,X q. Let G “ X of Z be the groupoid of the action. Let
Y Ă X be an open set such that for every point x P X there exist positive
integers n1 and n2 such that fn1pxq P Y and f´n2pxq P Y. For example, if
pZ,X q is minimal, then Y can be any non-empty open subset of X .

Example 3.2.28. IF f ü X is a minimal homeomorphism of a Cantor set.
Then for every non-empty clopen subset Y Ă X the groupoid of the Z-action
generated by f is equivalent to the groupoid of the Z-action generated by the
first return map fY ü Y induced by f on Y. It follows that if two minimal
homeomorphisms are Kakutani equivalent, then the associated groupoids of
actions are equivalent. See 1.3.6 for a discussion of Kakutani equivalence of
minimal homeomorphisms and its relation to Vershik-Bratteli diagrams.

Example 3.2.29. The groupoids associated with the stable and unstable
equivalence relations for a Ruelle-Smale system f ü X defined in Exam-
ple 3.1.15 are equivalent to the groupoids S and U defined in Example 3.1.4.3
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(both to the groupoid with the space of units equal to the disjoint union of all
leaves and to its restriction to the union of plaques of a cover by rectangles).
Namely, the groupoid from Example 3.1.4.3 with the space of units equal to
the union of plaques of a finite cover by open rectangles is a restriction to
a locally closed transversal both of the groupoid from Example 3.1.15 and
of the groupoid with the space of units equal to the disjoint union of the
leaves.

3.2.7. Equivalence for étale groupoids.

Proposition 3.2.30. Let M x G be an action of an étale groupoid. Then
the groupoid MoG is étale.

Proof. The source and range maps of the action groupoid MoG are

spx, gq “ px ¨ g, spgqq, rpx, gq “ px, rpgqq.

Suppose that U Q g is an open G-bisection. Consider the set U 1 “ E oGX
E ˆU . It is an open neighborhood of px, gq for every x P P´1prpgqq, and the
restrictions of the source and range maps to U 1 have continuous inverses:

px, P pxqq ÞÑ px ¨ ps´1pP pxqqq´1, s´1pP pxqqq,

and

px, P pxqq ÞÑ px, r´1pP pxqqq,

respectively, where s´1 and r´1 are the inverses of s : U ÝÑ spUq and
r : U ÝÑ rpUq. �

Proposition 3.2.31. Suppose that G is étale, and the action M x G is
free and proper. Then the quotient map M ÝÑM{G is étale, i.e., is a local
homeomorphism.

Proof. Take a point x P M, and let N be a compact Hausdorff neigh-
borhood of x. Since the action M x G is proper, the set A of elements
py, gq P M o G such that y, y ¨ g P N is compact. For every non-unit el-
ement py, gq of A we have y ‰ y ¨ g, as the action M x G is free. The
groupoid M x G is étale, so there exists a bisection Upy,gq ĂM o G such
that spUpy,gqq and rpUpy,gqq have disjoint closures. If py, gq “ py, PGpyqq is a
unit, we set Upy,gq “ N (here we, as usual, identify a unit py, PGpyqq with
the point y). Then there exists a finite cover of A by the sets of the form
Upy,gq. It follows that for a sufficiently small compact neighborhood N 1 Ă N

of x the set of elements py, gq P M x G such that y, y ¨ g P N 1 consists of
units only. It follows that the quotient map M ÝÑM{G is injective on N 1,
hence is a homeomorphism from N 1 onto its image. �
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Proposition 3.2.32. Let G and H be étale groupoids. Suppose that they
are equivalent, and let G _ H be the corresponding groupoid described in
Proposition 3.2.25. Then G_ H is étale.

Proof. It is enough to prove that if G y E
ÝÑ

x H is an equivalence between

étale groupoids G and H, then the anchors PG : E ÝÑ Gp0q and PH : E ÝÑ
Hp0q are local homeomorphisms.

Let U be a compact Hausdorff neighborhood of a point x P E . Since
the H-action is proper, the set C “ tpy, hq P E o H : y P U, y ¨ h P Uu
is compact. The set of units of E o H is open by Proposition 3.2.30, hence
the set C 1 “ C r pE o Hqp0q is compact. Let py, hq P C 1 be an arbitrary
point. If x ‰ y and x ‰ y ¨ h, then there exists an open relatively compact
neighborhood Vpy,hq of py, hq such that x R spV py,hqq Y rpV py,hqq. If x “ y,
then there exists an open relatively compact neighborhood Vpy,hq of py, hq

such that x P spVpy,hqq and x R rpV py,hqq. If x “ y ¨ h, then we can find an

open relatively compact neighborhood Vpy,hq of py, hq such that x R spV py,hqq
and x P rpVpy,hqq. Note that we can not have y “ y ¨ h, since the action
groupoid E o H is principal, and py, hq is not a unit.

There exists a finite set A of sets of the form Vpy,hq, py, hq P C
1 covering

C 1. Then the set

U 1 “ U r

¨

˝

ď

V PA,xRspV q
spV q Y

ď

V PA,xRrpV q
rpV q

˛

‚

is a neighborhood of x such that there does not exist py, hq P EoHrpEoHqp0q

such that ty, y ¨ hu P U 1. Consider the restriction of the map PG to U 1. If
PGpy1q “ PGpy2q for y1, y2 P U

1 such that y1 ‰ y2, then there exists h P H
such that y2 “ y1 ¨ h. Then py1, hq P U , hence there exists V P A such that
py1, hq P V . Since y1, y2 P U

1, we have x P spV q and x P rpV q, which is not

allowed. We get a contradiction showing that PG : U 1 ÝÑ Gp0q is injective.
It follows that PG is a local homeomorphism. The same arguments show
that PH is a local homeomorphism. �

A convenient method of replacing an étale groupoid by an equivalent
one is pull-back and localization defined in the following way.

Definition 3.2.33. Let G be an étale groupoid, and let F : X ÝÑ Gp0q be
a surjective local homeomorphism. Denote by F ˚pGq groupoid equal as a
topological space to tpx1, g, x2q P X ˆGˆX : F px1q “ spgq, F px2q “ rpgqu
with operations

spx1, g, x2q “ x1, rpx1, g, x2q “ x2
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and

px2, g2, x3qpx1, g1, x2q “ px1, g2g1, x3q.

We call F ˚pGq the pull-back of G by the map F .

We leave it to the reader as an exercise to show that F ˚pGq is an étale
groupoid.

Proposition 3.2.34. Let F ˚pGq be as in Definition 3.2.33. Then F ˚pGq is
equivalent to G.

Proof. ..... �

Example 3.2.35. Let X be a path connected and semilocally simply con-

nected space, and let F : rX ÝÑ X be the universal covering. Then the

pull-back of the trivial groupoid X by F is the groupoid rX o π1pX q of the
action of the fundamental group on the universal covering.

As an important particular case of the pull-back is the localization on an
open cover, which we will use almost every time when dealing with equiva-
lences of étale groupoids.

Definition 3.2.36. Let G be an étale groupoid, and let U be an open
cover of Gp0q. Let X be the disjoint union of the elements of U , and let
F : X ÝÑ Gp0q be the natural map equal to the identity on each element of
U . Then F is a local homeomorphism, by definition. The pull-back F ˚pGq
is called the localization of G to U . We will denote it by G|U .

If U “ tUiuiPI is an open cover of Gp0q, then we will represent the disjoint
union X of the elements of U as the space

Ů

iPI Ui ˆ tiu, so that a point of
X is a pair px, iq for x P Ui. The elements of the localization are represented
by triples pi1, g, i2q, where spgq P Ui1 , rpgq P Ui2 , so that the groupoid
operations in the localization are

spi1, g, i2q “ pspgq, i1q, rpi1, g, i2q “ prpgq, i2q,

and

pi2, g2, i3qpi1, g1, i2q “ pi1, g2g1, i3q.

Unlike in many other books on groupoids, we did not include the condi-
tion that the space of units is Hausdorff into the definition of a topological
groupoid. The main reason for this was to include actions on non-Hausdorff
spaces, which are essential for the general definition of morphisms between
groupoids. On the other hand, since we can always consider the localiza-
tion of an étale groupoid to a cover by open Hausdorff sets, every étale
groupoid is equivalent to an étale groupoid with a Hausdorff space of units,
so adding the condition of Hausdorffness to the definition of étale groupoids
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does not make it more general from the point of view of equivalence classes
of groupoids.

Proposition 3.2.37. Two étale groupoids G1 and G2 are equivalent if and

only if there exist open covers Ui of G
p0q
i such that G1|U1 and G2|U2 are

isomorphic.

Proof. ..... �

Localizations are also convenient ways of defining morphisms from étale
groupoids.

Definition 3.2.38. We say that two biactions G1 y M1 x H1 and G2 y
M2 x H2 are equivalent if there exist equivalences G1 y E x G2 and
H1 y F x H2 such that M1 is isomorphic to E bM2 b F´1.

Proposition 3.2.39. Every morphism G y M
ÝÑ

x H, where G is étale is

equivalent to the morphism defined by a functor f : G|U ÝÑ H, where U is

an open cover of Gp0q.

Proof. .... �

Proposition 3.2.40. Let G1 y X1 and G2 y X2 be continuous actions of
locally compact topological groups. Then the groupoids G1nX1 and G2nX2

are equivalent if and only if there exists a space E and a free proper action
of G1 ˆ G2 y E such that the actions G1 y E{G2 and G2 y E{G1 are
topologically conjugate to the actions G1 y X1 and G2 y X2, respectively.

Proof. .... �

3.2.8. Flow equivalence for Z-actions. Let f ü X be a homeomor-
phism of a locally compact Hausdorff space. Consider its mapping torus
Tf defined as the quotient of r0, 1s ˆ X by the equivalence relation p1, xq „

p0, fpxqq. The associated flow R y Tf is given by Tapt, xq “
`

t` a´ tau, f tau
˘

,

i.e., it is just the natural flow along the line . . . r0, 1s ˆ tf´1pxqu Y r0, 1s ˆ
txu Y r0, 1s ˆ tfpxqu . . ..

Since t0u ˆ X is a closed transversal of the flow R y Tf , the groupoids
Z nf X and Rn Tf are equivalent.

Proposition 3.2.41. Two actions Z yfi Xi are groupoid equivalent if and
only if the associated mapping torus flows R yfi Tfi are topologically con-
jugate.

Proof. Since every Z-action is groupoid equivalent to the associated R-flow,
it is enough to show that equivalent Z-actions have topologically conjugate
R-flows on the mapping tori.
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Let R y S be an arbitrary flow, and let x1, x2, . . . , xn P S be points be-
longing to one orbit. Then there exists x P S and real numbers t1, t2, . . . , tn
such that xi “ Ttipxq. Let p1, p2, . . . , pn be real numbers such that p1 `
p2 ` ¨ ¨ ¨ ` pn “ 1. Consider the point Tp1t1`p2t2`¨¨¨`pntnpxq. If we change
x to another point Ttpxq in the orbit, then we will replace t1, t2, . . . , tn
by t1 ´ t, t2 ´ t, . . . , tn ´ t, and get Tp1pt1´tq`p2pt2´tq`¨¨¨`pnptn´tqpTtpxqq “
Tp1t1`p2t2`¨¨¨`pntn´tpTtpxqq “ Tp1t1`p2t2`¨¨¨`pntnpxq. It follows that Tp1t1`p2t2`¨¨¨`pntnpxq
does not depend on the choice of x. We will denote it p1x1`p2x2`¨ ¨ ¨`pnxn.

Let Z nf1 X1 y M x Z nf2 X2 be an equivalence of groupoids. The
projections Pi “ PZnfiXi of M onto the unit spaces Xi are local homeomor-
phisms, by Proposition 3.2.32. It follows that there is a collection U of open
subsets of M such that for every U P U the maps Pi,U : U ÝÑ PipUq are
homeomorphisms and the sets tPipUq : U P Uu are open covers of Xi. Let
φU : U ÝÑ r0, 1s be a partition of unity subordiate to tP1pUq : U P Uu.
Let x P Xi, and consider all the sets U P U such that x P P1pUq. Let
xU “ P2,U ˝P

´1
1,U pxq. All points xU belong to one orbit of the flow R y Tf2 ,

i.e., are of the form TtU px0q for some x0 P Tf2 and tU P R. Consider
the average tx “

ř

UPU φU pxqtU , and let Φpxq “ Ttxpx0q. In other words,
we take the average of the points xU along the R-orbit using the weights
φU pxq. The point Φpxq does not depend on the choice of x0 and the map
Φ : X1 ÝÑ Tf2 is continuous. It remains to show that the map Tf1 ÝÑ Tf2
given by pt, xq ÞÑ TtpΦpxqq is a homeomorphism, where Tt is the action
R yf2 Tf2 ... �

See an application of Proposition 3.2.41 for Kakutani equivalence of
minimal homeomorphisms in Exercise 14.

3.3. Fundamental groups

3.3.1. G-paths and the fundamental group.

Definition 3.3.1. Let G be a groupoid. A G-path is a morphism r0, 1s y
F
ÝÑ

x G together with a choice of points x0, x1 P Gp0q that are M-related

with 0, 1 P r0, 1s, respectively. We say that x0 and x1 are the beginning and
the end of the path. Two G-paths are isomorphic if their endpoints coincide
and the corresponding morphisms are isomorphic.

We will assume, unless explicitly stated otherwise, that G is étale. Every
morphism r0, 1sy F

ÝÑ
x G is equivalent to a morphism defined by a functor

F : r0, 1s|U ÝÑ G, where r0, 1s|U is the localization onto a finite open cover
(see Proposition 3.2.39). It follows that every G-path can be described by
following data.

(1) A partition t0 “ 0 ă t1 ă t2 ă . . . ă tn “ 1 of the interval r0, 1s.
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Figure 3.9. A G-path

(2) Continuous maps γi : rti, ti`1s ÝÑ Gp0q for every i “ 0, 1, . . . , n´1.

(3) Elements gi P Gi such that spgiq is the end of γi and the beginning
of γi`1.

The beginning of this path is spg0q and its end is rpgnq. The path is defined
by the functor from the localization onto the cover tr0, t1 ` εq, pt1 ´ ε, t2 `
εq, . . . , ptn´1 ´ ε, tnsu, where ε is a small positive number. We will encode
the above data by the sequence pg0, γ1, g1, γ2, . . . , γn, gnq. See Figure 3.9 for
a schematic description of a path pg0, γ1, g1, . . . , γ4, g4q connecting a point x
to a point y. We get the same notion of a G-path as in [BH99]...

The conditions for two functors to define isomorphic morphisms of groupoids
are given in Proposition 3.2.19. It implies that two sequences represent iso-
morphic G-paths if and only if they can be obtained from each other using
a sequence of the following operations and their inverses applied to a path
pg0, γ1, . . . , γn, gnq.

(1) Subdivision: Add a new point t P pti´1, tiq and replace γi by the
sequence γi|rti´1,ts, γiptq, γi|rt,tis, where γiptq is seen as a unit element
of G.

(2) G-action: For each i “ 1, . . . , n, choose a continuous function hi :
rti´1, tis ÝÑ G such that sphiptqq “ γiptq for all t P rti´1, tis, and
replace γi by r ˝ hi, replace gi by hi`1ptiqgihiptiq

´1 for all i “
1, . . . , n ´ 1, replace g0 by h1pt0qg0, and gn by gnhnptnq

´1. See
Figure 3.10.

Definition 3.3.2. The G-paths r0, 1sy F1
ÝÑ

x G and r0, 1sy F2
ÝÑ

x G are

homotopic if their beginnings and ends coincide and there exists a morphism
r0, 1s2 y M

ÝÑ
x G such that restriction of M to r0, 1s ˆ t0u is isomorphic to

F1, restriction of M to r0, 1s ˆ t1u is isomorphic to F2, and the restrictions
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Figure 3.10. Isomorphism of G-paths

to t0u ˆ r0, 1s and t1u ˆ r0, 1s do not depend on the second coordinate (i.e.,
are isomorphic to compositions of the projection txu ˆ r0, 1s ÝÑ txu with a
morphism from txu).

Again, as for G-paths, we can make the definition more concrete in
the étale case by using functors from localizations. We get the following
description.

Proposition 3.3.3. Two paths α “ pg0, α1, . . . , αn, gnq and β “ ph0, β1, . . . , βm, hmq
are homotopic if and only if they can be obtained from each other by a se-
quence of the following operations.

(1) Subdivision and G-action, as in the description of isomorphism of
paths.

(2) Elementary homotopies: a family of paths γs “ pgs0, γ
s
1, . . . , γ

s
n, g

s
nq,

where s P r0, 1s is a real parameter; the path γs is defined over
a subdivision 0 “ ts0 ă ts1 ă . . . ă tsn “ 1; the values tsi , g

s
i , γ

s
i ptq

depend continuously on s, and the elements gs0 and gsn do not depend
on s. The elementary homotopy replaces γ0 by γ1.

If α is a path from x to y and β is a path from y to z, then we can
concatenate the paths to get a path from x to z. We concatenate paths
in the same order as we compose functions and groupoid elements, so that
the path from x to z is denoted βα. If α “ pg0, α1, . . . , αn, gnq and β “
ph0, β1, . . . , βm, hmq, then

βα “ pg0, α1, . . . , αn, h0gn, β1, . . . , βm, hmq.

It is natural therefore, to write a path pg0, γ1, g1, . . . , gn´1, γn, gnq as the
concatenation

gnγngn´1 ¨ ¨ ¨ g1γ1g0.

The set of the homotopy classes of G-paths is a groupoid with respect
to this concatenation operation. We call it the fundamental groupoid and
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denote it π1pGq. It is not a topological groupoid yet. The set of units of

π1pGq is naturally identified with the set of units Gp0q of G. The groupoid G
is also naturally identified with a subgroupoid of π1pGq, since any element
of G can be seen as a G-path.

Definition 3.3.4. The fundamental group π1pG, xq, for x P Gp0q, is the
isotropy group of x in the fundamental groupoid π1pGq, i.e., the group of
homotopy classes of G-paths starting and ending in x.

It follows directly from the definitions that π1pG, xq depends only on
the equivalence class of G. More precisely, if G1 y E x G2 is an equiva-

lence, and the units xi P G
p0q
i are E-related, then the groups π1pG1, x1q and

π1pG2, x2q are isomorphic. The isomorphism maps a loop r0, 1sy M
ÝÑ

x G1

to the loop r0, 1sy Mb E
ÝÝÝÝÑ

x G2.

Definition 3.3.5. We say that a groupoid G is connected if it can not be
represented as a disjoint union of two non-empty open sub-groupoids. It is
path connected if any two points of Gp0q can be connected by a G-path, i.e.,
if its fundamental groupoid is transitive. A groupoid G is locally connected,
resp. locally simply connected, if Gp0q is a locally connected, resp. locally
simply connected, topological space.

It is easy to see that a path-connected groupoid is connected.

Suppose now that G is locally simply connected. We can introduce then
a natural topology on π1pGq making it a topological groupoid. Let γ “
gnγn ¨ ¨ ¨ γ1g0 be a G-path. Let G0, Gn be open simply connected (as usual
topological spaces) G-bisections containing g0 and gn. For every g10 P G0

and g1n P Gn consider a path γ11 inside rpG0q from rpg10q to rpg0q and a path
γ1n inside spGnq from spgnq to spg1nq. Then the homotopy classes of the paths
γ11 and γ1n depend only on g10 and g1n. Consider the set of all paths of the
form

g1nγ
1
nγngn´1 ¨ ¨ ¨ g2γ2g1γ1γ

1
1g
1
0.

We set it to be a neighborhood of element γ of π1pGq. This will define a
topology on π1pGq. If G is path connected, then the fundamental groupoid
π1pGq is equivalent to the fundamental group π1pG, xq, since π1pGq has only
one orbit.

We have a canonical morphism G y M
ÝÑ

x π1pGq, where M is equal

to π1pGq with the natural right action of π1pGq on itself and the natural
action of G on π1pGq (since G is a sub-groupoid of π1pGq). Since π1pGq
is equivalent to the fundamental group, we also get a canonical morphism
from G to its fundamental group.

We finish this subsection with some examples.
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Example 3.3.6. Let Gy X be an action of a discrete group a topological
space, and consider the action groupoid Gn X . Then every Gn X -path is
equivalent to a path of the form pg, xq ¨ γ, where g P G, γ is a path in X ,
and x is the end of γ. Namely, we can use the group action to “collect” all
the curves in a Gn X -path to one curve.

If X is simply connected, then the homotopy class of such a path depends
only on g and the endpoints of γ. It follows that every element of the
fundamental group π1pGnX , tq can be represented by pg, g´1ptqq ¨ γ and is
uniquely determined by g P G. It is easy to see now that we have π1pG n
X , tq – G for every action on a simply connected space X .

Example 3.3.7. Suppose that X is a path connected and semi-locally sim-
ply connected topological space, and let G y X be an action of a discrete
group. Then π1pG n X , tq is isomorphic to the group G̃ of all lifts of the

homeomorphisms g P G to the universal covering X̃ of X , since the groupoid
Gn X is equivalent to the groupoid G̃n X̃ , see Proposition 3.2.34.

Example 3.3.8. Let G be the groupoid of the Z-action generated by the
irrational rotation x ÞÑ x ` θ of the circle R{Z, then π1pG, tq is isomorphic
to Z2, since the group of lifts of this Z-action to the universal covering R is
the group of the transformations of the form x ÞÑ x` aθ ` b for a, b P Z.

Example 3.3.9. Holonomy groupoid of a local product structure Let X
be a space with a local product structure, and consider the corresponding
holonomy groupoid ... Explain why the fundamental group of this groupoid
is π1pX q in the locally simply connected case...

3.3.2. Universal covering and developability. Let G be a path con-
nected and locally simply connected étale groupoid. Fix a basepoint t P Gp0q,
and consider the subset Xt “ s´1ptq of the fundamental groupoid π1pGq, i.e.,
the space of homotopy classes of G-paths starting in t. The groupoid π1pGq
and its sub-groupoid G naturally act on Xt from the left over the anchor
mapping a path to its endpoint.

The fundamental group π1pG, tq acts on Xt it from the right, and the
corresponding actions commute, i.e., we have a natural bi-action G y Xt x
π1pG, tq.

Definition 3.3.10. The groupoid G is called developable if the action G y
Xt is free and proper. Then the space GzXt is called the universal covering
of G.

Theorem 3.3.11. If G is developable, then it is equivalent to the groupoid
of the action of π1pG, tq on the universal covering of GzXt, and the universal
covering is a simply connected topological space.
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Conversely, for any action G y X of a discrete group on a simply
connected topological space the groupoid G n X is developable, and G y X
is topologically conjugate with the action of the fundamental group of GnX
on its universal covering.

Proof. .... �

Examples..

3.4. Orbispaces and complexes of groups

3.4.1. Orbispaces. The approach of Section 3.2 to groupoids was inter-
preting them as representations of some “quotient spaces” of orbits. The
morphisms between such quotient spaces are given by biactions. Usual topo-
logical spaces are represented by trivial groupoids. Any principal proper
étale groupoid G is equivalent to the trivial groupoid on the quotient space
of orbits of G. Therefore, usual topological spaces are represented in this
approach by principal proper groupoids.

The natural next step, not far from usual topological spaces will be
proper étale groupoids. Their spaces of orbits are still Hausdorff (see Propo-
sition 3.1.29), but points come with the associated (necessarily finite) isotropy
groups, which are preserved under equivalence of groupoids. Therefore, in-
formally, orbispaces are sometimes defined as spaces locally described as
quotients of topological spaces by actions of finite groups.

Definition 3.4.1. An orbispace is defined by a proper étale groupoid. Ev-
ery equivalent groupoid is called an atlas of the orbispace. The associated
pseudogroup is called the pseudogroup of changes of charts of the atlas. The
space of orbits of the atlas is called the underlying space of the orbispace.

Morphisms (or maps) between two orbispaces are given by a morphism
in the sense of Definition 3.2.15. Note that we do not get a category of orbis-
paces, since composition of morphisms is associative only up to isomorphism
of biactions. We get rather a weak bicategory, see...

There are several version of Definition 3.4.1 in the literature, with dif-
ferent degrees of generality. For instance, it is customary to require the
groupoid to be a Hausdorff groupoid of germs.

An orbifold is a orbispace given by a proper groupoid of germs of a
pseudogroup of local diffeomorphisms of open subsets of Rn. Similarly, one
can define other structures on an orbispace by requiring the associated pseu-
dogroup of the groupoid to preserve some structure (e.g., affine, conformal,
measure).
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Orbispaces as local quotients by finite group actions... Define good open
covers, and restrict the atlas onto it, so that we get a disjoint union of
finite group actions and changes of charts between them... Write it as a
proposition .....

3.4.2. Covering maps between orbispaces. Morphisms between orbis-
paces...

Definition using cocycles into the symmetric group... Show how cover-
ings of non-singular spaces can be realized this way... Hint (without a proof)
that a more natural definition is equivalent to the given...

3.4.3. Groupoid simplicial complexes.

Definition 3.4.2. A groupoid simplicial complex is an abstract (discrete)
groupoid G identified with the set of all simplices of a simplicial complex
satisfying the following conditions.

(1) If pg, hq P Gp2q, then the simplices g and h have equal dimen-
sions and we can order the sets of vertices of the simplices g “
tv0, v1, . . . , vdu and h “ tu0, u1, . . . , udu so that gh “ tv0u0, v1u1, . . . , vdudu.

(2) If g P G is isotropic (i.e., spgq “ rpgq), then all vertices of the
simplex g are isotropic.

Example 3.4.3. Let Gy Γ be an action of a group on a simplicial complex
such that if g P G leaves a simplex of Γ invariant, then it fixes it pointwise.
Then the groupoid of the action GoΓ consisting of pairs pg,∆q, where g P G
and ∆ is a simplex of Γ, is a groupoid simplicial complex in a natural way.

Example 3.4.4. We can consider a quotient of the groupoid given in the
last example by identifying two pairs pg1,∆q and pg2,∆q if the actions of g1
and g2 on all simplices intersecting ∆ coincide. This will be also a groupoid
simplicial complex.

A geometric realization of a groupoid simplicial complex is its geometric
realization as a simplicial complex in the usual way, seen as a topological
groupoid. Note that it may be not locally compact. Etale...?

Let G be a groupoid simplicial complex. If g P G, and α is a sub-simplex
of spgq, it follows from Definition 3.4.2 that there exists a unique sub-simplex
h P G of g such that sphq “ α. We will denote it g|α. If β is a subsimplex
of α, then we obviously have

(3.1) g|β “ g|α|β

and

(3.2) pg|αq
´1 “ pg´1q|rpg|αq.
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Choose one simplex (i.e., and element of Gp0q) in each G-orbit. Let

T Ă Γp0q be the set of chosen simplices. If α is an element of Gp0q, then we
denote by α the element of T in the same orbit as α. For every α P Gp0q,
choose an element tα P G such that sptαq “ α and rptαq “ α. Denote by Gα
is isotropy group of α P Gp0q in G.

Suppose that β is a subsimplex of α (we write then α Ą β). Denote then
by ψα,β : Gα ÝÑ Gβ the homomorphism given by

ψα,βpgq “ tβg|βt
´1
β .

In other words, it is the restriction homomorphism g ÞÑ g|β from Gα to Gβ
conjugated by the identification of Gβ with Gβ defined by tβ.

Suppose that α Ą β Ą γ. Let γ1 “ rptβ|γq, see Figure... We have
then three morphisms between isotropy groups: ψα,β : Gα ÝÑ Gβ, ψβ,γ :

Gβ ÝÑ Gγ , and ψα,γ : Gα ÝÑ Gγ . It follows from (3.1)–(3.2) that x|γ1 “

ptβt
´1
β xtβt

´1
β q|γ1 “ tβ|γt

´1
β x|βtβtγtβ|

´1
γ . Therefore,

ψβ,γ ˝ ψα,βpgq “

tγ1tβ|γpt
´1
β tβg|βt

´1
β tβq|γtβ|

´1
γ t´1γ1 “ tγ1tβ|γg|β|γtβ|

´1
γ t´1γ1 “

tγ1tβ|γg|γptβ|γq
´1t´1γ1 “ tγ1tβ|γt

´1
γ ψα,γpgqtγtβ|

´1
γ t´1γ1 .

We get for every triple α Ą β Ą γ a twisting element

tα,β,γ “ tγ1tβ|γt
´1
γ P Gγ

satisfying

(3.3) ψβ,γ ˝ ψα,βpgq “ tα,β,γψα,γpgqt
´1
α,β,γ .

Consider the category G whose objects are the elements of T , and whose
morphisms are pairs pα, βq, where α P T , and β Ă α (note that β P Gp0q is
not necessarily an element of T ). The source of pα, βq is α, its range is β.
Suppose that pα, βq, and pβ, γq is a pair of composable morphisms. Denote
γ0 “ rpt´1β |γq. Then tβ|γ0 satisfies sptβ|γ0q “ γ0 and rptβ|γ0q “ γ. Note that

γ0 does not depend on the choice of tβ (due to the second condition in the
definition of a simplicial groupoid).

We define then pβ, γq˝ pα, βq “ pα, γ0q. It is easy to check that we get in
this way a category. It is a scwol : small category without loops (the latter
condition means that the only endomorphisms in this category are identical
isomorphisms).

We have associated a group Gα with every object of the category G,
and homomorphisms ψe “ ψα,β : Gspeq ÝÑ Grpeq with every morphism

e “ pα, βq. For each pair e1 “ pβ, γq, e2 “ pα, βq of composable morphisms
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as in the previous paragraph, we have

(3.4) ψe1 ˝ ψe2pxq “ te1,e2ψe1e2pxqt
´1
e1,e2 ,

for te1,e2 “ tγtβ|γ0t
´1
γ0 , where, as before, γ0 is the sub-simplex of β equal to

rpt´1β |γq.

Proposition 3.4.5. For every triple e1, e2, e3 of composable morphisms of
the category G, we have the following cocycle identity

(3.5) ψe1pte2,e3qte1,e2e3 “ te1,e2te1e2,e3 .

Proof. If the product e1 ¨ e2 ¨ e3 is defined, then there exists a sequence of
simplices α Ą β Ą γ Ą δ, such that e1 “ pγ2, δ2q, e2 “ pβ1, γ1q, e3 “ pα, βq,
where β1 “ β, γ1 “ rptβ|γq, γ2 “ γ, and δ2 “ rptγ1 |δ1q, for δ1 “ rptβ|δq. See
Figure... where all the simplices and maps between them are shown.

We have e1e2 “ pγ2, δ2qpβ1, γ1q “ pβ1, δ1q, e2e3 “ pβ1, γ1qpα, βq “ pα, γq,
and e1e2e3 “ pα, δq. It follows that

ψe1pgq “ tδ2g|δ2t
´1
δ2
,

te2,e3 “ tγ1tβ|γt
´1
γ ,

te1,e2e3 “ tδ2tγ |δt
´1
δ ,

te1,e2 “ tδ2tγ1 |δ1t
´1
δ1
,

te1e2,e3 “ tδ1tβ|δt
´1
δ .

We have

ψe1pte2,e3q “ tδ2ptγ1tβ|γt
´1
γ q|δ2 ¨ t

´1
δ2
“ tδ2tγ1 |δ1tβ|δtγ |

´1
δ t´1δ2 ,

so

ψe1pte2,e3q ¨ te1,e2e3 “ tδ2tγ1 |δ1tβ|δtγ |
´1
δ t´1δ2 ¨ tδ2tγ |δt

´1
δ “ tδ2tγ1 |δ1tβ|δt

´1
δ .

On the other hand,

te1,e2 ¨ te1e2,e3 “ tδ2tγ1 |δ1t
´1
δ1
¨ tδ1tβ|δt

´1
δ “ tδ2tγ1 |δ1tβ|δt

´1
δ ,

hence ψe1pte2,e3qte1,e2e3 “ te1,e2te1e2,e3 . �

The obtained structure (the category G, groups Gα, homomorphisms ψe,
and the twisting elements tα,β,γ) is called a complex of groups. Namely, we
have the following definition, see...

Definition 3.4.6. A complex of groups is a given by a scwol G, groups Gα
associated with every object α of G, group homomorphisms ψe : Gspeq ÝÑ

Grpeq associated with every morphism e of G, and twisting elements te1,e2 P
Grpe1q associated with every composable pair pe1, e2q of morphisms, such
that conditions (3.4) and (3.5) are satisfied.
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Geometric realization of a scwol G is constructed in the following way.
For every sequence pe1, e2, . . . , enq of composable morphisms G take an n-
dimensional standard simplex. Its n´1 dimensional faces the simplices asso-
ciated with the sequences pe1e2, e3, . . . , enq, pe1, e2e3, . . . , enq, . . . pe1, e2, e3, . . . , en´1enq.
(More formally, we take a disjoint union of the simplices associated with
sequences of composable morphisms and then identify lower-dimensional
simpleces with the corresponding faces higher-dimensional simplices.) In
particular, one-dimensional cells of the geometric realization are associated
with morphisms of the category G. The vertices of the geometric realiztion
are the objects of G, so that the set of vertices of the cell associated with
pe1, e2, . . . , enq is trpe1q, spe1q “ rpe2q, spe2q “ rpe3q, . . . , spenqu. For exam-
ple, if G consists of two objects a1, a2 and three morphisms ei such that
speiq “ a1, rpeiq “ a2, then the geometric realization is the graph with two
vertices and three edges connecting them. See a more detailed discussion of
scwols and their geometric realizations in [BH99, III.C.1].

If G is the scwol associated with a groupoid simplicial complex G and
a G-transversal T , as above, then the geometric realization of G is natu-
rally homeomorphic to the space of orbits of the geometric realization of G.
Namely, consider the baricentric subdivision of the geometric realization of
Gp0q. Its vertices correspond to the simplices of Gp0q, while its simplices are
chains α1 Ă α2 Ă ¨ ¨ ¨ Ă αn of simplices of Gp0q. We leave it to the reader
as an exercise to show that the identical map from T as a subset of the
baricentric subdivision of Gp0q to T as the set of vertices of the geometric
realization of the scwol G naturally extends to an isomorphism of the quo-
tient of the baricentric subdivision of Gp0q by the G-action to the geometric
realization of G.

One-dimensional complexes of groups are easier to define, since there are
no twisting elements, as they have are no pairs of composable non-identity
morphisms. We get the following definition.

Definition 3.4.7. A graph of groups is given by the following data.

(1) Set of vertices V ;

(2) set of edges E;

(3) source and range maps s, r : E ÝÑ V ;

(4) orientation reverting map E ÝÑ E : e ÞÑ e´1, satisfying spe´1q “
rpeq and rpe´1q “ speq;

(5) groups Gv and Ge associated with every vertex v P V and edge
e P E, such that Ge “ Ge´1 ;

(6) homomorphisms ψe : Ge ÝÑ Grpeq for every edge e P E.
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A complex of groups over the scwol G with the local groups Gα, ho-
momorphisms ψe, and twisting elements te1,e2 defines a groupoid simplicial
complex in the following way...

Simple complexes of groups (without twisting elements) defined over
posets...

3.4.4. Fundamental groups of complexes of groups. ...

3.4.5. Van Kampen theory in groupoid terms. Cover of orbispaces
and their nerves as complexes of groups...

The general van Kampen theorem for morphisms of groupoids: consider
a groupoid morphism which is locally injective on the fundamental groupoid.
Then it induces an isomorhism of groups...

Particular case: the classical van Kampen theorems... Use partition of
unity...

3.5. Compactly generated groupoids

We assume throughout this section that our groupoids are étale.

3.5.1. Definition. We say that a subset X Ă Gp0q is a topological transver-
sal if there exists a open transversal X0 such that X0 Ă X .

Definition 3.5.1. Let G be a topological groupoid. A compact generating
pair is a pair pX1, Sq of compact sets X1 Ă Gp0q and S Ă G|X1 such that
X1 is a topological transversal and for every g P G|X1 there exists n such
that the set

Ťn
k“0pS Y S

´1qk is a neighborhood of g in G|X1 . We say that a
groupoid is compactly generated if it has a compact generating pair.

Proposition 3.5.2. Let pX1, Sq be a compact generating pair of G. Then

for every compact topological transversal X 11 Ă Gp0q there exists a compact
subset S1 Ă G|X 11 such that pX 11, S1q is a compact generating set.

Proof. Let us assume that S “ S´1 (we can always replace S by SYS´1).
Moreover, we may assume that S Ą X1, so that Sk Ă Sk`1 for every k ě 0.

For every x P X 11 there exists g P G such that spgq “ x and rpgq belongs
to the interior of X1. It follows that there exists an open set U Ă G such
that closure of U is compact, spUq Q x, rpUq Ă X1. Since X 11 is compact,
this shows that there exists a finite set of relatively compact open bisections
U1, U2, . . . , Um1 such that X 11 Ă

Ťm1
i“1 spUiq and rpUiq Ă X1 for all i. By the

same argument there exists a finite collection W1,W2, . . . ,Wm2 of relatively
compact open bisections such that X1 Ă

Ťm2
i“1 spWiq and rpWiq Ă X 11 for

every i.
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Let g P G|X 11 . Then there exists Ui and Uj such that spgq P spUiq and

rpgq P spUjq. The element UjgU
´1
i belongs to G. Consequently, there exists

n such that Sn is a neighborhood of UjgU
´1
i . Let s1s2 ¨ ¨ ¨ sn P S

n be an
arbitrary element of this neighborhood. Then there exist W0,W1, . . . ,Wn

such that rps1q P spW0q, sps1q P spW1q, sps2q P spW2q, . . . , spsnq P spWnq.
Then

s1s2 ¨ ¨ ¨ sn “W´1
0 ¨ pW0s1W

´1
1 qpW1s2W

´1
2 q ¨ ¨ ¨ pWn´1snW

´1
n qWn,

and W´1
0 ¨ pW0SW

´1
1 qpW1SW

´1
2 q ¨ ¨ ¨ pWn´1SW

´1
n qWk is a neighborhood of

s1s2 ¨ ¨ ¨ sn. It follows that

U´1j W´1
0 ¨ pW0SW

´1
1 qpW1SW

´1
2 q ¨ ¨ ¨ pWn´1SW

´1
n qWnUi

is a neighborhood of g. Consequently, if we take S1 to be the intersection
of the closure of

Ť

k“1,...,m2,l“1,...,m1
pWkUl YU

´1
l Wkq Y

Ť

1ďk,lďm2
WkSW

´1
l

with G|X 11 , then pX 11, S1q is a generating pair of G. �

Proposition 3.5.3. Let G1 and G2 be equivalent topological groupoids. If
G1 is compactly generated, then so is G2.

Proof. Follows directly from Propositions 3.5.2 and 3.2.26. �

Proposition 3.5.4. Let G be an étale groupoid with compact totally discon-
nected space of units. Then the following conditions are equivalent.

(1) The groupoid G is compactly generated.

(2) There exists a compact open subset S Ă G such that G “
Ť

ně0 S
n.

(3) There exists a finite set S of compact open bisections such that the
set of all products of the elements of S is a cover of G.

Proof. By Proposition 3.5.2, G is compactly generated if and only if there
exists a compact generated pair pGp0q, Sq. Since every compact subset of
G is contained in an open compact set, we may increase S to a symmetric
compact open set, which proves the implication (1)ùñ(2). The converse
implication is obvious.

Every compact open subset of G is a union of a finite number of compact
open bisections, which proves the equivalence (2)ðñ(3). �

3.5.2. Cayley graphs of groupoids. Let pX1, Sq be a compact generating
pair of a groupoid G. Let x P X1. The Cayley graph GxpSq is the graph
with the set of vertices tg P G : spgq “ x, rpgq P X1u in which there is an
arrow from g1 to g2 if g2g

´1
1 P S, i.e., if there exists s P S such that g2 “ sg1.

Proposition 3.5.5. Let pX1, Sq be a compact generating pair of G, and let
X2 Ă X1 be a compact G-transversal. Then the set of vertices g of GxpSq
such that rpgq P X2 is a net in the Cayley graph GxpSq for every x P X2.
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Here we say that a subset N of a metric space pX, dq is a net if there
exists R ą 0 such that for every x P X there exists y P N such that
dpx, yq ď R.

Proof. As in the proof of Proposition 3.5.2, there exists a finite collection
of relatively compact bisection U1, U2, . . . Uk such that spUiq Ă X2 and rpUiq
cover X1. Consequently, there exists a compact set C such that spCq Ă X2

and rpCq “ X1. Then there exists n such that C Ă
Ťn
k“0pS Y S´1qk. This

proves that every vertex g P GxpSq is on the distance at most n from a
vertex h P Gx such that rphq P X2. �

Proposition 3.5.6. The quasi-isometry class of the Cayley graph GxpSq
depends only on the groupoid G and the point x, and does not depend on the
choice of the generating pair.

Proof. Let pX1, S1q and pX2, S2q be compact generating pairs of G, and let
x P X1 X X2. Then, by Proposition 3.5.2, there exists a generating pair
pX1 Y X2, Sq. We may increase S so that S Ą S1 Y S2. It is enough to
prove that the identical embedding of the Cayley graph GxpS1q into GxpSq
is a quasi-isometry. We know that the set of vertices of GxpS1q is a net in
GxpSq, by Proposition 3.5.5. The identity map is distance non-increasing
(i.e., 1-Lipschitz), since S1 Ă S. It remains to bound the distance in GxpSq
between vertices of GxpS1q in terms of the distance in GxpS1q. Let, as in
the proof of Proposition 3.5.2, U be a finite set of relatively compact open G
bisections such that spUq for U P U cover X1 Y X2 and rpUq Ă X1 for every
U P U . Then for every product s1s2 ¨ ¨ ¨ sn of elements of S Y S´1 such that
spsnq, rps1q P X1 there exists a sequence U1, U2, . . . , Un´1 such that

s1s2 ¨ ¨ ¨ sn “ s1U
´1
1 ¨ U1s2U

´1
2 ¨ U2s3U

´1
3 ¨ ¨ ¨Un´1sn

Note that s1U
´1
1 , Un´1sn, and all Uisi`1s

´1
i`1 belong to G|X1 . The closures

of the sets of the form pS Y S´1qU´1, UpS Y S´1qW´1 and UpS Y S´1q are
compact for all U,W P U , and there are finitely many of them. It follows
that there exists a compact set C Ă G such that all the factors s1U

´1
1 ,

Uisi`1U
´1
i`1, and Un´1sn belong to it. Moreover, they belong to C X G|X1 .

By the definition of a compact generating pair, for every h P CXG|X1 there
exists m such that

Ťm
k“0pS1 Y S

´1
1 qk is a neighborhood of h in G|X1 . Since

CXG|X1 is compact, there exists m such that CXG|X1 Ă
Ťm
k“0pS1YS

´1
1 qk.

This proves that every product of length n of elements of SYS´1 belonging
to G|X1 can be written as a product of elements of length at most mn of
elements of S1 Y S

´1
1 . This finishes the proof of the proposition. �

Proposition 3.5.6 implies that the quasi-isometry class of the Cayley
graph depends only on the equivalence class of the groupoid, since any two
equivalent groupoids can be embedded into one groupoid. More precisely, if
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G and H are equivalent, and x P Gp0q, then for every unit y P Hp0q related
by an equivalence G y E x H with x the Cayley graphs GxpS1q and HypS2q
are quasi-isometric.

The quasi-isometry class of GxpSq, however, depends on x, see for ex-
ample...

3.5.3. Examples of compactly generated groupoids. It is easy to see
that our notion of a compact generating set coincides with the usual notion
of a compact generating set of a group in the case when G has a unique unit
(i.e., is a group). The notion of the Cayley graph also coincides in this case
with the classical notion of a Cayley graph.

Let us describe several other examples.

Example 3.5.7. Suppose that G is a discrete group acting on a compact
space X . The action groupoid Gn X is compactly generated if and only if
G is finitely generated. The corresponding compact generating set is SˆX ,
where S is a finite generating set of G. The Cayley graphs of G n X are
naturally isomorphic to the Cayley grah of G.

Example 3.5.8. If the action of G on a space X is proper and co-compact,
then the action groupoid GnX is compactly generated. The Cayley graphs
are finite.

Example 3.5.9. Consider the action of Z on R{Z generated by the rotation
Rθ : x ÞÑ x` θ by an irrational angle θ. The corresponding groupoid of the
action is equivalent to the groupoid of the action of Z2 on R generated by
the transformations x ÞÑ x`1 and x ÞÑ x`θ. Both groupoids are compactly
generated. The first one is generated by the tRθu ˆ pR{Zq Ă Z n pR{Zq,
which is compact. The corresponding Cayley graphs of the groupoid of the
action do not depend on the basepoint and are just the Cayley graphs of Z.

A compact generating set of of the second groupoid is obtained by taking
any compact topological transversal, e.g.., any closed interval ra, bs Ă R,
and considering a sufficiently big subset S Ă Z2, so that the set of elements
pg, xq P Z2 n R such that g P S and x, g ¨ x P ra, bs is a generating set of
the restriction of Z2 n R onto ra, bs. For example, if ra, bs “ r0, 1s, then we
can take S consisting of the transformations x ÞÑ x ` θ and x ÞÑ 1 ´ θ, if
θ P p0, 1q. The Cayley graphs GxpSq for such generating sets are equal to
the graph spanned by the set tpm,nq P Z2 : x ` m ` nθ P ra, bsu in the
Cayley graph of Z2 with respect to the generating set S, see Figure 1.1.

Example 3.5.10. The groupoid of the stable equivalence relation for a
Ruelle-Smale system... Compact generation is equivalent to local connec-
tivity of the unstable leaves, quasi-isometry of the Cayley graphs with the
unstable leaves...
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3.5.4. The space of well labeled graphs and the associated groupoid.
Let X be a finite set. A well labeled graph with the set of labels X is a con-
nected graph Γ with edges labeled by elements of the set X so that for every
vertex v of Γ and every label x P X there exists at most one edge starting
in v and labeled by x, and at most one edge ending in v and labeled by x.
(Compare with the definition of a perfect labeling of a graph in 2.1.1.)

Denote by GX the set of all rooted well labeled by X graphs. We consider
it with the usual topology, as in 2.1.4. Two graphs pΓ1, v1q and pΓ2, v2q are
close in this topology if for a big radius R ą 0 the balls of radius R with
centers in v1 and v2 are isomorphic as labeled rooted (with roots vi) graphs.

Denote by GX the set of bi-rooted well labeled graphs. Its elements are
triples pΓ, v1, v2q, where Γ is a well labeled graph, and v1, v2 are two vertices
of Γ. We topologize GX in the same way as GX: two elements pΓ1, v1, v2q
and pΓ2, u1, u2q are close if for a big R ą 0 (in particular, bigger than the
distances dpv1, v2q and dpu1, u2q) there exists an isomorphism of the labeled
graphs Bv1pRq ÝÑ Bu1pRq mapping v1 to u1 and v2 to u2.

The space GX is an étale groupoid in a natural way. The source and
range maps are spΓ, v1, v2q “ pΓ, v1, v1q and rpΓ, v1, v2q “ pΓ, v2, v2q. The
multiplication is given by the rule

pΓ, v2, v3qpΓ, v1, v2q “ pΓ, v1, v3q.

Note that the fact that this multiplication is well defined (that the iso-
morphism class of pΓ, v1, v3q depends only on the isomorphism classes of
pΓ, v1, v2q and pΓ, v2, v3q) follows from the fact that the automorphism group
of a rooted well labeled graph is trivial (there is only one isomorphism
Γ ÝÑ Γ mapping v2 to v2). We will identify the space of units of GX

with the space of rooted graphs GX, where pΓ, v, vq is identified with pΓ, vq.

The element pΓ, v1, v2q of the groupoid GX can be seen as the act of
moving the root from v1 to v2.

Definition 3.5.11. The groupoid GX is called the full graph shift over the
alphabet X. Restrictions of GX onto closed GX-invariant subsets of the unit
space are called graph sub-shifts.

We leave it as an exercise to show that the full graph shift is an étale
groupoid.

A graph subshift is the restriction of the full graph shift GX to a closed

GX-invariant (i.e., equal to a union of orbits) subset of GX “ G
p0q
X .

Example 3.5.12. The groupoid Z n XZ of the full Z-shift XZ is naturally
identified with a graph sub-shift: with the restriction of GX to the subset of
GX consisting of all X-labelings of the graph with the set of vertices Z with
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arrows from n to n` 1. It follows that the groupoids of all Z-subshifts are
also graph sub-shifts.

Example 3.5.13. Every quotient G of the free group generated by X is
naturally identified with the sub-shift equal to the set of all pairs pΓ, 1, gq,
where Γ is the Cayley graph of G with the natural edge labeling by the
elements of X.

Another important example is the tree shift groupoid.

Definition 3.5.14. The tree shift FX generated by X is the restriction of the
full graph shift GX to the set trees well labeled by X.

The tree shift FX will play a role of the free étale groupoid generated by
X.

Proposition 3.5.15. Let H Ă GX be a graph subshift. Denote for x P X by
Sx the subset of H consisting of all elements pΓ, v1, v2q P H such that there
exists an edge e of Γ labeled by x such that speq “ v1 and rpeq “ v2. Then
Sx is a clopen bisection and the set

Ť

xPX Sx generates H.

Proof. ... �

3.5.5. Expansive groupoids.

Definition 3.5.16. Let G be an étale groupoid, and let pX , Sq be its com-
pact generating pair. A finite cover S of S by open G-bisections is called
expansive if for every g P G|X and every neighborhood U of g in G there
exist sequences s1, s2, . . . , sn P S Y S´1 and F1, F2, . . . , Fn P S Y S´1 such
that si P Fi, s1s2 ¨ ¨ ¨ sn “ g, and F1F2 ¨ ¨ ¨Fn Ă U .

We say that G is expansive if there exists an expansive cover of for a
compact generating pair of G.

Proposition 3.5.17. If S is an expansive cover of a compact generating
pair, then any subordinate cover is expansive.

If G is expansive, then for every compact generating pair pX , Sq of G
there exists a finite expansive cover S of S.

In particular, the property of being expansive is invariant under equiv-
alence of étale groupoids.

Proof. The first statement follows directly from the definitions. Note also
that if S is an expansive cover, then cover containing it is also expansive.

The second statement of the proposition is proved by the same argument
as in proof of Proposition 3.5.2. Namely, in the notation of the proof, if S
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is an expansive cover of S, then for every g P G|X 11 there exist Fi P S such
that

g P U´1j W´1
0 ¨ pW0F1W

´1
1 qpW1F2W

´1
2 q ¨ ¨ ¨ pWn´1FnW

´1
n qWn.

Since S is expansive, we can make F1F2 ¨ ¨ ¨Fn an arbitrarily small neighbor-
hood of UjgU

´1
i . Then

U´1j W´1
0 ¨pW0F1W

´1
1 qpW1F2W

´1
2 q ¨ ¨ ¨ pWn´1FnW

´1
n qWnUi Ă U´1j F1F2 ¨ ¨ ¨FnUi

is arbitrarily small neighborhood of g. It follows that the collection of the
sets of the form WkUl, U

´1
l Wk, WkFW

´1
l for F P S is an expansive cover

of S. �

If G is a compactly generated groupoid with a compact space of units,
then it is sufficient to use finite sets of open bisections without specifying a
compact generating set of G. Namely, we have the following characterization
of expansivity.

Lemma 3.5.18. Let G be a compactly generated groupoid with compact
space of units. Then G is expansive if and only if there exists a finite set S
of open bisections such that the set

Ť

ně0pSYS´1qn is a basis of topology of
G.

Proof. If G is expansive, then such a set exists by definition. Suppose that
G is compactly generated, and such a set S of bisections exists. Let S1 be
a finite cover of a compact generating set S of G by open bisections. Then
S Y S1 is an expansive cover of S, hence G is expansive. �

We say that a finite set S of open bisections is expansive if it satisfies
the conditions of Lemma 3.5.18.

Proposition 3.5.19. Let G be an étale groupoid with compact Hausdorff
space of units. Let S be a finite set of relatively compact (...) open G-
bisections such that S´1 “ S. Denote by S˚ the set of all finite products of
elements of S. Then the following conditions are equivalent.

(1) The set S is expansive.

(2) The set spS˚q “ tspF q : F P S˚u is a basis of topology of Gp0q.

(3) For any two different points x, y P Gp0q there exist A,B P spS˚q
such that x P A, y P B, and AXB “ H.

(4) For every x P Gp0q the intersection of closures of the sets A P spS˚q
containing x is equal to txu.

Proof. We have spF1F2 ¨ ¨ ¨Fnq “ F´1n ¨ ¨ ¨F´12 F´11 F1F2 ¨ ¨ ¨Fn. Consequently,

spS˚q Ă S˚. The unit space Gp0q is open in G, hence (1) implies (2).
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Note also that for every bisection F Ă G and any open set U Ă Gp0q the
restriction of F to U is equal to the product FU . It follows that (2) implies
(1).

The implication (2)ùñ(3)ùñ(4) are obvious. Let us prove (3)ùñ(2).

Let x P Gp0q and let U be an open neighborhood of x. For every y P Gp0qrU
there exist a pair Ay, By of elements of spS˚q such that x P Ay, y P By, and

AyXBy “ H. Since Gp0qrU is compact, and the sets By cover it, we can find
two finite sequences A1, A2, . . . , An, B1, B2, . . . , Bn P spS˚q such that x P Ai,
Ťn
i“1Bi Ą U , and Ai XBi “ H for all i. Then

Şn
i“1Ai “ A1A2 ¨ ¨ ¨An is an

element of spS˚q contained in U .

Let us prove (4)ùñ(3). Denote, for n ě 1 and x P Gp0q, by Tnpxq the
closure of the intersection of the sets of the form spF1F2 ¨ ¨ ¨Fnq containing x,
where Fi P S. Recall that the set spS˚q is closed under finite intersections,
hence Tnpxq is closure of an element of spS˚q. In particular, condition (4)

is equivalent to
Ş

ně1 Tnpxq “ txu. If (3) is not true for a pair x, y P Gp0q,
then Tnpxq X Tnpyq is non-empty for all n. But then Tnpxq X Tnpyq is a

decreasing sequence of closed sets, hence by compactness of Gp0q, we get
that

Ş

ně1 Tnpxq X Tnpyq is non-empty, which is a contradiction. �

Corollary 3.5.20. Let Gy X be an action of a finitely generated group on
a compact Hausdorff space. Then the following conditions are equivalent.

(1) The groupoid of the action Go X is expansive.

(2) The groupoid of the germs of the action is expansive.

(3) The action Gy X is expansive in the sense of Subsection 1.2.2.

Proof. ... �

3.5.6. Cayley graphs of expansive groupoids. Let G be an expansive
groupoid such that Gp0q is compact Hausdorff. Let S be a finite set of
relatively compact open bisections satisfying the equivalent conditions (1)–
(4) of Proposition 3.5.19. Denote by GxpSq the labeled Cayley graph of G
based at x, i.e., the graph with the set of vertices s´1pxq in which for every
g P s´1pxq and F P S such that rpgq P spF q there is an arrow from g to Fg
labeled by F . Note that GxpSq with the root x is an element of the space
GS of well labeled graphs.

Denote by rGxpSq the universal covering of the CW-complex GxpSq. It

is an S-labeled tree with the root x, and is an element of the tree shift F
p0q
S .

Theorem 3.5.21. Let G be a compactly generated groupoid with compact
space of units. It is expansive if and only if there exists a finite set of open
bisections S generating G and such that for every pair x, y P Gp0q the rooted

graphs rGxpSq and rGypSq are not isomorphic.
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Proof. If S is an expansive cover of a generating set, then for any two differ-
ent points x, y P Gp0q there exist finite products A and B of the elements of
SYS´1 such that x P spAq, y P spBq, and AXB “ H, see Proposition 3.5.19,

condition (3). But this means that the tree rGxpSq has a path labeled by

the word corresponding to A and starting in the root, while rGypSq does not
contain such a word. In particular, the universal covers of the Cayley graphs
are not isomorphic.

Suppose now that S is such that the universal coverings rGxpSq are pair-

wise non-isomorphic for all x P Gp0q. Denote by Unpxq the intersection of
the closures of the domains containing x of products of length at most n
of elements of S Y S´1. Note that for every fixed n the number of sets of
the form Unpxq is finite, and

Ş

ně1 Unpxq “ txu by condition (4) of Propo-
sition 3.5.19. Since the number of sets of the form U1pxq is finite, we can
replace S by a refinement S1 so that the new set S1 satisfies the condition
that for every F P S1 and x P spF q we have spF q Ă U1pxq... Note that then
the Cayey graphs GxpS1q are obtained from GxpSq just by relabeling the
edges (by incorporating into the label the information about the 1-ball of
the vertices connected by the arrow). The same is true about their universal
coverings.

Suppose that S1 is not expansive. Then, by part (4) of Proposition 3.5.19,

there exist two different points x, y P Gp0q such that for every finite product
A of the elements S1 Y S´11 such that x P spAq we have y P spAq. It follows

that there is a morphism of the labeled rooted tree rGxpS1q ÝÑ rGypS1q.
Such a morphism is necessarily injective (since the trees are well labeled).
It is also locally bijective, since the labels contain the information about
the unit balls of the adjacent vertices. Consequently, it is an isomorphism,
which is a contradiction. �

Let now S be a finite generating set of G satisfying the conditions of
Theorem 3.5.21. Let T be the set of all universal coverings of the Cayley
graphs GxpSq. It is a subset of the space of units of the tree shift FS .

Show that every expansive groupoid is a quotient of a tree shift by an
open isotropical sub-groupoid... Expansive graph subshifts...

It is often easier to prove that the Cayley graphs GxpSq are pairwise
non-isomorphic than to understand their universal coverings. It is possible
that the Cayley graphs are pairwise non-isomorphic, but the action is not
expansive. See, for example....

On the other hand, it is possible sometimes to deduce non-isomorphism
of the universal coverings from non-isomorphism of the Cayley graphs.
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Definition 3.5.22. The Rips complex ∆npΓq of a graph Γ is the simplicial
complex with the same set of vertices as Γ in which a set of vertices is a
simplex if and only if its diameter in Γ is less than or equal to n.

We say that a graph Γ is large-scale simply connected if there exists n
such that the Rips complex ∆npΓq is simply connected.

It is known that the propery of large-scale simple connectivity is invari-
ant under quasi-isometries. Consequently, if Cayley graphs of a compactly
generated groupoid are large-scale simply connected with respect to one
compact generating set, then they are large-scale simply connected with
respect to every compact generating set, see Proposition 3.5.6.

The following theorem is proved in [?, Theorem 6.6].

Theorem 3.5.23. Let G be a Hausdorff compactly generated groupoid. Sup-
pose that its Cayley graphs are large-scale simply connected. Then G is ex-
pansive if and only if there exists a finite generating set S of bisections such
that the rooted labeled Cayley graphs GxpSq are pairwise non-isomorphic for

all x P Gp0q.

3.6. Hyperbolic groupoids

An overview of the theory: definition, construction of the Smale flow and
dual groupoid (with few proofs), examples...

Exercises

3.1. Prove that every abstract groupoid is isomorphic to a groupoid described
in Example 3.1.8.

3.2. Prove that if F1 and F2 are bisections, then F´11 and F1F2 are also
bisections.

3.3. Prove that the source and range maps are open in Example 3.1.15.

3.4. Prove that M1 b pM2 bM3q is isomorphic to pM1 bM2q bM3.

3.5. Prove Proposition 3.2.13.

3.6. Let G y M x H be a biaction. Show that the natural action of H
on the groupoid G o M given by pg, xq ¨ h “ pg, x ¨ hq is an action by
automorphisms of GnM and therefore the set of orbits pGnMq{H is a
groupoid. Prove that pGnMq{H is naturally isomorphic to the action
groupoid Gn pM{Hq.

3.7. Let G y M
ÝÑ

x H be a morphism. Show that the projection pg, xq ÞÑ g

from GnM to G induces an isomorphism of groupoids GnM{H ÝÑ G,
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where G n M{H is the groupoid pG n Mq{H – G n pM{Hq from the
previous problem.

3.8. Prove Proposition 3.2.19.

3.9. Let G y M x H be a biaction. Transform the right action H into a
left action h ¨ x :“ x ¨ h´1, so that we get two commuting left actions of
G and H on M, i.e., an action pG ˆ Hq y M of the obviously defined
direct product of two groupoids. Denote by G n M o H the groupoid
pG ˆ Hq n M. Check that an equivalent definition of the groupoid
GnMo H is as the set tpg, x, hq P GˆMˆ H : spgq “ PGpxq, rphq “
PHpxqu with the source and range maps

spg, x, hq “ x ¨ h, rpg, x, hq “ g ¨ x

and multiplication

pg1, g2 ¨ x ¨ h
´1
1 , h1qpg2, x, h2q “ pg1g2, x ¨ h

´1
1 , h1h2q.

3.10. Let G y M
ÝÑ

x H be a morphism. Prove that the projection GnMo
H ÝÑ G : pg, x, hq ÞÑ g is an equivalence of groupoids. This shows
that every morphism G y M

ÝÑ
x H is a composition of the equivalence

G « GnMo H with the projection GnMo H ÝÑ H.

3.11. Let X be a connected and semi-locally simply connected space, and let
F : X̃ ÝÑ X be its universal covering. For a group action Gy X , let G̃
be the group of all lifts of the homeomorphisms g P G of X to X̃ . Prove
that action groupoids Gi nXi are equivalent as groupoids if and only if
the lifts G̃i y X̃i to the universal coverings are topologically conjugate.

3.12. Let G be a topological groupoid. Show that the set of functors t¨u ÝÑ G

can be identified with Gp0q so that the category of isomorphisms between
the corresponding morphisms is isomorphic to G.

3.13. Let f ü X be a minimal homeomorphism of a Cantor set. Show that the
mapping torus T of f ü X is a connected topological space, and that
R-orbits of the associated flow on T coincide with the path connected
components of T .

3.14. Prove that two minimal homeomorphisms of Cantor sets are Kakutani
equivalent if and only if there is an orientation-preserving homeomor-
phisms of the associated mapping tori. Here a homeomorphism is said
to be orientation preserving if it preserves the positive direction on the
R-orbits (which coincide with the path connected components of the
mapping tori, see the previous problem).

3.15. Find the fundamental group of the groupoid generated by the set of
germs of the angle doubling map on the circle.

3.16. Let G be a path connected and locally simply connected étale groupoid,
and let Xt be the space of homotopy classes of paths starting in t P Gp0q.
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Let G y Xt x π1pG, tq be the natural actions. Show that the groupoid
GnXt x π1pG, tq is equivalent to G. (See Exercise 3.10 for the definition
of Gn Xt x π1pG, tq.)

3.17. Prove that if G is a second-countable étale groupoid, then every closed
transversal T Ă Gp0q contains an open transversal. (Check...)

3.18. Show that the full graph shift is an étale groupoid.

3.19. Show that the isotropy group of pΓ, vq in the full graph shift is isomorphic
to the automorphism group of Γ as a (non-rooted) labeled graph.

3.20. Let Sx Ă FX be as in Proposition 3.5.15 for the tree subshift H “ FX.
Then the inverse semigroup generated by the elements Sx is free (as
an inverse semigroup). (See ... for classical descriptions of free inverse
semigroups.)

3.21. Let X be a compact topological space, and let G y X be a finitely
generated group acting on X . Prove that the following conditions are
equivalent.
(a) The action Gy X is expansive in the sense of Definition 1.2.5.
(b) The groupoid of the action Gn X is expansive.
(c) The groupoid of the germs of the action Gy X is expansive.

3.22. Groupoid of the action of a group on its Stone-Čech compactification:
show that quasi-isometric groups have equivalent groupoids... Same for
the coarse groupoid of a metric space...
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[BGŠ03] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ, Branch groups,
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