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Chapter 4

Iterated monodromy
groups

4.1. Iterated monodromy groups of self-coverings

4.1.1. Definition. A partial self-covering of a topological space X is a
covering map f : X1 ÝÑ X , where X1 is a subset of X . Partial self-coverings
can be iterated in the usual way (as partial maps). We denote by fn :
Xn ÝÑ X the nth iteration of f . Here Xn is the domain of fn and is defined
inductively as Xn�1 � f�1pXnq. Note that we have Xn�1 � Xn and that
fn : Xn ÝÑ X are also covering maps.

Let t P X , and consider the formal disjoint union Tt �
�
n¥0 f

�nptq,
where f�0ptq � ttu. The set Tt has a natural structure of a rooted tree

with the root t P f�0ptq in which a vertex v P f�pn�1qptq is connected to
the vertex fpvq P f�nptq. If |f�1pxq| does not depend on x (e.g., if X is
connected), then Tt is a regular tree of degree equal to the degree of the
covering f . We call the rooted tree Tt the tree of preimages of t.

Suppose that X is path connected, and let γ be a path from t1 to t2 P X .
Then for every n ¥ 1 and every v P f�npt1q there exists a unique lift of γ
by fn starting at v. Denote by Sγpvq the end of the lift, see Figure 4.1.

Proposition 4.1.1. The map Sγ is an isomorphism from Tt1 to Tt2. It
depends only on the homotopy class of the path γ.

Proof. .... �

It follows directly from the definitions that Sγ1 � Sγ2 � Sγ1γ2 if the end
of γ2 is equal to the beginning of γ1, and we multiply the paths in the same
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256 4. Iterated monodromy groups

Figure 4.1. The map Sγ

order as we multiply the functions: in a product γ1γ2 the path γ2 is traversed
before the path γ1.

In particular, we get an action of the fundamental group π1pX , tq by
automorphisms of the tree Tt, i.e., a homomorphism rγs ÞÑ Sγ from π1pX , tq
to AutTt. The action is called the iterated monodromy action, and the image
of π1pX , tq in AutTt is called the iterated monodromy group of the map f ,
denoted IMG pfq.
Example 4.1.2. Consider the double self-covering x ÞÑ 2x of the circle
R{Z, see 1.1.2. Take 0 P R{Z as the basepoint. The fundamental group
is generated by the loop a equal to the image of r0, 1s with the increasing
orientation. For every n the lifts of a by fn are the images in R{Z of the
arcs of the form

�
k

2n ,
k�1
2n

�
for k � 0, 1, . . . , 2n � 1. It follows that a acts

on the nth level of the tree of preimages of t � 0 as a transitive cycle.
Consequently, see Theorem 2.4.7, the action of a on Tt is conjugate to the
adding machine action. The iterated monodromy group is the infinite cyclic
group (together with the level-transitive action on Tt by the adding machine
transformation).

We will see later that the above example is not typical in the sense that
IMG pfq is usually very different from the fundamental group.

4.1.2. Standard action. At the moment the tree Tt is just an abstract
rooted tree. We would like to identify it with the tree of words X� over some
finite alphabet X, see 2.4.1. Equivalently, we would like to represent Tt as
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the right Cayley graph of the free monoid generated by X. It is enough to
choose a bijection Λ from X to the first level of the tree Tt, and define a
collection of isomorphisms Sx : Tt ÝÑ TΛpxq from t to the subtrees rooted
at the vertices of the first level. These isomorphisms will correspond to the
maps Sx : X� ÝÑ X�, x P X, acting by the rule Sxpvq � xv. Then the vertex
Λpvq of Tt corresponding to a word v � x1x2 . . . xn can be defined as the
image of the root of the tree under the composition Sv � Sx1 �Sx2 �� � ��Sxn .
The map Sv is an isomorphism from Tt to TΛpvq. Since t is adjacent to each
Λpxq � Sxptq, and Sv is an isomorphism, the vertex Λpvq � Svptq will be
adjacent to the vertices Λpvxq � ΛpvqpSxptqq, hence Λ : X� ÝÑ Tt will be
an isomorphism.

If v is a vertex of the first level of the tree of preimages Tt, then the
subtree Tv coincides with the tree of preimages of v (which is also denoted
by Tv). Then a natural choice of an isomorphism Sv : Tt ÝÑ Tv is the
isomorphism S` for a path ` in X connecting t to v. We get the following
class of natural identifications of Tt with a tree of words X�.

Definition 4.1.3. Let X be an alphabet of cardinality deg f . Let Λ : X ÝÑ
f�1ptq be any bijection of X with the first level of the tree Tt. Choose for
every x P X a path `x starting in t and ending in Λpxq. Define a map Λ :
X� ÝÑ Tt setting Λpx1x2 � � �xnq to be the image of t under the composition
S`x1 � S`x2 � � � � � S`xn .

The following proposition gives an alternative definition of the map Λ.

Proposition 4.1.4. Let Λ : X ÝÑ f�1ptq and `x be as in Definition 4.1.3.
Define, for x1x2 . . . xn P X�, the path `x1x2...xn inductively by the condition
`x1x2...xn � γ`xn, where γ is the lift of the path `x1x2...xn�1 by f to a path
starting in Λpxnq. Then `x1x2...xn is a path starting in t and ending in
Λpx1x2 . . . xnq.

The path `x1x2���xn is equal to the concatenation λ1λ2 . . . λn, where λi is
the lift of `xi by fn�i starting at the end of λi�1.

Proof. By definition, the isomorphism Λ : X� ÝÑ Tt satisfies Λpxvq �
S`xpΛpvqq. If v P Xn�1, then Λpvq P f�pn�1qptq, and S`xpΛpvqq is defined as
the end of the lift of `x by fn�1 starting at Λpvq. It follows now by induction
that Λpx1x2 . . . xnq is the end of the path of the form λ1λ2 . . . λn, where λi
is the lift of `xi by fn�i. �

The lifts of the paths `x, x P X, by iterations of f form a tree with the
same set of vertices as Tt, but connecting them in a different way. Whereas
in Tt a vertex Λpx1x2 . . . xnq is connected to the vertex Λpx1x2 . . . xn�1q, in
the tree formed by the lifts of `x the vertex Λpx1x2 . . . xnq is connected to
the vertex Λpx2x3 . . . xnq. In other words, the map Λ identifies Tt with the
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Figure 4.2. The tree of preimages and the tree of lifts of the paths `x

right Cayley graph of the free monoid, whereas the tree formed by the lifts
of `x is identified by Λ with the left Cayley graph, see Figure 4.2.

Let us fix an alphabet X, a bijection Λ : X ÝÑ f�1ptq, and a collection
of paths `x, as in Definition 4.1.3. Let us conjugate the iterated monodromy
action of the fundamental group π1pX , tq by Λ, thus obtaining an action of
the fundamental group (and of the iterated monodromy group) on the tree
X�. We call such actions standard.

Let γ be an element of the fundamental group π1pX , tq. Let x P X and
v P X� be arbitrary, and let y P X be the image of x under the standard
action of γ, i.e., such that Λpyq � SγpΛpxqq. Suppose that u P X� is such
that yu is the image of xv under the action of g.

We have then

SγpΛpxvqq � SγS`xpΛpvqq � S`ypΛpuqq,
hence Λpuq � S�1

`y
SγS`x . It follows from the definition of the maps S� that

S�1
`y
SγS`x is equal to Sδ, where δ is the path `�1

y γx`x, where γx is the lift of

γ by f starting at Λpyq. See Figure 4.3, where the path δ is shown.

We get hence the following description of the standard actions of IMG pfq
on X�.

Proposition 4.1.5. Consider the standard action of IMG pfq on X� defined
by a collection of paths `x, x P X. Let g P IMG pfq be an element defined by
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Figure 4.3. The standard action of IMG pfq

a loop γ P π1pX , tq, and denote by γx the lift of the loop γ by f starting in
the end of `x. Then, for every v P X� we have

gpxvq � yhpvq,
where y � gpxq and h is defined by the loop `�1

y γx`x.

The recurrent formula from Proposition 4.1.5 is a description of the
automaton generating the standard action of the iterated monodromy group.
If the automaton is in the state defined by a loop γ, and reads on the input
a letter x P X, then we find the lift γx of γ by f starting in Λpxq. The output
letter is y P X such that the end of γx is Λpyq, and then the next state is
defined by the loop `�1

y γx`x.

The following is a direct corollary of Propositions 4.1.5 and 4.1.4.

Proposition 4.1.6. Let f,Λ, `x be as in Proposition 4.1.5. For v � x1x2 . . . xn
denote by `v the path of lifts of the paths `xi connecting the root t � Λp∅q to
the vertex Λpvq, as in Proposition 4.1.4. Let γv be the lift of γ by fn starting
in Λpvq, and let Λpuq for u P Xn be the end of γv. Then for every w P X�

we have

γpvwq � up`�1
u γv`vqpwq

for the corresponding standard action of the iterated monodromy group on
X�.

Recall that here `x1x2...xn � λ1λ2 . . . λn, where λi is the lift of `xi by fn�i

starting at the end of λi�1.

4.1.3. Some examples.

4.1.3.1. The double self-covering of the circle. Consider the map f : R{Z ÝÑ
R{Z given by fpxq � 2x. See a discussion of its dynamical properties in 1.1.2.
It is a self-covering map. Let us describe a standard action of IMG pfq. Take
t � 0 as the basepoing. We have then f�1p0q � t0, 1{2u. Take X � t0, 1u,
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Figure 4.4. The iterated monodromy group of the double self-covering
of the circle

and Λp0q � 0, Λp1q � 1{2. A natural choice of the connecting paths `0 and
`1 is to take `0 to be the trivial path at 0, and `1 to be the image of the
interval r0, 1{2s in R{Z. The fundamental group π1pR{Z, 0q is generated by
the loop γ equal to the image of the path r0, 1s from 0 to 1 in R{Z. Let a
be the image of this generator in IMG pfq. The lifts of the generator by f
are the paths γ0 � r0, 1{2s and γ1 � r1{2, 1s. It follows that the standard
action of a on the tree X� is given by the recurrent rules

ap0vq � 1v, ap1vq � 0apvq,
since `�1

1 γ0`0 is trivial, and `�1
0 γ1`1 is homotopic to γ, see Figure 4.4.

We see that the standard action of IMG pfq coincides with the odome-
ter action of Z on the binary rooted tree, see 1.1.4 and Example 2.4.12.
See the Moore diagram of the automaton defining the transformation a on
Figure 2.16.

The recursion defining the transformation a is written in the wreath
product notation (see...) as

a � σp1, aq,
where σ is the transposition p0 1q.
4.1.3.2. Post-critically finite rational functions. Let fpzq be a complex ra-

tional function, seen as a map pC ÝÑ pC of the Riemann sphere to itself. If z
is not a critical point, then f is a homeomorphism from a neighborhood of

z to a neighborhood of fpzq. We say that a point p P pC is post-critical if it
is equal to fnpcq for some critical point c and n ¥ 1. The function is said
to be post-critically finite if the set of its post-critical points is finite. For
dynamical properties of post-critically finite rational functions, see 1.5.4.

Let f be a post-critically finite rational function, and let Pf be its post-
critical set. Since fpPf q � Pf , and Pf contains all critical values of f , the
map

f : pCr f�1pPf q ÝÑ pCr Pf
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is a partial self-covering of a punctured sphere. The iterated monodromy
group of f is, by definition, the iterated monodromy group of this partial
self-covering.

4.1.3.3. Julia’s example. As an example, consider the polynomial fpzq �
� z3

2 � 3z
2 . Its derivative is �3z2 � 3, hence its critical points are �1 and 8

(the latter is a critical point, since f is a polynomial). Note that all three
critical points are fixed under the action of f . It follows that f is post-

critically finite with the post-critical set Pf � t1,�1,8u. The space pCrPf
is the complex plane C with two punctures at �1. Let us take the basepoint
equal to the third fixed point t � 0 of the polynomial f . The fundamental
group of the punctured plane, and hence the iterated monodromy group
IMG pfq is generated by a loop around 1 and a loop around �1, which
we denote by a and b, respectively, as it is shown on the bottom half of
Figure 4.5. We have f�1p0q � t0,?3,�?3u.

Let us take X � t0, 1, 2u, Λp0q � 0, Λp1q � ?
3, and Λp2q � �?3.

Choose the connecting path `0 to be the trivial path at t, and the paths
`1, `2 as it is shown on Figure 4.5.

The preimages of the loops a and b by f are shown on the top half
of Figure 4.5. Tracing the paths, we see that the corresponding standard
action of IMG pfq is given by the recurrent formulas

ap0vq � 1v, ap1vq � 0apvq, ap2vq � 2v

and

bp0vq � 2v, bp1vq � 1v, bp2vq � 0bpvq,
or, in the wreath product notation:

a � p0 1qp1, a, 1q, b � p0 2qp1, 1, bq.
We see that a and b act as odometers on the binary subtrees t0, 1u� and

t0, 2u�, and “ignore” the words containing the third letter. See the Moore
diagram of the automaton describing the action of the generators a, b on
Figure 4.6.

Unlike in the previous example, the iterated monodromy group IMG
�p�z3 � 3zq{2�

is not isomorphic to the fundamental group π1pX q (in other words, the
corresponding iterated monodromy action of the fundamental group is not
faithful). Iterated monodromy group usually possess rather exotic proper-
ties compared with the classical fundamental groups. For example, we will
see later that IMG

�p�z3 � 3zq{2� and similar iterated monodromy groups
have no non-commutative free subgroups, are not finitely presented, and are
non-elementary amenable.

Figure 4.7 shows the graphs of the action of the group IMG
�p�z3 � 3zq{2�

on the levels one through four of the tree.
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Figure 4.5. Computing IMG
�
p�z3 � 3zq{2

�

Figure 4.6. The iterated monodromy group of p�z3 � 3zq{2

Figure 4.7. Graphs of the action of IMG
�
p�z3 � 3zq{2

�
on the levels

of the tree
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Figure 4.8. The Julia set of p�z3 � 3zq{2

Compare the graphs of the action with the Julia set of the polynomial
shown on Figure 4.8.

4.1.3.4. Basilica. Another famous example is the iterated monodromy group
of the polynomial z2 � 1. It is also post-critically finite: its unique finite
critical point 0 belongs to a cycle of length 2:

0 ÞÑ �1 ÞÑ 0.

The iterated monodromy group is hence generated by the loops around 0
and �1. It is checked directly, see Figure 4.9, that a standard action of
IMG

�
z2 � 1

�
is generated by

a � σp1, bq, b � p1, aq,
where σ � p0 1q.

The automaton defining the transformations a and b is shown on Fig-
ure 2.22.

See the graphs of the action of IMG
�
z2 � 1

�
on the levels of the tree on

Figurefig:basilicagraph. The Julia set of z2 � 1 is shown on Figure 1.33.

4.1.3.5. Chebyshev polynomials. Chebyshev polynomials Td are defined re-
currently by

T0pxq � 1, T1pxq � x,

and

Td�1pxq � 2xTdpxq � Td�1pxq.
They can be also defined by

Tdpxq � cospd arccosxq � 1

2

��
x�

a
x2 � 1

	d
�
�
x�

a
x2 � 1

	d

,

where |x| ¤ 1 in the first formula, and |x| ¥ 1 in the second.

They were introduced by P. Chebyshev in ... in relation to problems of
approximation theory (explain more...) They were known before at least to
L. Euler, see.....
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Figure 4.9. Computation of IMG
�
z2 � 1

�

The Chebyshev polynomials satisfy Td1 � Td2 � Td1�d2 , as it is easily
seen from the formula Tdpxq � cospd arccosxq.

We have

T 1dpcos θq � d sin dθ

sin θ
,

hence the critical points of Td are cos πmd for m � 1, 2, . . . , d � 1, and the
critical values are tcosπm : m � 1, 2, . . . , d � 1u, which is equal to 1,�1
for d ¥ 3 and t�1u for d � 2. It follows that the post-critical set of Td for
d ¥ 2 is t1,�1u.

Take t � 0 as the basepoint, and let a, b be small loops around �1 and
1, respectively, connected to the basepoint by straight lines.

We have T�nd p0q � T�1
dn p0q �

 
cos π�2lπ

2dn : l � 0, 1, . . . , dn � 1
(
. In other

words, T�nd p0q is the set of points obtained by projecting onto the real axis
the vertices of the regular 2dn-gon inscribed into the unit circle so that the
real axis is a non-diagonal axis of symmetry. The critical values of Tdn are
obtained by projecting the vertices of the regular 2dn-gon inscribed in the
unit circle so that the real axis is a diagonal.

The preimages of the generators a and b form a chain, and we can index
the vertices of the nth level of the tree by 0, 1, . . . , dn � 1 (from x � 1 in
the decreasing order to x � �1) so that a acts as the permutation α �
p0 1qp2 3q . . ., and b acts as β � p1 2qp3 4q . . .. In particular, this is true for
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the first level, and one can check that the standard action of IMG pTdq for
even d is given by the recursion

a � αp1, 1, . . . , 1q, b � βpb, 1, 1, . . . , 1, aq
and for odd d by the recursion

a � αp1, 1, . . . , 1, aq, b � βpb, 1, 1, . . . , 1q
In particular, IMG pT2q is generated by

a � σp1, aq, b � pb, 1q,
where, as usual, σ � p0 1q.

It is easy to see from the structure of the graphs of the action of IMG pTdq
on the tree that IMG pTdq is isomorphic to the infinite dihedral group.

4.2. Self-similar groups

4.2.1. Bisets. We have seen in Proposition 4.1.5 that the standard action
of an iterated monodromy group on X� is self-similar in the sense of Defini-
tion 2.4.24: for every g P IMG pfq and x P X there exist h P IMG pfq and
y P X such that gpxwq � yhpwq for all w P X�.

The standard action depends on the choice of the bijection f�1ptq ÝÑ
X and the choice of the connecting paths `x, so it is natural to seek a
more canonical object. In particular, we would like to understand how the
standard action changes after a change of the connecting paths.

Let G be a self-similar group acting on X�. Consider the set X � G of
transformations Sx�g : v ÞÑ xgpvq of X�. The transformation Sx�g is an
isomorphism of X� with the subtree xX� of words starting with x.

The set X � G � tSx�g : x P X, g P Gu is invariant under the pre- and
post-compositions with the action of G. Namely, for every x � g P X �G and
h P G we have px � gq � h � x � pghq and h � px � gq � y � ph|xgq, where y P X
and h|x P G are such that hpxwq � yh|xpwq for all w P X�. We get two
commuting left and right actions Gy X �Gx G of the group G on the set
X �G.

In the case when G y X� is the standard self-similar action of the it-
erated monodromy group of a partial self-covering f : X1 ÝÑ X , every
transformation Sx�g is equal to S`xγ , where `x is the connecting path cor-
responding to the letter x P X, and γ P π1pX , tq is the path defining the
element g P IMG pfq. The product `xγ is a path starting at the basepoint
t and ending in the preimage Λpxq of t corresponding to the letter x. Con-
versely, if ` is an arbitrary path from the basepoint t to its f -preimage, then
we have ` � `x � `�1

x `, where x P X is such that Λpxq is the end of `. Then
`�1
x ` is a loop at t. The isomorphism S` : Tt ÝÑ TΛpxq coincides with the
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transformation Sx�g, where g P IMG pfq is the image of `�1
x ` P π1pX , tq. We

have proved the following fact.

Proposition 4.2.1. The set X � IMG pfq � tSx�guxPX,gPIMGpfq of transfor-
mations of X� is conjugated by the isomorphism Λ : X� ÝÑ Tt with the set
of all transformations of Tt of the form S` : Tt ÝÑ Tz, where z P f�1ptq and
` is a path starting in t and ending in z.

We see that the set of isomorhisms S` : Tt ÝÑ Tz is isomorphic to
X � IMG pfq, and has a natural definition purely in terms of the self-covering.
The left and right actions of IMG pfq on this set is also by composition.

Definition 4.2.2. A G-biset is a set M with commuting left and right
actions Gy M x G. It is a covering biset if the right G-action is free. The
number of right orbits of a covering biset is the degree of the biset. Two
G-bisets M1 and M2 are said to be isomorphic if there exists a bijection
Φ : M1 ÝÑ M2 such that Φpg1 � x � g2q � g1 � Φpxq � g2 for all x P M1 and
g1, g2 P G.

Note that the right action (given by px � gq � h � x � pghq of G on X �G is
free and has |X| orbits labeled by the letters of X.

The terminology of G-bisets has many advantages over the usual termi-
nology of self-similar actions and wreath recursions (as in 2.4.7 and 2.4.8).
Besides being more natural in the setting of iterated monodromy groups, it
lends better to generalizations, as we will see later in 4.3 (see also the notion
of a groupoid biaction in 3.2.2).

Accordingly, we adopt a new definition of self-similarity of groups.

Definition 4.2.3. A self-similar group is a pair pG,Mq consisting of a group
G and a finite degree covering G-biset M. Two self-similar groups pG1,M1q
and pG2,M2q are said to be equivalent if there exists an isomorphism φ :
G1 ÝÑ G2 and a bijection F : M1 ÝÑ M2 such that F pg1 � x � g2q �
φpg1q � F pxq � φpg2q for all g1, g2 P G1 and x PM1.

More generally, we can talk about the category of self-similar groups. Its
objects are pairs pG,Mq, where G is a group, and M is a covering G-biset.
A morphism pG1,M1q ÝÑ pG2,M2q is a pair of maps φ : G1 ÝÑ G2 and
F : M1 ÝÑM2 such that φ is a homomorphism of groups and F pg1 �x �g2q �
φpg1q � F pxq � φpg2q for all g1, g2 P G1 and x P M1. Then equivalence of
self-similar groups are precisely the isomorphisms in so defined category of
self-similar groups.

Definition 4.2.4. Let f : X1 ÝÑ X be a partial self-covering. Let Mt,f

be the set of homotopy classes of paths from t to a point of f�1ptq. It as a
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π1pX , tq-biset with respect to the actions

r`s � rγs � r`γs, rγs � r`s � rγ1`s,
where ` PM, γ P π1pX , tq, and γ1 is the lift of γ by f starting at the end of
`. We call Mt,f the biset associated with the covering f : X1 ÝÑ X .

It is easy to see that Mt,f is a covering π1pX , tq-biset.

Let pG,Mq be a covering biset. A basis of M is a transversal X �M of
the orbits of the right action, i.e., such a set that every element a P M can
be uniquely written as x � g for x P X and g P G. Note that we are using
here the fact that the right action is free.

Example 4.2.5. A basis of Mt,f is a collection of paths t`zuzPf�1ptq con-

necting the basepoint t to the points of f�1ptq. This follows from the fact
that two elements of Mt,f belong to the same right orbit if and only if their
endpoints coincide.

Example 4.2.6. Consider the biset Mt,f , where f : x ÞÑ 2x is the double
self-covering of the circle R{Z. Choose the basepoint t � 0. Then the
fundamental group of R{Z is naturally identified with Z, where an integer
n P Z corresponds to the image in R{Z of the path from 0 to n in R. The
biset Mt,f consists of homotopy classes of paths from 0 to 0 or 1{2 P R{Z.

Similarly to the fundamental group, Mt,f is identified with the set 1
2Z of

half-integers, where a number n
2 P 1

2Z is identified with the image in R{Z of
the path in R from 0 to n

2 . The right action of the fundamental group on

Mt,f is by appending loops, i.e., is the natural action of Z on 1
2Z: a number

n maps m
2 to m

2 � n. The element of the fundamental group corresponding
to n P Z has two lifts by the covering f : one is the image of the path from
0 to n{2, the other is the image of the path from 1{2 to pn� 1q{2. It follows
that n acts on Mt,f by mapping a path corresponding to m

2 to the path

corresponding to m�n
2 .

This description gives the following natural interpretation of the biset
Mt,f . We identify the fundamental group with the set of translations x ÞÑ
x � n of R for n P Z. The biset Mt,f is identified then with the set of
affine transformation of R of the form x ÞÑ x�m

2 , where m P Z. Then the
right action of the fundamental group on Mt,f is by post-composition: the
transformation x ÞÑ x�m

2 is mapped to the transformation x ÞÑ x�m
2 � n.

The left action is the action by pre-composition: it transforms x ÞÑ x�m
2 to

x ÞÑ x�n�m
2 .

The choice of a basis X � M defines a natural self-similar action of
G y X�. For every x P X and every g P G there exist unique y P X
and h P G such that g � x � y � h, as the right action is free, and X is its
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transversal. We can use the equalities g � x � y � h as a recurrent definition
of the associated action G y X�. Namely, we require that gpxwq � yhpwq
for all w P X� whenever g � x � y � h in M.

It follows directly from the definition of a standard action of IMG pfq
that the set of actions of π1pX , tq on X� associated with choices of right
orbit transversals for the π1pX , tq-biset Mt,f coincides with the set of the
standard self-similar actions.

4.2.2. Trees associated with bisets. There is a more canonical approach
to defining actions on rooted trees associated with bisets, not relying on the
choice of a basis.

Let M1,M2 be G-bisets. We leave it as an exercise to show that

px1 � g, x2q � px1, g � x2q
on M1�M2 is an equivalence relation on M1�M2. Let us denote by M1bM2

the quotient M1 �M2{ �. The equivalence relation is invariant under the
left and the right actions g � px1, x2q � pg � x1, x2q, px1, x2q � g � px1, x2 � gq,
hence M1 bM2 is a G-biset. We denote the equivalence class of px1, x2q by
x1bx2. This operation of a “tensor product” of bisets is a particular case of
a more general notion of a composition of biactions of groupoids, see 3.2.2.

It is also not hard to show that px1bx2qbx3 ÞÑ x1bpx2bx3q is a well
defined isomorphism from pM1 bM2q bM3 to M1 b pM2 bM3q.

In particular, if M is a G-biset, then we have well defined tensor powers
Mbn. We also denote by Mb0 the group G itself with the natural left and
right actions of G on it by multiplication.

Denote by M� the disjoint union
�8
n�0 M

bn. It is also a G-biset. Note
also that M� is a monoid with respect to the operation b.

Lemma 4.2.7. If the right action M x G is free, then the semigroup M�

is left-cancellative, i.e., v b u1 � v b u2 implies u1 � u2.

Proof. It is enough to prove the statement for the case v PM. If v b u1 �
v b u2, then there exists g P G such that v � g � v and u1 � g � u2. Since
the right action is free, the first equality implies g � 1. Then the second
equality is u1 � u2. �

Since the left G-action commutes with the right G-action, the group G
acts from the left on the set set of orbits M�{G of the right action.

Consider the left divisibility relation on M�: we write w1   w2 if there
exists u P M� such that w1 b u � w2. It is obviously a transitive reflexive
order invariant under the left action; and w1   w2 for wi P Mbni implies
n1 ¤ n2. Moreover, if n1   n2   n3 and w1 P Mbn1 and w3 P Mbn3 are
such that w1   w3, then there exists w2 P Mbn2 such that w1   w2  
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w3. Note also that the restriction of   to any Mbn is equal to the orbit
equivalence relation for the rightG-action. It follows that  induces a partial
order on M�{G, and that G acts on the left on M�{G by order preserving
automorphisms.

Consider the Hasse diagram TM of the partially ordered set M�{G. The
set of vertices of TM is M�{G. Two vertices v1, v2 P M�{G, v1   v2, are
connected by an edge if and only if there exist representatives wi P vi and
x P M such that w2 � w1 b x. The image of Mbn in TM is called the nth
level of TM. An edge connects only vertices of neighboring levels. Then
Gy TM is an action by level-preserving automorphisms of the graph TM.

Lemma 4.2.8. The Hasse diagram TM is a tree.

Proof. It is sufficient to prove that for every vertex v of the nth level of TM
there exists a unique adjacent vertex of the pn � 1q-st level. Let w P Mbn

be a representative of v. Then there exists w1 P Mbpn�1q and x P M such
that w � w1 b x, and w1 represents a vertex of the pn� 1q-st level adjacent

to v. Suppose that w2 is another element of Mbpn�1q representing a vertex
adjacent ot v. Then there exists y PM such that w2 b y represents v. This
means that w2 b y and w1 b x belong to the same right G-orbit, i.e., there
exists g P G such that w1bx �g � w2by. The latter means that there exists
h P G such that w1bh � w2 and x � g � h � y. But then w1 and w2 represent
the same vertex TM. �

We see that every G-biset M naturally defines an action of G by au-
tomorphisms of the rooted tree TM � M�{G. Here the root is the unique
vertex of the level number 0. The following proposition describes the sym-
bolic encoding of the tree TM by words over a basis X� �M.

Proposition 4.2.9. Let M be a covering G-biset, and let X �M be a basis.
Then for every n ¥ 1 the set Xn � tx1 b x2 b � � � b xn : xi P Xu is a basis
of Mbn. In particular, the set X� � �

n¥0 X
n is a basis of M�, and the

identical embedding X� ãÑM� induces an isomorphism of trees X� ÝÑ TM.

Proof. It is enough to show that if Xi is a basis of Mi, then the set X1bX2

is a basis of M1bM2. Every element of M1bM2 can be written in the form
x1 � g1bx2 � g2 for some xi P Xi and gi P G. We can rewrite g1 �x2 as y �h for
some y P X2 and h P G, so that x1 �g1bx2 �g2 � x1by �hg2. This shows that
X1 b X2 intersects every orbit. Suppose that x1 b x2 and y1 b y2 belong to
the same right orbit. Then there exists g P G such that x1bx2 � g � y1by2,
i.e., there exists h P G such that x1 � h � y1 and x2 � g � h � y2. The first
equality implies x1 � y1 and h � 1, since X1 is a basis of M1. Then we have
x2 � g � y2, which implies x2 � y2. It follows that X1 b X2 intersects each
right orbit exactly one time, i.e., is a basis of M1 bM2. �
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The action Gy TM is not faithful in general. Let K be its kernel. It is
equal to the set of elements g P G such that for every v P M� the elements
v and g � v belong to the same right G-orbit.

For every v PM� the set of elements g P G such that g � v and v belong
to the same right G-orbit is a subgroup. Let us denote it Gv. For every
g P Gv there exists g|v P G such that g � v � v � g|v. If the right action is
free, then such g|v is unique.

Proposition 4.2.10. Let M be a covering biset. Then the map g ÞÑ g|v is
a homomorphism from Gv to G. We have Gh�v � hGvh

�1, Gv�h � Gv for
all v PM� and h P G. We also have g|h�v � ph�1ghq|v, for all g P Gh�v and
g|v�h � h�1pg|vqh for all g P Gv.

The group Gv1bv2 is equal to the set of elements g P Gv2 such that
g|v2 P Gv1, and we have g|v1bv2 � g|v1 |v2.

Proof. .... �

Proposition 4.2.11. Let M be a covering G-biset, and let K be the kernel
of the action of G on M�{G � TM. Then the set M{K is a covering G{K-
biset. The identity map induces an isomorphism of the associated trees TM
and TM{K .

Proof. ... �

Definition 4.2.12. Let K be the kernel of the action of G on the tree of
right orbits associated with a covering biset M. Then the G{K-biset M{K
is called the faithful quotient of the G-biset M.

Example 4.2.13. The IMG pfq-biset associated with the standard self-
similar actions is precisely the faithful quotient of the π1pX , tq-biset Mt,f .

4.2.3. Wreath recursion. Given a biset pG,Mq the associated wreath re-
cursion (see 2.4.8) can be defined in the following way. The right G-set
MG is isomorphic to a disjoint union of |X| copies of G, where X is a right
orbit transversal (i.e., a basis). It follows that the automorphism group
AutMG of the right G-set M, defined as the set of all permutations of MG

commuting with the right G-action, is isomorphic to the wreath product
SpXqoGX. Namely, if ψ is an automorphism of the right G-space M, then
there exists a permutation π of X and a collection phxqxPX of elements of G
such that ψpxq � πpxq � hx. We set then π � phxqxPX to be the element of
SpXqoGX corresponding to ψ. It is easy to check that this correspondence
is an isomorphism. Note that it depends on the choice of the basis X, while
the automorphism group of the right G-space MG is canonically associated
with pG,Mq.
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Since the left action of G on M commutes with the right action, every
element g P G defines an automorphism x ÞÑ g � x of the right G-space
MG. We get a homomorphism from G to AutMG, which we call the wreath
recursion. If we choose a basis of M, then we get a concrete realization
φX : G ÝÑ SpXqoGX of the wreath recursion, which will define (as in 2.4.8)
the associated standard action of G on X�.

Let X � tx1, x2, . . . , xdu and Y � ty1, y2, . . . , ydu be two bases of M.
Let us use the chosen indexing of their elements to identify both groups
SpXq o GX and SpYq o GY with Sd o Gd. Let φX, φY : G ÝÑ Sd o Gd

be the corresponding wreath recursions. If φXpgq � σpg1, g2, . . . , gdq and
φYpgq � πph1, h2, . . . hdq for g P G, then we have g � xi � xσpiq � gi and
g � yi � yπpiq � hi for all i � 1, 2, . . . , d. There exists a permutation α P Sd
and a collection f1, f2, . . . , fd of elements of G such that

(4.1) yi � xαpiq � fi.

Note also that for any αpiq P Sd and pf1, f2, . . . , fdq P Gd, the sequence
xαpiq � fi is a basis of M.

Then we have xαπpiq � fπpiqhi � yπpiq � hi � g � yi � g � xαpiq � fi � xσαpiq �
gαpiqfi for every i, which implies απ � σα and fπpiqhi � gαpiqfi for every i.
Consequently, we have fπα�1piqhα�1piq � gifα�1piq, and hence

σpg1, g2, . . . , gdq � αpf1, f2, . . . , fdqπph1, h2, . . . , hdqpαpf1, f2, . . . , fdqq�1.

We see that changing the basis of M is equivalent to post-composing the
wreath recursion by an inner automorphism of Sd o Gd. We proved the
following description of equivalence of self-similar groups.

Proposition 4.2.14. Two degree d covering G-bisets M1,M2 are isomor-
phic if and only if the associated wreath recursions G ÝÑ Sd o Gd are ob-
tained from each other by post-composing with an inner automorphism of
Sd oGd.

Note that in the case of the bisets Mt,f associated with a partial self-
covering f : X1 ÝÑ X , the relation (4.1) between a pair of bases has a
natural interpretation. A basis of Mt,f is a collection of paths `1, `2, . . . , `d
connecting the basepoint t with the points of f�1ptq. If `11, `

1
2, . . . , `

1
d is

another such a collection, then there exists a unique permutation α P Sd
such that `1i and `αpiq end in the same point of f�1ptq for every i. Then

`1i � `αpiq � p`�1
αi `

1
iq, and `�1

αi `
1
i � fi is a loop. (Remember that here `1i is

traversed before `�1
αi .)

Example 4.2.15. ...
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4.2.4. Virtual endomorphisms of groups. We have seen two ways of
defining self-similar actions: bisets and wreath recursions. Another ap-
proach uses the notion of a virtual endomorphism of a group. It is best
suited for self-similar actions that are transitive on the first level of the tree,
i.e., for bisets that do not contain proper sub-bisets.

Let pG,Mq be a covering biset. Let x PM, and let Gx, as above be the
set of elements g P G such that there exists g|x P G such that g � x � x � g|x.
Then, by Proposition 4.2.10 the map g ÞÑ h is a homorphism from Gx to G.
Since the number of right orbits is finite, the subgroup Gx has finite index
in G. So, we adopt the following definition.

Definition 4.2.16. A virtual endomorphism φ : G 99K G is a homomor-
phism from a subgroup of finite index of G to G. If pG,Mq is a covering
biset, and x P M, then the associated virtual endomorphism φx is given by
the condition

g � x � x � φxpgq.
Its domain is the set Gx of elements of G fixing (with respect to the left
action) the right orbit of x.

If the biset pG,Mq irreducible, i.e., that the left action of G is transitive
on the set of the right G-orbits, then the biset M can be reconstructed from
the virtual endomorphism φ in the following way. Consider the set, denoted
φpGqG, of all partially defined maps from G to G of the form

x ÞÑ φpx � hq � g,
where h, g P G. Note that if φ is onto, then we can write any such a map
as φpx � hq. Two maps x ÞÑ φpx � h1q � g1 and x ÞÑ φpx � h2q � g2 are equal if
and only if h�1

1 h2 P Domφ and φph�1
1 h2q � g1g

�1
2 . We will formally write

the transformation x ÞÑ φpx � hq � g by φphqg.

Consider the action of G on itself by right multiplication, and consider
the action of G on the set φpGqG by pre- and post-compositions with the
action of G on itself. These will be the left and the right actions on the
biset, respectively. They are given by

f � φphqg � φpfhqg, φphqg � f � φphqgf.
It is easy to check that the map φxphqg ÞÑ h�x�g induces an isomorphism

of φxpGqG with M, if φx is the virtual endomorphism associated with M
and x PM.

A basis of M in terms of φxpGqG is a set tφxph1qg1, φxph2qg2, . . . , φxphdqgdu,
where D � th1, h2, . . . , hdu is a left coset transversal of G modulo Gx. If φx
is onto, then we can assume that gi � 1 for all i. Even if φx is not onto, we
still can choose gi � 1 (but then we will restrict the set of bases of M that
we are considering). We call D the digit set for φx.
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Let D � th1, h2, . . . , hdu be a digit set for a virtual endomorphism φ.
Then the associated wreath recursion is obtained as follows. For every g P G
and i P t1, 2, . . . , du there exists a unique hj P D such that ghi P hj Domφ.

Then h�1
j ghi P Domφ, and we gen an element φph�1

j ghiq of G. This defines

us the element σpg1, g2, . . . , gdq of the wreath product SdoGd, where σ and
gi are defined by the conditions gi � φph�1

σpiqghiq.
In other words, we get the following description of the corresponding

standard action of G on X�.

Proposition 4.2.17. Let pG,Mq be an irreducible covering biset, and let
φx : Gx ÝÑ G be a virtual endormorphism associated with it. Choose a left
coset transversal D � th1, h2, . . . , hdu of G modulo Gx. Then a standard
action of G is defined by the recursion

g � xi � xj � φxph�1
j ghiq,

where j is defined by the condition h�1
j ghi P Gx.

Two virtual endomorphisms φ1, φ2 : G 99K G define isomorphic G-bisets
if and only if they are equal up to inner outomorphisms of G, i.e., if there
exist g, h P G such that φ1pxq � g�1φ2ph�1xhqh for all x in the domain of
φ1...

We leave the following as an exercise, see also ...

Proposition 4.2.18. Let φ : G 99K G be virtual endomorphism. The kernel
of the self-similar action of G associated with φ is equal to the maximal
subgroup N normal in G such that N is contained in the domain of φ and
φpNq ¤ N . Equivalently, it is the subgroup N � �

gPG,n¥1 g
�1 Domφn � g.

In particular, the action is faithful if and only if G has no non-trivial
normal subgroup N such that N is contained in the domain of φ and φpNq ¤
N .

Example 4.2.19. The virtual endomorphism of Z associated with the bi-
nary odometer action is n ÞÑ n{2 with the domain equal to the group of even
integers. If we choose the classical coset representatives t0, 1u of Z modulo
2Z, we will get the classical binary odometer action ...

Example 4.2.20. Abelian self-similar groups...

Example 4.2.21. It is known (see...) that the free group F2 is isomorphic

to the group generated by the matrices a �
�

1 2
0 1



and b �

�
1 0
2 1



.

Consider the virtual endomorphism of this group given by

φ

�
a11 a12

a21 a22



�

�
a11 a12{2
2a21 a22



.
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Let us show that there is no normal subgroup of F2 invariant under this
virtual endomorphism. The matrices in

�
n¥1 Domφn must have zero above

the diagonal. We have�
1 �2m
0 1


�
a11 0
a21 a22


�
1 2m
0 1



��

a11 � 2ma21 2mpa11 � a22q � 4m2a21

a21 a22 � 2ma21



.

Unless a21 � 0 and a11 � a22, we can always find m P Z such that the
number in the upper left corner of this matrix is not equal to 0. As the
determinant of every matrix in our group is equal to 1, this implies that
only the identity matrix belongs to

�
gPF2,n¥1 g

�1 �Domφn � g.

Let us choose t1, au as the coset transversal of F2 modulo Domφ. Since
φpa2q � a, φpbq � b2, and φpa�1baq � pb�1aq2, the associated wreath recur-
sion is

a � σp1, aq, b � pb2, pb�1aq2q.
This gives a faithful (though not finite state) self-similar action of the free
group F2 on the binary rooted tree.

4.3. General case

4.3.1. Correspondences. A partial self-covering f : X1 ÝÑ X is in fact a
pair of maps between two topological spaces: the covering f and the identical
embedding ι : X1 ÝÑ X . The formula for the standard action of the iterated
monodromy group is written in these terms as

γpxvq � `�1
y ιpγxq`xpvq,

where γx is the lift of γ by f to a path starting in Λpxq, y P X is such that
Λpyq is the end of γx, and `x and `y are paths connecting t to ιpΛpxqq and
ιpΛpyqq, respectively.

There is no need to assume that ι is a homeomorphic embedding. The
above formula of the standard action makes sense for any pair of maps
f : X1 ÝÑ X , ι : X1 ÝÑ X , where f is a covering map and ι is continuous.

Definition 4.3.1. A covering correspondence (or a topological virtual en-
domorphism) is a pair f, ι : X1 ÝÑ X of continuous maps (or morphisms of
orbispaces) such that f : X1 ÝÑ X is a finite degree covering.

Ever covering correspondence f, ι : X1 ÝÑ X , where X is path connected
and locally path connected, naturally defines a π1pX q-biset in the following
way. Choose a basepoint t P X , and define Mt,f,ι as the set of all pairs
pz, r`sq, where z P f�1ptq and r`s is the homotopy class of a path ` in X
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starting in t and ending in ιpzq. Note that if ι is injective on f�1ptq, then z
is uniquely determined by r`s.

The left and right actions of π1pX , tq on Mt,f,ι are given by

pz, r`sq � γ � pz, r`γsq, γ � pz, r`sq � pz1, rιpγzq`sq,
where γz is the f -lift of γ starting in z, and z1 is its end.

Suppose that X is semi-locally simply connected, and let P : rX ÝÑ X
and P1 : rX1 ÝÑ X1 be universal covering maps. Choose basepoints t P X ,

z P rX , t1 P X1, z1 P rX1 such that fpt1q � t, P pzq � t, and P1pz1q � t1. Then

there is a unique homeomorphism ε : rX1 ÝÑ rX making the diagramrX1
εÝÑ rX���P1

���P
X1

fÝÑ X

commutative and εpz1q � z. Let us identify rX1 with rX by such a homeomor-
phism, and identify π1pX1, t1q with the subgroup f�pπ1pX1, t1qq of π1pX , tq.
Then X and X1 are the quotients of rX by the actions of π1pX , tq and

π1pX1, t1q on rX by the deck transformations, and f is the map rX {π1pX1, t1q ÝÑrX {π1pX , tq induced by the identity map on rX .

There exists a continuous map I : rX ÝÑ rX making the diagramrX IÝÑ rX���P1

���P
X1

ιÝÑ X

commutative. We will write both the action of I and the action of π1pX , tq
on rX from the right: as x ÞÑ x � I and x ÞÑ x � g.

Proposition 4.3.2. The biset associated with the correspondence f, ι :

X1 ÝÑ X is isomorphic to the biset consisting of maps rX ÝÑ rX of the
form x ÞÑ x � g1Ig2, where gi P π1pX , tq are deck transformations of the

covering P : rX ÝÑ X , with the natural left and right actions of π1pX , tq by
compositions.

Proof. .... �

Definition 4.3.3. The iterated monodromy group of the covering corre-
spondence f, ι : X1 ÝÑ X is the faithful quotient of the self-similar group
pπ1pX , tq,Mt,f,ιq.

The associated virtual endomorphism can be written as ι��f�, where f�

is the isomorphism of the subgroup f�pπ1pX1qq   π1pX q with π1pX1q inverse
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to the monodmorphism f� : π1pX1q ãÑ π1pX q induced by f . Everything is
defined here up to inner automorphisms of π1pX q.
Example 4.3.4. Every partial self-covering f : X1 ÝÑ X together with the
identical embedding ι : X1 ÝÑ X is a covering correspondence.

Example 4.3.5. Let A � pX, Q, π, λq be a synchronous non-inital automa-
ton over the same input-output alphabet X, see 2.3.1. Let X1 be its dual
Moore diagram, i.e., the graph with the set of vertices X and the set of edges
Q� X, where each edge pq, xq starts in x, ends in λpq, xq, and is labeled by
q|πpq, xq. Let X be the graph consisting of one vertex and the set of |Q|
loops labeled bijectively by the set of states Q of A. Consider two maps
f, ι : X1 ÝÑ X mapping all vertices of X1 to the unique vertex of X , and
acting on the edges by the rules

fpq, xq � q, ιpq, xq � πpq, xq,
i.e., we interpret the labeling of the edges of X1 as instructions describing
two maps f and ι. We get a covering correspondence (if we identify the
graphs X1 and X with their topological realizations) associated with the
automaton A. In some sense the general definition of the topological corre-
spondence is a generalization of this situation. Sometimes we call topological
correspondences topological automata to stress this analogy (see [Nek14]).

Example 4.3.6. Let G be a Lie group, let Γ   G be its lattice, and let
φ : G ÝÑ G be an automorphism. Suppose that Γ1 � φ�1pΓq XL has finite
index in Γ, and consider the spaces X0 � G{Γ and X1 � G{Γ1. Then the
inclusion Γ1   Γ induces a covering map π : X1 ÝÑ X0, and the inclusion
φpΓ1q   Γ shows that the homeomorphism φ : G ÝÑ G induces a covering
map ι : X1 ÝÑ X0. The iterated monodromy group of the pair π, ι : X1 ÝÑ
X0 coincides with the self-similar group defined by the virtual endomorphism
of Γ induced by φ. Iterated monodromy groups in this class were used to
prove the following theorem of M. Kapovich, cite...

Theorem 4.3.7. Let Γ be an irreducible lattice in a semisimple algebraic
Lie group G. Then the following are equivalent.

(1) Γ is virtually isomorphic to an arithmetic lattice in G, i.e., contains
a finite index subgroup isomorphic to such arithmetic lattice.

(2) Γ admits a faithful self-similar action which is transitive on the first
level.

Example 4.3.8. Consider the map pa, bq ÞÑ ppa � bq{2,?abq. It is well
defined on the set r0,�8q2, and was studied by Gauss and Lagrange in
relation to arithmetic-geometric mean, see...

The map pa, bq ÞÑ ppa� bq{2,?abq is not well defined on C2, since there

are two choices for
?
ab. But we can consider it as a correspondence. Note
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that ppa�bq{2,?abq is homogeneous, so we get a correspondence rz1 : z2s ÞÑ
rpz1 � z2q{2 :

?
z1z2s of the complex projective line with itself. It is written

in affine coordinates as w ÞÑ 1�w
2
?
w

. It is natural to model this correspondence

as a pair of maps f, ι given by

fpwq � p1� wq2
4w

, ιpwq � w2.

Let X � C r t0, 1u and X1 � C r t0, 1,�1u. Then f, ι : X1 ÝÑ X
are covering maps. It follows that we can consider the iterated monodromy
group of this correspondence, and that it will be a homomorphic image of
the fundamental group of X , i.e., of a free group of rank two.

It is shown in... that the iterated monodromy group is equivalent to the
self-similar action of the free group described in Example 4.2.21.

4.3.2. Orbispaces. The next level of generality is to consider the case
when X and X1 are orbispaces, so that f is a covering of orbispaces, and
ι : X1 ÝÑ X is a morphism of orbispaces, see 3.4.2 for definitions. This
is especially useful in the study of the iterated monodromy groups of sub-
hyperbolic rational functions, when the Julia set contains critical points.
The associated π1pX q-biset is defined in the same way as when X and X1

are topological spaces, but this time the corresponding paths groupoid paths
in the atlases of the orbispaces. We will discuss a more general setting and
more rigorously in 4.3.5, while here we will just consider several examples.

4.3.2.1. The tent map. Consider the graph of groups I consisting of two
vertex groups of order two connected by a segment (with trivial edge group).
It is equivalent to the orbispace of the action of the dihedral group D8
generated by the transformations x ÞÑ �x and x ÞÑ 2�x of R. The segment
p0, 1q is the fundamental domain of the action, and we can identify the
orbispace with the interval r0, 1s with groups of order two at its ends.

Consider the map F : x ÞÑ 2x on R. It is a homeomorphism satisfying
FD8F�1   D8 for the action of D8 defined above. It induces the tent
map

fpxq �
"

2x for x P r0, 1{2s,
2� 2x for x P r1{2, 1s

on the underlying space of the orbifold R{D8. Moreover, it is easy to see
that it induces a double self-covering of the orbifold I. (So that we can take
ι : I ÝÑ I to be the identity morphism.)

Let us compute the iterated monodromy group of the self-covering f :
I ÝÑ I. Consider the atlas of I coming from the action ofD8 on R restricted
to an open neighborhood U of r0, 1s in R. It will be the atlas for the target
orbispace for the covering map f : I ÝÑ I. The atlas for the domain of
the covering map is constructed in the usual way, as it is described in 3.4.2.
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Figure 4.10. The tent map

Figure 4.11. The iterated monodromy group of the tent map (put labels...)

See Figure 4.10 for the description of the covering map and the atlas of the
covering orbifold. It is easy to see that the covering atlas is equivalent to
the atlas of the original orbifold, i.e., that the map f is a self-covering.

Take the basepoint t � 1{2. The fundamental group of I is generated
by two loops a and b consiting of the non-trivial elements of the isotropy
groups at the endpoints 0 and 1 connected to the basepoint by simple paths
inside the interval r0, 1s.

The lifts of the paths a and b by f are shown on Figure 4.11. Using the
natural choice of the connecting paths (inside the neighborhood U), we get
the following standard action:

a � σp1, 1q, b � pa, bq.

Note that this iterated monodromy group is the same as IMG pT2q � IMG
�
z2 � 2

�
,

see 4.1.3.5.
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Figure 4.12. A fundamental domain of the action of G on R2

4.3.2.2. Folding an isosceles right triangle. Consider the group G of all
isometries of Z2 with its natural action on R2. It is generated by the trans-
formations

a : px, yq ÞÑ px,�yq, b : px, yq ÞÑ py, xq, c : px, yq ÞÑ p1� x, yq.
The action is proper, and its fundamental domain is, for example, the tri-
angle ∆ with the vertices p0, 0q, p1{2, 1{2q, and p1{2, 0q, see Figure 4.12.
Note that each of the transformations a, b, c leaves one side the sides of the
triangle ∆ invariant.

The underlying space of the orbispace R2{G can be naturally identified
with the triangle ∆. The orbispace structure is a complex of groups de-
scribed by identical embeddings between groups from the following set of
subgroups of G: the identity group t1u (for the interior of ∆), groups of
order two xay, xby, xcy (for the sides of ∆), and dihedral groups xa, by � D4,
xb, cy � D4, xa, cy � D2 (for the vertices). We will denote this complex of
groups also by ∆.

A natural self-covering of the orbispace ∆ folds the triangle ∆ along the
bisector of the right angle in two, and then identifies the result with ∆ by a
similarity. There are two choices for the identification. Let us assume that
the identification is such that the vertex p0, 0q, i.e., the vertex with isotropy
group xa, by, is fixed under the obtained self-covering map. Figure 4.13 shows
the computation of the iterated monodromy group of this self-covering.

We see that the iterated monodromy group of this covering map is gen-
erated by

a � pb, bq, b � pa, cq, c � σ.

4.3.2.3. Dynamical systems with symmetries. If a dynamical system f ü X
has a finite group of symmetries G, then it is sometimes natural to consider
the induced dynamical system f{G on the orbispace X {G. The iterated mon-
odromy group of the quotient f{G is in some cases easier to compute than
for the original map. The iterated monodromy group of the quotient will



280 4. Iterated monodromy groups

Figure 4.13. The iterated monodromy group of a triangle folding

contain IMG pfq as a normal subgroup such that the quotient of IMG pf{Gq
by the image of IMG pfq is isomorphic to G.

For example, suppose that f is a rational function with real coefficients.

Then it satisfies fpzq � fpzq, i.e., the action of f on pC is invariant under the
action of the group of order two generated by the complex conjugation. The
quotient will be a map acting on an orbispace which is a disc with groups of
order two on the boundary. The iterated monodromy group of the quotient
will contain IMG pfq as a subgroup of index two.

Consider, for example the rational function fpzq � z2�c
z2�c for c � 0.2956

from Exercise 4.2. It has real coefficients. Moreover, all its critical and
hence post-critical points are real. Consider the corresponding quotient by
the complex conjugation. It is the disc orbifold, but since we have to remove
the post-critical set, we have to take X0 to be the disc orbifold with small
neighborhoods of the post-critical points removed. Let X1 be the preimage of
X0 under f . The orbifold X0 is isomorphic to an octagon in which every other
side is singular with isotropy groups of order 2, while the remaining sides
are regular. The orbispace X1 is 12-gon with analogously defined orbispace
structure.

The fundamental group of X0 is generated by four paths from the base-
point to an internal point of one of the four singular sides and then back. Let
α, β, γ, δ be such generators, as it is shown on the bottom half of Figure 4.14.

Then considering the lifts of the generators to X1, we see from the top
half of Figure 4.14 that the iterated monodromy group is generated by the
wreath recursion

α � σ, β � pα, αq, γ � pδ, βq, δ � pδ, γq.

The iterated monodromy group of fpzq can be recovered now as the
group generated by the products αβ, βγ, γδ. They satisfy αβ � σpα, αq, βγ �
pαδ, αβq, and γδ � p1, βδq. Post-conjugating the recursion by pα, 1q, we get
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Figure 4.14.

an equivalent recursion αβ � σ, βγ � pδα, αβq, and γδ � p1, βδq, which is
equivalent to the wreath recursion from Exercise 4.2.

4.3.3. Thurston orbifold of a sub-hyperbolic rational function. Con-
sidering orbispaces and their virtual endomorphisms is necessary even in
the case of dynamical systems on topological spaces. For example, if f is a
post-critically finite rational function such that the Julia set contains crit-
ical points, then f can not be expanding on the Julia set. It is, however,
expanding on a naturally defined orbispace (or orbitfold on a neighborhood
of the Julia set). It is a classical construction known as Thurston orbifold,
see....

Let f be a post-critically finite rational function, or more generally, a
Thurston map, i.e., a post-critically finite orientation-preserving branched
covering of the two dimensional sphere. Here an orientation-preserving
branched covering is a continuous map f : S2 ÝÑ S2 such that for ev-
ery t P S2 there exist homeomorphisms of neighborhoods of t and fptq with
neighborhoods of 0 P C conjugating the action of f with the action of z ÞÑ zn

for some n ¥ 1. The number n is called then the local degree of f , and is
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denoted by degt f . One can show that degt f � 1 for all but finitely many
points t P S2. The points t such that degt f ¡ 1 are called critical, and the
corresponding values fptq are called critical values. The map f is said to be
post-critically finite if the union Pf of forward orbits of the critical values
of f is finite. Then Pf is the post-critical set.

Let f : S2 ÝÑ S2 be a Thurston map. Let νptq P N Y t8u be the least
common multiple of the local degrees degz f

n for all z P f�nptq and n ¥ 1.
It follows directly from the definitions that νptq � 1 if and only if t R Pf .
It is also not hard to see that νptq � 8 if and only if t belongs to a cycle
containing a critical point.

If ν : S2 ÝÑ NYt8u is a map equal to 1 for all but finitely many points,
then the corresponding orbifold S2

ν is defined as the orbifold with the un-
derlying space S2 r ν�1p8q where a neighborhood of t P S2 is uniformized
by the action of a cyclic group of order νptq of rotations of a disc. More
explicitly, it is defined by the following atlas. Take small disjoint neigh-
borhoods Ut of the points t P ν�1pN X r2,8qq homeomorphic to discs, and
represent them as quotients Dt{Gt � Ut, where Dt � C is the open unit

disc, and Gt � Z{νptqZ is the group of rotations z ÞÑ e
2πi
νptqkz of the disc, so

that 0 P Dt is mapped to t P Ut. Consider the pseudogroup G acting on the
disjoint union of X � S2 r ν�1pN X r2,8sq and the discs Dt generated by
the groups Gt y Dt and the germs of the quotient map

Dt ÝÑ pDt r t0uq{Gt � Ut r ttu ãÑ X .

The pseudogroup G is then an atlas of the orbifold S2
ν . One can show that

this pseudogroup depends, up to equivalence of groupoids of germs, only on
the function ν.

If f is a Thurston map, and ν is the above defined least common multiple
of local degrees, then S2

ν is its Thurston orbifold. It follows directly from

the definition that νpfptqq is divisible by νptq �degt f . Denote ν0ptq � νpfptqq
degt f

.

Then ν0ptq is divisible by νptq.
The condition ν0ptq � νpfptqq

degt f
implies that f : S2 ÝÑ S2 naturally induces

a covering morphism f : S2
ν0 ÝÑ S2

ν . The condition that ν0ptq is divisible

by νptq implies that the identity map S2 ÝÑ S2 can be extended to a
morphism of orbifolds ι : S2

ν0 ÝÑ S2
ν acting as the identical embedding

S2 r f�1pPf q ÝÑ S2 r Pf on the underlying spaces. The obtained virtual
endomorphism of the orbifold S2

ν is called the natural uniformization of f .

Example 4.3.9. Consider the rational function z2 � i. Its critical points
are 0 and 8, both of local degree 2, which have orbits 0 ÞÑ i ÞÑ �1 � i ÞÑ
�i ÞÑ �1� i and 8 ÞÑ 8. It follows that νp8q � 8, and νpiq � νp�1� iq �
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νp�iq � 2. Hence the Thurston orbifold of z2 � i is the plain C with three
singular points i,�1� i,�i both uniformized by cyclic groups of order 2.

Example 4.3.10. Consider the function fpzq � �
1� 2

z

�2
. It has two critical

points z � 2 and z � 0. Their orbit is 2 ÞÑ 0 ÞÑ 8 ÞÑ 1 ÞÑ 1. Both critical
points are of local degree 2. It follows that the corresponding function ν

is νp0q � 2, νp8q � 4, νp1q � 4. Note also that ν0p0q � νp8q
2 � 2,

ν0p8q � νp1q
1 � 4, and ν0p1q � νp1q

1 � 4, i.e., that ν0 � ν. We see that

S2
ν0 and S2

ν coincide, and that f induces a self-covering of the orbifold Sν .

The orbifold Sν coincides with the orbifold of the action on R2 of the index
two subgroup H generated by ba and ca of the group from 4.3.2.2. In other
words, it is the orbifold of the action on C of the group H generated by
the transformations z ÞÑ iz and z ÞÑ 1 � z. The fundamental domain of
this group is, for example, the triangle with the vertices 0, p1 � iq{2, and
1. The quotient map from C to the orbifold C{H folds this triangle along
the line connecting p1 � iq{2 to 1{2, so that one gets a “triangular pillow”,
whose corners are the singular points of the orbifold: the isotropy groups of
the image of p1� iq{2 is cyclic of order 4 (generated by the transformation
z ÞÑ iz � 1), the isotropy group of the common image of 0 and 1 is cyclic of
order 4 (generated by the transformation z ÞÑ iz acting on a neighborhood of
0), and the isotropy group of the image of 1/2 is cyclic of order 2 (generated
by the action of z ÞÑ 1 � z). Figure... We will see later ... that the self-
covering f of the orbifold S2

ν is topologically conjugate to the map induced
by z ÞÑ pi� 1qz on C{H.

4.3.4. Uniformizations of the tent map. Consider again the tent map
f : r0, 1s ÝÑ r0, 1s from 4.2.10. It was transformed into a virtual endomor-
phism of an orbifold by converting r0, 1s into the graph of groups with two
copies of Z{2Z at the endpoints of the segment. Let us consider a more
general case: a covering and a morphism f, ι : X1 ÝÑ X , where X and X1

are graphs of two groups connected by an edge with trivial edge group.

Let G0 and G1 be the vertex groups of X at the endpoints 0 and 1,
respectively. The map f must be a degree two covering, hence in the covering
orbispace X1 the vertex groups are isomorphic to G0, and G1 � Z{2Z.
The morphism ι : X1 ÝÑ X will induce homomorphisms ι0 : G0 ÝÑ G0

and ι1 : G0 ÝÑ G1 � Z{2Z. (See Figures 4.10 and 4.11, where 0 and
1 correspond to the left and the right endpoints of the orbispace). The
fundamental group of X is isomorphic to the free product G0 � G1. In the
iterated monodromy group of f, ι : X1 ÝÑ X , the non-trivial element of
G1 � Z{2Z acts as σ � p0 1q P S2, while an element g P G0 satisfies the
wreath recursion g � pι0pgq, ι1pgqq.
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Note that since G1 � Z{2Z, the wreath recursion g � pι0pgq, ι1pgqq
implies that the image of G0 in the itereated monodromy group is an abelian
group of exponent 2 invariant under ι1. (We have g2 � p1, pι1pgqq2q for
all g P G0.) Therefore, we may assume without change the class of the
corresponding iterated monodromy groups, that this is true for G1 itself.
Consequently (as we consider only the case of finite vertex groups here) we
may assume that G0 � pZ{2Zqn for some n. Then the iterated monodromy
group is determined by an automorphism ι1 : pZ{2Zqn ÝÑ pZ{2Zqn and
an epimorphism ι0 : pZ{2Zqn ÝÑ Z{2Z. Furthermore, one can assume (see
Exercise ...) that ι0 and ι1 are defined by the matrices

p0, 0, . . . , 0, 1q , and

�������
0 0 . . . 0 a1

1 0 . . . 0 a2

0 1 . . . 0 a3
...

...
. . .

...
...

0 0 . . . 1 an

������,

for some ai P Z{2Z, respectively.

Example 4.3.11. Take n � 2 and the matrix

�
0 1
1 1



. Denote the el-

ements of G1 � pZ{2Zq2 by b �
�

0
1



, c �

�
1
1



, d �

�
1
0



. Denote

the unique non-trivial element of G0 by a. Then ι1 acts by b ÞÑ c, c ÞÑ d,
and d ÞÑ b. The epimorphism ι0 maps b and c to a, and d to 1. It follows
that the wreath recursion for the corresponding iterated monodromy group
is the same as for the Grigorchuk group, see the automaton on Figure 2.21
and Subsection 6.2.1.

These groups (including their generalizations to alphabets of more than
two letters) were defined and studied by Z. Šunić in [Šun07].

4.3.5. Virtual morphisms of groupoids. The most natural and general
definition of the iterated monodromy groups, in particular in the setting of
orbispaces, is to via groupoids theory and biactions. See Section 3.2 for the
definitions and properties of biactions.

Definition 4.3.12. Let G,H be topological groupoids. A virtual morphism
from G to H is a biaction G y M x H such that the action M x H is free
and proper, and the ancor PG : M ÝÑ Gp0q induces a finite-to-one covering
map M{H ÝÑ Gp0q. We sometimes denote the anchors of the left and the
right actions by Pl and Pr, respectively.

A virtual endomorphism of G is a virtual morphism from G to G.
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Recall that a biaction G y M x H is a morphism if the action of H is
free and proper, and the map PG induces a homeomorphism M{H ÝÑ Gp0q.
Thus, a virtual morphism can be seen as a multi-valued morphism, where
the covering PG{H describes branches of the multivalued map.

Proposition 4.3.13. A composition of virtual morphisms is a virtual mor-
phism.

Proof. ... �

Example 4.3.14. If G is a group, then Definition 4.3.12 coincides with the
definition of a covering biset, see Definition 4.2.2.

Example 4.3.15. If the groupoids G and H are trivial, i.e., are topological
spaces, then the left and the right actions are trivial, hence the virtual
endomorphism is a pair of maps PG : M ÝÑ Gp0q � G and PH : M ÝÑ
Hp0q � H. Then, by Definition 4.3.12, PG is a finite-to-one covering map.
We see that we recover the original definition of a covering correspondence,
see Definition 4.3.1. We sometimes the virtual morphism as the multivalued
map PH � P�1

G : G ÝÑ H.

The following lemma will be needed later.

Lemma 4.3.16. Let G y M x H be a biaction such that H is étale and
the action M x H is free and proper. Then the map PG : M ÝÑ Gp0q is a
local homeomorphism.

Proof. By Proposition 3.2.31, the quotient map M ÝÑ M{H is a local
homeomorphism, i.e., for every point x PM there exists a neighborhood U
such that the quotient map is a homeomorphism from U to its image. The
map PG{H : M{H ÝÑ Gp0q is a covering, hence a local homeomorphism.
It follows that PG is a composition of two local homeomorphisms M ÝÑ
M{H ÝÑ Gp0q, hence is a local homeomorphism. �

4.3.6. Groupoid automata. Let us describe a class of virtual morphisms
of groupoids analogous to automata and wreath recursions.

Definition 4.3.17. Let G and H be groupoids, and let X be an alphabet.
A groupoid automaton is a continuous map pg, xq ÞÑ pgpxq, g|xq from G� X
to X� H satisfying the following conditions:

(1) if g P Gp0q, then for all x P X we have g|x P Hp0q;

(2) for all pg1, g2q P Gp2q and x P X we have

pg1g2qpxq � g1pg2pxqq, pg1g2q|x � g1|g2pxqg2|x.
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Note that condition (2) implies that if g P Gp0q, then gpxq � x for
all x P X. The map pg, xq ÞÑ pgpxq, g|xq induces a continuous map ι :

Gp0q � X ÝÑ Hp0q by the rule ιpu, xq � u|x. Note that for every g P G we
have spgq|x � pg�1gq|x � g�1|gpxqg|x, hence spgq|x � spg|xq. It follows that
spg|xq � ιpg, xq for all g P G.

Definition 4.3.18. The virtual morphism associated with the groupoid
automaton is the biaction G y M x H, where

M � tpt, x, hq P Gp0q � X� H : rphq � ιpt, xqu,
PGpt, x, hq � t, PHpt, x, hq � sphq, and

g � pt, x, hq � prpgq, gpxq, g|xhq, pt, x, h1q � h2 � pt, x, h1h2q
for all pt, x, hq, pt, x, h1q PM, g P s�1ptq, and h2 P r�1psph1qq.

It is checked directly that the action M x H in the above definition is
free and proper, and that the quotient M{H is naturally homeomorphic to

Gp0q � X, so that the map PG induces the covering map Gp0q � X ÝÑ Gp0q

equal to the projection onto the first coordinate. Consequently, G y M x
H is a virtual morphism.

Note that the map x ÞÑ gpxq is a permutation of X, and that this way we
get a cocycle σ : G ÝÑ SpXq. The map pg, xq ÞÑ g|x is a functor from Gn σ
to H (see...). It follows that the structure of a groupoid automaton can be
described as a cocycle σ : G ÝÑ SpXq and a functor I : G n σ ÝÑ H. This
description is a generalization of wreath recursions for self-similar groups.

Proposition 4.3.19. Let G y M x H be a virtual morphism of an étale
groupoid such that the covering map PG{G : M{G ÝÑ Gp0q is d-to-one, and
let X be a set of cardinality d. Then there exists an equivalence G1 y E x G
such that the biaction G1 y E b M x H is isomorphic to the biaction
associated with a groupoid automaton G1 � X ÝÑ X� H.

Proof. .... Let G y M x G be a virtual morphism of an étale groupoid.
Suppose that the covering map Pl{G : M{G ÝÑ Gp0q is d-to-one. Let X
be an alphabet of cardinality d. For every point t P Gp0q choose a right G-
orbit transversal x1, x2, . . . , xd P P�1

l pxq, and choose a bijection Λ : X ÝÑ
P�1
l ptq. Since the map Pl : M ÝÑ Gp0q is étale by Lemma 4.3.16, there

exist neighborhoods Ux, x P X, of Λpxq and an open neighborhood U of t
such that Pl : Ux ÝÑ U are homeomorphisms.

The set P�1
l pUq is invariant under the right G-action, and every point

a P P�1
l pUq is uniquely written in the form Λpxq � g for some x P X and

g P G. The right action in this notation is given just by multiplication in G:
an action pΛpxq � gq � h is defined if and only if Λpxq � g and gh are defined,
and then it is equal to Λpxq � pghq.
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Consider any subset U of the set of all such neighborhoods U covering an
open G-transvesal, and consider the localization G|U . For every U P U we
have the corresponding sets Ux, x P X. We will identify the disjoint union
of the sets Ux as the direct product U � X. Then the homeomorphisms
Pl : Ux ÝÑ U are identified with the projection of the direct product U �X
onto the first coordinate. The disjoint union of the sets Ux for all x P X and

U P U is identified therefore with the direct product G|p0qU � X.

Consider the disjoint union of the sets P�1
l pUq for U P U . By the above,

it is isomorphic as a right G-action to the subspace of G|p0qU �X�G consisting
of triples pt, x, gq such that ... �

4.3.7. Lifting paths by virtual morphisms. Let us show how a vir-
tual morphism of groupoids induces virtual morphisms of the fundamental
groupoids and fundamental groups. Let G y M x H be a virtual mor-
phism.

At first let us show how to lift G-paths to M o G-paths. Let γ be a
path in Gp0q. For every point x P M such that PGpxq is the beginning of γ
there exists a unique lift γx of γ by PG{H to a path in M{H starting at the
orbit xH. The groupoid Mo H is equivalent to the trivial groupoid on the
space M{H, hence the path γx can be lifted to a pMo Hq-path. The lift is
unique up to isomorphism except for the choice of the endpoints. It is equal
to hmδm � � � δ1h0, where hi P Mo H and δi are paths in M. We can define
its image in H as the H-path obtained by applying the natural projection
Mo H ÝÑ H. We will denote it PHpγxq. The path PHpγxq is unique up to
a choice of the endpoints inside particular H-orbits.

We see that every path in Gp0q can be lifted to a pM o Hq-path, and
then mapped to a H-path.

Let now γ � gnγn � � � γ1g0 be a G-path, and let x PM be such that PGpxq
is equal to spγq. Let x1 � g0 � x. Let γ11 be a lift of γ1 to a pM o Hq-path
starting in x1. Let x2 be the image under g1 of the end of γ11. Then there
exists a lift of γ2 to an pM o Hq-path starting in x2. Continue the lifting
process inductively. Note that the end of PHpγ1iq is equal to the beginning
of PHpγ1i�1q. It follows that concatenation of the paths PHpγ1iq is an H-path.

We see that also every G-path can be lifted and then mapped to an H-
path. This procedure coincides, in the case of morphisms with the compo-
sition of a path and a morphism described at the beginning of this section.
And in the same way, the corresponding H-path is unique, up to isomor-
phism, only as a morphism, and not as an H-path.

Let us describe now the π1pGq-biset associated with the virtual endo-

morphism G y M x G. Define �M as the set of triples px, γ, yq, where γ is
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a morphism from r0, 1s to H, y P Hp0q is a beginning of γ, and x P M{H is
the H-orbit of a point x0 PM such that PHpx0q is the end of γ.

We have a natural structure of a biaction π1pGqy �M x π1pHq over the
anchors Pπ1pGqpx, γ, yq � PGpxq, Pπ1pHqpx, γ, yq � y. The right action is just
by concatenation:

px, γ, yq � β � px, γβ, spβqq.
For the left action of a G-path α, we find the lift αx of α to a Gn pM{Hq-
path starting in x, finding its end x1, mapping αx to a H-path PHpαxq, and
then setting

α � px, γ, yq � px1, PHpαxqγ, yq.
Restricting it to the fundamental group π1pG, tq defines a group biset.

The case of virtual morphisms defined by groupoid automata is more
explicit, so let us describe the induced biset over the fundamental groups in
this case.

Let σ : G ÝÑ SpXq be a cocycle, and let I : Gnσ ÝÑ H be functor, and
let pg, xq ÞÑ pgpxq, g|xq be the corresponding groupoid automaton. (Recall
that this means that σpgq is the permutation x ÞÑ gpxq and that Ipg, xq �
g|x.)

Let γ � gnγn � � � γ1g0 be a G-path, and let x P X. Then γ has a unique
lift to a Gn σ-path starting at pspγq, xq, namely

pgn, gn�1gn�2 � � � g1pxqqpγn, gn�1gn�2 � � � g0pxqq � � �
pg2, g1g0pxqqpγ1, g1g0pxqqpg1, g0pxqqpγ1, g0pxqqpg0, xq,

where pα, yq, for a path α in Gp0q and a letter y P X is the path t ÞÑ pαptq, yq
in Gp0q�X. We will denote this lift by pγ, xq, which agrees with the notation
pg, xq for the elements of Gnσ. In fact, we see that the fundamental groupoid
of Gn σ is naturally isomorphic to π1pGqn σ̃, where σ̃ : π1pGq ÝÑ SpXq is
the cocycle

σ̃pgnγngn�1 � � � g1γ1g0q � σpgngn�1 � � � g1g0q.
The functor I : G n σ ÝÑ H induces then the functor Ĩ : π1pG n σq �

π1pGq� σ̃ ÝÑ π1pHq. We see that the virtual morphism from G to H defined
by σ and I induces the virtual morphism of the fundamental groupoids
defined by σ̃ and Ĩ.

4.3.8. Iterating a virtual endomorphism. By Proposition 4.3.13, com-
position of two virtual morphisms of groupoids is also a virtual morphism.
It follows that if G y M x G is a virtual endomorphism of a groupoid G,
then we can iterated it, and get a sequence Mbn of virtual endomorphism
of G.
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4.3.8.1. Trivial groupoids. Let consider at first the case of trivial groupoids
(i.e., topological spaces). Since every action of a trivial groupoid is free and
proper, we can compose any two biactions of trivial groupoids. A biaction
in this case is just a topological correspondence, i.e., a pair of maps PY1 :
M ÝÑ Y1 and PY2 : M ÝÑ Y2. A correspondence is a virtual morphism if
PY1 is a covering map.

If pPY1 : M1 ÝÑ Y1, P
1
Y2

: M1 ÝÑ Y2q and pP 2
Y2

: M2 ÝÑ Y2, PY3 :
M2 ÝÑ Y3q are correspondences, then their composition is (see 3.2.2) the
space tpx1, x2q P M1 �M2 : P 1

Y2
px1q � P 2

Y2
px2qu together with the maps

px1, x2q ÞÑ PY1px1q and px1, x2q ÞÑ PY3px2q.
In other words, the composition is constructed by taking the the pull-

back (or fiber product) of the maps

M2���P 2
Y2

M1

P 1
Y2ÝÑ Y2

and thus getting the diagram

M1 bM2 ÝÑ M2
PY3ÝÑ Y3��� ���P 2

Y2

M1

P 1
Y2ÝÑ Y2���PY1

Y1

,

The compositions M1 b M2 ÝÑ Y1 of the left-hand vertical arrows and
the composition M1 bM2 ÝÑ Y3 of the top horizontal arrows form the
composition of the correspondences.

The following description of the iteration of one correspondence is proved
directly by induction.

Proposition 4.3.20. Let F, I : M ÝÑ X be a topological correspondence.
Denote by Mn the subspace of Mn consisting of sequences px1, x2, . . . , xnq
such that Ipxiq � F pxi�1q for every i � 1, 2, . . . , n� 1. Define

Fnpx1, x2, . . . , xnq � F px1q, Inpx1, x2, . . . , xnq � Ipxnq.

Then the correspondence Fn, In : Mn ÝÑ X is isomorphic to the nth iter-
ation of F, I : M ÝÑ X .
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More explicitly, the nth iteration is inductively by constructing the fol-
lowing pull-back diagrams:

Mn�1
InÝÑ Mn���Fn ���Fn�1

Mn
In�1ÝÑ Mn�1

,

where we can set M0 � X , F0 � F , and I0 � I. The maps Fn and In are
given by

Fnpx1, x2, . . . , xn�1q � px1, x2, . . . , xnq,
Inpx1, x2, . . . , xn�1q � px2, x3, . . . , xn�1q

for n ¥ 1.

We will usually denote a virtual endomorphism by f, ι : X1 ÝÑ X ,
where f : X1 ÝÑ X is a finite degree covering map. Our usual dynamical
interpretation is that ι as an approximation of the identity map (e.g., it is the
identical embedding in the case of correspondences defined by partial self-
coverings). Then the space Xn of sequences px1, x2, . . . , xnq such that ιpxiq �
fpxi�1q constructed above is interpreted as the space of orbits of length
n. Note that it is a backward orbit if we interpret ι as an approximation
of the identity map, but it is a forward orbit if we interpret the virtual
endomorphism as a multivalued map. Unfortunately, both approaches are
convenient in different situations (we will see this ambiguity later, when the
same phenomenon will be called “contraction” and “expansion” at the same
time). To avoid confusion, we will call a sequence px1, x2, . . . , xnq a forward
f -orbit if fpxiq � ιpxi�1q for all i. If we have fpxi�1q � ιpxiq, then we call
it a backward f -orbit.

Example 4.3.21. Suppose that f : X1 ÝÑ X is a partial self-covering, and
let ι : X1 ÝÑ X be the identical embedding. Then a sequence px1, x2, . . . , xnq
is a forward f -orbit of the correspondence if and only if fpxiq � xi�1 for
every i, i.e., if it is an orbit of length n of the partial map f . It follows that
the space Xn of orbits of length n is naturally identified with the domain of
the nth iteration fn of the partial self-covering. Moreover, our definition of
iteration of the topological correspondence agrees with the natural notion
of iteration of a partial map.

Example 4.3.22. Let f, ι : X1 ÝÑ X be the topological correspondence
describing the dual Moore diagram of an automaton A � pX, Q, π, λq, as
in Example 4.3.5. Suppose that pt1, t2, . . . , tnq is a forward f -orbit of this
correspondence, such that the points ti are not vertices (i.e., belong to the
interiors of some edges). Let pqi, xiq Q ti be the corresponding edges. Then
fptiq � ιpti�1q implies that qi � πpqi�1, xi�1q. The letters xi are the begin-
nings of the edges pqi, xiq. Their ends are yi � λpqi, xiq.
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It follows that the space Xn of orbits of length n is isomorphic to the
dual Moore diagram of the automaton describing the action of A on words
of length n. An edge of Xn containing the point pt1, t2, . . . , tnq is uniquely
determined by pq1, x1x2 . . . xnq. The set of vertices of Xn is Xn, and the
edge pq1, x1x2 . . . xnq starts in x1x2 . . . xn, ends in y1y2 . . . yn, and corre-
sponds to the orbit ppq1, x1q, pq2, x2q, . . . , pqn, xnqq of edges of X1, where qi �
πpqi�1, xi�1q. The iteration fn, ιn : Xn ÝÑ X is given by fnpq1, x1x2 . . . xnq �
q1 and ιnpq1, x1x2 . . . xnq � πpqn, xnq.
Example 4.3.23. A simplicial topological correspondence f, ι : X1 ÝÑ X is
a pair of simplicial maps between simplicial complexes X1 and X such that
f is a finite degree covering map.

If f, ι : X1 ÝÑ X is a simplicial topological correspondence, then the
spaces of orbits Xn and the maps fn, ιn between them are simplicial com-
plexes and maps, respectively. Namely, we can define the set of simplices
of Xn as the set of sequences p∆1,∆2, . . . ,∆nq such that fp∆iq � ιp∆i�1q
with the natural incidence relations. Note that since the map ι is not re-
quired to be dimension-preserving, the dimensions of the simplices ∆i may
be different (but non-decreasing with i).

4.3.8.2. Groupoid automata. Iteration of groupoid automata is very similar
to iterations of wreath recursions and transducers.

Proposition 4.3.24. Let A : G � X ÝÑ X � G : pg, xq ÞÑ pgpxq, g|xq be a
groupoid automaton. Define the nthe iterate Abn : G � Xn ÝÑ Xn � G of
the automaton A inductively by the rule

gpx1x2 . . . xnq � gpx1qg|x1px2x3 . . . xnq, g|x1x2...xn � g|x1 |x2x3...xn .
Then the virtual endomorphism associated with Abn is isomorphic to the
nth iteration of the virtual endomorphisms associated with A.

Proof. ... �

The approach via to iterating via groupoid automata may be convenient
even in the case of self-coverings of topological spaces.

As an example, consider the basilica map z2 � 1 on its Julia set. Let us
localize the trivial groupoid to the cover by open subsets shown on .... Then
....

4.4. Expanding maps and contracting groups

4.4.1. Iterated monodromy groups of expanding maps. Relation be-
tween the iterated monodromy groups and dynamical systems is the closest
in the case of expanding maps....
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Let us recall the main definitions and properties of expanding maps. We
say that a map f ü X , where X is a compact metric space, is expanding
if there exist ε ¡ 0 and L ¡ 1 such that dpfpxq, fpyqq ¥ Ldpx, yq for all
x, y P X such that dpx, yq ¤ ε, see Definition 1.4.1.

If f ü X is an expanding covering map, then there exists δ ¡ 0 such
that δ   ε, and for every set U � X of diameter ¤ δ the set f�1pUq is a
disjoint union of finitely many sets U1, U2, . . . , Ud such that f : Ui ÝÑ U
are homeomorphisms, and the distance between any two points belonging
to different sets Ui is greater than δ, see Lemma 1.4.37. We call Ui the
components of f�1pUq. Note that then Ui are also of diameter less than δ,
so for every n we can inductively define components of f�npUq. We will say
that δ is a strong injectivity constant of the map.

The disjoint union of the sets of components of f�npUq for n ¥ 0 form

the preimage tree TU . Theorem 1.4.36 shows that the inverse limit X̂ of the

maps X fÐÝ X fÐÝ X � � � is a fiber bundle over X : it is naturally locally
homeomorphic to the direct product U � BTU . Our goal is to understand
how different pieces U � BTU are glued together to produce X̂ .

For every t P U , we have a natural isomorphism of the tree TU with
the tree of preimages Tt defined at the beginning of 4.1.1. It maps a vertex
v P f�nptq of Tt to the unique component V � f�npUq such that v P V .

Definition 4.4.1. Let δ ¡ 0 be a strong injectivity constant of f ü X .
Suppose that A,B � X are sets of diameters less than δ such that AXB �
H. Then for every x P AXB we have natural isomorphisms TA ÝÑ Tx ÝÑ
TB. Denote by SA,B : TA ÝÑ TB their composition. We call SA,B the
elementary holonomy.

The induced map SA,B : BTA ÝÑ BTB describes how the pieces A�BTA
and B�BTB are attached to each other in X̂ . The isomorphism SA,B maps
a component An of f�npAq to the unique component Bn of f�npBq such
that An XBn � H.

Lemma 4.4.2. If U1, U2, U3 be subset of diameter less than δ such that
U1 X U2 X U3 � H, then SU2,U3 � SU1,U2 � SU1,U3.

Proof. Choose a point x P U1 X U2 X U3. Then SUi,Uj is equal to the
composition of the natural isomorphisms TUi ÝÑ Tx ÝÑ TUj , which implies
the statement of the lemma. �

Let U be a finite cover of X by sets of diameter less than δ. Recall
that a nerve of the cover U is the simplicial complex with the set of vertices
equal to U in which a subset C � U is a simplex if and only if

�
APC A is

non-empty.
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Let ΓU be the nerve of the cover U . For every edge pU1, U2q of ΓU we
have the isomorphism SU1,U2 : TU1 ÝÑ TU2 .

The maps SU1,U2 generate a small category of isomorphisms between the
trees TUi , i.e., a groupoid. Let us denote this groupoid by IMG pf,Uq.

For every path γ � pU1, U2, . . . , Unq, we get the composition Sγ : TU1 ÝÑ
TUn of the isomorphisms SUi,Ui�1 . Lemma 4.4.2 implies that the map γ ÝÑ
Sγ is a homomorphism from the fundamental groupoid of the nerve ΓU to
the groupoid IMG pf,Uq.

Instead of the abstract (i.e., discrete) groupoid IMG pf,Uq, we can con-
sider a naturally defined étale groupoid acting on the boundaries of the
trees TU . Namely, consider the disjoint union

�
UPU BTU . Then every iso-

morphism SU1,U2 induces a homeomorphism SU1,U2 : BTU1 ÝÑ BTU2 between
two clopen subsets of the union. Denote by Gpf,Uq the groupoid of germs
generated by these local homeomorphisms. This is the groupoid associated
with the local product structure, as defined in 3.1.4.2. Note that in this case
a more natural groupoid is the groupoid defined in 3.1.4.3 for the natural
extension of f (the one acting on the stable leaves), which may be bigger
than Gpf,Uq if the space X is not connected.

Suppose now that X is connected and locally connected. Then for any
finite cover U of X by open connected subsets the nerve ΓU is connected and
the groupoid IMG pf,Uq is equivalent to the isotropy group of an element
U P U . This is the iterated monodromy group of f . It is the group of all
elements of the form Sγ , where γ is an element of the fundamental group
π1pΓU , Uq, i.e., a closed path starting and ending in U .

The groupoid IMG pf,Uq acts on
�
UPU BTU , so the isotropy group of U

acts on BTU . We get an action of IMG pfq on the boundary of the tree TU .

This new definition of the iterated monodromy group coincides with the
one given in 4.1.1. Recall that every connected and locally connected space
is path connected... Let γ be a path in X starting in x1 and ending in x2.
Let U be a finite cover of X by open sets of diameter less than δ. We can
partition γ into a concatenation γ1γ2 . . . γk of paths of diameter less than
the Lebesgue number of U . Let Ui P U be such that the image of γi is
contained in Ui. Then γ1 � pU1, U2, . . . , Ukq is a path in ΓU . It is easy to
see that Sγ : TU1 ÝÑ TUk is equal to Sγ1 . Here TU1 and TUk are identified
with Tx1 and Tx2 , respectively, by the natural isomorphism, using the fact
that x1 P U1 and x2 P Uk. It follows that the group of automorphisms Sγ
of a tree of preimages Tt defined by elements γ of the fundamental group
π1pX , tq coincides with the group of automorphisms of Tt defined by the
elements of the fundamental group π1pΓU , Uq, where t P U P U , i.e., that
the two definitions of the iterated monodromy groups coincide.
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4.4.2. Simplicial models of expanding maps. We will use now the
notion of a topological correspondence to approximate arbitrary expanding
maps by simplicial complexes.

Let f ü X be an expanding covering, and let δ, as before, be a strong
injectivity constant for f . We do not impose any connectivity conditions on
X in this subsection.

Let U be a finite cover of X by subsets of diameter less than δ. Denote
by Un the set of components of f�npUq for U P U . We also denote U0 � U .
Denote by Γn the nerve of the cover Un.

The map f induces simplicial maps fn : Γn�1 ÝÑ Γn by the rule fnpUq �
fpUq, where fpUq is the image of U as a set under the map f : X ÝÑ X ,
i.e., U is a component of f�1pfnpUqq.
Lemma 4.4.3. The maps fn : Γn�1 ÝÑ Γn are coverings.

Proof. For U P Un, denote by NU the sub-complex of Γn equal to the union
of simplices containing U .

It is enough to show that f : NU ÝÑ NfpUq is an isomorphism for every
U P Un�1. It is obviously a simplicial map.

Let us show that f : NU ÝÑ NfpUq is injective on the set of vertices
adjacent to U . Suppose that it is not, then there exist elements A,B,C P
Un�1 such that A X C and B X C are non-empty, and fpAq � fpBq. But
then there exist x P A and y P B such that dpx, yq   δ, which contradicts
the conditions of Lemma 1.4.37.

For every simplex ∆ � tfpUq, A1, A2, . . . , Aku of Γn containing fpUq
there exists a unique simplex

∆1 � tU,B1, B2, . . . , Bku � tU, SfpUq,A1
pUq, SfpUq,A2

pUq, . . . , SfpUq,AkpBkqu
of Γn�1 containing U such that fp∆1q � ∆. Consequently, f : NU ÝÑ NfpUq
is an isomorphism. �

Definition 4.4.4. We say that U is semi-Markovian if for every U P U1

there exists U 1 P U such that U � U 1.

The following lemma is a direct corollary of the Lebesgue’s covering
lemma.

Lemma 4.4.5. Let U be an open cover of X by sets of diameter less than
δ. Then there exists n ¥ 1 such that U is semi-Markovian for fn ü X .

On the other hand, we do not have to pass to an iterated of f if we are
allowed to change the cover.

Lemma 4.4.6. For every δ ¡ 0 there exists a finite semi-Markovian cover
by open sets of diameter less than δ.
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Proof. Let V be a cover of X by sets of diameter less than δ0. As before,
we denote by Vn the set of components of f�npAq for A P V. Define, for

every V P V the sets V pnq inductively by the rule that V p0q � V , and
V pn�1q is equal to the union of V pnq and all elements W P Vn�1 such that
W X V pn�1q � H. Define V p8q � �

n¥1 V
pnq, and let Vp8q � tV p8q : V P

Vu.
Diameter of V pnq is less than

2δ0p1� L�1 � L�2 � � � � � L�nq   2δ0{p1� L�1q.
Consequently, diameter of V p8q is not more than 2δ0{p1 � L�1q. Assume

that δ0   p1�L�1qδ{2. Then all elements of Vp8q have diameters less than
δ.

It is easy to see that then pVnqp8q � pVp8qqn, and that if U P V1 and

V P V are such that U X V � H, then U p8q (as an element of Vp8q1 ) is

contained in V p8q, which implies that Vp8q is semi-Markovian. �

Let U be a semi-Markovian cover. Choose for every U P U1 an element
ιpUq P U0 such that U � ιpUq. It is easy to see that ι : Γ1 ÝÑ Γ0 is a
simplicial map.

Since U and ιpUq intersect, the elementary holonomy SU,ιpUq : TU ÝÑ
TιpUq is defined. For every n it defines a bijection between the set of com-

ponents of f�npUq and the set of components of f�npιpUqq. These sets are
subsets of Un�1 and Un respectively, and union of the maps SU,ιpUq for U P U1

is a map from Un�1 to Un, which we will denote ιn.

Equivalently, ιnpAq is the unique component of f�1pιn�1pfpAqqq con-
taining A.

The map ιn is uniquely defined by the condition that if A is a component
of f�npUq for U P U1, then ιnpAq is the unique component of f�npιpUqq such
that ιnpAq � A. It follows that ιn : Γn�1 ÝÑ Γn is simplicial and that the
diagram

(4.2)

Γn�2
ιn�1ÝÑ Γn�1���fn�1

���fn
Γn�1

ιnÝÑ Γn

is commutative.

Let us show that the pair f0, ι0 : Γ1 ÝÑ Γ0 uniquely determines the
sequence fn, ιn : Γn�1 ÝÑ Γn. Namely, we will show that the complexes
Γn are produced by iteration of the simplicial virtual endomorphism f0, ι0 :
Γ1 ÝÑ Γ0.
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Proposition 4.4.7. Let rΓn and f̃n, ι̃n : rΓn�1 ÝÑ rΓn be the complexes and
maps obtained by iterating the simplicial topological correspondence f0, ι0 :

Γ1 ÝÑ Γ0. (In particular, rΓn � Γn for n � 0, 1.)

Then there exist isomorphisms φn : rΓn ÝÑ Γn such that

fn � φn�1 � φn � f̃n, ιn � φn�1 � φn � ι̃n
for all n ¥ 1.

Proof. Let us construct and prove properties of φn by induction. For n � 1

the graph rΓ1 coincides with Γ1, so set φ1 to be equal to the identity map.

Suppose that φn is defined and satisfies the properties of the proposition.

Let pv1, v2, . . . , vn�1q be an arbitrary vertex of rΓn�1.

If n � 1, then we have v2 � fpv1q, since pv1, v2q P Γ1. For n ¡ 1 we have
We have φnpv2, v3, . . . , vn�1q � fpφnpv1, v2, . . . , vnqq, since φn�1pv2, v3, . . . , vnq �
ιnpφnpv2, v3, . . . , vn�1qq and fpφnpv1, v2, . . . , vnqq � φn�1pv2, v3, . . . , vnq, by
the inductive hypothesis.

Consequently, for n � 1 there exists a unique component of f�1pv2q
contained in v1. We set φ2ppv1, v2qq to be equal to this component. Simi-
larly, for n ¡ 1 there exists a unique component of f�1pφnpv2, v3, . . . , vn�1qq
contained in φnpv1, v2, . . . , vnq. We set φn�1pv1, v2, . . . , vn�1q to be equal to
it.

Formally, in both cases we defined φn�1 by the rule
(4.3)
φn�1pv1, v2, . . . , vn�1q � Sfn�1pφnpv1,v2,...,vnqq,φnpv2,v3,...,vn�1qpφnpv1, v2, . . . , vnqq.

We get a map φn�1 : rΓn�1 ÝÑ Γn�1 (between sets of vertices). Let
us show that it satisfies the conditions of the proposition and that it is an
isomorphism of simplicial complexes.

It follows directly from the definition that fnpφn�1pv1, v2, . . . , vn�1qq �
φnpv2, v3, . . . , vn�1qq, as we defined φn�1pv1, v2, . . . , vn�1q as a component of
f�1pφnpv2, v3, . . . , vn�1qq.

The vertex ιnpφn�1pv1, v2, . . . , vn�1qq is, by definition, the component
of f�1pιn�1 � f � φn�1pv1, v2, . . . , vn�1qq containing φn�1pv1, v2, . . . , vn�1q.
We have ιn�1 � f � φn�1pv1, v2, . . . , vn�1q � ιn�1pφnpv2, v3, . . . , vn�1qq �
φn�1pv2, v3, . . . , vnq. Consequently, ιnpφn�1pv1, v2, . . . , vn�1q is the compo-
nent of f�1pφn�1pv2, v3, . . . , vnqq containing φn�1pv1, v2, . . . , vn�1q. The set
φnpv1, v2, . . . , vnq satisfies these conditions, since fpφnpv1, v2, . . . , vnqq � φn�1pv2, . . . , vnq,
by the inductive assumption, and φnpv1, v2, . . . , vnq � φn�1pv1, v2, . . . , vn�1q,
by the definition of φn�1. It follows that ιnpφn�1pv1, v2, . . . , vn�1qq � φnpv1, v2, . . . , vnq.
The case n � 1 is similar.
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Let us show (also by induction) that φn�1 is simplicial. Suppose that

∆ � tpv1,i, v2,i, . . . , vn�1,iq : i � 1, . . . , ku
is a simplex of rΓn�1. Then tφnpv2,i, v3,i, . . . , vn�1,iqu and tφnpv1,i, v2,i, . . . , vn,iqu
are simplices of rΓn, since φn is simplicial. It means that

�
i�1,...,k φnpv2,i, v3,i, . . . , vn�1,iq

and
�
i�1,...,k φnpv1,i, v2,i, . . . , vn,iq are non-empty. Then it follows from the

definition (4.3) of φn�1 and Lemma 4.4.2 that tφn�1pv1,i, v2,i, . . . , vn�1,iqui�1,...,k

is a simplex of Γn�1. The case n � 1 is similar.

It remains to show that φn�1 has an inverse simplicial map. If n � 1,
then it is checked directly that the inverse map is φ�1

2 pvq � pιpvq, fpvqq.
For every v P Γn�1 we have fn�1pιnpvqq � ιn�1pfnpvqq, hence φ�1

n pιnpvqq �
pv1, v2, . . . , vnq and φ�1

n pfnpvqq � pv2, v3, . . . , vn�1q for some vi P Γ1. Define
φ1n�1 � pv1, v2, . . . , vn�1q. It is checked then directly that φ1n�1 is the inverse
of φn�1. It is obvious that φ1n�1 �

Example 4.4.8. A model of the basilica...

4.4.3. Reconstructing an expanding map from its simplicial model.
Let us show that a simplical virtual endomorphism f0, ι0 : Γ1 ÝÑ Γ0 defined
in the previous subsection can be used to reconstruct the original expanding
map.

Theorem 4.4.9. Let f ü X be an expanding covering map, and let U be
a semi-Markovian open or closed cover by sufficiently small sets. Let Γn be
the nerves of the covers Un, and let ιn, fn : Γn�1 ÝÑ Γn be the corresponding
maps.

Let limι Γn be the inverse limit of the sequence

Γ0
ιÐÝ Γ1

ι1ÐÝ Γ2
ι2ÐÝ � � � ,

seen as a topological graph.

Then there exists a homeomorphism of X with the space of abstract con-
nected components of the graph limι Γn with the topology of the quotient of
the space of vertices. Moreover, there exists a homeomorhism conjugating f
with the map induced by

f8pA0, A1, . . .q � pfpA1q, fpA2q, . . .q.

Here the inverse limit limι Γn is considered as a simplicial complex: its
set of vertices is the inverse limit of the sets of vertices of Γn; and its set of
simplices is the inverse limit of the sets of simplices of Γn. Note that both
sets are compact topologica spaces (homeomorphic to the Cantor sets, if the
set of edges is non-empty). As an abstract complex (without topology), the
complex limι Γn has uncountably many connected components.
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Note that it follows from commutativity of the diagram (4.2) that f8 :
limι Γn ÝÑ limι Γn is a continuous simplicial map.

Theorem 4.4.9 is another example of rigidity (structural stability) of
hyperbolic dynamical systems. It shows that an expanding covering can be
reconstructed from finite amount of (combinatorial) information: a pair of
simplicial maps between finite simplicial complexes. We have seen similar
statements about hyperbolic dynamical systems in Proposition 1.4.51 and
Theorem 1.4.57.

Proof. A vertex of limι Γn is a sequence pV0, V1, V2, . . .q of vertices Vn P Un
of Γn such that ιnpVn�1q � Vn for all n. Then Vn�1 � Vn. Diamenter of
Vn is less than L�nδ. It follows that every sequence of points xn P Vn is
converging and the limit does not depend on the choice of xn. Let us denote
it by ΦpV0, V1, . . .q.
Lemma 4.4.10. If vertices u, v of limι Γn are adjacent, then Φpuq � Φpvq.
Proof. Let u � pA0, A1, . . .q and v � pB0, B1, . . .q. If u and v are adjacent,
then An XBn � H, and we can choose xn P An XBn. Then Φpuq � Φpvq �
limnÑ8 xn. �

Lemma 4.4.11. The map Φ is onto.

Proof. Let x P X be an arbitrary point. For every n there exists An P
Un such that x P An. Then x belongs to every element of the sequence
ι0 � ι1 � � � � � ιn�1pAnq, ι1 � ι2 � � � � � ιn�1pAnq, . . . , ιn�1pAnq, An. Consider the
sequence of such sequences as nÑ 8. Since every complex Γn is finite, we
can find a convergent sub-sequence, and its limit will be a vertex pA0, A1, . . .q
of limι Γn such that x P An for all n. Then ΦpA0, A1, . . .q � x. �

Proposition 4.4.12. If elements of U are closed and u, v are vertices of
limι Γn such that Φpuq � Φpvq, then u and v are adjacent.

If elements of U are open and Φpuq � Φpvq, then there exists combina-
torial distance from u to v in the graph limι Γn is not more than 2.

Proof. If elements of U are closed (resp., open), then all elements of Un are
closed (resp., open).

Let u � pA0, A1, . . .q and v � pB0, B1, . . .q. Suppose that x � Φpuq �
Φpvq. We have A0 � A1 � A2 � . . ., B0 � B1 � B2 � . . ., and x is an
accumulation point on both sequences. It follos that x is an accumulation
point of each set An and Bn for all n. If all An, Bn are closed, then this
implies that u and v are adjacent.

Suppose that the covers Un are open. Then, by the proof of Lemma 4.4.11,
there exists a vertex pC0, C1, . . .q such that x P Cn for all n. Since x be-
longs to the closure of each set An and Bn, we have Cn X An � H and
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Cn X Bn � H. It follows that pC0, C1, . . .q is adjacent both to pA0, A1, . . .q
and to pB0, B1, . . .q. �

Lemma 4.4.13. The map Φ : limι Γn ÝÑ X is continuous on the space of
vertices of limι.

Proof. Define a metric d on the set of vertices of limι Γn by the condition
that dppA0, A1, . . .q, pB0, B1, . . .qq � 1

m�1 , where m is the minimal index such
that Am � Bm.

Suppose that v � pA0, A1, . . .q and u � pB0, B1, . . .q, and dpv, uq � 1
m�1 .

Then Am � Bm, and ΦpA0, A1, . . .q and ΦpB0, B1, . . .q both belong to the
closure of Am. The closure of Am has diameter less than L�mδ, hence

dpΦpvq,Φpuqq ¤ L�mδ � L1�1{dpv,uqδ,

which implies that Φ is continuous. �

The map Φ induces a continuous bijection between the space of con-
nected components and X . The equivalence relation of belonging to one
component is, by Proposition 4.4.12, equal to the relation of adjacency (if
the elements of the cover are closed) or to the relation of being on distance
less or equal to 2 (if the elements of the cover are open). In both cases
the equivalence relation is a closed subset of the direct square of the space
of vertices. It follows that the space of connected components is compact
Hausdorff. But any continuous bijection between compact Hausdorff spaces
is a homeomorphism (since image of a closed, hence compact, set is compact,
hence closed). �

Example 4.4.14. Consider the angle doubling map f : R{Z ÝÑ R{Z,
fpxq � 2x. Let U be the cover of the circle R{Z by the arcs r0, 1{4s, r1{4, 1{2s,
r1{2, 3{4s, r3{4, 1s. Then Un consists of arcs of the form

�
k

2n�2 ,
k�1
2n�2

�
for

k � 0, 1, . . . , 2n�2 � 1. It follows that the graphs Γn are cycles of length
2n�2. There is only one choice for the map ιn : Γn�1 ÝÑ Γn, since an arc�

k
2n�2 ,

k�1
2n�2

�
is contained in exactly one arc of the form

�
l

2n�1 ,
l�1

2n�1

�
. Namely,

l � k{2 if k is even and pk � 1q{2 if k is odd.

The set of vertices of limιn Γn can be realized as a subset of the cir-
cle homeomorphic to the Cantor set, so that edges of limιn Γn connect the
endpoints of the components of the complement of the Cantor set (i.e., “fill-
ing the gaps” in the Cantor set). It follows that the space of connected
components of limιn Γn is homeomorphic to the circle.

Theorem 4.4.9 produces a finite presentation of the dynamical system
f ü X in the sense of Definition 1.4.45. The sets of vertices and edges of
limι Γn are Markovian subshifts in a natural way. If U is a cover by closed
sets, then we have seen in the proof of the theorem that every connected
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component of lim ιΓn is a simplex, i.e., edge adjacency is the kernel of the
semiconjugacy of f8 with f . We get hence a presentation of f ü X as a
quotient of a shift of finite type by a shift of finite type.

4.4.4. Contracting groups and the nucleus.

Definition 4.4.15. Let pG,Mq be a self-similar group, and let X be a basis
of M. The associataed self-similar action is said to be contracting if there
exists a finite set N � G such that for every g P G there exists n such that
g|v P N for every word v P X� of length at least n. The smallest set N
satisfying this condition is called the nucleus of the action.

If the group is contracting, then the nucleus is well defined and is equal
to the set

N �
¤
gPG

£
n¥0

tg|v : v P X�, |v| ¥ nu.

It is also equal to the set of elements G such that there exist h P G, u, v P X�

such that |u| ¥ 1, h|u � h, and g � h|v. In other words, it is the set of all
elements of G that can be reached from the cycles in the Moore diagram of
the full automaton of G (see 2.4.7 for the definition of the full automaton).
The nucleus is state-closed, i.e., for every g P N and x P X we have g|x P N .
We usually consider a nucleus as an automaton. In particular, we will talk
sometimes about the Moore diagram of the nucleus.

Example 4.4.16. Consider the binary odometer action generated by a �
σp1, aq. Since a2 � pa, aq, we have an|0 � an{2 and an|1 � an{2 if n is even,

and an|0 � apn�1q{2 and an|1 � apn�1q{2 if n is odd. It follows that the
nucleus of this action of Z is the set t1, a, a�1u. Its Moore diagram is shown
on ...

The following proposition is proved in ...

Proposition 4.4.17. Let pG,Mq be a covering biset. If some self-similar
action associated with it is contracting, then every self-similar action asso-
ciated with it is contracting.

In other words, the property of being contracting is a property of the
biset. Note that the nucles of the self-similar action depends on the choice
of the basis X. In some cases we call the biset hyperbolic if the associated
self-similar actions are contracting. We say that a biset is sub-hyperbolic if
its faithful quotient is hyperbolic.

Definition 4.4.18. We say that a self-similar group pG,Mq is self-replicating
if the left G-action on M is transitive. Equivalently, a self-similar action
G y X� is self-replicating if and only if it is transitive on the first level of
the tree X� and the associated virtual endomorphism is onto.



4.4. Expanding maps and contracting groups 301

Proposition 4.4.19. If G y X� is a contracting self-replicating action of
a finitely generated group, then G is generated by its nucleus.

Proposition 4.4.20. Let f : X ÝÑ X be an expanding self-covering of
a compact connected and locally connected metric space. Then Mt,f is a
sub-hyperbolic biset, i.e., IMG pfq is a contracting self-similar group.

Proof. ... Use covers U and consider sums of diameters of elements in a
chain.. Show that elements of the nucleus are defined by paths of finite
diameter.... �

4.4.5. Contraction coefficient. Let G be a finitely generated group, and
let φ : G1 ÝÑ G be a virtual endomorphism. Denote by |g| the length of a
group element g P G with respect to some fixed finite generating set of G.
The contraction coefficient of φ is defined as

ρφ � lim sup
nÑ8

lim sup
gPDomφn,|g|Ñ8

n

d
|φnpgq|
|g| .

The following propositions are proved in...

Proposition 4.4.21. Let G y X� be a level-transitive self-similar action
of a finitely generated group. It is contracting if and only if ρφ   1.

Moreover, if the action is contracting and level-transitive, then the con-
traction coefficient depends only on the biset.

Self-replicating?...

Proposition 4.4.22. Let G y X� be a self-similar contracting action of
a finitely-generated group. Let ρφ be its contraction coefficient. Then the
orbital graphs of the induced action Gy Xω on the boundary of the tree X�

have polynomial growth of degree not more than log |X|
� log ρφ

.

Proof. .... �

As a corollary of Proposition 4.4.22 we get that the contraction coeffi-
cient of an infinite self-similar group is never less than 1

|X| . This value is

attained by the |X|-adic odometer and by the iterated monodromy group of
the Chebyshev polynomial T|X|.

4.4.6. Algebraic properties of contracting groups. Not much is known
about algebraic properties of self-similar or even self-similar contracting
groups. Many interesting problems remain to be open (we will mention
some of them here). We will summarize some of the known facts in this
subsection. Throughout this subsection a contracting group means a group
acting by a faithful self-similar contracting action.
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For a proof of the following, see...

Proposition 4.4.23. The word problem is solvable in finitely generated con-
tracting groups in polynomial time. Namely, if G is a self-similar contracting
group acting on X�, and ρ is its contraction coefficient, then for every ε ¡ 0
there exists an algorithm solving the word problem in polynomial time of

degree at most log |X|
� log ρ � ε.

Solvability of many algorithmic problems for contracting groups remain
to be open: conjugacy, isomorphism, finiteness, etc.. A particularly inter-
esting problem is deciding if two given faithfully acting on X� contracting
self-similar groups are equivalent.

Theorem 4.4.24. If G is a contracting self-similar group, then it has no
free non-abelian subgroups.

Proof. We will use Theorem 2.4.54. Since the orbital graphs of the action
of G on the boundary Xω of the tree have polynomial growth, G can not
contain a free group acting freely on an orbit of a point of Xω.

The action of g P Gw on a neighborhood of w is uniquely determined by
g|v for every beginning v of w. It follows that the number of elements of the
group of germs Gw{Gpwq can not be more than the size of the nucleus (in
fact, every group Gw{Gpwq is isomorphic to a finite group contained in the
nucleus). Consequently, cases (2) and (3) of Theorem 2.4.54 are not possible
for contracting groups, hence G has no free subgroups. �

We leave the following theorem as an exercise (see also ...)

Theorem 4.4.25. Let pG,Mq be a hyperbolic biset, and let pG,Mq be its
faithful quotient. Choose a basis X of M (identified with the corresponding
basis of M). Suppose that the nucleus of pG,Mq defined for X does not
contain non-trivial elements in the kernel of the epimorphism G ÝÑ G.
Then an element g P G belongs to the kernel of the epimorphism if and only
if there exists n ¥ 1 such that g|v � 1 and gpvq � v for all v P Xn.

We call self-similar groups G satisfying the conditions of Theorem 4.4.25
contracting overgroups of pG,Mq. We say that G is self-replicating if its left
action on the biset M is transitive. Note that if G is self-replicating, then
G is too.

It is shown in ... that for any contracting finitely generated self-replicating
group pG,Mq there exists a finitely presented contracting overgroup G.
Namely, it is enough to take the nucleus of G as a generating set, and
define G by all relations of length 3 that are valid in G. We will give a
geometric proof of this fact later...
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Proposition 4.4.26. Let G be a contracting self-replicating overgroup of
a contracting finitely generated group G. Then for any finitely presented
group F and an epimorphism F ÝÑ G there exists a subgroup of finite
index F1 ¤ F and an epimorphism F1 ÝÑ G.

Proof. By taking images of elements of G and F in G and then lifting
them to the other group, we can find generating sets tg1, g2, . . . , gmu and
tf1, f2, . . . , fmu of G and F , respectively, such that the images of gi and
fi in G are equal for every i. Then F is defined by a presentation with
the set of generators tfiu and a finite set of relations R. It follows from
Proposition 4.4.25 that there exists n such that if rpf1, f2, . . . , fmq is a re-
lation from R, then for the corresponding word rpg1, g2, . . . , gmq in G we
have rpg1, g2, . . . , gmq|v � 1 and rpg1, g2, . . . , gmqpvq � v for every v P Xn.
In other words, every element rpg1, g2, . . . , gmq for r P R has trivial image

under the wreath recursion φn : G ÞÑ SpXnqoG
Xn

associated with the biset

M
bn

. It follows that the map fi ÞÑ φnpgiq extends to a homomorphism

F ÞÑ SpXnq o G
Xn

. Consider the subgroup F1 whose image in SpXnq fixes

a word v P Xn. Projecting F1 onto the coordinate of G
Xn

corresponding
to v, we get a homomorphism F1 ÝÑ G. Since G is self-replicating, the
homomorphism F1 ÝÑ G is onto. �

cite Grigorchuk-de la Harpe-Benli...

As a direct corollary of Proposition 4.4.26 and Theorem 4.4.24 we get
the following.

Corollary 4.4.27. Let G be a finitely generated self-replicating contracting
group, and let G be a contracting overgroup of G. If G has a free subgroup,
then G is not finitely presented.

Proof. Suppose that G is finitely presented. Then, by Proposition 4.4.26,
there exists an epimorphism from a subgroup of finite index of G to G. But
this implies that G has a free subgroup, which contradicts Theorem 4.4.24.

�

Example 4.4.28. It is easy to check that the wreath recursion a � σp1, bq, b �
p1, aq defining IMG

�
z2 � 1

�
is contracting on the free group generated by

a, b. It follows that IMG
�
z2 � 1

�
is not finitely presented. We will see later

that a general argument shows that the iterated monodromy group of any
post-critically finite rational function is not finitely presented unless it is
virtually abelian (which happens only for zd, z�d, Chebyshev polynomials,
and Lattés examples).

All known finitely presented contracting groups are virtually nilpotent.
It is an open question if there are other finitely presented contracting groups.



304 4. Iterated monodromy groups

Open questions: infinite presentation in general, weak branchness, amenabil-
ity, growth (say that more will be discussed later)...

4.4.7. The limit dynamical system. Let pG,Xq be a contracting self-
similar group. Consider the space X�ω of left-infinite sequences . . . x2x1 of
letters xi P X and the space X�ω�G, both with the direct product topology
(where X and G are discrete). The space X�ω is obviously homeomorphic
to the space of the right-infinite sequences Xω and is a Cantor set.

Definition 4.4.29. We say that two sequences . . . x2x1, . . . y2y1 are asymp-
totically equivalent (with respect to the action of G) if there exists a finite
set N � G and a sequence gn P N such that gnpxn . . . x2x1q � yn . . . y2y1 for
all n.

We say that . . . x2x1 �g, . . . y2y1 �h P X�ω�G are asymptotically equivalent
if there exists a finite set N � G and a sequence gn P N such that gn �
xn . . . x2x1 � g � yn . . . y2y1h for every n. Recall that the last condition
means that gnpxn . . . x1x1q � yn . . . y2y1 and gn|xn...x2x1g � h.

In particular, if G is finitely generated, the sequences . . . x2x1, . . . y2y1

(resp. . . . x2x1 � g and . . . y2y1 � h) are equivalent if and only if the distance
between xn . . . x2x1 and yn . . . y2y1 (between xn . . . x2x1 �g and yn . . . y2y1 �h,
resp.) in the graphs of the action ofG on Xn (on the biset Xn�G, resp.) is uni-
formly bounded. It is obvious that we get equivalence relations (also in the
infinitely generated case). The equivalence relation on X�ω is invariant with
respect to the shift . . . x2x1 ÞÑ . . . x3x2, since gnpxn . . . x2x1q � yn . . . y2y1

implies gnpxn . . . x3x2q � yn . . . x3x2.

Similarly, the equivalence relation on X�ω � G is invariant under the
natural right G-action and under tensor products by elements of the biset
X �G, i.e., under the maps

. . . x2x1 � g ÞÑ . . . x2x1 � g b x � h � . . . x2x1gpxq � g|xh.
Definition 4.4.30. The quotient of X�ω by the asymptotic equivalence
relation is called the limit space of the contracting group, and is denoted
JpG,Xq, or just JG. The dynamical system s ü JG, where s is the map

induced by the shift X�ω ÝÑ X�ω is called the limit dynamical system of
the self-similar group.

The quotient of X�ω�G by the asymptotic equivalence relation together
with the induced right G-action is the limit G-space, and is denoted XpG,Xq
or just XG.

The following is proved in...



4.4. Expanding maps and contracting groups 305

Proposition 4.4.31. Sequences . . . x2x1, . . . y2y1 are asymptotically equiv-
alent if and only if there exists a sequence gn, n ¥ 0, of elements of the
nucleus N such that gn � xn � yn � gn�1 for every n ¥ 1.

Sequences . . . x2x1 �g, . . . y2y1 �h are asymptotically equivalent if and only
if there exists a sequence gn P N such that gn � xn � yn � gn�1 for all n ¥ 1,
and g0g � h.

In particular, the stabilizer of a point of XG represented by a sequence
. . . x2x1 � 1 is a finite subgroup of G contained in the nucleus. Moreover,
it also follows from Proposition 4.4.31 that the action XG x G is proper.
Note that JG is obviously homeomorphic to the space of orbits of the action
XG x G. Therefore, it is natural to consider JG as an orbispace defined by
the groupoid of the action XG x G.

Lemma 4.4.32. If the action Gy X� is faithful, then its groupoid of germs
coincides with the groupoid of the action.

Proof. We have to prove that for every non-trivial g P G and ξ P XG
the germ of the action of g on the neighborhoods of ξ is non-trivial. Sup-
pose that it is not true. Let . . . x2x1 � h represent ξ. Then there exists
n such that for every . . . y2y1 P X�ω the sequences . . . y2y1xnxn�1 . . . x1h
and . . . y2y1xnxn�1 . . . x1 � hg are equivalent. Let g1, g2, . . . , gm be the list of
all non-trivial elements of the nucleus. Then there exists v1 P X� such that
g1pv1q � v1. Find the smallest index i such that gi|v1 � 1, and let v2 P X� be
such that gipv2q � v2. Then find the smallest index i such that gi|v1v2 � 1,
and let v3 P X� be such that gipv3q � v3. Continue this way until we find
a word w � v1v2 . . . vk P X� such that for every gi P N either gi|w � 1 or
gipwq � w. Consider then any sequence ending by wxnxn�1 . . . x1 � h. Then
it follows from Proposition 4.4.31 that it is asymptotically equivalent only to
sequences of the form w1anan�1 . . . a1 �h1 for some word w1 � w of the length
equal to the length of w, or to a sequence of the form . . . a2a1�h. In particular,
sequences of the form . . . y2y1wxnxn�1 . . . x1�h and . . . y2y1wxnxn�1 . . . x1�hg
can not be asymptotically equivalent. �

Let us describe a more natural (without any reference to the basis X
of M) way of defining the space XG and the G-action on it. The following
proposition is proved in...

Proposition 4.4.33. Let M be the biset of a contracting group G. Let

Ω �
¤

A�M,|A| 8
A�ω,

where A�ω denotes the set of left-infinite sequences p. . . , x2, x1q of elements
of A with the direct product topology. Endow Ω with the direct limit topology.
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We say that p. . . , x2, x1q is equivalent to p. . . , y2, y1q if there exists a finite
set N � G and a sequence gn P N such that gn � xn b xn�1 b � � � b x1 �
ynbyn�1b� � �by1 in Mbn. Then the map . . . x2x1�g ÞÑ p. . . , x2, x1�gq induces
a homeomorphism of XG with the quotient of Ω by the defined equivalence
relation conjugating the natural action XG x G with the action induced by
the natural right G-action on Ω (the right action on the last coordinate).

Proposition 4.4.33 shows that the right G-space XG can be naturally
seen as a version of the infinite tensor power Mbp�ωq.

4.4.8. Limit correspondence on the orbispace JG. The tensor prod-
uct XGbGM of the right G-space XG with the biset M is naturally identified
with XG, see Proposition 4.4.33. After choosing a basis X of M, this identi-
fication is given by the rule

. . . x2x1 � g b y � h � . . . x2x1gpyq � g|yh.
This gives us a natural orbispace version of the limit dynamical system

sü JG. Recall that the orbispace JG is defined by the groupoid G � XGoG
of the action XG oG. (Recall that since the G-action is from the right, we
have spξ, gq � ξ � g and rpξ, gq � ξ.)

Namely, consider the space M � XG�M, the anchors Pl, Pr : M ÝÑ XG
for the left and the right actions, respectively, given by

Plpξ, xq � ξ, Prpξ, xq � ξ b x

and the XG oG-actions

pζ1, gq � pξ, xq � pξ � g�1, g � xq, pξ, xq � pg, ζ2q � pξ, x � gq
for ξ, ζ1, ζ2 P XG, x PM, g P G, and we have ζ1 � g � ξ, ζ2 � ξ b x.

Note that the right action is free and proper, since pξ, xq � pg, ζ2q � pξ, xq
implies that x � x � g, hence g � 1 (as the right action M x G is free).
The quotient M{G by the right action is naturally XG � M{G, and the

map Pl{G : M{G ÝÑ Gp0q is the projection XG � M{G ÝÑ XG on the
first coordinate. Since M{G is finite and discrete, Pl{G is a |M{G|-to-one
covering map. Consequently, the constructed biaction G y M x G is a
virtual endomorphism of G.

Equivalently, we may choose a basis X of M, and define the virtual
endomorphism by a groupoid automaton given by the map

ppξ, gq, xq ÞÑ pgpxq, pξ b x, g|xqq : G� X ÝÑ X�G.

The map ι : Gp0q�X ÝÑ Gp0q is then the map pξ, xq ÞÑ ξb x. According to
Definition 4.3.18, the associated biaction will be on the space

tpξ, x, pζ, gqq P XG � X�G : ζ � g � ξ b xu,
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which is naturally identified with M using the map pξ, x � gq ÞÑ pξ, x, pξbx �
g�1, gqq. We leave it as an exercise to check that this identification agrees
with the left and right actions given in Definition 4.3.18.

We denote the orbispace defined by the biaction groupoid G nM o G
by J1, see Exercise 3.9. Denote the morphisms J1 ÝÑ JG given by the
projections GnMoG ÝÑ G onto the left and the right copies of G by f
and ι, respectively.

Since the right action M x G is free and proper, an equivalent atlas
for J1 is the groupoid Gn pM{Gq. If we choose a basis X of M, then M{G
is naturally identified with XG � X, and the groupoid G n pM{Gq as the
restriction of GnMoG to the transversal XG�X �M. The corresponding
action of G on XG � X is given by

pζ1, gq � pξ, xq � pξ � g�1, gpxqq,
where the action is defined if and only if ζ1 � g � ξ (compare this with the
definition of the left action G y M).

Every element ppζ1, gq, pξ, xqq P G n pXG � Xq satisfies ζ � g � ξ, hence
is uniquely determined by ξ and g P G. Therefore, we can describe the
elements of Gn pM{Gq � Gn pXG�pM{Gq as triples pg, ξ, xq P G�XG�X
with the source and range maps

spg, ξ, xq � pξ, xq, rpξ, gq � pξ � g�1, gpxqq,
and multiplication

pg1, ξ1, x1qpg2, ξ2, x2q � pg1g2, ξ2, x2q.
We see that the groupoid G n pM{Gq is isomorphic to the skew-product
groupoid Gn σ defined by the natural cocycle σ : G ÝÑ SpXq:

σpg, ξqpxq � gpxq.
Therefore the morphism f : J1 ÝÑ JG is identified with the covering of
orbifolds J1 ÝÑ JG defined by the cocycle σ, i.e., with the projection

(4.4) F : pg, ξ, xq ÞÑ pξ, g�1q.
(See ... for the definition of coverings of orbifolds...).

Let us describe the projection ι : J1 ÝÑ JG onto the right action in
terms of the groupoid GnpXG�Xq � Gnσ. An element ppζ1, gq, pξ, xq, pζ2, hqq
of GnMoG has source pξ, xq � pζ2, hq � pξ, x �hq and range pζ1, gq � pξ, xq �
pξ�g�1, g�xq, and is projected by ι to the element pζ2, hq, where ζ2 � ξbx. Let
us restrict this to the transversal XG�X, and consider the projection of the
element pg, ξ, xq P G�XG�X � Gn pXG�Xq. Consider the corresponding
element ppξ�g�1, gq, pξ, xq, pξbx, 1qq of GnMo. Its source belongs to XG�X,
but its range is pξ � g�1, g � xq is equal to pξ � g�1, gpxqq � pξ � g�1 b gpxq, g|xq,
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where the dot on the right-hand side of the equality is the right G-action.
It follows that the projection ι : J1 ÝÑ JG can be defined by the functor

(4.5) I : pg, ξ, xq ÞÑ pξ b x, g|xq
from Gnσ to G. More precisely, this functor as a morphism of groupoids is
isomorphic to the composition of the projection ι : GnMoG ÝÑ G with
the equivalence of Gn σ and GnMoG.

The limit dynamical system is a self-covering of a topological space if
and only if the groupoid of germs of IMG pfq is principal... The limit dy-
namical system is a self-covering of an orbispace if and only if the groupoid
is Hausdorff...

4.4.9. Contracting correspondences. Let us generalize the notion con-
struction of the limit space XG to the case of virtual endomorphisms of
groupoids.

Let G y M x G be a virtual endomorphism. Let A be a compact
subset of M, and denote by ΩA the set of all sequences p. . . , x2, x1q P A�ω

such that Prpxnq � Plpxn�1q for all n ¥ 2. We take ΩA with the topology of
a subspace of the direct product A�ω. Let Ω � ΩM be the inductive limit
of the spaces ΩA with respect to the natural embeddings ΩA1 ãÑ ΩA2 for
A1 � A2.

We say that p. . . x2, x1q, p. . . , y2, y1q P Ω are asymptotically equivalent if
there exists a compact subset N � G and a sequence gn P G such that
gn � xn b xn�1 b � � � b x1 � yn b yn�1 b � � � b y1 in Mbn.

Denote by Mbp�ωq the quotient of Ω by the asymptotic equivalence. We
denote an element of Mbp�ωq represented by a sequence p. . . , x2, x1q either
by the sequence itself or by . . .b x2 b x1. We have a natural right G-action
induced by p. . .b x2 b x1q � g � . . .b x2 b px1 � gq.
Example 4.4.34. If G has one unit, i.e., if it is a group, then M is a
covering biset in the sense of Definition 4.2.2. If M is hyperbolic, then
Mbp�ωq is the limit G-space XG, see Proposition 4.4.33.

Example 4.4.35. If G is trivial, then M is a covering correspondence, as in
Definition 4.3.1, defined by the anchors Pl � f , and Pr � ι. The map f is a
finite degree covering. Then Mbn is the space Mn of orbits of length n, see
Proposition 4.3.20, and the space Mbp�ωq is the inverse limit of the spaces
Mn with respect to the maps ιnpx1, x2, . . . , xn�1q � px2, x3, . . . , xn�1q, see
the comments after Proposition 4.3.20. If ι is a homeomorphic embedding,
so that the correspondence is interpreted as a partial self-covering f of a
topological space X , then Mn is naturally identified with the domain of the
nth iterate of f , by the homeomorphism px1, x2, . . . , xnq ÞÑ x1. Then the

maps ιn are identical embeddings, and therefore Mbp�ωq is the intersection
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of the domains Mn, i.e., the set of points x P X such that fnpxq is defined
for every n ¥ 1.

The endomorphism is contracting if the action of G on Mbp�ωq is proper
and co-compact and the maps ξ ÞÑ ξbx : Mbp�ωq are uniformly contracting
(in the sense that uniformly bounded distances can be made arbitrarily
small)...

Shadowing property for virtual endomorphisms...

Definition 4.4.36. Let G y M x G be a virtual endomorphism of
an étale co-compact groupoid. We say that it is contracting if for ev-
ery compact subset X � M there exists a neighborhood of the diagonal
U � PrpXq � PrpXq and a compact set N � G such that for every pair
p. . . x2, x1q, p. . . , y2, y1q P ΩXX�ω if there exists a bounded sequence gn P G
such that pPrpgn � xnq, Prpynqq P U for all n, then there exists a sequence
hn P N such that gn � xn b xn�1 b . . .b x1 � yn b yn�1 b . . .b y1 � hn for all
n big enough.

Example 4.4.37. If the virtual endormorphism is associated with a self-
covering of a topological space (i.e., if G is trivial, and Pr is a homeomor-
phism), then every element of Ω is interpreted as a forward Pl-orbit, and
we get the usual definition of an expansive (equivalently, expanding) self-
covering, see Definition 1.4.1.

Example 4.4.38. If G is a group, then we can take U to be equal to the
diagonal, and we get a version of the definition of a hyperbolic covering
biset.

Definition of a contracting virtual endomorphism of a groupoid... Prove
structural stability of virtual enodomorphisms with shadowing property and
that contracting implies shadowing property and homotopical structural sta-
bility...

Theorem 4.4.39. Let G y M x G be a contracting virtual endomorphism
of a path-connected étale groupoid G. Let M be the induced biset on the
iterated monodromy group IMG pMq. Then the action groupoid Mbp�ωqoG
is equivalent to the action groupoid XIMGpMq o IMG pMq.
Proof. ............. �

4.4.10. Simplicial contracting models. Prove that for every cover by
small open sets there is an iteration fn such that the corresponding simplical
correspondence is homotopic to a contracting correspondence...

Explain how finite covers lead to complexes of groups...

The case of expanding Thurston maps.. [BM] monograph...
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Definition of the topological nucleus... prove that it is homotopic to a
contracting map...

Basilica, z2� i, Gupta-Sidki group... Hubbard tree and Hubbard cactus
for polynomials...

Proposition 4.4.40. Let f ü X be an expanding covering map, and let
δ be as in Lemma 1.4.37. Then the covering dimension of X is equal to
the minimal value of n such that there exists a cover of X by open sets of
diameter less than δ of multiplicity n� 1.

Proof. For every finite open cover U of X by sets of diameter less than δ
the maximal diameter of the covers Un exponentially decrease. By Lebegues
covering lemma, this implies that for every open cover V of X there exists
n such that Un is subordinate to V. The multiplicity of Un is equal to the
multiplicity of U by Lemma 4.4.3. �

4.4.11. Topological properties of expanding maps. Local properties
and their formulation in algebraic terms: connectedness, local connected-
ness, when the limit dynamical system is a covering of spaces, when it is a
covering of orbi-spaces, principal groupoid of germs, Hausdorff groupoid of
germs of the group action vs the properties of the limit dynamical system...

Proposition 4.4.41. Let f ü X be an expanding self-covering of a compact
metric space, and let δ ¡ 0 be its strong injectivity constant. Then the
topological dimension of X is equal to the smallest d such that there exists
an open cover of X of multiplicity d� 1 by sets of diameter less than δ.

Proof. One inequality is obvious, the other follows by lifting covers by
fn... �

Corollary 4.4.42. Let f ü X be an expanding self-covering. The topo-
logical dimension of X is equal to the smallest dimension of a contracting
simplicial model of f ü X .

4.4.12. Expanding endomorphisms of orbifolds. Gromov-Shub The-
orem, and its extension to orbifolds and locally simply connected spaces....
Numeration systems on Rn, digit tiles, literature on this, also in the nilpo-
tent case...

4.4.13. Topological dimension one. Remind what it is... All rational
functions whose Julia set is not the whole sphere... Show that they are
contracting on a virtually free group, and so can not be finitely presented...
Prove also that iterated monodromy groups of rational functions are not
finitely presented except for the obvious exceptions ... Examples with Sier-
pinski carpet... Mention D. Thurston’s work...
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4.5. Thurston maps and related structures

4.5.1. Basic definitions. See the definition of Thurston maps, i.e., post-
critically finite orientation preserving branched self-coverings of the sphere
S2 in 4.3.3.

It is natural to consider Thurston maps up to the following equivalence
relation.

Definition 4.5.1. Thurston maps f1, f2 with post-critical sets Pf1 , Pf2 are
combinatorially equivalent if there exist homeomorphisms φ1, φ2 : S2 ÝÑ S2

such that φipPf1q � Pf2 , φ1 is homotopic to φ2 relative to Pf1 , and the
diagram

S2 f1ÝÑ S2���φ1 ���φ2
S2 f2ÝÑ S2

is commutative.

We consider and sometimes define Thurston maps up to combinatorial
equivalence. For example, we can compose f with an element of the pure
mapping class group GPf of pS2, Pf q, i.e., with a homeomorphism h : S2 ÝÑ
S2 acting identically on Pf and defined up to a homotopy relative to Pf .
The composition does not depend, up to combinatorial equivalence, on the
choice of a particular representative h in the homotopy class.

One of standard ways of describing a Thurston map is using subdivision
rules. A subdivision rule is a topological correspondence f, ι : ∆1 ÝÑ ∆0,
where ∆i are finite CW-complexes homeomorphic to S2, f is an orientation
preserving branched covering that maps cells of ∆1 homeomorphically to
cells of ∆0, and ι is a homeomorphism such that ιp∆1q is a subdivision of
∆0. Note that it follows from the definitions that the post-critical set of
f � ι�1 is a subset of the set of vertices of ∆0, hence f � ι�1 is a Thurston
map.

Example 4.5.2. Consider the CW complex ∆0 obtained by gluing two
copies of a right isosceles triangle along the boundary (by the identity map).
Let ∆1 be obtained from ∆0 by subdividing both faces in two congruent right
triangles, as it is shown on the top half of Figure 4.15, and let ι : ∆1 ÝÑ ∆0

be the identity homeomorphism. We color the faces of ∆1 black and white
so that no two faces sharing an edge have the same color, see Figure 4.15,
where only the “front” part is shown. Let f : ∆1 ÝÑ ∆0 be the branched
covering that maps white triangles homeomorphically to the front triangle
of ∆0, black triangles the back of ∆0, and maps the vertices of ∆1 to the
vertices of ∆0 as it is shown on the figure. Note that it is not important
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how exactly the cells are mapped by f (we can choose the affine maps,
for example), since we consider the Thurston map up to a combinatorial
equivalence. Note that the critical points of f are the vertex of the right
angle and the midpoint of the hypotenuse. It follows that the post-critical
set of the described Thurston map is the set of vertices of ∆0.

Example 4.5.3. One can also consider a similar “square” example, where a
square pillow made of two squares (black and white) is covered by itself via
a branched covering of degree four. The covering pillow is the same square
pillow in which both squares are subdivided into four squares colored black
and white in a checkerboard manner, so that no two small squares sharing
a side have the same color. We may choose the covering preserving the
colors and the vertical and horizontal directions. This example can be also
modified in the way shown on the bottom half of Figure ??, where a “flap”
is added to the covering surface. Namely, we make a slit along a side of a
square of the covering surface and attach to it a “pocket” obtained by gluing
two squares along three sides. We also color the squares of the subdivision
in two colors so that no two squares of the same color share an edge, and
map black (resp., white) squares of the covering surface to the black (resp.,
white) square of the pillow.

Combinatorial equivalence of Thurston maps can be formulated in terms
of the iterated monodromy groups (i.e., of the associated bisets) in the fol-
lowing way.

Theorem 4.5.4. Let f1, f2 be Thurston maps with post-critical sets Pf1 , Pf2.
Let M1,M2, be the associated π1pS2zPfiq-bisets. The maps f1 and f2 are
combinatorially equivalent if and only if there exists a bijection φ : M1 ÝÑ
M2 and an isomorphism h� : π1pS2zPf1q ÝÑ π1pS2zPf2q induced by an
orientation-preserving homeomorphism h : S2zPf1 ÝÑ S2zPf2, such that
φpg1 � x � g2q � h�pg1q � φpxq � h�pg2q for all g1, g2 P π1pS2zPf1q and x PM1.

A proof of this theorem can be found in ... and [Nek05, Theorem 6.5.2],
see also...

Iterated monodromy groups (i.e., the associated bisets) of Thurston
maps are easy to compute in the case when the maps are given by subdivi-
sion rules. One can replace the topological correspondence f, ι : ∆1 ÝÑ ∆0

by the induced correspondence on the dual graphs in the following way. Let
Γ0 be the dual graph of ∆0, seen as a subset of S2. Then Γ1 � f�1pΓ0q
is the dual graph of ∆1. Suppose that e is an edge of Γ1 corresponding
to a common side of two adjacent cells A and B of ∆0. If ιpAq and ιpBq
are contained in different cells of ∆0, then the image of the common side
either belongs to an edge of ∆0, which we will denote ι1peq. If ιpAq and ιpBq
are contained in the same cell, then we denote this cell by ι1peq. We get
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Figure 4.15. Subdivision rules

then a continuous map ι1 : Γ1 ÝÑ Γ0. It is easy to see that the iterated
monodromy group of the correspondence f, ι1 : Γ1 ÝÑ Γ0 is equivalent as a
self-similar group to the iterated monodromy group of f, ι : ∆1 ÝÑ ∆0, i.e.,
to the iterated monodromy group of the Thurston map f � ι�1 defined by
the subdivision rule.

Example 4.5.5. Consider Example 4.5.2. The dual graphs Γ1,Γ0 are shown
of Figure 4.16. Take the front vertex t as the basepoing in Γ0. Let e1, e2, e3

be the edges of Γ0 oriented from t to the other vertex of Γ0. The preimages
of t are t0 and t1 as shown on the left-hand side of Figure 4.16.

The map ι1 : Γ1 ÝÑ Γ0 collapses the preimages of e1 to the vertices of
Γ0, maps the two preimages of e2 to e3 (once preserving and once reverting
the orientation) and maps the preimages of e3 to e2 and e1 (preserving the
orientation in the case of e1 and reverting it for e2), see the figure.

Denote a � e�1
3 e2, b � e�1

1 e3, c � e�1
2 e1. Note that acb � 1. Let t0, t1

be the f -preimages of t in the front and the back sells of ∆0, respectively.
Then ι1pt0q � t and ι1pt1q is the other vertex of Γ0. Let us choose the trivial
connecting path from t to t � ι1pt0q and the path e1 from t to ι1pt1q. Then
taking lifts of the generators by f and mapping them back by ι1, we get the
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Figure 4.16.

wreath recursion

a � pe�1
1 e3, e

�1
1 e2e

�1
3 e1q � pb, c�1b�1q � pb, c�1a�1cq,

b � σpe�1
1 e1, e

�1
2 e1q � σp1, cq,

c � σpe�1
1 e3, e

�1
3 e1q � σpb, b�1q.

4.5.2. Thurston theorem. It is natural to ask when a Thurston map is

combinatorially equivalent to a rational function on pC. This question was
answered by W. Thurston, by showing that it happens if and only if the
map has no topological obstruction defined as follows.

Let f : S2 ÝÑ S2 be a Thurston map with post-critical set Pf . A simple
closed curve γ in S2zPf is said to be periferal if one of the regions bounded
by γ contains less than two points of Pf . An f -invariant multicurve is a
collection C of simple closed curves in S2zPf that are disjoint, non-periferal,
pairwise non-homotopic and such that for every γ P C each connected com-
ponent of f�1pγq is either peripheral or homotopic to an element of C. By
slightly abusing notation, we will denote sometimes by f�1pγq the set of
connected components of f�1pγq.

If C is an f -invariant multicurve, then we consider the following linear
map TC : RC ÝÑ RC :

ACpeγq �
¸

αPf�1pγq

rαs
degpf : α ÝÑ γq ,

where eγ is the basic vector of RC corresponding to γ P C; rαs � eα1 , where
α1 P C homotopic to α, if α is non-peripheral, and 0 otherwise; and degpf :
α ÝÑ γq is the degree of the corresponding covering.

Let S2
ν be the Thurston orbifold associated with f , see 4.3.3. The Eu-

ler characteristic of S2
ν is the number 2 � °

xPPf
�

1� 1
νpxq

	
. If the Euler

characteristic is positive, then the fundamental group of the orbifold is fi-
nite (which never happens for orbifolds of Thurston maps). If it is equal to
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zero, then the fundamental group (and hence also the iterated monodromy
group) is virtually abelian. If the Euler characteristic is negative, then the
fundamental group is hyperbolic, see....

Theorem 4.5.6. A Thurston map f : S2 ÝÑ S2 with negative Euler char-
acteristic of the associated orbifold is combinatorially equivalent to a rational
function if and only if for any f -invariant multicurve C the spectral radius
of AC is less than one. If it is the case, the rational function is unique up
to a conjugation by a Möbius transformation.

In the Euclidean case (Euler characteristic zero) the Thurston map f is
equivalent to an endormophism of the orbifold of an action of an affine group
on R2. The affine group (the fundamental group of the orbifold) contains
a subgroup of finite index isomorphic to Z2. The virtual endomorphism
of the fundamental group associated with the self-covering will induce a
virtual endomorphism φ of Z2. If the eigenvalues of φ are complex, then f
is equivalent to a unique (up to conjugation) rational function. If they are
real and different, then f is not equivalent to a rational function. If they are
real and equal, then it is equivalent to a rational function, but the function
is not unique.

An f -invariant multicurve with spectral radius of AC greater or equal
to one is called an obstruction. The simplest class of obstructions are Levy
cycles: a sequence of simple, disjoint, pairwise non-homotopic, non-periferal
curves γ1, γ2, . . . , γn such that f : γi ÝÑ fpγiq is of degree 1 and fpγiq is
homotopic to γi�1, where the indices are taken modulo n. Note that the fact
that a Levy cycle is an obstruction for a Thurston map to be equivalent to a
rational function follows just from the fact that the π1pSνq-biset associated
with a post-critically finite rational function is hyperbolic, see... Existence
of a Levy cycle contradicts hyperbolicity of the biset, since we get then an
element of infinite order g P π1pSνq represented by γ1 such that φnpgq � g
for a virtual endomorphism associated with the biset. Then all the elements
of the cyclic group generated by g must belong to the nucleus. In fact,
the converse statement is also true, and was proved by L. Bartholid and
D. Dudko, see...

Theorem 4.5.7. A Thurston map f has a Levy cycle if and only if the
π1pSνq-biset associated with it (where Sν is the Thurston orbifold of f) is
not hyperbolic.

We will see examples of Levy cycles later ... Here is a simple example of
an obstruction which is not a Levy cycle.

Example 4.5.8. Consider Example 4.5.3. It is easy to check that the Euler
characteristic of the associated orbifold is negative. Let γ be a simple curve
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formed by two horizontal medians of the squares, see Figure 4.15, where
it is drawn blue. Then f�1pγq is the union of horizontal medians of the
small squares of the covering surface. One of the connected components is a
closed curve on the flap and is periferal. Two other connected components
are homotopic to γ and are mapped to γ by a degree two covering. It follows
that C is an f -invariant multicurve and AC is the identity map.

4.5.3. Teichmüller space dynamics. Let f : S2 ÝÑ S2 be a Thurston
map with the post-critical set Pf . The Teichmüller space TPf of pS2, Pf q is

the space of homeomorphisms τ : S2 ÝÑ pC modulo the equivalence relation
identifying two homeomorphisms τ1, τ2 if there exists a Möbius transfor-

mation φ : pC ÝÑ pC such that φ � τ1 is isotopic to τ2 relative to Pf . We

interpret elements τ : S2 ÝÑ pC as complex structures on S2. For every
complex structure τ P TPf there exists a unique complex structure τ 1 such

that the map fτ � τ � f � pτ 1q�1 closing the diagram

(4.6)

S2 fÝÑ S2���τ 1 ���τpC fτÝÑ pC
is a rational function. Essentially, τ 1 is obtained from τ by pulling it back
by the branched covering f . Let us denote τ 1 � σf pτq. It follows from the
definitions that if g is a homeomorphism of S2 acting identically on Pf , then
we have

(4.7) σf�gpτq � σf pτq � g, σg�f pτq � σf pτ � gq.

Thurston’s theorem 4.5.7 is proved by studying dynamics of σf . Namely,
it follows from the definitions that f is combinatorially equivalent to a ra-
tional function if and only if σf has a fixed point. One can show that σf is
non-uniformly contracting, and hence either iterations of σf converge to a
unique fixed point, or there is no fixed point and the iterations of σf con-
verge to infinity. The latter implies degeneration of the associated complex
structures and existence of an obstruction. One can read about the details
of the proof in... and ...

The Moduli space MPf is the space of injective maps τ : Pf ÝÑ pC
modulo post-compositions with Möbius transformations. It is a classical fact
that TPf is naturally identified with the universal covering of MPf , and that

the fundamental group of MPf is the (pure) mapping class group of pS2, Pf q,
i.e., the group of homeomorphisms of S2 fixing pointwise Pf modulo isotopies
relative to Pf . We will denote this group GPf . The covering TPf ÝÑ MPf

is the map τ ÞÑ τ |Pf . The action of the fundamental group on the universal
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covering by deck transformations is identified with the natural right action
of the mapping class group on TPf by pre-compositions.

If we choose three points of Pf , and specify the values of τ on them (e.g.,
8, 0, and 1) then a point of MPf is uniquely determined by the values of

τ : Pf ÝÑ pC on the remaining points of Pf . This gives us an identification

of MPf with the subset of C|Pf |�3 consisting of vectors pz1, z2, . . . , z|Pf |�3q
such that zi are pairwise different and not equal to 0 or 1.

The map σf : TPf ÝÑ TPf naturally induces a correspondence on MPf in
the following way. Let G1 be the subgroup of elements of the mapping class
group GPf consisting of all liftable homeomorphisms, i.e., homeomorphisms

g : pS2, Pf q ÝÑ pS2, Pf q for which there exists a homeomorphism g1 of S2

fixing pointwise Pf and such that the diagram

S2 g1ÝÑ S2���f ���f
S2 gÝÑ S2

is commutative.

It is known that G1 is a subgroup of finite index in GPf and that g1 is

unique, so that φf : g1 ÞÑ g is a virtual endomorphism of the mapping class
group, see [KPS16, Proposition 3.1].

Let W be the quotient of TPf by G1. Since G1 is a finite index subgroup
of the mapping class group, the identity map on TPf induces a finite degree
covering map F : W ÝÑ MPf . For every g P G1 and τ P TPf , we have

σf pτ � gq � σg�f pτq � σf�g1 � σf pτq � g1, by (4.7). If we use right actions for
both GPf and σf , then we get the relation g � σf � σf � g1.

It follows that τ ÞÑ σf pτq induces a continuous map ι : W ÝÑ MPf .
We get a correspondence F, ι : W ÝÑ MPf . We call it the moduli space
correspondence associated with f . If we interpret ι as a model of the iden-
tity map, then the correspondence is the projection of the correspondence
σf pτq ÞÑ τ to the moduli space. More on this correspondence and a more
direct description of it see in [Koc13].

Denote by T be associated biset over the fundamental group GPf of
MPf . According to Propsition 4.3.2, it is naturally identified with the set of
maps g1 � σf � g2 � σg1�f�g2 for g1, g2 P GPf with the natural action of GPf .

4.5.4. Maps on the moduli spaces and skew products. The moduli
space correspondence F, ι : W ÝÑMPf associated with a Thurston map f is
sometimes (but not always) a partial self-covering, i.e., ι is a homeomorphic
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embedding, and we get a commutative diagram

TPf
σfÐÝ TPf��� ���

MPf
FÝÑ MPf .

Example 4.5.9. Let f be a degree two branched covering, with one fixed
critical point x, and one critical point y belonging to a cycle y0 � y, y1, . . . , yn�1

with fpyiq � yi�1, where indices are taken modulo n. Let τ be a point of
TPf . The corresponding point of the moduli space is the restriction of τ

to the set Pf � tx, y0, y1, . . . , yn�1u to pC modulo Möbius transformations.
By choosing the appropriate Möbius transformation, we may assume that
τpxq � 8, τpy0q � 0, and τpy1q � 1. Then the point of the moduli space is
identified with the vector pτpy2q, τpy3q, . . . , τpyn�1qq.

Consider the diagram (4.6) for this situation. If τ 1 is also normal-
ized the same way as τ (i.e., if τ 1pxq � 8, τ 1py0q � 0, τ 1py1q � 1), then
fτ is a rational function such that 8 is a totally invariant critical point,
0 is a critical point, mapped by fτ to 1, and fτ pτ 1pyiqq � τpyi�1q. If
pp2, p3, . . . , pn�1q � pτ 1py2q, τ 1py3q, . . . , τ 1pyn�1qq is the tuple representing τ 1,
then we have fτ p0q � 1, fτ p1q � z2, fτ ppiq � zi�1 for i � 2, . . . , n � 2, and
fτ ppn�1q � 0.

We conclude that fτ is a quadratic polynomial with critical point 0 such
that fτ p0q � 1, hence fτ pzq � az2 � 1 for some non-zero coefficient a, and
we have fτ p1q � z2, fτ pp2q � z3, . . . , fτ ppn�2q � zn�1, fτ ppn�1q � 0. Note
that the last equality implies a � � 1

p2n�1
, so that

fτ pzq � 1� z2

p2
n�1

,

and

z2 � 1� 1

p2
n�1

, z3 � 1� p2
2

p2
n�1

, . . . , zn�1 � 1� p2
n�2

p2
n�1

.

It follows that if we identify the moduli space with a subset of Cn�2

as above, then the map F equal to the projection of the correspondence
σf pτq ÞÑ τ to the moduli space is given by the formula

F pp2, p3, . . . , pn�1q �
�

1� 1

p2
n�1

, 1� p2
2

p2
n�1

, . . . , 1� p2
n�2

p2
n�1



.

Note that in this case the map F can be extended to an endomorphism
of the projective space PCn�2 given in the homogeneous coordinates by

rp1 : p2 : . . . : pn�1s ÞÑ rp2
n�1 : p2

n�1 � p2
1 : p2

n�1 � p2
2 : . . . : p2

n�1 � p2
n�2s.
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S. Koch showed that F extends to an endomorphism of PCn�2 for any
unicritical (i.e., having a unique finite critical point) post-critically finite
polynomial...

We can also put the moduli space correspondence F and the rational
function fτ together into one skew product map:

pz, p2, p3, . . . , pn�1q ÞÑ
�

1� z2

p2
n�1

, 1� 1

p2
n�1

, 1� p2
2

p2
n�1

, . . . , 1� p2
n�2

p2
n�1



.

It also extends to an edomorphism of the projective space.

Such and similar constructions are sources of (otherwise hard to find) ex-
amples of post-critically finite endomorphisms of PCn, i.e., endomorphisms
such that the set of post-critical points is a union of a finite number of
varieties. See more on this in ...

Example 4.5.10. Consider a degree 2 Thurston map with two critical
points x0, x1 such that f2pxiq � xi. Then the post-critical set consists
of four points x0, fpx0q, x1, fpx1q. Let as identify x0 with 0, x1 with 8,
and fpx1q with 1. Then a point of the moduli space is represented by the
position p of fpx0q. Then fτ is a rational function with critical points 0,8,
such that fτ p8q � 1, fτ p1q � 8, fτ ppq � 0, fτ p0q � F ppq, where F is the
moduli space correspondence.

Any quadratic rational function fτ pzq with critical points 0 and 8 is of

the form az2�b
cz2�d . If fτ p8q � 1 and fτ p1q � 8, then it is of the form z2�b

z2�1
.

It follows from the condition fτ ppq � 0 that fτ pzq � z2�p2
z2�1

. Consequently,

F ppq � fτ p0q � p2. Note that the fixed points of F ppq are 0, 1,8, which
do not belong to M. This implies that there are no rational functions with
the given dynamics on the post-critical set. We will see later that there
exist obstructed Thurston maps realizing this dynamics (e.g., the mating of
two copies of z2 � 1, see...). Any such Thurston map f has a Levy cycle
consisting of a single closed curve separating tx0, x1u from tfpx0q, fpx1qu.

The corresponding skew product map is given by pz, pq ÞÑ
�
z2�p2
z2�1

, p2
	

.

It does not extend to an endomorphism of PC2.

Example 4.5.11. This is an example from [buff-coch... page 571]... Con-
sider a Thurston map f of degree 3 with two fixed simple (i.e., of local
degree 2) critical points and two simple critical points that are interchanged

by f . An example of such a map is fpzq � 3z2

2z3�1
with critical points

0, 1,�1{2 � i
?

3{2. The first two critical points are fixed, the other two
are interchanged. Let us assume that one of the fixed critical points of the
Thurston map f is 1, and that the critical points that are swapped are
ω � �1{2 � i

?
3{2 and ω � �1{2 � ?

3{2. Then a point τ |Pf of MPf is
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represented by the position p of the other critical point. Then the corre-
sponding rational function fτ is represented by a rational of degree 3 that
has a fixed critical point 1, swaps two critical points ω and ω, and has the
fourth critical point p.

For a point α � ra : bs of pC � P1, consider the function gα � az3�3bz2�2a
2bz3�3az�b .

Its derivative is 6pb2z�a2qp1�z3q
p2bz3�3az�bq2 , hence the critical points of gα are 1, ω, ω, and

α2. Note also that gαp1q � a�3b�2a
2b�3a�b � 1, gαpωq � a�3bω�2a

2b�3aω�b � ωp3b�3aω
3b�3aω � ω,

and similarly gαpωq � ω. It follows that gα satisfies the same conditions on
the critical points as fτ . Then gα�fτ has critical points at 1, ω, ω and equal
to zero at these critical points. It follows that the numerator of gα � fτ is
divisible by pz3 � 1q2, and since it is of degree not more than 6, we get that
it is equal to apz3 � 1q2 for some a P C. In particular, it is true for the
numerators of g0 � fτ and g8 � fτ . Let P pzq and Qpzq be the numerator
and the denominator of fτ , respectively. Then p2z3� 1qP pzq� 3z2Qpzq and
3zP pzq � pz3 � 2qQpzq are both equal to pz3 � 1q2 times a complex number.
It follows that there exist a, b P C such that

ap3zP pzq � pz3 � 2qQpzqq � bpp2z3 � 1qP pzq � 3z2Qpzqq � 0,

which implies fτ pzq � P pzq
Qpzq � apz3�2q�3bz2

3az�bp2z3�1q � gra:bspzq. Consequently, for

every point of MPf there exists an α P pC such that fτ � gα. The point of

the moduli space is represented by α2. The image of the critical point α2 is

gαpα2q � α7�3α4�2α
2α6�3α3�1

� pα3�1qpα4�2αq
pα3�1qp2α3�1q � α4�2α

2α3�1
.

We see that in this case the moduli space correspondence F, ι : M1 ÝÑ
M is given by two maps ι : α ÞÑ α2 and F : α ÞÑ αpα3�2q

2α3�1
. Here M �pCzt1, ω, ωu and M1 � pCzt�1,�ω,�ωu (check that if ξ is a cubic root of 1,

then the only solutions of αpα3�2q
2α3�1

� ξ are ξ (three times) and �ξ).

Here is another interesting example from... [BEKP]...

Example 4.5.12. Consider the polynomial fpzq � ppi�1qz2�1q2. Its finite

critical points are z � 0 and z � �
b

1
1�i . The orbits of the critical points

are

�
c

1

1� i
ÞÑ 0 ÞÑ 1 ÞÑ �1 ÞÑ �1,

hence t8, 0, 1,�1u is the post-critical set of f .

We can write fpzq as the composition h � g of g : z ÞÑ z2 and h : z ÞÑ
ppi � 1qz � 1q2. The sets of critical values of both g and h are t0,8u. Let
A � t0, 1,8u and B � t0,8, 1,�1u. Then B � g�1pAq and A � h�1pBq. It
follows that g and h induce pull-back maps σg : TA ÝÑ TB and σh : TB ÝÑ
TA, and that σf � σg � σh. But TA is a single point, since the dimension
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of TP is equal to |P | � 2. It follows that σf is constant. In particular, the
map ι in the associated moduli space correspondence F, ι : M1 ÝÑ M is
constant.

4.5.5. The iterated monodromy group of the moduli space cor-
respondence. Let f be a Thurston map with post-critical set Pf . Recall
that the fundamental group of the moduli space MPf is naturally identi-

fied with the pure mapping class group of pS2, Pf q, i.e., with the group of
homeomorphisms g : S2 ÝÑ S2 acting identically on Pf modulo isotopies
relative to Pf . Every such a homeomorphism induces an automorphism g�
of the fundamental group S2zPf , defined up to inner automorphisms. We
get a homomorphism from π1pMPf q to the group of outer automorphisms

of π1pS2zPf q. It is known that this homomorphism is an embedding...

The associated biset over the mapping class group also has a natural
interpretation. Consider the set F of all homotopy classes relative to Pf of
the maps of the form g1�f �g2, where g1, g2 are elements of the mapping class
groupG. Then F is naturally aG-biset. It follows from the description of the
virtual endomorphism φf associated with the correspondence F, ι : M1 ÝÑ
M that F is isomorphic to the biset associated with the correspondence....

Let φ be the virtual endomorphism of π1pS2zPf q induced by f , i.e., by
lifting loops by f . Let µ be the virtual endomrophism of π1pMPf q induced
by the moduli space correspondence. Its domain is the subgroup G1 of
homeomorphisms liftable by f , and if g P G1, then µpgq is the lift of g by f
acting identically on f�1pPf q, see.... It follows directly from the definition
that the action of π1pMPf q on π1pS2zPf q agrees with φ and µ in the sense

that for every g P G1 there exists δ P π1pS2zPf q such that

(4.8) φpγgq � φpγqµpgqδ

for all γ in the domain of φ. (relation between the domains of φ and µ...)
Since φ is surjective, equation 4.8 determines µpgq uniquely as the only au-
tomorphism of G mapping φpγq to φpγgq. This makes it possible to compute
µ.

The procedure is interpreted in terms of bisets in the following way. If
φ is an endomorphism of a group G, then the associated biset is G as a set
with the following left and right actions:

h1 � g � h2 � hφ1gh2,

where the dots on the left hand side represent the actions on the biset, hφ1 is
the action of the automorphism on h1, and multiplication on the right-hand
side is the usual multiplication in G. In order to avoid confusion, we will
denote the element of the biset corresponding to g P G by φ � g. Then the
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formula for the actions looks more natural:

h1 � φ � g � h2 � φ � hφ1gh2.

We will denote this biset by rφs. Note that rφs is a covering biset, the single-
ton tφ�1u is its basis, and the homomorphism φ is the virtual endomorphism
(this time everywhere defined) associated with rφs and φ � 1.

It is also easy to see that two bisets rφ1s, rφ2s are isomorphic if and only
if there exists an element g P G such that xφ1 � pxφ1qg for all x P G. In
other words, if and only if φ1 and φ2 differ by an inner automorphism of G.

It follows directly from the definitions that rφ1 � φ2s is isomorphic to
rφ1s b rφ2s, where φ1 � φ2 is the composition (in terms of a right action) of
the endomorphisms. In particular, the set of isomorphism classes of bisets
rφs defined by automorphisms φ of G is a group in terms of tensor products
naturally isomorphic to the outer automorphism group of G.

Suppose now that M is a G-biset, and let H be a subgroup of the
outer automorphism group of G. Then the induced H-biset is the set of
isomorphism classes of bisets of the form rh1s bMb rh2s where h1, h2 P H
with the natural left and right H-actions.

A particular case of this situation is the moduli space correspondence.
If f is a Thurston map, then the biset over the pure mapping class group
associated with the moduli space correspondence is naturally isomorphic
to the biset induced on the mapping class group (seen as a subgroup of
the outer automorphism group of π1pS2zPf q) induced by the π1pS2zPf q-
biset Mf associated with the Thurston map. A biset rh1s bMf b rh2s is
isomorphic to the biset Mh1�f�h2 (check the sides...) associated with the
Thurston map h1 � f � h2.

The biset ... is essential in the study of combinatorial equivalence of
Thurston maps (see...) and obstructions. Recall that if γ is a closed simple
curve on a surface, then the Dehn twist about γ is the following homeo-
morphism (defined up to an isotopy). Consider a narrow annulus along γ,
and let γ1 and γ2 be the inner and the outer curves bounding it (both of
them are homotopic and close to γ). The twist acts identically outside the
annulus, and rotates γ1 by a full turn, see Figure... write better...

Let C be a multicurve. The Dehn twists about the elements of C pairwise
commute and freely generate the abelian group ZC ¤ GPf . It is easy to
check that the map AC from Theorem 4.5.7 is precisely the restriction of
the virtual endomorphism associated with ... to this group. In particular,
Theorem 4.5.7 implies that if f has an obstruction, then ... is not hyperbolic.
In fact, it also follows that if any of the Thurston maps h1 � f � h2 P ... is
obstructed, then the biset ... is not hyperbolic.
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The bisets of the form rφs bM and Mb rφs are easy to compute using
the following description of the corresponding wreath recursions.

Proposition 4.5.13. Let M be a covering G-biset, and let X be a basis.
Let ΨM : G ÝÑ SX o GX be the corresponding wreath recursion. Let φ be
an endomorphism of G. Then tφu b X and X b tφu are bases of the bisets
rφs bM and M b rφs, respectively. Let ΨrφsbM,ΨMbrφs : G ÝÑ SX o GX

be the associated wreath recursions, where we identify tφu b X and Xb tφu
with X by the bijections φb x ÞÑ x and xb φ ÞÑ x. Then

ΨrφsbMpgq � Ψpgφq, ΨMbrφspgq � pΨpgqqφ,
where φ acts in the second equality on SX o GX diagonally: pσpgxqxPXqφ �
σpgφxqxPX.

The proposition follows directly from the definitions and we leave its
proof to the reader as an exercise.

Example 4.5.14. Consider the case when f is the rabbit polynomial z2� c,
where for c � �0.1226 � 0.7449i is such that f3p0q � 0. The biset Mf is
given by the wreath recursion

a � σp1, cq, b � p1, aq, c � p1, bq,
see ... Denote this biset over the free group xa, b, c | Hy (which is the

fundamental group of the corresponding punctured sphere pCzPf ) by M0.
Consider also the biset M1 given by

a � σp1, cq, b � pa, 1q, c � p1, bq.

The pure mapping class group is generated by two Dehn twists S and T
acting on the fundamental group (from the right) by the automorphisms

aS � a, bS � bcb, cS � ccb,

and

aT � aba, bT � bba, cT � c.

Using Proposition 4.5.13, we see that the biset rSs bM0 is given then
by the wreath recursion

a � σp1, cq,
b � p1, aqp1,baq � p1, abaq,
c � p1, bqp1,baq � p1, bbaq,

which implies that rSs bM0 is isomorphic to M0 b rT s.
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Similarly, rSs bM1

a � σp1, cq,
b � pa, 1qpa,bq � pa, 1q,
c � p1, bqpa,bq � p1, bq,

which gives rSs bM1 �M1.

The biset rT s bM0 is given by

a � pσp1, cqqσpa,cq � σpa, a�1cq,
b � p1, aqσpa,cq � pa, 1q,
c � p1, bq.

Conjugating the right-hand side by pa�1, 1q, we get the wreath recursion
defining M1.

The biset rT s bM1 is given by

a � pσp1, cqqσp1,acq � σpc�1a�1c, acq,
b � pa, 1qσp1,acq � p1, c�1acq,
c � p1, bq.

Conjugating the right hand side by pc�1ac, 1q, we get an isomorphism of
rT s bM1 with M0 b rRs, where R is the automorphism

aR � aac, bR � b, cR � cac.

Note that aS
�1 � a, bS

�1 � bc
�1
, cS

�1 � cb
�1c�1

and aT
�1 � ab

�1
, bT

�1 �
ba

�1b�1
, cT

�1 � c. It follows that

aT
�1S�1 � pbab�1qS�1 � cbc�1acb�1c�1 � acb

�1c�1
,

bT
�1S�1 � pbaba�1b�1qS�1 � bc

�1a�1cb�1c�1
,

cT
�1S�1 � cS

�1 � cb
�1c�1

.

Conjugating the right-hand side by cbc�1ac, we conclude that R � T�1S�1,
so that rT s bM1 is isomorphic to M0 b rT�1S�1s.

Consequently, the biset associated with the corresponding moduli space
correspondence is given by the wreath recursion

S � pT, 1q, T � σp1, T�1S�1q.
It is easy to check that it coincides with the iterated monodromy group of
the rational function p ÞÑ 1� 1

p2
, which is a realization of the moduli space

correspondence, as explained in Example 4.5.9. (make an exercise...)

Example 4.5.15. z2 � i... obstructed maps in the corresponding family...
then move to exercises...
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Figure 4.17. The iterated monodromy group of ppi� 1qz2 � 1q2

Example 4.5.16. Consider the polynomial fpzq � ppi � 1qz2 � 1q2 from
Example 4.5.12. Take the generators a, b, c shown on the left-hand side part
of Figure.., going around the post-critical points in the positive direction.
The right-hand side part shows their preimages and the connecting paths
we are using to compute the wreath recursion.. We get

a � p1, a, c, 1q, b � p12qp34q, c � p23qp1, b, 1, 1q.

Denote by M0 the corresponding biset. Let M1 be the biset given by

a � p1, a, c, 1q, b � p13qp24q, c � p14qp1, 1, 1, bq.

Consider the same Dehn twists S and T as in the previous example.
Let M be the biset associated with f . We have cb � p1342qpb, 1, 1, 1q, ba �
p12qp34qpa, 1, 1, cq for M0, and cb � p1342qp1, b, 1, 1q, ba � p13qp24qpc, 1, 1, aq
for M1.

The biset rSs bM0 is then given by

a � p1, a, c, 1q,
b � p13qp24qpb, 1, b�1, 1q,
c � p14qpb, 1, 1, 1q.

Conjugating the right-hand side by pb�1, 1, 1, 1q, we get M1.

The biset rSs bM1 is given by

a � p1, a, c, 1q,
b � p12qp34qpb�1, b, 1, 1q,
c � p23qp1, b, 1, 1q.

Conjugating by pb, 1, 1, 1q, we get that rSs bM1 is isomorphic to M0.
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The biset rT s bM0 is given by

a � pa, 1, 1, cq,
b � p12qp34qpa, a�1, c, c�1q,
c � p23qp1, b, 1, 1q.

Conjugating by pa�1, 1, 1, cqp1342q we get M1.

Similarly, rT s bM1 is given by

a � pc, 1, 1, aq,
b � p13qp24qpc, a�1, c�1, aq,
c � p14qp1, 1, 1, bq.

Conjugation of the right-hand side by p1, a, c, 1qp1243q produces the wreath
recursion associated with M0.

We see that the subgroup G1 of the liftable elements of the mapping
class group has index 2 and is mapped to the trivial element by the virtual
endomorphism. This agrees with the fact that the lifting map σf is constant.

Example 4.5.17. Computations become much more complicated for higher
degree and for post-critical sets of larger size. The iterated monodromy

group of the map F pp1, p2q �
�

1� p22
p21
, 1� 1

p21

	
, which equal to the mod-

uli space map associated with a quadratic polynomial whose critical point
belongs to a cycle of length 4, was computed by J. Belk and S. Koch in
[BK08...]. It is generated by the wreath recursion

a � pb, 1, 1, bq, d � p12qp34qp1, a, 1, aq,
b � pc, c, 1, 1q, e � pf, 1, f, 1q,
c � p14qp23qpd, dy, dx, 1q,
f � p13qp24qpb�1, 1, eb, eq,

where dx � pfaq�1 and dy � pcebq�1.

Even though the computations often become too complicated to do them
by hand, they can be efficiently implemented on computer, see the papers
... and the computer packages...

Solution of the “twisted rabbit” problem... The problem is to decide for
a given Thurston map f and a homeomorphisms h1, h2 of S2zPf when the
Thurston maps h1 � f and h2 � f are combinatorially equivalent.

It follows from Theorem 4.5.4 that h1 � f and h2 � f are combinatorially
equivalent if and only if there exists an element h of the pure mapping
class group such that the bisets rh�1h1s b Mf b rhs and rh1s b Mf are
isomorphic. Thus, the question of combinatorial equivalence of compositions
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Figure 4.18.

of f with homeomorphisms is equivalent to the conjugacy in the biset over
the mapping class group..., i.e., to the question when for given two elements
x1, x2 of the biset ... there exists h such that x2 � h�1 � x1 � h.

Note that if h1 � x � x � h2, then h1 � x and h2 � x are conjugate (since we
have h2 � x � h2 � px � h2q � h�1

2 ). Suppose that tx � x1, x2, . . . , xmu is a basis
of the biset ..., and suppose that f1, f2, . . . , fm are such that x � fi � xi for
every i (we may assume that f1 � 1). We have g � x � xi � g|x for some xi.
Then we have g �x � f�1

i �x � g|x, hence g �x is combinatorially equivalent to

g|xf�1
i . We have a map ∆ : g ÞÑ g|xf�1

i , where i is such that g � x � xi � g|x.
If the biset ... is hyperbolic, then ∆ is contracting the length of g, and there
exists a finite subset A � G such that for every g P G there exists n ¥ 0
such that ∆npgq P A. Then the problem of classifying the elements of ... up
to combinatorial equivalence is reduced to classification of the elements of
AbMf . Even if ... is not hyperbolic, it is often possible to understand the
dynamics of the map ∆ on G and reduce the problem to a manageable part
of ...

Example 4.5.18. The twisted rabbit problem...

Example 4.5.19. z2 � i...

Combinatorial models for hyperbolic polynomials...

4.5.6. Iterated monodromy groups of skew product maps. Recall
the definition of the skew product map...
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Figure 4.19.

The skew product structure of the map makes it possible to draw the
z-slices... They are the Julia sets of forward iterations ...

For example, see Figure 4.20, where the z-slices of the Julia set of

F pz, pq �
�

1� z2

p2
, 1� 1

p2

	
are shown. The figure shows the Julia set of

the second coordinate 1� 1
p2

(of the moduli space map) and the slices of the

Julia set for the corresponding values of p.

The iterated monodromy groups of the skew product correspondences
can be computed in a way similar to the computation of the iterated mon-
odromy groups of moduli space correspondences....

Let M be the π1pS2zPf q-biset associated with the Thurston map f . The
fundamental group of the space ... of the skew product correspondence is
the semidirect product π1pS2zPf qnGPf . It acts faithfully on π1pS2zPf q...

Let tM0,M1, . . . ,Mm�1u be a basis of the biset T associated with the
moduli space correspondence. Each of Mi is an (isomorphism class) of a
π1pS2zPf q-biset of the form rh1s bMb rh2s for h1, h2 P GPf . Consider the

π1pS2zPf q-biset M0 bM1 b � � � bMm�1 (where, as always, ` denotes the
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Figure 4.20.

disjoint union of bisets), and choose bases Xi of Mi. Let h be an element of
the mapping class group GPf . Then for every i � 0, 1, . . . ,m� 1, the biset
rhsbMi is isomorphic to a biset of the form Mjbrhis for some hi P GPf . The
set hbXi � thbx : x P Xiu is a basis of rhsbMi, while txbhi : x P Xju is
a basis of Mj b rhis. The wreath recursion associated with the basis hb Xi
is g ÞÑ Ψipghq, where Ψi is the wreath recursion associated with Mi and Xi.
The wreath recursion associated with Xj b hi is g ÞÑ pΨjpgqqhi . Since two
bisets are isomorphic, there exists an element th,i P SXj o π1pS2zPf q such
that

Ψipghq � pΨjpgqqhith,i
for all g P π1pS2zPf q. ...

Example 4.5.20. Consider again the case of the rabbit polynomial from
Example 4.5.14. The biset M0 `M1 is given by the recursion

a � p12qp34qp1, c, 1, cq, b � p1, a, a, 1q, c � p1, b, 1, bq.
The computation in Example 4.5.14 shows the following relations:

rSs bM1 �M1 b rT s, rSs bM2 �M2,

which implies

S � pT, T, 1, 1q.
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We also have

rT s bM0 �M1 � pa, 1q, rT s bM1 �M0 b rRs � pc�1a�1c, 1q,
where R � T�1S�1cbc�1ac. It follows that

T � p13qp24qpa, 1, T�1S�1cb, T�1S�1cbc�1acq.
Consequently, the iterated monodromy group of the skew product map

pz, pq ÞÑ
�

1� z2

p2
, 1� 1

p2

	
is given by the wreath recursion

a � σp1, c, 1, cq,
b � p1, a, a, 1q,
c � p1, b, 1, bq,
S � pT, T, 1, 1q,
T � πpa, 1, T�1S�1cb, T�1S�1cbc�1acq,

where σ � p12qp34q and π � p13qp24q.
Example 4.5.21. Consider the mating of z2�1 with itself. It is generating
by two copies of the iterated monodromy group a � σpa�1, baq, b � p1, aq of
z2 � 1. We get the wreath recursion

a1 � σpa�1
1 , b1a1q, a2 � σpa�1

2 , b2a2q,
b1 � p1, a1q, b2 � p1, a2q.

We impose the relation b1a1 � b2a2, so that the above wreath recursion is
considered to be on a free group of rank 3 generated by a1, b1, b2. We have
a2 � b�1

2 b1a1.

We get then the recursion M0 over the free group generated by a1, b1, b2:

a1 � σpa�1
1 , b1a1q,

b1 � p1, a1q,
b2 � p1, b�1

2 b1a1q.
Consider also another recursion, denoted M1:

a1 � σp1, a�1
1 b1a1q,

b1 � pa1, 1q,
b2 � p1, b�1

2 b1a1q.
Consider the following Dehn twists:

aT1 � ab1a11 , bT1 � ba11 , bT2 � b2,

and

aD1 � a
b�1
1 b2

1 , bD1 � b1, bD2 � b2.
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Direct computations show then the following relations:

rT s bM0 �M1, rT s bM1 �M0 b rT s
and

rDs bM1 �M1 b rDs � p1, b�1
2 b1q, rDs bM2 �M2 � pa�1

1 , b�1
2 b1a1q.

It follows that the iterated monodromy group of the corresponding skew

product pz, pq ÞÑ
�
z2�p2
z2�1

, p2
	

is given by the recursion

a1 � σpa�1
1 , b1a1, 1, a

�1
1 b1a1q,

b1 � p1, a1, a1, 1q,
a2 � σpa�1

2 , b2a2, a
�1
2 , b2a2q,

b2 � p1, a2, 1, a2q,
T � πp1, 1, T, T q,
D � pD,Db�1

2 b1, a
�1
1 , a2q,

where σ � p12qp34q and π � p13qp24q.

The skew product structure of the map pz, τq ÞÑ pfτ pzq, F pτqq is reflected
in the structure of the iterated monodromy group. Namely, as the map does
not depend on z in the second coordinate, we get a semiconjugacy from the
skew product map to the moduli space map F . This semiconjugacy induces
a natural semiconjugacy from the iterated monodromy group of the skew
product to the iterated monodromy group of the moduli space map acting
on the corresponding trees.

For instance, if we take the groupG � xa, b, c, S, T y from Example 4.5.20,
then the map t1, 2, 3, 4u� ÝÑ t0, 1u� is generated by 1 ÞÑ 0, 2 ÞÑ 0, 3 ÞÑ
1, 4 ÞÑ 1. This maps agrees with the wreath recursion so that it induces
the natural epimorphism from the group G to the group IMG

�
1� 1{p2

�
generated by

S � pT, 1q, T � p01qp1, T�1S�1q.
The group G0 � xa, b, cy generated by the loops in the z-plane belongs to
the kernel of the epimorphism. (In fact, one can prove that it is equal to
the kernel.)

In general we have the map .... and the epimorphism...

The group G0 � xa, b, cy is self-similar, but not level-transitive. The
quotient of the tree t1, 2, 3, 4u is the tree t0, 1u� on which IMG

�
1� 1{p2

�
(i.e., the quotient G{G0) acts. The group G0 is the faithful quotient of the
free group for the biset M0 `M1.
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The preimage of a path in the quotient tree t1, 2, 3, 4u�{G0 is a binary
G0-invariant subtree on which G0 acts level-transitively. The action is nat-
urally identified with the left action on the space of right orbits of the biset
`8
n�0Mi1 bMi2 b � � � bMin for the sequence w � pi1, i2, . . .q describing the

path in the quotient tree. (make the indexing nice...) The action is not
faithful. Let us denote by ... Description of the family...

Example 4.5.22. Let fpzq � z2 � i. The corresponding skew product

map is conjugate to F pz, pq �
��

1� 2z
p

	2
,
�

1� 2
p

	2



, see ... Its iterated

monodromy group is generated by

a � p12qp34q, R � p13qp24qp1, b, 1, bq,
b � pa, c, a, cbq, S � pT, T, S, Sq,
c � pb, 1, 1, bq,

where T � babcbS�1R�1, see Exercise 4.17.

Consider a bigger group ...

Example 4.5.23. Let m � °8
i�0 ki2

i for an infinite sequence k0k1 . . . P
t0, 1uω of zeros and ones be a dyadic integer. Then τm is well defined and is

given by the wreath recursion τm � pτm{2, τm{2q if m is even (i.e., if k0 � 0)

and τm � σpτ pm�1q{2, τ pm�1q{2q if mw is odd (if k0 � 1).

Let

a � σpa�1, baq, b � p1, aq
be the generators of basilica, and consider the family of groups

Gm � xa, b, aτm , bτmy.
Informally, the group Gm is obtained by taking two copies of the basilica
group IMG

�
z2 � 1

�
and “rotating” one of them by a power of the adding

machine (i.e., the loop around infinity).

If m is even, then we have

aτ
m � σpa�τm{2

, pbaqτm{2q, bτ
m � p1, aτm{2q.

If m is odd, then

aτ
m � σp1, pa�1baqτ pm�1q{2q, bτ

m � paτ pm�1q{2
, 1q.

Note that m{2 if m is even and pm� 1q{2 if m is odd is the dyadic integer°8
i�0 ki�12i, i.e., the integer corresponding to the shift k1k2 . . . of the se-

quence k0k1 . . .. We see that the groups Gm form a family with the universal
group equal to the subgroup xa1, b1, a2, b2y of the group from Example 4.5.21.



4.6. Iterations of polynomials 333

Figure 4.21. Automata generating IMG pfq for hyperbolic quadratic polynomials

4.6. Iterations of polynomials

4.6.1. Iterated monodromy groups of sequences of polynomials.
Let a1, a2, . . . , ak be a sequence of elements of the symmetric group SpXq
for a finite set X. Consider the following oriented CW-complex. Its set of
vertices is X; for every permutation ai and for every cycle px1, x2, . . . , xnq
of ai we have a cell with vertices x1, x2, . . . , xn going around the cell in
the given order, according to the orientation. Different cells do not have
common edges. We will call this complex the cycle diagram of the sequence
ai.

Definition 4.6.1. A sequence a1, a2, . . . , ak P SpXq is dendroid if its cycle
diagram is contractible.

For example p12q....
Polynomial iterations, relation with dendroid automorphisms of a rooted

tree... Examples of self-similar families... random compositions of z2 and
1� z2... coming from the skew product maps...

4.6.2. External rays and iterated monodromy groups of polyno-
mials. The case of one polynomial, kneading automata,

4.6.3. Quadratic polynomials. Quadratic polynomials, their symbolic
dynamics...
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For example, for K0 is the Basilica group from Example... The groups
K00 and K11 are the iterated monodromy groups of the “Rabbit” and “Air-
plane” quadratic polynomials, respectively...

4.7. Functoriality

4.7.1. General discussion. Maps between bisets and the induced semi-
conjugacies of the limit dynamical systems... When it is onto, when it is
one-to-one... ....

Let Gi y Xi be actions of groups. We say that a bijection f : X1 ÝÑ X2

is a bounded orbit equivalence if for every g P G1 there exists a finite set
Ag � G2 such that for every x P X1 and g P G1 there exists h P Ag such
that fpgpxqq � hpfpxqq, and if also for every h P G2 there exists a finite set
Bh � G1 such that for every x P X2 and h P G2 there exists g P Bh such
that f�1phpxqq � gpf�1pxqq. See ...

Proposition 4.7.1. Let Gi y Xω be contracting self-similar group actions.
If the identity map Xω ÝÑ Xω is a bounded orbit equivalence (equivalently, if
the identity map X� ÝÑ X� is a bounded orbit equivalence) then the identity
map X�ω ÝÑ X�ω induces a conjugacy of the limit dynamical systems s ü
JG1 and sü JG2.

Proof. .... �

4.7.2. Plane filling curves. Let X � t0, 1, 2u. The group generated by
the recursion

k � p02qpk, k, kq, b � p012qp1, 1, bq.

It is checked directly that if we naturally identify Xω with the set of 3-
adic integers (identifying 0, 1, 2 with the digits 0, 1, 2), then k acts on Z3 by
x ÞÑ �x, and b acts by x ÞÑ x�1. It follows that the limit dynamical system
of the group xk, by is the map induced by x ÞÑ 3x on the orbifold of the
action of R of the infinite dihedral group generated by the transformations
x ÞÑ �x and x ÞÑ x � 1 of R. (It topologically conjugate to the action of
the Chebyshev polynomial T3 on r�1, 1s.)

Consider the direct square of the action, i.e., the action of the direct
square of xk, by on Xω � Xω. Let us identify Xω � Xω with Xω by the map

px0x1 . . . , y0y1 . . .q ÞÑ x0y0x1y1 . . . .
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Figure 4.22. Automaton for the Peano curve

Then the action of xk, by2 is also self-similar and generated by the recursion

b0 � p012qp1, 1, b1q,
b1 � pb0, b0, b0q,
k0 � p02qpk1, k1, k1q,
k1 � pk0, k0, k0q.

The limit dynamical system ofH � xk0, k1, b0, b1y is then the map induced by
px, yq ÞÑ py, 3xq on the quotient of R2 by the group of the affine transforma-
tions of the form px, yq ÞÑ pp�1qk0x�n0, p�1qk1y�n1q for k0, k1, n0, n1 P Z.

Let us through in a new element

a � p012qpk0, k0, aq,
and let G � xH, ay. Note that we have

b0k1 � p012qpk0, k0, b1k0q,
b1k0 � p02qpb0k1, b0k1, b0k1q,
a � p012qpk0, k0, aq.

If k ¥ 0 is the number of leading digits 2 of a word v, then it follows from
the above recursions that apvq � b0k1pvq, if k is even, and apvq � b1k0pvq, if
k is odd, see Figure 4.22.

It follows that the limit dynamical systems of G and H are topologi-
cally conjugate (moreover, the identity map on X�ω induces the topological
conjugacy).

If we conjugate the right-hand side of the wreath recursion by p1, k0, 1q,
then we get

a � p012qp1, 1, aq,
hence xay is the usual 3-adic odometer. Its limit space is the circle R{Z.
Note that it follows from ... that the corresponding map between the bisets
induces a surjective semiconjugacy from the limit dynamical system of the



336 4. Iterated monodromy groups

Figure 4.23. Peano curve

odometer onto the limit dynamical system of G (equivalently, of G). This
map is precisely the classical Peano curve (cite...). Its approximation using
orbital graphs of the action on Xn for n � ... is shown on Figure 4.23.

We have “unwrapped” the limit space and the orbital graph, i.e., have
drawn a tile diagram....

It is interesting that our description is very close to the original descrip-
tion of the Peano curve given in ... It is described there using 3-adic reals
and using symbolic transformations. It remained only to translate it into
the language of self-similar groups in a very straightforward fashion.

Some other classical plane filling curves can be naturally described using
self-similar groups. For example, the Sierpinski curve is associated with the
following group acting on t0, 1u�.

a � σ,

b � pa, cq,
c � pb, bq,
x � pa, xq.

We have seen in ... that xa, b, cy is virtually abelian, and that its limit
dynamical system is folding of a right isosceles triangle. We also know ...
that the limit dynamical system of the group xa, xy is the tent map acting on
the segment. Check that if v starts with an even number of 1s then xpvq �
bpvq, otherwise xpvq � cpvq. It follows that the limit dynamical system
of xa, b, c, xy is the same as of xa, b, cy. The embedding xa, xy   xa, b, c, xy
induces a surjective map from the segment to the isosceles right triangle. Its
approximation using the graphs of actions is shown on Figure 4.24.

4.7.2.1. A surjective map from the Julia set of z2 � i to a triangle. An
example somewhat analogous to the Sierpiński curve is a surjective map
from the Julia set of z2 � i to the triangle, defined in the following way.
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Figure 4.24. Sierpiński curve

Figure 4.25. A surjection from the Julia set of z2 � i to the triangle

Consider the iterated monodromy group of z2 � i:

a � σ, b � pa, cq, c � pb, 1q.

It is easy to see that the graphs of the action of this group on the levels
of the tree are subgraphs of the graphs of the action of

a � σ, b � pa, cq, c � pb, bq,

which, as we have seen ..., are “triangles”, see... The inclusion of the graphs
defines in the limit a semiconjugacy of the action of z2 � i on its Julia set
with the triangle folding map. See Figure 4.25.

4.7.3. Mating and tuning. Definition of mating...

As an example, consider the mating of z2 � i with itself. The iterated
monodromy IMG

�
z2 � i

�
is, in terms of 4.6.3, the group G1{6, so it is given
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by the wreath recursion

τ1{6 � σpτ1{3τ1{6, τ1{6τ1{3q,
τ1{3 � pτ1{6, τ2{3q,
τ2{3 � pτ1{3, 1q,

where τ � τ1{6τ1{3τ2{3 � σp1, τq is the adding machine.

The other copy of IMG
�
z2 � i

�
can be considered as the iterated mon-

odromy group of the complex conjugate polynomial IMG
�
z2 � i

�
, i.e., the

group G5{6. Its recursion is

δ5{6 � σpδ5{6δ2{3, δ2{3δ5{6q,
δ2{3 � pδ1{3, δ5{6q,
δ1{3 � p1, δ2{3q.

Note that δ1{3δ2{3δ5{6 � τ .

The group G � xτ1{6, τ1{3, τ2{3, δ1{3, δ2{3y is the iterated monodromy

group of the formal mating of z2 � i with itself. We have removed δ5{6
from the generating set, since δ5{6 � δ2{3δ1{3τ1{6τ1{3τ2{3.

Conjugation of the right-hand side by p1, τ1{3τ1{6q produces the following
recursion for G

τ1{6 � σ,

τ1{3 � pτ1{6, τ
τ1{3τ1{6
2{3 q,

τ2{3 � pτ1{3, 1q,
δ2{3 � pδ1{3, δ

τ1{3τ1{6
5{6 q,

δ1{3 � p1, δτ1{3τ1{62{3 q.

We have δ
τ1{3τ1{6
2{3 � pδτ2{3τ1{3τ1{65{6 , δ

τ1{6
1{3 q and δ

τ1{6
1{3 � pδτ1{3τ1{62{3 , 1q.

Let us rename a1 � τ1{6, b1 � τ
τ1{6
1{3 , c1 � τ

τ1{3τ1{6
2{3 , a2 � δ

τ2{3τ1{3τ1{6
5{6 �

τ1{6τ1{3τ2{3δ2{3δ1{3, b2 � δ
τ1{3τ1{6
2{3 , and c2 � δ

τ1{6
1{3 . Then we have a2 �

c1b2b1c2a1, and the new recursion for G is

a1 � σ,

b1 � pc1, a1q,
c1 � p1, b1q,
b2 � pa2, c2q,
c2 � pb2, 1q.
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Figure 4.26. Mating of z2 � i with itself

Consider the subgroup H � xa1, b1c2, c1b2y of G. Denote b1c2 � B and
c1b2 � C. Then it satisfies the recursion

a1 � σ, B � pC, a1q, C � pCBa1, Bq.

This is a virtually abelian group of affine transformations...

A similar example is given by the mating of the polynomial f1{4 with
itself....

Paper-folding family, rotated matings...

Other examples of Lattes matings: 5/12+1/12, 1/6+5/14, 1/4+1/4
(Milnor’s example)

4.7.4. More examples. Show how to understand the topology of a Julia
set...

The limit spaces of families of groups: rabbit and airplane family, rotated
basilicas family...

Skew product examples, their topology from the iterated monodromy
group...
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Figure 4.27. Paper folding curve

The 2D moduli space map, the tori in the Julia set...

Exercises

4.1. Compute the iterated monodromy groups (as self-similar groups) of the
following rational functions:
(a) z2 � 2;
(b) z2 � i;
(c) z2 � c for every c such that 0 belongs to a cycle of length 3: 0 ÞÑ

c ÞÑ c2 � c ÞÑ 0.
(d) z2 � 16

27z ;

(e)
�

2�z
z

�2
.

(f) Chebyshev polynomials.

4.2. Let c � 0.2956 be the real root of the polynomial x3�x2�3x�1. Prove

that the iterated monodromy group of z2�c
z2�c is generated by the wreath

recursion

a � σp1, bq, b � pc, 1q,
c � pd, aq, d � σpa, a�1q,

where d � a�1b�1c�1. The Julia set of this rational function is shown
on Figure 1.31.

4.3. Let c be one of the complex roots � �0.6478�1.7214i of the polynomial

x3 � x2 � 3x � 1. Prove that the iterated monodromy group of z2�c
z2�c is

generated by the wreath recursion

a � σpc�1a�1, dq, b � p1, cq,
c � pa, dq, d � σ,
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where d � bac � c�1a�1b�1.

4.4. Consider the standard action a � σp1, aq, b � pb, 1q of the iterated mon-
odromy group of the Chebyshev polynomial T2. Prove that if we start
from v � 00 . . . 0 P Xn and apply the generators a, b, we get a Hamil-
tonian path v, apvq, bapvq, abapvq, . . . passing through every vertex of the
n-dimensional cube t0, 1un. It is called the Gray code, see...

4.5. Show that the iterated monodromy group of any uniformization of the
tent map is equivalent to one of the groups described in 4.3.4. In other
words, by considering only graphs of two groups connected by an edge
instead of considering all possible orbispaces with the underlying space
a segment we did not change the set of the iterated monodromy groups.

4.6. Prove that the map fn : Xn�1 ÝÑ Xn defined in ... is a covering.

4.7. Prove that the group generated by

a � σpb, bq, b � pc, aq, c � pa, aq
contains a finite index subgroup isomorphic to Z3.

4.8. Prove that the group generated by

a � σpb, bq, b � pc, cq, c � pc, aq
contains a finite index subgroup isomorphic to Z5.

4.9. Show (using the wreath recursion) that the group generated by

α � σ, β � pα, αq, γ � pδ, βq, δ � pδ, γq
contains an index two subgroup equivalent to the iterated monodromy
group from ??.

4.10. Let φ : Zn 99K Zn be a virtual endomorphism, and let A be its matrix
as a linear operator on Qn. Show that the associated self-similar action
is faithful if and only if no eigenvalue of A is an algebraic integer.

4.11. Describe, up to equivalence of self-similar groups, all self-replicating
contracting actions of Z2 on the binary rooted tree.

4.12. Prove that if |c| ¡ 4, then the restriction of fcpzq � 1� c
z2

to its Julia set

is topologically conjugate to the action of z�2 on the unit circle. (Hint:
Show that fc is hyperbolic, compute its iterated monodromy group, and
then use...)

4.13. Prove that the iterated monodromy group of 1� cn
z2

, where cn is defined
in Problem..., is equivalent as a self-similar group to Gn�3 from ...

4.14. Consider a degree 4 Thurston map f with one totally invariant point x,
and three simple critical points a1, a2, a3 such that fpa1q � fpa2q � a3,
and f2pa3q is a fixed point, so that we have four post-critical points



342 4. Iterated monodromy groups

a3, fpa3q, f2pa3q, and x. Let us, as before, choose three values of post-
critical points: x � 8, a3 � 0, and fpa3q � 1. Then a point of the
moduli space is uniquely determined by the position p of f2pa3q. Show
that for p � �1 the associated moduli space correspondence is given

by F ppq �
�
p2�1
p2�1

	2
. (We have seen in Example 4.5.12 that in the case

p � �1 the pull-back map σf and hence the correspondence F are
constant.)

4.15. The mapping class group biset for z2 � i and for external ray 1/4...

4.16. Solution of the twisted z2�i problem (without classifying the obstructed
cases)...

4.17. Show that the iterated monodromy group of the skew product F pz, pq ���
1� 2z

p

	2
,
�

1� 2
p

	2



is generated by the wreath recursion

a � p12qp34q, R � p13qp24qp1, b, 1, bq,
b � pa, c, a, cbq, S � pT, T, S, Sq,
c � pb, 1, 1, bq,

where T � babcbS�1R�1.

4.18. Show that the iterated monodromy group of the skew product map

F pz, pq �
��

2z
p�1 � 1

	2
,
�
p�1
p�1

	2



is generated by

a � σpb, b, ba, abq, P � π,

b � p1, bab, a, 1q, S � σπpPτ�1, P, S�1τ�1, S�1q,
c � pc, b, c, bq,

where τ � cab, σ � p12qp34q, π � p13qp24q.
4.19. Let fpzq be a rational function with real coefficients and real critical

values. Suppose that its post-critical set has n points. Consider the

quotient f ü D of the dynamical system f ü pC by the complex con-
jugation, see 4.3.2.3. Show that IMG

�
f
�

is generated by a self-similar
set S consisting of n � 1 elements such that for every s P S and x P X
if spxq � x, then s|x � 1. In other words, only the arrows ending in
the trivial state are labeled by pairs of different letters in the Moore
diagram of S.

4.20. Consider a self-similar action of Zn transitive on the first level. Let φ
be the associated virtual endomorphism of Zn, seen as a linear transfor-
mation. Prove that the action is contracting if and only if the spectral
radius of φ is less than one, and that then the contraction coefficient ρφ
is equal to the spectral radius of φ.
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4.21. Let us mate the quadratic polynomials corresponding to the external
angles 1{6 and 5{14. The iterated monodromy group of the formal
mating is generated by G1{6 and G9{14. Let us denote the standard
generators of G1{6 by τ1{6, τ1{3, τ2{3, and the standard generators of G9{14

by δ9{14, δ2{7, δ4{7, δ1{7. Let τ � τ1{6τ1{3τ2{3 � δ1{7δ2{7δ4{7δ9{14 be the
odometer.

Denote a � τ
δ1{7
1{6 , b � τ

δ2{7δ1{7
1{3 , c � τ τ

�1

2{3 , and x � δ1{7, y � δ
τ1{6
2{7 , z �

δ
τ1{3τ1{6
4{7 . Show that xb, cy � pZ{2Zq2, xx, y, zy � pZ{2Zq3, and that the

iterated monodromy group of the mating is generated by the recursion

a � σ, x � p1, zq,
b � pa, caQq, y � pPaQ, xq,
c � p1, baQq, z � p1, yq,

PaQ � σpQa, aQq,
where P � bc, Q � xyz.

4.22. Show that the subgroup xa, P,Qy of the iterated monodromy group from
the previous problem has the same limit dynamical system as the iter-
ated monodromy group and is equivalent as a self-similar group to the
group of affine transformations of C generated by

z � a � �z, z � P � �z � 2λ, z �Q � �z � 1,

and the biset generated by

z b 0 � λz � 1� λ

2
, z b 1 � �λz � 1� λ

2
,

where λ � �1�?7i
4 is the root of 2λ2 � λ� 1.

4.23. Consider fpzq � 1 � c
z2

, where c � �2.02949 is such that the criti-
cal points of f belong to a cycle of length 6. Prove that its iterated
monodromy group is generated by

α1 � σpα2, 1q,
β1 � pβ2, 1q,
γ1 � pγ2, 1q,
α2 � σpα1β1, α

�1
1 q,

β2 � pγ1, 1q,
γ2 � p1, α�1

1 q.
(Probably the easiest way is to use the method of 4.3.2.3.)

4.24. Use the last recursion to prove that fpzq is equivalent to the following

Thurston map rf . Take two complex planes C1, C2 compactified by the
circle at infinity. Let f1 : C1 ÝÑ C2 and f2 : C2 ÝÑ C1 be given
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Figure 4.28.

by f1pzq � z2, f2pzq � z2 � c, where c � �1.229 is the real root of
x3px3 � 1q4 � 1. Paste C1 and C2 along the circle at infinity (in the

same way as it is done for matings). Define rf : C1 YC2 ÝÑ C1 YC2 byrf |C1 � f1 and rf |C2 � f2.
In particular, we get that the second iteration of f is the mating of

the polynomials z4 � c and pz2 � cq2.

4.25. Let fpzq � z4 � c be a polynomial such that 0 belongs to a cycle.
Consider, generalizing the previous example, two complex planes C1, C2

and the maps f1 : C1 ÝÑ C2 : z ÞÑ z2 and f2 : C2 ÝÑ C1 : z ÞÑ
z2� c. Show that if we paste C1 and C2 along the circle at infinity, then
the obtained Thurston map is combinatorially equivalent to a rational
function of the form 1� c1

z2
.
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[BGŠ03] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ, Branch groups,
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[Šun07] Zoran Šunić, Hausdorff dimension in a family of self-similar groups, Geome-
triae Dedicata 124 (2007), 213–236.

[Tho80] Richard J. Thompson, Embeddings into finitely generated simple groups which
preserve the word problem, Word Problems II (S. I. Adian, W. W. Boone,
and G. Higman, eds.), Studies in Logic and Foundations of Math., 95, North-
Holand Publishing Company, 1980, pp. 401–441.

[Thu12] A. Thue, über die gegenseitige lage gleicher teile gewisser zeichenreihen,
Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67.

[Vor12] Yaroslav Vorobets, Notes on the Schreier graphs of the Grigorchuk group,
Dynamical systems and group actions (L. Bowen et al., ed.), Contemp. Math.,
vol. 567, Amer. Math. Soc., Providence, RI, 2012, pp. 221–248.

[Wie14] Susana Wieler, Smale spaces via inverse limits, Ergodic Theory Dynam. Sys-
tems 34 (2014), no. 6, 2066–2092.

[Wil67] R. F. Williams, One-dimensional non-wandering sets, Topology 6 (1967), 473–
487.

[Wil74] , Expanding attractors, Inst. Hautes Études Sci. Publ. Math. (1974),
no. 43, 169–203.



482 Bibliography

[Yi01] Inhyeop Yi, Canonical symbolic dynamics for one-dimensional generalized
solenoids, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3741–3767.


	Chapter 1. Dynamical systems
	1.1. Introduction by examples
	1.2. Subshifts
	1.3. Minimal Cantor systems
	1.4. Hyperbolic dynamics
	1.5. Holomorphic dynamics
	Exercises

	Chapter 2. Group actions
	2.1. Structure of orbits
	2.2. Localizable actions and Rubin's theorem
	2.3. Automata
	2.4. Groups acting on rooted trees
	Exercises

	Chapter 3. Groupoids
	3.1. Basic definitions
	3.2. Actions and correspondences
	3.3. Fundamental groups
	3.4. Orbispaces and complexes of groups
	3.5. Compactly generated groupoids
	3.6. Hyperbolic groupoids
	Exercises

	Chapter 4. Iterated monodromy groups
	4.1. Iterated monodromy groups of self-coverings
	4.2. Self-similar groups
	4.3. General case
	4.4. Expanding maps and contracting groups
	4.5. Thurston maps and related structures
	4.6. Iterations of polynomials
	4.7. Functoriality
	Exercises

	Chapter 5. Groups from groupoids
	5.1. Full groups
	5.2. AF groupoids and torsion groups
	5.3. Torsion groups
	5.4. Homology of totally disconnected étale groupoids
	5.5. Almost finite groupoids
	5.6. Purely infinite groupoids
	Exercises

	Chapter 6. Growth and amenability
	6.1. Growth of groups
	6.2. Groups of intermediate growth
	6.3. Inverted orbits
	6.4. Inverted orbits and bounded automata
	6.5. Growth of fragmentations of D
	6.6. Non-uniform exponential growth
	6.7. Amenability
	Exercises

	Bibliography

