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Chapter 4

Iterated monodromy
groups

4.1. Iterated monodromy groups of self-coverings

4.1.1. Definition. A partial self-covering of a topological space X is a
covering map f : X1 — X, where X} is a subset of X'. Partial self-coverings
can be iterated in the usual way (as partial maps). We denote by f™ :
X, — X the nth iteration of f. Here X, is the domain of f™ and is defined
inductively as X,41 = f '(X,). Note that we have X,,;1 < &, and that
f": X, — X are also covering maps.

Let t € X', and consider the formal disjoint union Ty = | |-, f7" (%),
where f7°(t) = {t}. The set T; has a natural structure of a rooted tree
with the root ¢t € f~0(t) in which a vertex v € f~("*1(t) is connected to
the vertex f(v) € f~"(t). If |f~!(x)| does not depend on z (e.g., if X is
connected), then 7} is a regular tree of degree equal to the degree of the
covering f. We call the rooted tree T; the tree of preimages of t.

Suppose that X is path connected, and let v be a path from t; to t2 € X.

Then for every n > 1 and every v € f "(t1) there exists a unique lift of ~
by f™ starting at v. Denote by S, (v) the end of the lift, see Figure

Proposition 4.1.1. The map Sy is an isomorphism from Ty, to Ty,. It
depends only on the homotopy class of the path .

Proof. ... O

It follows directly from the definitions that S,, o S,, = S,,,, if the end
of 9 is equal to the beginning of 1, and we multiply the paths in the same

255



256 4. Iterated monodromy groups

Figure 4.1. The map S,

order as we multiply the functions: in a product ;72 the path s is traversed
before the path ;.

In particular, we get an action of the fundamental group m(X,t) by
automorphisms of the tree Tj, i.e., a homomorphism [y]| — S, from 7 (X, t)
to Aut T;. The action is called the iterated monodromy action, and the image
of m(X,t) in Aut T} is called the iterated monodromy group of the map f,
denoted IMG (f).

Example 4.1.2. Consider the double self-covering = — 2z of the circle
R/Z, see m Take 0 € R/Z as the basepoint. The fundamental group
is generated by the loop a equal to the image of [0, 1] with the increasing
orientation. For every n the lifts of a by f™ are the images in R/Z of the
arcs of the form [2%, %] for Kk =0,1,...,2" — 1. It follows that a acts
on the nth level of the tree of preimages of ¢t = 0 as a transitive cycle.
Consequently, see Theorem [2.:4.7] the action of a on T} is conjugate to the
adding machine action. The iterated monodromy group is the infinite cyclic
group (together with the level-transitive action on 7; by the adding machine

transformation).

We will see later that the above example is not typical in the sense that
IMG (f) is usually very different from the fundamental group.

4.1.2. Standard action. At the moment the tree T; is just an abstract
rooted tree. We would like to identify it with the tree of words X* over some
finite alphabet X, see Equivalently, we would like to represent T} as
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the right Cayley graph of the free monoid generated by X. It is enough to
choose a bijection A from X to the first level of the tree T;, and define a
collection of isomorphisms S; : T} —> T, from ¢ to the subtrees rooted
at the vertices of the first level. These isomorphisms will correspond to the
maps Sy : X* — X*, z € X, acting by the rule S;(v) = zv. Then the vertex
A(v) of T; corresponding to a word v = z1x2...x, can be defined as the
image of the root of the tree under the composition S, = Sz, 05,0---05,,.
The map Sy is an isomorphism from 7; to T(,). Since ¢ is adjacent to each
A(xz) = Sz(t), and S, is an isomorphism, the vertex A(v) = S,(¢) will be
adjacent to the vertices A(vz) = A(v)(Sz(t)), hence A : X* — T} will be
an isomorphism.

If v is a vertex of the first level of the tree of preimages T, then the
subtree T, coincides with the tree of preimages of v (which is also denoted
by T,). Then a natural choice of an isomorphism S, : T, — T, is the
isomorphism Sy for a path ¢ in X connecting ¢ to v. We get the following
class of natural identifications of T; with a tree of words X*.

Definition 4.1.3. Let X be an alphabet of cardinality deg f. Let A : X —
f1(t) be any bijection of X with the first level of the tree T;. Choose for
every x € X a path ¢, starting in ¢t and ending in A(x). Define a map A :
X* — T setting A(zq1x2 - - - xy) to be the image of ¢ under the composition

Se,, ©5¢,, 005, .

1
The following proposition gives an alternative definition of the map A.

Proposition 4.1.4. Let A : X — f~1(t) and £, be as in Definition .
Define, for xixy...xy € X*, the path Uy, z,.. 4, inductively by the condition
loiag..zn = Vlz,, where 7y is the lift of the path £y 4y 2, , by f to a path
starting in A(xy). Then Ly zy x, 18 a path starting in t and ending in
A(.Tlaﬁg ce (L‘n)

The path g, 4oz, 1S equal to the concatenation My ... Ay, where \; is
the lift of £y, by f*° starting at the end of \ii1-

Proof. By definition, the isomorphism A : X* — T; satisfies A(zv) =
Sy (A(v)). If v e X» 1, then A(v) € f~ " D(¢t), and Sy, (A(v)) is defined as
the end of the lift of £, by f* ! starting at A(v). It follows now by induction
that A(z1xs...x,) is the end of the path of the form A\ As...\,, where \;
is the lift of £, by f* . O

The lifts of the paths ¢,, x € X, by iterations of f form a tree with the
same set of vertices as T;, but connecting them in a different way. Whereas
in T} a vertex A(xixy...x,) is connected to the vertex A(x1zy...2,-1), in
the tree formed by the lifts of ¢, the vertex A(zixs...x,) is connected to
the vertex A(zoxs...xy). In other words, the map A identifies T; with the
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Figure 4.2. The tree of preimages and the tree of lifts of the paths ¢,

right Cayley graph of the free monoid, whereas the tree formed by the lifts
of ¢, is identified by A with the left Cayley graph, see Figure 4.2

Let us fix an alphabet X, a bijection A : X — f~1(¢), and a collection
of paths £,, as in Definition Let us conjugate the iterated monodromy
action of the fundamental group 71 (X, t) by A, thus obtaining an action of
the fundamental group (and of the iterated monodromy group) on the tree
X*. We call such actions standard.

Let v be an element of the fundamental group m (X, t). Let z € X and
v € X* be arbitrary, and let y € X be the image of 2 under the standard
action of 7, i.e., such that A(y) = S,(A(x)). Suppose that u € X* is such
that yu is the image of zv under the action of g.

We have then
Sy(Aav)) = 558, (A(v)) = S, (Aw)),

hence A(u) = Se, 1SS, . Tt follows from the definition of the maps S, that
S[ylSngz is equal to S5, where ¢ is the path E;l’yx&g, where 7, is the lift of
~ by f starting at A(y). See Figure where the path ¢ is shown.

We get hence the following description of the standard actions of IMG (f)
on X*.

Proposition 4.1.5. Consider the standard action of IMG (f) on X* defined
by a collection of paths £,, x € X. Let g € IMG (f) be an element defined by
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Figure 4.3. The standard action of IMG (f)

a loop v € (X, t), and denote by v, the lift of the loop v by f starting in
the end of £,. Then, for every v e X* we have

g(zv) = yh(v),
where y = g(x) and h is defined by the loop E;lvzfx.

The recurrent formula from Proposition is a description of the
automaton generating the standard action of the iterated monodromy group.
If the automaton is in the state defined by a loop v, and reads on the input
a letter z € X, then we find the lift v, of v by f starting in A(z). The output
letter is y € X such that the end of «, is A(y), and then the next state is
defined by the loop E;lwﬁz.

The following is a direct corollary of Propositions and

Proposition 4.1.6. Let f, A, £, be as in Proposition[{.1.5. Forv = x1xa.. .12,
denote by l, the path of lifts of the paths {5, connecting the root t = A(2) to
the vertex A(v), as in Proposition . Let ~y, be the lift of v by f™ starting
in A(v), and let A(u) for u € X™ be the end of v,. Then for every w € X*
we have

y(ow) = u(ly ywly) (w)
for the corresponding standard action of the iterated monodromy group on

X*.

Recall that here 05, 4, 2, = AMA2... Ay, Where ); is the lift of ,, by fr
starting at the end of \; 1.

4.1.3. Some examples.

4.1.3.1. The double self-covering of the circle. Consider the map f : R/Z —
R/Z given by f(x) = 2x. See a discussion of its dynamical properties inm
It is a self-covering map. Let us describe a standard action of IMG (f). Take
t = 0 as the basepoing. We have then f~1(0) = {0,1/2}. Take X = {0, 1},
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Yo =41

1/2 t=0

V1

Figure 4.4. The iterated monodromy group of the double self-covering
of the circle

and A(0) = 0, A(1) = 1/2. A natural choice of the connecting paths ¢y and
l1 is to take £y to be the trivial path at 0, and ¢; to be the image of the
interval [0,1/2] in R/Z. The fundamental group 71 (R/Z, 0) is generated by
the loop 7 equal to the image of the path [0,1] from 0 to 1 in R/Z. Let a
be the image of this generator in IMG (f). The lifts of the generator by f
are the paths 7o = [0,1/2] and 71 = [1/2,1]. It follows that the standard
action of a on the tree X* is given by the recurrent rules

a(0v) = lv, a(lv) = 0a(v),

since 6;17060 is trivial, and 6517161 is homotopic to 7, see Figure

We see that the standard action of IMG (f) coincides with the odome-
ter action of Z on the binary rooted tree, see and Example
See the Moore diagram of the automaton defining the transformation a on
Figure [2.16]

The recursion defining the transformation a is written in the wreath
product notation (see...) as

a = J(laa)a

where o is the transposition (0 1).

4.1.3.2. Post-critically finite rational functwns Let f(z) be a complex ra-
tional function, seen as a map C —> C of the Riemann sphere to itself. If z
is not a critical point, then f is a homeomorphism from a neighborhood of
z to a neighborhood of f(z). We say that a point p € C is post-critical if it
is equal to f™(c) for some critical point ¢ and n > 1. The function is said
to be post-critically finite if the set of its post-critical points is finite. For
dynamical properties of post-critically finite rational functions, see

Let f be a post-critically finite rational function, and let Py be its post-
critical set. Since f(Py) < Py, and Py contains all critical values of f, the
map
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is a partial self-covering of a punctured sphere. The iterated monodromy
group of f is, by definition, the iterated monodromy group of this partial
self-covering.

4.1.3.3. Julia’s example. As an example, consider the polynomial f(z) =
—% + 372 Its derivative is —322 + 3, hence its critical points are +1 and oo
(the latter is a critical point, since f is a polynomial). Note that all three
critical points are fixed under the action of f. It follows that f is post-
critically finite with the post-critical set Py = {1, —1,00}. The space C~ Py
is the complex plane C with two punctures at +1. Let us take the basepoint
equal to the third fixed point ¢ = 0 of the polynomial f. The fundamental
group of the punctured plane, and hence the iterated monodromy group
IMG (f) is generated by a loop around 1 and a loop around —1, which
we denote by a and b, respectively, as it is shown on the bottom half of
Figure We have f~1(0) = {0,4/3, —/3}.

Let us take X = {0,1,2}, A(0) = 0, A(1) = +/3, and A(2) = —/3.
Choose the connecting path £y to be the trivial path at ¢, and the paths
01,05 as it is shown on Figure [4.5

The preimages of the loops a and b by f are shown on the top half
of Figure Tracing the paths, we see that the corresponding standard
action of IMG (f) is given by the recurrent formulas

a(0v) = 1lv, a(lv) = 0a(v), a(2v)=2v
and

b(0v) =2v, b(lv) =1v, b(2v) = 0b(v),
or, in the wreath product notation:

a=(01)(1,a,1), b= (02)(1,1,b).

We see that a and b act as odometers on the binary subtrees {0,1}* and
{0,2}*, and “ignore” the words containing the third letter. See the Moore
diagram of the automaton describing the action of the generators a,b on
Figure [4.6]

Unlike in the previous example, the iterated monodromy group IMG ((—z3 +3z)/ 2)
is not isomorphic to the fundamental group m(X) (in other words, the
corresponding iterated monodromy action of the fundamental group is not
faithful). Iterated monodromy group usually possess rather exotic proper-
ties compared with the classical fundamental groups. For example, we will
see later that IMG ((—z* + 32)/2) and similar iterated monodromy groups
have no non-commutative free subgroups, are not finitely presented, and are
non-elementary amenable.

Figureshows the graphs of the action of the group IMG ((—23 + 3z)/2)
on the levels one through four of the tree.
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4
Figure 4.5. Computing IMG ((—2° + 32)/2)
01 0|2
G 0w
2|2 11

Figure 4.6. The iterated monodromy group of (—z* 4 3z)/2

Figure 4.7. Graphs of the action of IMG ((—z° + 32)/2) on the levels
of the tree
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Figure 4.8. The Julia set of (—2® + 32)/2

Compare the graphs of the action with the Julia set of the polynomial
shown on Figure

4.1.3.4. Basilica. Another famous example is the iterated monodromy group
of the polynomial z? — 1. It is also post-critically finite: its unique finite
critical point 0 belongs to a cycle of length 2:

O —-1—0.

The iterated monodromy group is hence generated by the loops around 0
and —1. It is checked directly, see Figure that a standard action of
IMG (z2 — 1) is generated by

(IZO'(l,b), b= (1,&),
where o = (0 1).

The automaton defining the transformations a and b is shown on Fig-
ure [2.22)

See the graphs of the action of IMG (22 — 1) on the levels of the tree on
Figurefig:basilicagraph. The Julia set of 22 — 1 is shown on Figure m

4.1.3.5. Chebyshev polynomials. Chebyshev polynomials Ty are defined re-
currently by

and
Tyr1(x) = 20T 4(x) — Ty—1(x).

They can be also defined by
1 d d
Ty(z) = cos(darccosz) = 5 <(:1: + Va2 — 1) + (:1: — Va2 — 1) > ,

where || <1 in the first formula, and |z| > 1 in the second.

They were introduced by P. Chebyshev in ... in relation to problems of
approximation theory (explain more...) They were known before at least to
L. Euler, see.....
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b

Figure 4.9. Computation of IMG (22 - 1)

The Chebyshev polynomials satisfy Ty, o Ty, = T4, +4,, as it is easily
seen from the formula Ty(z) = cos(d arccos ).

We have
dsin df
T, 0) = ———
alcost) sinf ’
hence the critical points of T, are cos ©J* for m = 1,2,...,d — 1, and the
critical values are {cosmm : m = 1,2,...,d — 1}, which is equal to 1,—1

for d = 3 and {—1} for d = 2. It follows that the post-critical set of Ty for
d>2is {1,—1}.

Take t = 0 as the basepoint, and let a,b be small loops around —1 and
1, respectively, connected to the basepoint by straight lines.

We have T;"(0) = T, (0) = {cos 2+ 1 =0,1,...,d" — 1}. In other
words, T, "(0) is the set of points obtained by projecting onto the real axis
the vertices of the regular 2d™-gon inscribed into the unit circle so that the
real axis is a non-diagonal axis of symmetry. The critical values of Ty» are
obtained by projecting the vertices of the regular 2d™-gon inscribed in the
unit circle so that the real axis is a diagonal.

The preimages of the generators a and b form a chain, and we can index
the vertices of the nth level of the tree by 0,1,...,d" —1 (from z = 1 in
the decreasing order to x = —1) so that a acts as the permutation o =
(01)(23)...,and b acts as 8 = (1 2)(3 4).... In particular, this is true for
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the first level, and one can check that the standard action of IMG (Ty) for
even d is given by the recursion

a=aol,1,...,1), b=p(b,1,1,...,1,a)
and for odd d by the recursion
a=col,1,...,1,a), b=p(b,1,1,...,1)
In particular, IMG (T5) is generated by
a=o(l,a), b= (b1),
where, as usual, o = (0 1).

It is easy to see from the structure of the graphs of the action of IMG (Ty)
on the tree that IMG (Ty) is isomorphic to the infinite dihedral group.

4.2. Self-similar groups

4.2.1. Bisets. We have seen in Proposition that the standard action
of an iterated monodromy group on X* is self-similar in the sense of Defini-
tion for every g € IMG (f) and x € X there exist h € IMG (f) and
y € X such that g(zw) = yh(w) for all w e X*.

The standard action depends on the choice of the bijection f~!(t) —>
X and the choice of the connecting paths #,, so it is natural to seek a
more canonical object. In particular, we would like to understand how the
standard action changes after a change of the connecting paths.

Let G be a self-similar group acting on X*. Consider the set X - G of
transformations S;.q : v — zg(v) of X*. The transformation S;.4 is an
isomorphism of X* with the subtree X* of words starting with z.

The set X- G = {S;.4 : = € X,g € G} is invariant under the pre- and
post-compositions with the action of G. Namely, for every z - g € X - G and
h € G we have (z-g)oh =z (gh) and ho(x-g) =y - (h|zg), where y € X
and hl|, € G are such that h(zw) = yh|,(w) for all w € X*. We get two
commuting left and right actions G ~ X- G v\ G of the group G on the set
X-G.

In the case when G ~ X* is the standard self-similar action of the it-
erated monodromy group of a partial self-covering f : XA} — X, every
transformation S;., is equal to Sy, ., where £, is the connecting path cor-
responding to the letter x € X, and v € m(X,t) is the path defining the
element g € IMG (f). The product £, is a path starting at the basepoint
t and ending in the preimage A(x) of ¢ corresponding to the letter x. Con-
versely, if £ is an arbitrary path from the basepoint t to its f-preimage, then
we have ¢ =/, - {71, where x € X is such that A(z) is the end of £. Then
(10 is a loop at t. The isomorphism Sy : T; —> T'(z) coincides with the
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transformation S;.4, where g € IMG (f) is the image of £, 10 € m (X, t). We
have proved the following fact.

Proposition 4.2.1. The set X - IMG (f) = {Szg}wex getma(y) of transfor-
mations of X* is conjugated by the isomorphism A : X* — T} with the set
of all transformations of Ty of the form Sy : Ty —> T, where z € f~1(t) and
0 is a path starting in t and ending in z.

We see that the set of isomorhisms S, : T} — 7T, is isomorphic to
X-IMG (f), and has a natural definition purely in terms of the self-covering.
The left and right actions of IMG (f) on this set is also by composition.

Definition 4.2.2. A G-biset is a set MM with commuting left and right
actions G ~ M~ G. Tt is a covering biset if the right G-action is free. The
number of right orbits of a covering biset is the degree of the biset. Two
G-bisets 911 and My are said to be isomorphic if there exists a bijection
D My — My such that P(gy -z - g2) = g1 - P(x) - g2 for all x € My and
91,92 € G.

Note that the right action (given by (z-g)-h = x-(gh) of G on X-G is
free and has |X| orbits labeled by the letters of X.

The terminology of G-bisets has many advantages over the usual termi-
nology of self-similar actions and wreath recursions (as in [2.4.7 and [2.4.8|).
Besides being more natural in the setting of iterated monodromy groups, it
lends better to generalizations, as we will see later in (see also the notion

of a groupoid biaction in [3.2.2]).
Accordingly, we adopt a new definition of self-similarity of groups.

Definition 4.2.3. A self-similar group is a pair (G, 9) consisting of a group
G and a finite degree covering G-biset 9. Two self-similar groups (G1,90;)
and (G2,9M9) are said to be equivalent if there exists an isomorphism ¢ :
G1 —> G2 and a bijection F : M3 —> My such that F gy - x - g2) =
&(g1) - F(x) - ¢(go) for all g1, g2 € G1 and x € M.

More generally, we can talk about the category of self-similar groups. Its
objects are pairs (G,9), where G is a group, and 9 is a covering G-biset.
A morphism (G1,M1) — (G2,My) is a pair of maps ¢ : G; — G2 and
F : MYy — My such that ¢ is a homomorphism of groups and F(g;-z-g2) =
d(g1) - F(x) - ¢(g2) for all g1,92 € G1 and = € M. Then equivalence of
self-similar groups are precisely the isomorphisms in so defined category of
self-similar groups.

Definition 4.2.4. Let f : &7 — & be a partial self-covering. Let 9 ¢
be the set of homotopy classes of paths from ¢ to a point of f~!(¢). It as a
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w1 (X, t)-biset with respect to the actions

(-1 = 1], Iyl -1 = [y,

where £ € M, v € w1 (X, 1), and +' is the lift of v by f starting at the end of
£. We call I, ; the biset associated with the covering f: X1 — X.

It is easy to see that 9  is a covering 71 (X, t)-biset.

Let (G,9M) be a covering biset. A basis of 9 is a transversal X < 9 of
the orbits of the right action, i.e., such a set that every element a € 9t can
be uniquely written as x - g for x € X and g € G. Note that we are using
here the fact that the right action is free.

Example 4.2.5. A basis of M,  is a collection of paths {{.}.cf-1(, con-
necting the basepoint ¢ to the points of f~!(¢). This follows from the fact
that two elements of 9; r belong to the same right orbit if and only if their
endpoints coincide.

Example 4.2.6. Consider the biset 9, ¢, where f : x — 2z is the double
self-covering of the circle R/Z. Choose the basepoint ¢ = 0. Then the
fundamental group of R/Z is naturally identified with Z, where an integer
n € Z corresponds to the image in R/Z of the path from 0 to n in R. The
biset 91 s consists of homotopy classes of paths from 0 to 0 or 1/2 € R/Z.
Similarly to the fundamental group, 9 s is identified with the set %Z of
half-integers, where a number § € %Z is identified with the image in R/Z of
the path in R from 0 to §. The right action of the fundamental group on
9N, s is by appending loops, i.e., is the natural action of Z on %Z: a number
n maps 5 to 5 +n. The element of the fundamental group corresponding
to m € Z has two lifts by the covering f: one is the image of the path from
0 to n/2, the other is the image of the path from 1/2 to (n+1)/2. It follows
that n acts on 9 y by mapping a path corresponding to %5 to the path
m+n

corresponding to 5.

This description gives the following natural interpretation of the biset
My ;. We identify the fundamental group with the set of translations xz
x +n of R for n € Z. The biset M; ; is identified then with the set of
affine transformation of R of the form = — ngm’ where m € Z. Then the
right action of the fundamental group on 9; ¢ is by post-composition: the
transformation z +— “Tm is mapped to the transformation x +— ”Tm +n.

The left action is the action by pre-composition: it transforms x +— ”Tm to
T+n+m
T,

€T —

The choice of a basis X < 91 defines a natural self-similar action of
G ~ X*. For every x € X and every g € G there exist unique y € X
and h € G such that g -x = y - h, as the right action is free, and X is its
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transversal. We can use the equalities g - x = y - h as a recurrent definition
of the associated action G ~ X*. Namely, we require that g(xw) = yh(w)
for all w € X* whenever g-x =y - h in 9.

It follows directly from the definition of a standard action of IMG (f)
that the set of actions of m(X,t) on X* associated with choices of right
orbit transversals for the (X, t)-biset 9 ¢ coincides with the set of the
standard self-similar actions.

4.2.2. Trees associated with bisets. There is a more canonical approach
to defining actions on rooted trees associated with bisets, not relying on the
choice of a basis.

Let 91, 901> be G-bisets. We leave it as an exercise to show that

(1"1 : gax2) ~ (‘rlvg : x2)
on 91y XMy is an equivalence relation on Ny xMy. Let us denote by I, QMo
the quotient My x My/ ~. The equivalence relation is invariant under the
left and the right actions g - (x1,22) = (9 - x1,22), (x1,22) - g = (v1,22 - g),
hence M ® My is a G-biset. We denote the equivalence class of (x1,x2) by
r1®xo. This operation of a “tensor product” of bisets is a particular case of
a more general notion of a composition of biactions of groupoids, see |3.2.2

It is also not hard to show that (r1 ® 22) ® x3 — 71 ® (2 ®x3) is a well
defined isomorphism from (9 ® Ms) ® M3 to My ® (M ® M3).

In particular, if 9 is a G-biset, then we have well defined tensor powers
MO, We also denote by M’ the group G itself with the natural left and
right actions of G on it by multiplication.

Denote by M* the disjoint union | 7, 9MM®™. It is also a G-biset. Note
also that 91* is a monoid with respect to the operation .

Lemma 4.2.7. If the right action 9« G is free, then the semigroup 9T*
is left-cancellative, i.e., v @ ui = v ® uo implies u; = us.

Proof. It is enough to prove the statement for the case v e M. f v @ uy =
v ® ug, then there exists g € G such that v-g = v and u; = g - us. Since
the right action is free, the first equality implies ¢ = 1. Then the second
equality is u; = ue. O

Since the left G-action commutes with the right G-action, the group G
acts from the left on the set set of orbits 9* /G of the right action.

Consider the left divisibility relation on 9t*: we write wy < ws if there
exists u € M* such that wy ® u = we. It is obviously a transitive reflexive
order invariant under the left action; and w; < wo for w; € M®™ implies
n1 < no. Moreover, if ny < ns < n3 and w; € M and wz € ME™ are
such that w; < ws, then there exists wy € MO such that w; < wo <
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wsz. Note also that the restriction of < to any 9M®™ is equal to the orbit
equivalence relation for the right G-action. It follows that < induces a partial
order on MM*/G, and that G acts on the left on M*/G by order preserving
automorphisms.

Consider the Hasse diagram Ty of the partially ordered set 9t*/G. The
set of vertices of Ty is M*/G. Two vertices v1, vy € M* /G, v1 < vy, are
connected by an edge if and only if there exist representatives w; € v; and
x € M such that wo = wi; ® x. The image of IME" in Ty is called the nth
level of Top. An edge connects only vertices of neighboring levels. Then
G M Tyy is an action by level-preserving automorphisms of the graph Tyy.

Lemma 4.2.8. The Hasse diagram Ty is a tree.

Proof. It is sufficient to prove that for every vertex v of the nth level of Tyy
there exists a unique adjacent vertex of the (n — 1)-st level. Let w € 9%
be a representative of v. Then there exists w’ € M1 and 2 € M such
that w = w' ® z, and w' represents a vertex of the (n — 1)-st level adjacent
to v. Suppose that w” is another element of MM —1) representing a vertex
adjacent ot v. Then there exists y € 9 such that w” ® y represents v. This
means that w” ® y and w’ ® z belong to the same right G-orbit, i.e., there
exists g € G such that w' ®z-g = w” ®y. The latter means that there exists
h € G such that w' ® h = w” and z-g = h-y. But then w’ and w” represent
the same vertex Tyy. O

We see that every G-biset 91 naturally defines an action of G by au-
tomorphisms of the rooted tree Tyy = 9M*/G. Here the root is the unique
vertex of the level number 0. The following proposition describes the sym-
bolic encoding of the tree Tyy by words over a basis X* < .

Proposition 4.2.9. Let 9 be a covering G-biset, and let X < M be a basts.
Then for everyn =1 the set X" = {z1 @22 ® - Q@ x,, : x; € X} is a basis
of M® . In particular, the set X* = Ll,=0 X" is a basis of M*, and the
identical embedding X* — IM* induces an isomorphism of trees X* — Toy.

Proof. It is enough to show that if X; is a basis of 9;, then the set X; ®Xq
is a basis of M ®My. Every element of Ny ®IMo can be written in the form
191 ®x9 - g2 for some z; € X; and g; € G. We can rewrite g1 - x2 as y - h for
some y € Xg and h € G, so that £1-¢g1 ®x2-g2 = 1 ®y-hgs. This shows that
X1 ® Xy intersects every orbit. Suppose that z; ® x2 and y; ® y2 belong to
the same right orbit. Then there exists g € G such that x1 ®x2-g = y1 ®yo,
i.e., there exists h € GG such that x1 - h = y; and 2 - g = h - y3. The first
equality implies 1 = y; and h = 1, since X is a basis of 91;. Then we have
To - g = Yo, which implies z9 = y9. It follows that X; ® X intersects each
right orbit exactly one time, i.e., is a basis of 9; ® My. (Il
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The action G ~ Ty is not faithful in general. Let K be its kernel. It is
equal to the set of elements g € G such that for every v € 9* the elements
v and ¢ - v belong to the same right G-orbit.

For every v € 9t* the set of elements g € G such that ¢ - v and v belong
to the same right G-orbit is a subgroup. Let us denote it G,. For every
g € G, there exists g|, € G such that g-v = v - g|,. If the right action is
free, then such g|, is unique.

Proposition 4.2.10. Let 9 be a covering biset. Then the map g — gly is
a homomorphism from G, to G. We have Gh., = hGyh™, Gy = Gy for
all v e M* and h € G. We also have g|p., = (h"1gh)l|y, for all g € Gp., and
glon = 7 (gl)h for all g € G,.

The group Gy,qu, % equal to the set of elements g € Gy, such that
9lvy € Go,, and we have gly,@vs = Glv; vy -

Proof. ... O

Proposition 4.2.11. Let 9 be a covering G-biset, and let K be the kernel
of the action of G on MM*/G = Top. Then the set M/K is a covering G/K -
biset. The identity map induces an isomorphism of the associated trees Ty
and Top /5 -

Proof. ... O

Definition 4.2.12. Let K be the kernel of the action of G on the tree of
right orbits associated with a covering biset 9t. Then the G/K-biset 9/K
is called the faithful quotient of the G-biset 1.

Example 4.2.13. The IMG (f)-biset associated with the standard self-
similar actions is precisely the faithful quotient of the 7 (X, t)-biset M ;.

4.2.3. Wreath recursion. Given a biset (G, ) the associated wreath re-
cursion (see [2.4.8) can be defined in the following way. The right G-set
M is isomorphic to a disjoint union of |X| copies of G, where X is a right
orbit transversal (i.e., a basis). It follows that the automorphism group
Aut Mg of the right G-set 9, defined as the set of all permutations of Mg
commuting with the right G-action, is isomorphic to the wreath product
S(X) x GX. Namely, if 1/ is an automorphism of the right G-space 9, then
there exists a permutation 7 of X and a collection (hy)zex of elements of G
such that ¢(x) = m(z) - hy. We set then 7 - (hg)zex to be the element of
S(X) x GX corresponding to 1. It is easy to check that this correspondence
is an isomorphism. Note that it depends on the choice of the basis X, while
the automorphism group of the right G-space M is canonically associated
with (G, 9n).
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Since the left action of G on 9 commutes with the right action, every
element g € G defines an automorphism x +— g - x of the right G-space
M. We get a homomorphism from G to Aut MM, which we call the wreath
recursion. If we choose a basis of 9, then we get a concrete realization
dx : G —> S(X) x G* of the wreath recursion, which will define (as in [2.4.8)
the associated standard action of G on X*.

Let X = {z1,22,...,24} and Y = {y1,92,...,y4} be two bases of .
Let us use the chosen indexing of their elements to identify both groups
S(X) x GX and S(Y) x GY with Sg x G4 Let ¢x,¢y : G —> Sg x G4
be the corresponding wreath recursions. If ¢x(g) = o(g1,92,--.,94) and
¢v(g) = m(hi,ha,...hq) for g € G, then we have g - ¥; = 2,4 - g; and
9" Yi = Yn() - hi for all i = 1,2,...,d. There exists a permutation a € Sy
and a collection fi, fa, ..., fq of elements of G such that

(4.1) Yi = Ta(i) - fi-

Note also that for any a(i) € Sq and (f1, fo,..., fa) € G¢, the sequence
Tq() - fi 1s a basis of M.

Then we have Zor(y - fryhi = Yn(y - hi = 9-¥i = 9 Ta@) * fi = Toagi) -
9a(i)fi for every i, which implies am = oa and fr;)hi = go;)fi for every i.
Consequently, we have fr,-1(;)la-13) = gifa—1(;), and hence

o(g1,92.---»9a) = o f1, fa, -, fa)m(ha, ha, .. ha)(a(fis for oo fa))

We see that changing the basis of 9t is equivalent to post-composing the
wreath recursion by an inner automorphism of S; x G¢. We proved the
following description of equivalence of self-similar groups.

Proposition 4.2.14. Two degree d covering G-bisets My, Mo are isomor-
phic if and only if the associated wreath recursions G —> Sg x G% are ob-

tained from each other by post-composing with an inner automorphism of
Sd X Gd.

Note that in the case of the bisets 9; ; associated with a partial self-
covering f : X7 — X, the relation between a pair of bases has a
natural interpretation. A basis of 9, s is a collection of paths ¢1,4s,...,4;
connecting the basepoint ¢ with the points of f~1(t). If ¢4, ¢, ..., ¢, is
another such a collection, then there exists a unique permutation a € Sy
such that £ and ;) end in the same point of f~!(t) for every i. Then
U = Logy - (€5146), and €310 = f; is a loop. (Remember that here £} is
traversed before £31.)

Example 4.2.15. ...
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4.2.4. Virtual endomorphisms of groups. We have seen two ways of
defining self-similar actions: bisets and wreath recursions. Another ap-
proach uses the notion of a wvirtual endomorphism of a group. It is best
suited for self-similar actions that are transitive on the first level of the tree,
i.e., for bisets that do not contain proper sub-bisets.

Let (G,9M) be a covering biset. Let x € 9, and let G, as above be the
set of elements g € G such that there exists g|, € G such that g-z = z - ¢l,.
Then, by Proposition [£.2.10] the map g — h is a homorphism from G, to G.
Since the number of right orbits is finite, the subgroup G, has finite index
in G. So, we adopt the following definition.

Definition 4.2.16. A virtual endomorphism ¢ : G --» G is a homomor-
phism from a subgroup of finite index of G to G. If (G,9MN) is a covering
biset, and x € 9, then the associated virtual endomorphism ¢, is given by
the condition

g =1 6lg).
Its domain is the set G, of elements of G fixing (with respect to the left
action) the right orbit of x.

If the biset (G, M) irreducible, i.e., that the left action of G is transitive
on the set of the right G-orbits, then the biset 9t can be reconstructed from
the virtual endomorphism ¢ in the following way. Consider the set, denoted
?(G)G, of all partially defined maps from G to G of the form

where h,g € G. Note that if ¢ is onto, then we can write any such a map
as ¢(x - h). Two maps © — ¢(z - h1)- g1 and x — ¢(x - ha) - go are equal if
and only if hflhg € Dom ¢ and gb(hflhg) = glggl. We will formally write
the transformation x +— ¢(x - h) - g by ¢(h)g.

Consider the action of G on itself by right multiplication, and consider
the action of G on the set ¢(G)G by pre- and post-compositions with the
action of G on itself. These will be the left and the right actions on the
biset, respectively. They are given by

f-o(h)g=9(fh)g,  o(h)g-f=9¢(h)gf.

It is easy to check that the map ¢, (h)g — h-z-g induces an isomorphism
of ¢,(G)G with M, if ¢, is the virtual endomorphism associated with 9t
and x € M.

A basis of M in terms of ¢, (G)G is aset {pz(h1)g1, dz(h2)g2, ..., ¢z(ha)ga},
where D = {hy, ho, ..., hq} is a left coset transversal of G modulo G,. If ¢,
is onto, then we can assume that g; = 1 for all . Even if ¢, is not onto, we
still can choose g; = 1 (but then we will restrict the set of bases of 91 that
we are considering). We call D the digit set for ¢,.
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Let D = {hy, ha,...,hq} be a digit set for a virtual endomorphism ¢.
Then the associated wreath recursion is obtained as follows. For every g € G
and 7 € {1,2,...,d} there exists a unique h; € D such that gh; € h; Dom ¢.
Then hj_l gh; € Dom ¢, and we gen an element qﬁ(hj_1 gh;) of G. This defines
us the element o (g1, g2, . . ., gq) of the wreath product Sy x G¢, where ¢ and
g; are defined by the conditions g; = gb(h;(li) ghi).

In other words, we get the following description of the corresponding
standard action of G on X*.

Proposition 4.2.17. Let (G,9) be an irreducible covering biset, and let
¢z 1 Gz —> G be a virtual endormorphism associated with it. Choose a left
coset transversal D = {hy,ha,..., hq} of G modulo G,. Then a standard
action of G is defined by the recursion

g+ xi = ;- ¢u(h ghi),

where j is defined by the condition h;lghi e Gy.

Two virtual endomorphisms ¢1, @2 : G --+ G define isomorphic G-bisets
if and only if they are equal up to inner outomorphisms of G, i.e., if there
exist g,h € G such that ¢1(z) = g~ éa(h~twh)h for all  in the domain of

b1...

We leave the following as an exercise, see also ...

Proposition 4.2.18. Let ¢ : G --» G be virtual endomorphism. The kernel
of the self-similar action of G associated with ¢ is equal to the mazimal
subgroup N normal in G such that N is contained in the domain of ¢ and
d(N) < N. Equivalently, it is the subgroup N = ﬂgeG >l ¢ ' Dom ¢ - g.
In particular, the action is faithful if and only if G has no non-trivial

normal subgroup N such that N is contained in the domain of ¢ and ¢(N) <
N.

Example 4.2.19. The virtual endomorphism of Z associated with the bi-
nary odometer action is n +— n/2 with the domain equal to the group of even
integers. If we choose the classical coset representatives {0,1} of Z modulo
27, we will get the classical binary odometer action ...

Example 4.2.20. Abelian self-similar groups...

Example 4.2.21. It is known (see...) that the free group F5 is isomorphic

to the group generated by the matrices a = ( é ? ) and b = ( ; (1) )

Consider the virtual endomorphism of this group given by

& air a2 \ _ [ an ai2/2
as1 a2 2a21  ao
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Let us show that there is no normal subgroup of F5 invariant under this
virtual endomorphism. The matrices in (),~; Dom ¢" must have zero above
the diagonal. We have

1 —2m ail 0 1 2m _
0 1 ag1 a2 0 1 o
all — 2ma21 2m(a11 — a22) — 4m2a21
an as9 + 2mas '

Unless ao; = 0 and a1 = a9, we can always find m € Z such that the
number in the upper left corner of this matrix is not equal to 0. As the
determinant of every matrix in our group is equal to 1, this implies that
only the identity matrix belongs to ﬂgeF%n)l g~ ' -Dom¢" - g.

Let us choose {1, a} as the coset transversal of F» modulo Dom ¢. Since
#(a?) = a, ¢(b) = b%, and ¢(a"'ba) = (b~ a)?, the associated wreath recur-
sion is

a=o(l,a), b= (% (b 1a)?).
This gives a faithful (though not finite state) self-similar action of the free
group F5 on the binary rooted tree.

4.3. General case

4.3.1. Correspondences. A partial self-covering f : X1 — X isin fact a
pair of maps between two topological spaces: the covering f and the identical
embedding ¢ : X1 — X’. The formula for the standard action of the iterated
monodromy group is written in these terms as

Y(@v) = £ (V2 )l (v),

where 7, is the lift of v by f to a path starting in A(z), y € X is such that
A(y) is the end of v;, and ¢, and ¢, are paths connecting t to ¢(A(x)) and
t(A(y)), respectively.

There is no need to assume that ¢ is a homeomorphic embedding. The
above formula of the standard action makes sense for any pair of maps
f: X — X, 1: X1 — X, where f is a covering map and ¢ is continuous.

Definition 4.3.1. A covering correspondence (or a topological virtual en-
domorphism) is a pair f,¢: X1 —> X of continuous maps (or morphisms of
orbispaces) such that f: X; — X is a finite degree covering.

Ever covering correspondence f,t : X1 —> X, where X is path connected
and locally path connected, naturally defines a w1 (X')-biset in the following
way. Choose a basepoint ¢ € X, and define 9; ¢, as the set of all pairs
(2,[€]), where 2z € f~1(t) and [{] is the homotopy class of a path £ in X
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starting in ¢ and ending in ¢(z). Note that if ¢ is injective on f~1(¢), then z
is uniquely determined by [/].

The left and right actions of 71 (X, t) on M ¢, are given by
(21D -y = (=100, v (&) = (& [e)),

where 7, is the f-lift of v starting in 2, and 2’ is its end.

Suppose that X is semi-locally simply connected, and let P : X —x
and Py X, —> Xy be universal covering maps. Choose basepoints ¢ € X,
Z € X tie Xy, 21 € Xl such that f(t1) =t, P(z ) =t,and P1(z1) = t1. Then
there is a unique homeomorphism ¢ : Xl — X making the diagram

X - X
1P1 lP
x, L

commutative and €(z1) = z. Let us identify X, with X by such a homeomor-
phism, and identify 71 (X, t1) with the subgroup fi (71 (X1,t1)) of m1(X,1).
Then X and X; are the quotients of X by the actions of 7r1()( t) and
m1(X1, 1) on X by the deck transformations, and f is the map X /71 (Xy, ;) —>
X /m(X,t) induced by the identity map on X.

There exists a continuous map I : X— X making the diagram

¥ L X
P l
X, 5 X

commutative. We will write both the action of I and the action of 71 (X, t)
on X from the right: asx+— z-[ and x — x - g.

Proposition 4.3.2. The biset associated with the correspondence fit:
X, — X is isomorphic to the biset consisting of maps X — X of the
form x — x - g11go, where g; € m(X,t) are deck transformations of the
covering P : X —> X, with the natural left and right actions of m(X,t) by
compositions.

Proof. ... O

Definition 4.3.3. The iterated monodromy group of the covering corre-
spondence f,t: X1 — X is the faithful quotient of the self-similar group
(m (X, 8), My 5.0)-

The associated virtual endomorphism can be written as ¢4 0 f*, where f*
is the isomorphism of the subgroup fi (71 (1)) < 71 (X) with 71(A}) inverse
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to the monodmorphism f, : m1(X;) — 71 (X) induced by f. Everything is
defined here up to inner automorphisms of 71 (X’).

Example 4.3.4. Every partial self-covering f : X1 — X together with the
identical embedding ¢ : X1 — X is a covering correspondence.

Example 4.3.5. Let A = (X,Q,m, \) be a synchronous non-inital automa-
ton over the same input-output alphabet X, see Let & be its dual
Moore diagram, i.e., the graph with the set of vertices X and the set of edges
@ x X, where each edge (q,x) starts in x, ends in A(q, z), and is labeled by
q|m(q,x). Let X be the graph consisting of one vertex and the set of |Q|
loops labeled bijectively by the set of states @ of A. Consider two maps
ft: X1 — X mapping all vertices of X} to the unique vertex of X, and
acting on the edges by the rules

f(Q7$) =4, L(Qal‘) = ﬂ-(%x)?
i.e., we interpret the labeling of the edges of A] as instructions describing
two maps f and ¢. We get a covering correspondence (if we identify the
graphs X7 and X with their topological realizations) associated with the
automaton A. In some sense the general definition of the topological corre-
spondence is a generalization of this situation. Sometimes we call topological
correspondences topological automata to stress this analogy (see [Nek14]).

Example 4.3.6. Let G be a Lie group, let I' < G be its lattice, and let
# : G — G be an automorphism. Suppose that I'y = ¢~!(I') n L has finite
index in I', and consider the spaces Xy = G/I" and &} = G/I';. Then the
inclusion I'y < I' induces a covering map 7 : X} — Ap, and the inclusion
#(I'1) < T shows that the homeomorphism ¢ : G — G induces a covering
map ¢ : X1 — AXy. The iterated monodromy group of the pair m,¢: X3 —>
Xy coincides with the self-similar group defined by the virtual endomorphism
of I induced by ¢. Iterated monodromy groups in this class were used to
prove the following theorem of M. Kapovich, cite...

Theorem 4.3.7. Let I' be an irreducible lattice in a semisimple algebraic
Lie group G. Then the following are equivalent.

(1) T is virtually isomorphic to an arithmetic lattice in G, i.e., contains
a finite index subgroup isomorphic to such arithmetic lattice.

(2) T' admits a faithful self-similar action which is transitive on the first
level.

Example 4.3.8. Consider the map (a,b) — ((a + b)/2,+/ab). It is well
defined on the set [0, +00)?, and was studied by Gauss and Lagrange in
relation to arithmetic-geometric mean, see...

The map (a,b) — ((a + b)/2,v/ab) is not well defined on C2, since there
are two choices for v/ab. But we can consider it as a correspondence. Note
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that ((a+b)/2,+/ab) is homogeneous, so we get a correspondence [z; : 23] —
[(21 + 22)/2 : \/z122] of the complex projective line with itself. It is written
in affine coordinates as w +— %JFT% It is natural to model this correspondence

as a pair of maps f,t given by

1+ w)?

f(w) - 4w )

Let X = C~{0,1} and &} = C~ {0,1,-1}. Then f,¢ : X — X

are covering maps. It follows that we can consider the iterated monodromy

group of this correspondence, and that it will be a homomorphic image of
the fundamental group of X, i.e., of a free group of rank two.

It is shown in... that the iterated monodromy group is equivalent to the
self-similar action of the free group described in Example

4.3.2. Orbispaces. The next level of generality is to consider the case
when X and A&7 are orbispaces, so that f is a covering of orbispaces, and
t: X1 — X is a morphism of orbispaces, see for definitions. This
is especially useful in the study of the iterated monodromy groups of sub-
hyperbolic rational functions, when the Julia set contains critical points.
The associated 71 (X)-biset is defined in the same way as when X and X
are topological spaces, but this time the corresponding paths groupoid paths
in the atlases of the orbispaces. We will discuss a more general setting and
more rigorously in while here we will just consider several examples.

4.3.2.1. The tent map. Consider the graph of groups I consisting of two
vertex groups of order two connected by a segment (with trivial edge group).
It is equivalent to the orbispace of the action of the dihedral group Dq,
generated by the transformations  — —x and z — 2 —x of R. The segment
(0,1) is the fundamental domain of the action, and we can identify the
orbispace with the interval [0, 1] with groups of order two at its ends.

Consider the map F': x + 2z on R. It is a homeomorphism satisfying
FD,F~1 < Dy for the action of Do, defined above. It induces the tent
map

B 2z for x €[0,1/2],
/(@) _{ 2— 2z for xe[1/2,1]
on the underlying space of the orbifold R/Dy,. Moreover, it is easy to see
that it induces a double self-covering of the orbifold I. (So that we can take
t: I —> I to be the identity morphism.)

Let us compute the iterated monodromy group of the self-covering f :
I — I. Consider the atlas of I coming from the action of Dy, on R restricted
to an open neighborhood U of [0, 1] in R. It will be the atlas for the target
orbispace for the covering map f : I — I. The atlas for the domain of
the covering map is constructed in the usual way, as it is described in



278 4. Iterated monodromy groups

Figure 4.10. The tent map
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Figure 4.11. The iterated monodromy group of the tent map (put labels...)

See Figure for the description of the covering map and the atlas of the
covering orbifold. It is easy to see that the covering atlas is equivalent to
the atlas of the original orbifold, i.e., that the map f is a self-covering.

Take the basepoint ¢ = 1/2. The fundamental group of I is generated
by two loops a and b consiting of the non-trivial elements of the isotropy
groups at the endpoints 0 and 1 connected to the basepoint by simple paths
inside the interval [0, 1].

The lifts of the paths a and b by f are shown on Figure Using the
natural choice of the connecting paths (inside the neighborhood U), we get
the following standard action:

a=o0(1,1), b= (a,b).

Note that this iterated monodromy group is the same as IMG (T3) =~ IMG (22 — 2),
see [4.1.5.9
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Figure 4.12. A fundamental domain of the action of G' on R?

4.3.2.2. Folding an isosceles right triangle. Consider the group G of all
isometries of Z? with its natural action on R?. It is generated by the trans-
formations

a:(z,y)—(z,-y), b:(z,y)— (y,7), c:(z,y)~>1-zy).
The action is proper, and its fundamental domain is, for example, the tri-
angle A with the vertices (0,0), (1/2,1/2), and (1/2,0), see Figure
Note that each of the transformations a, b, ¢ leaves one side the sides of the
triangle A invariant.

The underlying space of the orbispace R?/G can be naturally identified
with the triangle A. The orbispace structure is a complex of groups de-
scribed by identical embeddings between groups from the following set of
subgroups of G: the identity group {1} (for the interior of A), groups of
order two {a), (b, {c¢) (for the sides of A), and dihedral groups {a,b) = Dy,
(b,c) = Du, {a,c) = Dy (for the vertices). We will denote this complex of
groups also by A.

A natural self-covering of the orbispace A folds the triangle A along the
bisector of the right angle in two, and then identifies the result with A by a
similarity. There are two choices for the identification. Let us assume that
the identification is such that the vertex (0,0), i.e., the vertex with isotropy
group {a, by, is fixed under the obtained self-covering map. Figure shows
the computation of the iterated monodromy group of this self-covering.

We see that the iterated monodromy group of this covering map is gen-
erated by
a = (b,b), b= (a,c), c=o.

4.3.2.3. Dynamical systems with symmetries. If a dynamical system f G X
has a finite group of symmetries GG, then it is sometimes natural to consider
the induced dynamical system f/G on the orbispace X'/G. The iterated mon-
odromy group of the quotient f/G is in some cases easier to compute than
for the original map. The iterated monodromy group of the quotient will
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Figure 4.13. The iterated monodromy group of a triangle folding

contain IMG (f) as a normal subgroup such that the quotient of IMG (f/G)
by the image of IMG (f) is isomorphic to G.

For example, suppose that f is a rational function with real coefficients.
Then it satisfies f(Z) = f(2), i.e., the action of f on C is invariant under the
action of the group of order two generated by the complex conjugation. The
quotient will be a map acting on an orbispace which is a disc with groups of
order two on the boundary. The iterated monodromy group of the quotient
will contain IMG (f) as a subgroup of index two.

Consider, for example the rational function f(z) = ;zli for ¢ ~ 0.2956

from Exercise It has real coefficients. Moreover, all its critical and
hence post-critical points are real. Consider the corresponding quotient by
the complex conjugation. It is the disc orbifold, but since we have to remove
the post-critical set, we have to take A to be the disc orbifold with small
neighborhoods of the post-critical points removed. Let X} be the preimage of
Xo under f. The orbifold A} is isomorphic to an octagon in which every other
side is singular with isotropy groups of order 2, while the remaining sides
are regular. The orbispace X; is 12-gon with analogously defined orbispace
structure.

The fundamental group of Ap is generated by four paths from the base-
point to an internal point of one of the four singular sides and then back. Let
a, 3,7, 0 be such generators, as it is shown on the bottom half of Figure[4.14]

Then considering the lifts of the generators to X7, we see from the top
half of Figure that the iterated monodromy group is generated by the
wreath recursion

a =o, BZ(O&,O&), 7:(576)7 5:(577)'

The iterated monodromy group of f(z) can be recovered now as the
group generated by the products a3, 57,vd. They satisfy a8 = o(a, ), By =
(a0, af3), and v0 = (1, 39). Post-conjugating the recursion by («, 1), we get
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Figure 4.14.

an equivalent recursion af = o, 8y = (da, af3), and vo = (1, 36), which is
equivalent to the wreath recursion from Exercise

4.3.3. Thurston orbifold of a sub-hyperbolic rational function. Con-
sidering orbispaces and their virtual endomorphisms is necessary even in
the case of dynamical systems on topological spaces. For example, if f is a
post-critically finite rational function such that the Julia set contains crit-
ical points, then f can not be expanding on the Julia set. It is, however,
expanding on a naturally defined orbispace (or orbitfold on a neighborhood
of the Julia set). It is a classical construction known as Thurston orbifold,
see....

Let f be a post-critically finite rational function, or more generally, a
Thurston map, i.e., a post-critically finite orientation-preserving branched
covering of the two dimensional sphere. Here an orientation-preserving
branched covering is a continuous map f : S? — S? such that for ev-
ery t € S? there exist homeomorphisms of neighborhoods of ¢t and f(t) with
neighborhoods of 0 € C conjugating the action of f with the action of z — 2"
for some n = 1. The number n is called then the local degree of f, and is
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denoted by deg, f. One can show that deg, f = 1 for all but finitely many
points ¢ € S2. The points ¢ such that deg, f > 1 are called critical, and the
corresponding values f(t) are called critical values. The map f is said to be
post-critically finite if the union Py of forward orbits of the critical values
of f is finite. Then Py is the post-critical set.

Let f: 52 — S? be a Thurston map. Let v(t) € N u {0} be the least
common multiple of the local degrees deg, f™ for all z € f~"™(¢t) and n > 1.
It follows directly from the definitions that v(t) = 1 if and only if t ¢ P.
It is also not hard to see that v(t) = oo if and only if ¢ belongs to a cycle
containing a critical point.

If v : 82 — Nu{oo} is a map equal to 1 for all but finitely many points,
then the corresponding orbifold S? is defined as the orbifold with the un-
derlying space S? \. v~!(c0) where a neighborhood of ¢ € 52 is uniformized
by the action of a cyclic group of order v(t) of rotations of a disc. More
explicitly, it is defined by the following atlas. Take small disjoint neigh-
borhoods U, of the points ¢ € v~1(N n [2,00)) homeomorphic to discs, and

represent them as quotients Dy/Gy ~ Uy, where D; < C is the open unit
271

disc, and Gy = Z/v(t)Z is the group of rotations z — 0" of the disc, so
that 0 € Dy is mapped to t € U;. Consider the pseudogroup G acting on the
disjoint union of X = S? \ v"1(N n [2,0]) and the discs D; generated by
the groups Gy ~ D; and the germs of the quotient map

Dy — (D~ {0})/Gy =~ Uy N {t} — X.

The pseudogroup G is then an atlas of the orbifold S2. One can show that
this pseudogroup depends, up to equivalence of groupoids of germs, only on
the function v.

If f is a Thurston map, and v is the above defined least common multiple
of local degrees, then S?2 is its Thurston orbifold. It follows directly from
the definition that v(f(t)) is divisible by v(t) -deg, f. Denote vy(t) = %(:})'
Then v(t) is divisible by v(t).

The condition vy(t) = %(f}) implies that f : S — S2 naturally induces
a covering morphism f : S2 — S2. The condition that vy(t) is divisible
by v(t) implies that the identity map S? — S? can be extended to a
morphism of orbifolds ¢ : SBO — 52 acting as the identical embedding
52 fY(Pf) — S% \ Py on the underlying spaces. The obtained virtual

endomorphism of the orbifold S? is called the natural uniformization of f.

Example 4.3.9. Consider the rational function 22 + 4. Its critical points
are 0 and oo, both of local degree 2, which have orbits 0 +— i — —1 4+ i —
—i+— —1+i and o0 +— o0. It follows that v(o0) = 00, and v(i) = v(—1+41) =
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v(—i) = 2. Hence the Thurston orbifold of 22 + i is the plain C with three
singular points 7, —1 + i, —% both uniformized by cyclic groups of order 2.

Example 4.3.10. Consider the function f(z) = (1 — %)2 It has two critical
points z = 2 and z = 0. Their orbit is 2+— 0 — o +— 1 +— 1. Both critical
points are of local degree 2. It follows that the corresponding function v
is ¥(0) = 2, v(00) = 4, v(1) = 4 Note also that 1(0) = 42 = 2,
vo(0) = @ = 4, and (1) = @ = 4, i.e., that 19 = v. We see that
530 and S2 coincide, and that f induces a self-covering of the orbifold S,,.
The orbifold S, coincides with the orbifold of the action on R? of the index
two subgroup H generated by ba and ca of the group from [£:3.2.2] In other
words, it is the orbifold of the action on C of the group H generated by
the transformations z + ¢z and z — 1 — 2. The fundamental domain of
this group is, for example, the triangle with the vertices 0, (1 + 4)/2, and
1. The quotient map from C to the orbifold C/H folds this triangle along
the line connecting (1 +7)/2 to 1/2, so that one gets a “triangular pillow”,
whose corners are the singular points of the orbifold: the isotropy groups of
the image of (1 +14)/2 is cyclic of order 4 (generated by the transformation
z iz + 1), the isotropy group of the common image of 0 and 1 is cyclic of
order 4 (generated by the transformation z — iz acting on a neighborhood of
0), and the isotropy group of the image of 1/2 is cyclic of order 2 (generated
by the action of z — 1 — z). Figure... We will see later ... that the self-
covering f of the orbifold S? is topologically conjugate to the map induced
by z+— (i —1)z on C/H.

4.3.4. Uniformizations of the tent map. Consider again the tent map
f:10,1] — [0,1] from It was transformed into a virtual endomor-
phism of an orbifold by converting [0, 1] into the graph of groups with two
copies of Z/2Z at the endpoints of the segment. Let us consider a more
general case: a covering and a morphism f,¢: X} — X, where X and X}
are graphs of two groups connected by an edge with trivial edge group.

Let Gp and G1 be the vertex groups of X at the endpoints 0 and 1,
respectively. The map f must be a degree two covering, hence in the covering
orbispace X} the vertex groups are isomorphic to Gy, and G; = Z/27Z.
The morphism ¢ : X7 — X will induce homomorphisms ¢y : Go — Gy
and ¢; : Gy — Gy = Z/27Z. (See Figures and where 0 and
1 correspond to the left and the right endpoints of the orbispace). The
fundamental group of X' is isomorphic to the free product Gg = G1. In the
iterated monodromy group of f,¢ : A7 — X, the non-trivial element of
G1 = Z/27 acts as 0 = (0 1) € Sy, while an element g € Gy satisfies the
wreath recursion g = (1o(g),t1(9))-



284 4. Iterated monodromy groups

Note that since G; =~ Z/27Z, the wreath recursion g = (1o(g),t1(g))
implies that the image of GGy in the itereated monodromy group is an abelian
group of exponent 2 invariant under ¢1. (We have ¢ = (1,(t1(g))?) for
all ¢ € Go.) Therefore, we may assume without change the class of the
corresponding iterated monodromy groups, that this is true for G itself.
Consequently (as we consider only the case of finite vertex groups here) we
may assume that Gy = (Z/2Z)"™ for some n. Then the iterated monodromy
group is determined by an automorphism ¢; : (Z/22)" — (Z/27Z)" and
an epimorphism (g : (Z/2Z)" — Z/27. Furthermore, one can assume (see
Exercise ...) that ¢y and ¢ are defined by the matrices

O O O al

10 ... 0 a
(0,0,...,0,1),and | O 1 ... 0 ag |,

00 ... 1 ay

for some a; € Z/27, respectively.

Example 4.3.11. Take n = 2 and the matrix ( (1) 1 ) Denote the el-

ements of Gy = (Z/27Z)* by b = ( (1) ), c = ( 1 ), d = ( (1] ) Denote
the unique non-trivial element of Gg by a. Then 1 acts by b — ¢, ¢ — d,
and d — b. The epimorphism ¢y maps b and ¢ to a, and d to 1. It follows
that the wreath recursion for the corresponding iterated monodromy group

is the same as for the Grigorchuk group, see the automaton on Figure [2.21
and Subsection [6.2.11

These groups (including their generalizations to alphabets of more than
two letters) were defined and studied by Z. Sunié¢ in [Sun07].

4.3.5. Virtual morphisms of groupoids. The most natural and general
definition of the iterated monodromy groups, in particular in the setting of
orbispaces, is to via groupoids theory and biactions. See Section [3.2] for the
definitions and properties of biactions.

Definition 4.3.12. Let &, $) be topological groupoids. A wvirtual morphism
from & to §) is a biaction & ~ M  § such that the action M ) is free
and proper, and the ancor Pg : M — &9 induces a finite-to-one covering
map M/$H — &0 We sometimes denote the anchors of the left and the
right actions by P, and P, respectively.

A wirtual endomorphism of & is a virtual morphism from & to &.
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Recall that a biaction & ~ M  § is a morphism if the action of §) is
free and proper, and the map Py induces a homeomorphism M/$ — &),
Thus, a virtual morphism can be seen as a multi-valued morphism, where
the covering Pg/$) describes branches of the multivalued map.

Proposition 4.3.13. A composition of virtual morphisms is a virtual mor-
phism.

Proof. ... O

Example 4.3.14. If & is a group, then Definition [£.3.12] coincides with the
definition of a covering biset, see Definition [4.2.2]

Example 4.3.15. If the groupoids & and $) are trivial, i.e., are topological
spaces, then the left and the right actions are trivial, hence the virtual
endomorphism is a pair of maps Ps : M — &) = & and Py : M —
$H© = §. Then, by Definition Ps is a finite-to-one covering map.
We see that we recover the original definition of a covering correspondence,
see Definition We sometimes the virtual morphism as the multivalued
map PﬁoPgl 6 —H.

The following lemma will be needed later.

Lemma 4.3.16. Let & ~ M 5 be a biaction such that $) is étale and
the action M ~ $) is free and proper. Then the map Pg : M — &) js g
local homeomorphism.

Proof. By Proposition the quotient map M — M/ is a local
homeomorphism, i.e., for every point x € M there exists a neighborhood U
such that the quotient map is a homeomorphism from U to its image. The
map Pg/$H : M/$H — 6 is a covering, hence a local homeomorphism.
It follows that Pg is a composition of two local homeomorphisms M —
M/$ — & hence is a local homeomorphism. O

4.3.6. Groupoid automata. Let us describe a class of virtual morphisms
of groupoids analogous to automata and wreath recursions.

Definition 4.3.17. Let & and $ be groupoids, and let X be an alphabet.
A groupoid automaton is a continuous map (g, x) — (g(z), g|z) from & x X
to X x $ satisfying the following conditions:

(1) ifge &, then for all z € X we have glz € HO.
(2) for all (g1, ¢92) € 3 and x € X we have

(9192) () = g1(g2()), (9192)|z = 91gy()92l2-
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Note that condition (2) implies that if ¢ € &) then g(z) = x for
all z € X. The map (g,2) — (g(x),g|,) induces a continuous map ¢ :
B0 x X — 9O by the rule t(u,z) = ul,. Note that for every g € & we
have s(9)le = (97'9)le = 9 '|g(x)9le, hence s(g)]s = s(gle). It follows that
s(g]z) = t(g,x) for all g € &.

Definition 4.3.18. The wvirtual morphism associated with the groupoid
automaton is the biaction & ~ M ), where

M={(t,z,h) e xXx§ : r(h)=ut,z)}
P@(t,I,h) = t’ Pﬁ(t7$7h) = S(h)7 and

g-(t,z, h) = (r(9), 9(2), glsh), (t,z,h1) - ho = (t, 2, hiha)
for all (t,z,h), (t,z,h1) € M, g€ s™1(t), and hy € r=1(s(hq)).

It is checked directly that the action M v $) in the above definition is
free and proper, and that the quotient M/$) is naturally homeomorphic to
) x X, so that the map Pg induces the covering map &© x X — &©
equal to the projection onto the first coordinate. Consequently, & ~ M
$ is a virtual morphism.

Note that the map = — g(z) is a permutation of X, and that this way we
get a cocycle o : & — S(X). The map (g, ) — ¢|, is a functor from & x o
to 9 (see...). It follows that the structure of a groupoid automaton can be
described as a cocycle o : & — S(X) and a functor [ : & X 0 —> §). This
description is a generalization of wreath recursions for self-similar groups.

Proposition 4.3.19. Let & ~ M ~ $ be a virtual morphism of an étale
groupoid such that the covering map Pg/® : M/® —> O is d-to-one, and
let X be a set of cardinality d. Then there exists an equivalence &1 ~ & N &
such that the biaction &1 ~ € Q M ~ § is isomorphic to the biaction
associated with a groupoid automaton 1 x X — X x .

Proof. .... Let & ~ M ~ & be a virtual morphism of an étale groupoid.
Suppose that the covering map P/ : M/ — O is d-to-one. Let X
be an alphabet of cardinality d. For every point ¢t € &(® choose a right ®-
orbit transversal x1,z9,...,2q € Pfl(x), and choose a bijection A : X —
P7(t). Since the map P, : M — & is étale by Lemma there
exist neighborhoods U, z € X, of A(x) and an open neighborhood U of ¢
such that P, : U, — U are homeomorphisms.

The set Pfl(U ) is invariant under the right -action, and every point
a € P H(U) is uniquely written in the form A(z) - g for some z € X and
g € 6. The right action in this notation is given just by multiplication in &:
an action (A(z) - g) - h is defined if and only if A(z) - g and gh are defined,
and then it is equal to A(z) - (gh).
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Consider any subset U of the set of all such neighborhoods U covering an
open &-transvesal, and consider the localization &|;,. For every U € U we
have the corresponding sets U,, x € X. We will identify the disjoint union
of the sets U, as the direct product U x X. Then the homeomorphisms
P, : U, — U are identified with the projection of the direct product U x X
onto the first coordinate. The disjoint union of the sets U, for all x € X and

U € U is identified therefore with the direct product (’5|g) ) % X.
Consider the disjoint union of the sets P, ' (U) for U € U. By the above,

it is isomorphic as a right $-action to the subspace of 6|Z(/? ) ¥ X x ® consisting
of triples (¢, z, g) such that ... O

4.3.7. Lifting paths by virtual morphisms. Let us show how a vir-
tual morphism of groupoids induces virtual morphisms of the fundamental
groupoids and fundamental groups. Let & ~ M ~ § be a virtual mor-
phism.

At first let us show how to lift &-paths to M x &-paths. Let v be a
path in &, For every point « € M such that Pg(z) is the beginning of
there exists a unique lift v, of v by Pg/$) to a path in M/$ starting at the
orbit ). The groupoid M x £ is equivalent to the trivial groupoid on the
space M/$), hence the path 7, can be lifted to a (M x $)-path. The lift is
unique up to isomorphism except for the choice of the endpoints. It is equal
to hypOm - - - 01hg, where h; € M x §) and §; are paths in M. We can define
its image in $H as the H-path obtained by applying the natural projection
M x H — 9. We will denote it Pg(7,). The path Pg(y,) is unique up to
a choice of the endpoints inside particular $-orbits.

We see that every path in &(© can be lifted to a (M x §))-path, and
then mapped to a $H-path.

Let now v = gnYn - - - 71190 be a B-path, and let x € M be such that Pg(z)
is equal to s(y). Let 1 = go - x. Let 7] be a lift of 71 to a (M x $)-path
starting in ;. Let zo be the image under g; of the end of «{. Then there
exists a lift of 79 to an (M x §)-path starting in z9. Continue the lifting
process inductively. Note that the end of Py(7]) is equal to the beginning
of Pg(vi,1)- It follows that concatenation of the paths Pg(v;) is an $)-path.

We see that also every &-path can be lifted and then mapped to an $-
path. This procedure coincides, in the case of morphisms with the compo-
sition of a path and a morphism described at the beginning of this section.
And in the same way, the corresponding $)-path is unique, up to isomor-
phism, only as a morphism, and not as an $-path.

Let us describe now the m(®)-biset associated with the virtual endo-
morphism & ~ M &. Define M as the set of triples (x,~,y), where 7 is
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a morphism from [0,1] to $, y € H( is a beginning of v, and z € M/$ is
the $-orbit of a point xy € M such that Pg(z) is the end of .

We have a natural structure of a biaction 71 (&) ~ M .~ () over the
anchors P (e)(,7,y) = Ps(z), Pr (%)(z,7,y) = y. The right action is just
by concatenation:

(@,7,y) - B = (z,78,s(B))
For the left action of a &-path «, we find the lift a, of o to a & x (M/$)-
path starting in z, finding its end 2/, mapping «, to a $-path Py(a,), and
then setting
a-(z,7,y) = (@', Py(aa)y,y).
Restricting it to the fundamental group m1(®,t) defines a group biset.
The case of virtual morphisms defined by groupoid automata is more

explicit, so let us describe the induced biset over the fundamental groups in
this case.

Let 0 : & — S(X) be a cocycle, and let I : & X 0 —> ) be functor, and
let (g,z) — (g(x),g|s) be the corresponding groupoid automaton. (Recall
that this means that o(g) is the permutation x — g(z) and that I(g,z) =
gle-)

Let v = gnyn -+ - 7190 be a B-path, and let x € X. Then v has a unique
lift to a & x o-path starting at (s(v),x), namely

(9ns Gn—19n—2 -+ 91(2))(Vn, gn—1gn—2- - - go(x)) - - -
(92, 9190(2)) (71, 9190(2)) (91, 90()) (71, 90(2)) (90, ),

where (o, y), for a path a in &) and a letter y € X is the path t — (a(t), y)
in & x X. We will denote this lift by (v, x), which agrees with the notation
(g, x) for the elements of &xo. In fact, we see that the fundamental groupoid
of & x o is naturally isomorphic to 71(®) x &, where & : 11 (&) — S(X) is
the cocycle

F(gnYngn—1-"-917190) = 0(gnGn—1" - 9190)-

The functor I : & x 0 —> § induces then the functor I : (& x o) =
m1(®) x5 —> 71($). We see that the virtual morphism from & to $) defined
by o and I induces the virtual morphism of the fundamental groupoids
defined by & and I.

4.3.8. Iterating a virtual endomorphism. By Proposition 4.3.13] com-
position of two virtual morphisms of groupoids is also a virtual morphism.
It follows that if & ~ M v & is a virtual endomorphism of a groupoid &,

then we can iterated it, and get a sequence M®" of virtual endomorphism
of &.
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4.3.8.1. Trivial groupoids. Let consider at first the case of trivial groupoids
(i.e., topological spaces). Since every action of a trivial groupoid is free and
proper, we can compose any two biactions of trivial groupoids. A biaction
in this case is just a topological correspondence, i.e., a pair of maps Py, :
M — Y and Py, : M — V5. A correspondence is a virtual morphism if
Py, is a covering map.

If (Pyl : ./\/11 I yl,Pllb : ./\/l1 I yg) and (P)@Q : ./\/lz — yQ,PyB :
My —> )3) are correspondences, then their composition is (see the
space {(z1,22) € M1 x My @ Py, (x1) = Py, (22)} together with the maps
(z1,22) = Py, (21) and (21, 22) — Py, (z2).

In other words, the composition is constructed by taking the the puli-
back (or fiber product) of the maps

Mo
B
P&Q
My —
and thus getting the diagram
Py,

Mi@My — Moy — V3

s

Py,

2

My — W ’
g

W1

The compositions M1 ® My — Y; of the left-hand vertical arrows and
the composition M1 ® My — V3 of the top horizontal arrows form the
composition of the correspondences.

The following description of the iteration of one correspondence is proved
directly by induction.

Proposition 4.3.20. Let F,I : M — X be a topological correspondence.
Denote by M,, the subspace of M™ consisting of sequences (x1,22,...,Ty)
such that I(x;) = F(x;11) for everyi=1,2,...,n— 1. Define

F'(xy,29,...,2p) = F(x1), I"(x1,22,...,25) = [(zy).

Then the correspondence F™, I™ : M,, —> X is isomorphic to the nth iter-
ation of F, I : M — X.
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More explicitly, the nth iteration is inductively by constructing the fol-
lowing pull-back diagrams:

I
Mps1 — M,

an an—;

In—1

Mn i MTL—l

where we can set My = X, Iy = F, and Iy = I. The maps F;,, and I, are
given by

Fn($1,$2,---,$n+1) = (1:171'23---71%)7
In(xl,ZEQ,---,.ZUnJrl) = (x2,$3,...,$n+1)
forn > 1.

We will usually denote a virtual endomorphism by f,¢ : X} — X,
where f : X1 —> X is a finite degree covering map. Our usual dynamical
interpretation is that ¢ as an approximation of the identity map (e.g., it is the
identical embedding in the case of correspondences defined by partial self-
coverings). Then the space X, of sequences (1,9, ..., zy) such that ((z;) =
f(x;41) constructed above is interpreted as the space of orbits of length
n. Note that it is a backward orbit if we interpret ¢ as an approximation
of the identity map, but it is a forward orbit if we interpret the virtual
endomorphism as a multivalued map. Unfortunately, both approaches are
convenient in different situations (we will see this ambiguity later, when the
same phenomenon will be called “contraction” and “expansion” at the same
time). To avoid confusion, we will call a sequence (z1,z2,...,zy,) a forward
f-orbit if f(x;) = t(xiy1) for all i. If we have f(z;y1) = t(x;), then we call
it a backward f-orbit.

Example 4.3.21. Suppose that f: X1 — X is a partial self-covering, and
let ¢ : X1 — X be the identical embedding. Then a sequence (z1, 2, ..., Ty)
is a forward f-orbit of the correspondence if and only if f(x;) = ;41 for
every i, i.e., if it is an orbit of length n of the partial map f. It follows that
the space X, of orbits of length n is naturally identified with the domain of
the nth iteration f™ of the partial self-covering. Moreover, our definition of
iteration of the topological correspondence agrees with the natural notion
of iteration of a partial map.

Example 4.3.22. Let f,. : X1 — X be the topological correspondence
describing the dual Moore diagram of an automaton A = (X,Q, 7, \), as
in Example Suppose that (t1,ta,...,t,) is a forward f-orbit of this
correspondence, such that the points ¢; are not vertices (i.e., belong to the
interiors of some edges). Let (¢;, ;) 3 t; be the corresponding edges. Then
f(t;) = t(ti+1) implies that ¢; = 7(¢;—1,x;—1). The letters x; are the begin-
nings of the edges (gi, z;). Their ends are y; = \(gi, ;).
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It follows that the space X, of orbits of length n is isomorphic to the
dual Moore diagram of the automaton describing the action of A on words
of length n. An edge of X}, containing the point (t1,ts,...,t,) is uniquely
determined by (q1,x122...2,). The set of vertices of &), is X", and the
edge (q1,x129...2,) starts in x12z2...2,, ends in y1ys...yn, and corre-
sponds to the orbit ((¢1, 1), (g2, x2), ..., (qn, zn)) of edges of X1, where ¢; =
m(qi—1,xi—1). Theiteration f" " : X,, — X isgiven by f"(q1,z122...2y) =
q1 and " (q1, x122 . .. Ty) = T(Gn, Tp).

Example 4.3.23. A simplicial topological correspondence f,1: X3 — X is
a pair of simplicial maps between simplicial complexes X; and X such that
f is a finite degree covering map.

If f,o: X1 — X is a simplicial topological correspondence, then the
spaces of orbits &, and the maps f,,t, between them are simplicial com-
plexes and maps, respectively. Namely, we can define the set of simplices
of X, as the set of sequences (A1, Ag,...,A,) such that f(A;) = t(Ai41)
with the natural incidence relations. Note that since the map ¢ is not re-
quired to be dimension-preserving, the dimensions of the simplices A; may
be different (but non-decreasing with 7).

4.3.8.2. Groupoid automata. Iteration of groupoid automata is very similar
to iterations of wreath recursions and transducers.

Proposition 4.3.24. Let A : & x X — X x & : (g,2) — (9(2),g|z) be a
groupoid automaton. Define the nthe iterate A®" : & x X» — X" x & of
the automaton A inductively by the rule

g(r1z2. . 2p) = g(@1)glay (T273 ... Tn),  Gloyzs..zn = Glar|zozs..zn-

Then the virtual endomorphism associated with AS™ is isomorphic to the
nth iteration of the virtual endomorphisms associated with A.

Proof. ... O

The approach via to iterating via groupoid automata may be convenient
even in the case of self-coverings of topological spaces.

As an example, consider the basilica map 22 — 1 on its Julia set. Let us
localize the trivial groupoid to the cover by open subsets shown on .... Then

4.4. Expanding maps and contracting groups

4.4.1. Iterated monodromy groups of expanding maps. Relation be-
tween the iterated monodromy groups and dynamical systems is the closest
in the case of expanding maps....
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Let us recall the main definitions and properties of expanding maps. We
say that a map f G X, where X is a compact metric space, is expanding
if there exist € > 0 and L > 1 such that d(f(x), f(y)) = Ld(x,y) for all
x,y € X such that d(z,y) < ¢, see Definition m

If f G X is an expanding covering map, then there exists 6 > 0 such
that § < ¢, and for every set U < X of diameter < ¢ the set f1(U) is a
disjoint union of finitely many sets Uy,Us,...,Uy such that f : U; — U
are homeomorphisms, and the distance between any two points belonging
to different sets U; is greater than §, see Lemma We call U; the
components of f~1(U). Note that then U; are also of diameter less than &,
so for every n we can inductively define components of f~"(U). We will say
that d is a strong injectivity constant of the map.

The disjoint union of the sets of components of f~"(U) for n > 0 form
the preimage tree Tyy. Theorem [1.4.36 shows that the inverse limit X of the

maps X Jx L x... is a fiber bundle over X: it is naturally locally
homeomorphic to the direct product U x ¢1y. Our goal is to understand
how different pieces U x 01y are glued together to produce X.

For every t € U, we have a natural isomorphism of the tree Ty with
the tree of preimages T defined at the beginning of It maps a vertex
v € f7"™(t) of T} to the unique component V < f~"(U) such that v e V.

Definition 4.4.1. Let § > 0 be a strong injectivity constant of f G X.
Suppose that A, B c X are sets of diameters less than ¢ such that An B #
. Then for every x € A n B we have natural isomorphisms T4 — T,, —
Tp. Denote by Sap : T4 — Tp their composition. We call Sy p the
elementary holonomy.

The induced map Sa g : 014 —> 0T describes how the pieces A x 0Ty
and B x ¢1'g are attached to each other in X. The isomorphism S4 g maps
a component A, of f7"(A) to the unique component B, of f~"(B) such
that A, n B, # .

Lemma 4.4.2. If Uy,Us,Us be subset of diameter less than & such that
Ui nUs nUs # &, then Sy, v, © Suy,u, = Su, Us-

Proof. Choose a point z € Uy n Uz n Us. Then Sy, y, is equal to the
composition of the natural isomorphisms Ty, — T, — Ty, which implies
the statement of the lemma. O

Let U be a finite cover of X by sets of diameter less than §. Recall
that a nerve of the cover U is the simplicial complex with the set of vertices
equal to U in which a subset C < U is a simplex if and only if (), A is
non-empty.
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Let Ty be the nerve of the cover U. For every edge (Uy,Us) of Ty we
have the isomorphism Sy, v, : Ty, — Tu,.

The maps Sy, v, generate a small category of isomorphisms between the
trees Ty, i.e., a groupoid. Let us denote this groupoid by IMG (f,U).

For every path v = (U1, Us, ..., Uy), we get the composition S, : Ty, —
Ty, of the isomorphisms Sy, v,,,. Lemma implies that the map v —
S is a homomorphism from the fundamental groupoid of the nerve I'y; to
the groupoid IMG (f,U).

Instead of the abstract (i.e., discrete) groupoid IMG (f,U), we can con-
sider a naturally defined étale groupoid acting on the boundaries of the
trees Tyy. Namely, consider the disjoint union | |;;¢,07y. Then every iso-
morphism Sy, 7, induces a homeomorphism Sy, 7, : 01y, — 01y, between
two clopen subsets of the union. Denote by &(f,U) the groupoid of germs
generated by these local homeomorphisms. This is the groupoid associated
with the local product structure, as defined in[3.1.4.2] Note that in this case
a more natural groupoid is the groupoid defined in for the natural
extension of f (the one acting on the stable leaves), which may be bigger
than &(f,U) if the space X is not connected.

Suppose now that X is connected and locally connected. Then for any
finite cover U of X’ by open connected subsets the nerve I'y; is connected and
the groupoid IMG (f,U) is equivalent to the isotropy group of an element
U € U. This is the iterated monodromy group of f. It is the group of all
elements of the form S, where v is an element of the fundamental group
m1(T'y, U), i.e., a closed path starting and ending in U.

The groupoid IMG (f,U) acts on | |;;¢, 0Tv, so the isotropy group of U
acts on 0Ty. We get an action of IMG (f) on the boundary of the tree Ty .

This new definition of the iterated monodromy group coincides with the
one given in Recall that every connected and locally connected space
is path connected... Let v be a path in & starting in 7 and ending in x».
Let U be a finite cover of X by open sets of diameter less than 6. We can
partition v into a concatenation ;7o ...y of paths of diameter less than
the Lebesgue number of U. Let U; € U be such that the image of ~; is
contained in U;. Then ' = (Uy,Us,...,Us) is a path in Ty It is easy to
see that S, : Ty, — Ty, is equal to S,,. Here Ty, and Ty, are identified
with T, and T},, respectively, by the natural isomorphism, using the fact
that 1 € Uy and 29 € Uy. It follows that the group of automorphisms S,
of a tree of preimages T; defined by elements v of the fundamental group
m1(X,t) coincides with the group of automorphisms of 7} defined by the
elements of the fundamental group 71 (I'y,U), where t € U € U, i.e., that
the two definitions of the iterated monodromy groups coincide.
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4.4.2. Simplicial models of expanding maps. We will use now the
notion of a topological correspondence to approximate arbitrary expanding
maps by simplicial complexes.

Let f G X be an expanding covering, and let §, as before, be a strong
injectivity constant for f. We do not impose any connectivity conditions on
X in this subsection.

Let U be a finite cover of X' by subsets of diameter less than d. Denote
by U, the set of components of f~(U) for U € U. We also denote Uy = U.
Denote by I';, the nerve of the cover U,,.

The map f induces simplicial maps f, : I',+1 — T'), by the rule f,,(U) =
f(U), where f(U) is the image of U as a set under the map f: X — X,
i.e., U is a component of f~(f,,(U)).

Lemma 4.4.3. The maps f, : U'n1 — Ty are coverings.

Proof. For U € U,,, denote by Ny the sub-complex of I';, equal to the union
of simplices containing U.

It is enough to show that f : Ny —> Ny is an isomorphism for every
U € Uy 1. It is obviously a simplicial map.

Let us show that f : Ny —> Ny g is injective on the set of vertices
adjacent to U. Suppose that it is not, then there exist elements A, B,C €
Un+1 such that A n C and B n C are non-empty, and f(A) = f(B). But
then there exist z € A and y € B such that d(x,y) < 6, which contradicts
the conditions of Lemma [[.4.37

For every simplex A = {f(U), A1, Aa,..., Ax} of I'), containing f(U)
there exists a unique simplex

A" ={U,B1, By, ..., By} = {U, Syy,4,(U), Syw),a,(U)s - - - Spwy, 4, (Br)}
of T';,11 containing U such that f(A') = A. Consequently, f : Ny — Ny

is an isomorphism. O

Definition 4.4.4. We say that U is semi-Markovian if for every U € U
there exists U’ € U such that U < U’.

The following lemma is a direct corollary of the Lebesgue’s covering
lemma.

Lemma 4.4.5. Let U be an open cover of X by sets of diameter less than
6. Then there exists n = 1 such that U is semi-Markovian for f* G X.

On the other hand, we do not have to pass to an iterated of f if we are
allowed to change the cover.

Lemma 4.4.6. For every § > 0 there exists a finite semi-Markovian cover
by open sets of diameter less than J.
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Proof. Let V be a cover of X by sets of diameter less than dy. As before,
we denote by V,, the set of components of f~"(A) for A € V. Define, for
every V € V the sets V(™ inductively by the rule that V(® = vV, and
V(D) is equal to the union of V(™ and all elements W € V41 such that
W A VD 2 g5 Define V®) = (-, V(" and let V) = {(V(®) : Ve
Vi.

Diameter of V(™ is less than
2001+ L7H 4+ L2 4o + L7™) < 200/(1 — L7h).

Consequently, diameter of V() is not more than 28y/(1 — L~!). Assume
that 0y < (1 — L~ 1)5/2. Then all elements of V(®) have diameters less than
J.

It is easy to see that then (V,)(*®) = (V(®)),, and that if U € V; and

V € V are such that U n V # &, then U™ (as an element of Vfoo)) is
contained in V(®)_ which implies that V(*) is semi-Markovian. O

Let U be a semi-Markovian cover. Choose for every U € U; an element
(U) € Uy such that U < +(U). It is easy to see that ¢ : I'y — Ty is a
simplicial map.

Since U and ¢(U) intersect, the elementary holonomy Sy, : Ty —
T,y is defined. For every n it defines a bijection between the set of com-
ponents of f~™(U) and the set of components of f~"(¢(U)). These sets are
subsets of Uy, +1 and U, respectively, and union of the maps Sy, for U € Uy
is a map from U, 1 to U,, which we will denote ¢,,.

Equivalently, ¢,(A) is the unique component of f~!(1,_1(f(A))) con-
taining A.

The map ¢, is uniquely defined by the condition that if A is a component
of f7™(U) for U € Uy, then ¢, (A) is the unique component of f~"(¢(U)) such
that ¢,(A) D A. It follows that ¢, : I'yy1 —> Ty, is simplicial and that the
diagram

ln+1
Inyo — Tanr

(4.2) jfm lfn

is commutative.

Let us show that the pair fy,u0 : I't — T'g uniquely determines the
sequence fn,tn : I'nt1 — I'y. Namely, we will show that the complexes
I',, are produced by iteration of the simplicial virtual endomorphism fy, ¢ :
't —1TY.
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Proposition 4.4.7. Let fn and fn,Zn : an — f‘n be the complexes and
maps obtained by iterating the simplicial topological correspondence fo, 1o :
'y — To. (In particular, T'y, =T, forn=20,1.)

Then there exist isomorphisms ¢, : fn — I, such that

frnodni1 = dno fn, ln © Gyl = Pn Oy

foralln > 1.

Proof. Let us construct and prove properties of ¢,, by induction. For n =1
the graph I'; coincides with I'1, so set ¢; to be equal to the identity map.

Suppose that ¢,, is defined and satisfies the properties of the proposition.

Let (v1,v9,...,v,41) be an arbitrary vertex of I'j,41.

If n = 1, then we have vy < f(v1), since (v1,v2) € I'1. For n > 1 we have
We have an(’l)Q, V3, .- - 7vn+l) < f(¢n(vl’ V2, .., UTL))’ since anfl(va U3y Un) =
tn(Pn(v2,v3, ..., vny1)) and f(dn(vi,v2,...,00)) = dn-1(v2,v3,...,0,), by
the inductive hypothesis.

Consequently, for n = 1 there exists a unique component of f~!(vs)
contained in v;. We set ¢o((v1,v2)) to be equal to this component. Simi-

larly, for n > 1 there exists a unique component of f~!(¢,(va,v3, ..., Vp11))
contained in ¢y, (vi,va,...,v,). We set ¢pi1(v1,v2,...,0,+1) to be equal to
it.

Formally, in both cases we defined ¢,,,1 by the rule
(4.3)
Grr1 (V1,025 - Unt1) = Sh_ (60 (01,02, s00))sbn (2,031 0mr 1) (P (V15 V2,5 - oo 0n)).

~

We get a map ¢pt1 : g1 — g1 (between sets of vertices). Let
us show that it satisfies the conditions of the proposition and that it is an
isomorphism of simplicial complexes.

It follows directly from the definition that f,(¢ni1(vi,v2,...,0541)) =
On(V2,03,...,041)), as we defined ¢y, 11(v1,v2,...,v,11) as a component of
fﬁl((bn(v?: U3, .- avn-i-l))'

The vertex tp(¢n+1(v1,v2,...,0541)) is, by definition, the component
of f~Ytn 10 fo¢nii(vi,ve,...,vn11)) containing ¢, 1(vi,v2,..., 00 11).
We have ty,—1 0 f 0 ¢pi1(v1,v2,...,0n41) = tn-1(Pn(v2,v3,...,0p41)) =
On—1(v2,v3,...,v,). Consequently, tn(Ppni1(v1,v2,...,0541) is the compo-
nent of f~1 (¢, 1(v2,vs,...,v,)) containing ¢, 1(vi,va,...,vnr1). The set

¢n(v1,v2, ..., vy,) satisfies these conditions, since f(¢n (v1,v2,...,0n)) = Pp_1(va, ...

by the inductive assumption, and ¢, (vi, v, ..., vp) D Opi1(V1, V2, ..., Upi1),

by the definition of ¢y, 1. It follows that ¢, (dnt1(v1,v2, .., V1)) = Gnlvy, va, ...

The case n = 1 is similar.
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Let us show (also by induction) that ¢, is simplicial. Suppose that
A= {(1)171‘,1)271‘, e ,’Un+17i) D= 1, ceey k}

is a simplex of FQH- Then {¢n(v24, V34, .., Unt14)} and {dn(v1i, V24, - .., Uni)}
are simplices of I';,, since ¢,, is simplicial. It means that ﬂi:l,...,k On (V2,05 V3,0, - - - s Unt1,i)
and ﬂi:l,... g @n(V14,v24,...,0y,;) are non-empty. Then it follows from the

definition (4.3)) of ¢, +1 and Lemma.4.2{that {¢n+1(vi4, V24, Vnt1i) bie1, ok

is a simplex of I';, 1. The case n = 1 is similar.

It remains to show that ¢, 1 has an inverse simplicial map. If n = 1,
then it is checked directly that the inverse map is ¢, ' (v) = (1(v), f(v)).

For every v € I', 11 we have f,_1 (1, (v)) = tn1(fn(v)), hence ¢, 1 (1, (v)) =

(v1,v2,...,v,) and ¢, (fu(v)) = (vo,vs3,...,vu41) for some v; € T'y. Define
@1 = (v1,v2,...,vp41). It is checked then directly that ¢/, , ; is the inverse
of ¢p41. It is obvious that ¢/, 4 O

Example 4.4.8. A model of the basilica...

4.4.3. Reconstructing an expanding map from its simplicial model.
Let us show that a simplical virtual endomorphism fy, ¢ : 'y — I'g defined
in the previous subsection can be used to reconstruct the original expanding
map.

Theorem 4.4.9. Let f G X be an expanding covering map, and let U be
a semi-Markovian open or closed cover by sufficiently small sets. Let I',, be
the nerves of the covers Uy, and let vy, fr : I'ni1 — Ty be the corresponding
maps.

Let lim, I';, be the inverse limit of the sequence

Do =T 2Ty 2ot

seen as a topological graph.

Then there exists a homeomorphism of X with the space of abstract con-
nected components of the graph lim, I';, with the topology of the quotient of
the space of vertices. Moreover, there exists a homeomorhism conjugating f
with the map induced by

foo(Ao, A1,...) = (f(A1), f(A2),...).

Here the inverse limit lim, I';, is considered as a simplicial complex: its
set of vertices is the inverse limit of the sets of vertices of I';;; and its set of
simplices is the inverse limit of the sets of simplices of I';,. Note that both
sets are compact topologica spaces (homeomorphic to the Cantor sets, if the
set of edges is non-empty). As an abstract complex (without topology), the
complex lim, I';, has uncountably many connected components.
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Note that it follows from commutativity of the diagram that fo :
lim, I';, — lim, I';, is a continuous simplicial map.

Theorem is another example of rigidity (structural stability) of
hyperbolic dynamical systems. It shows that an expanding covering can be
reconstructed from finite amount of (combinatorial) information: a pair of
simplicial maps between finite simplicial complexes. We have seen similar

statements about hyperbolic dynamical systems in Proposition and
Theorem

Proof. A vertex of lim, I'), is a sequence (V, V1, Va,...) of vertices V;, € U,
of I';, such that ¢, (V,41) = V,, for all n. Then V11 < V,,. Diamenter of
V,, is less than L™"§. It follows that every sequence of points x, € V, is
converging and the limit does not depend on the choice of x,,. Let us denote
it by ®(Vo, V1, ...).

Lemma 4.4.10. If vertices u,v of lim,I'), are adjacent, then ®(u) = ®(v).

Proof. Let u = (Ag, 41,...) and v = (By, By, ...). If u and v are adjacent,
then A, n B, # &, and we can choose z,, € A, N By,. Then ®(u) = &(v) =
lim,,— 0 T, - O

Lemma 4.4.11. The map ® is onto.

Proof. Let x € X be an arbitrary point. For every n there exists A, €
U, such that x € A,,. Then x belongs to every element of the sequence
LpoL10+-++0 Ln—l(An)y L10120+++0 /fn—l(An)y ey Ln—l(An)7 An Consider the
sequence of such sequences as n — 0. Since every complex I, is finite, we
can find a convergent sub-sequence, and its limit will be a vertex (A, A1, .. .)
of lim, I';, such that x € A, for all n. Then ®(Ag, A1,...) = x. O

Proposition 4.4.12. If elements of U are closed and u,v are vertices of
lim, '), such that ®(u) = ®(v), then u and v are adjacent.

If elements of U are open and ®(u) = ®(v), then there exists combina-
torial distance from u to v in the graph lim, I';, is not more than 2.

Proof. If elements of U are closed (resp., open), then all elements of U, are
closed (resp., open).

Let u = (Ag, A1,...) and v = (By, B1,...). Suppose that z = ®(u) =
®(v). We have Ag D A1 D Ay o ..., By D By D By D ..., and z is an
accumulation point on both sequences. It follos that x is an accumulation
point of each set A,, and B,, for all n. If all A,,, B, are closed, then this
implies that u and v are adjacent.

Suppose that the covers U, are open. Then, by the proof of Lemmal[£.4.11]
there exists a vertex (Cp,C1,...) such that € C), for all n. Since x be-
longs to the closure of each set A, and B,, we have C, n A, # & and
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Cn n B, # &. Tt follows that (Cp, C1,...) is adjacent both to (Ao, 41, ...)
and to (By, By, .. .). O

Lemma 4.4.13. The map ® : lim, [';, — X is continuous on the space of
vertices of lim,.

Proof. Define a metric d on the set of vertices of lim, I';, by the condition
that d((Ao, 41,...),(Bo, B1,...)) = #ﬂ, where m is the minimal index such
that A, # B,,.

Suppose that v = (Ao, A1,...) and u = (By, By, ...), and d(v,u) = %H
Then A,, = By, and ®(Ag, A1, ...) and ®(By, By,...) both belong to the

closure of A,,. The closure of A,, has diameter less than L=, hence
d(D(v), ®(u)) < L™ = LI=1/Avwg,

which implies that ® is continuous. ([

The map ® induces a continuous bijection between the space of con-
nected components and X. The equivalence relation of belonging to one
component is, by Proposition equal to the relation of adjacency (if
the elements of the cover are closed) or to the relation of being on distance
less or equal to 2 (if the elements of the cover are open). In both cases
the equivalence relation is a closed subset of the direct square of the space
of vertices. It follows that the space of connected components is compact
Hausdorff. But any continuous bijection between compact Hausdorff spaces
is a homeomorphism (since image of a closed, hence compact, set is compact,
hence closed). O

Example 4.4.14. Consider the angle doubling map f : R/Z — R/Z,
f(z) = 2x. Let U be the cover of the circle R/Z by the arcs [0, 1/4], [1/4,1/2],
[1/2,3/4], [3/4,1]. Then U, consists of arcs of the form [2,1%,2&%12] for
k=0,1,...,2""2 — 1. It follows that the graphs I, are cycles of length
2n+2 There is only one choice for the map ¢, : I'y41 — Iy, since an arc

[2"%’ 2’31%12] is contained in exactly one arc of the form [#, zlj—fl] Namely,

I =k/2if k is even and (k — 1)/2 if k is odd.

The set of vertices of lim,, I',, can be realized as a subset of the cir-
cle homeomorphic to the Cantor set, so that edges of lim,, I';, connect the
endpoints of the components of the complement of the Cantor set (i.e., “fill-
ing the gaps” in the Cantor set). It follows that the space of connected
components of lim,, I',, is homeomorphic to the circle.

Theorem produces a finite presentation of the dynamical system
f G X in the sense of Definition [1.4.45] The sets of vertices and edges of
lim, I';, are Markovian subshifts in a natural way. If I/ is a cover by closed
sets, then we have seen in the proof of the theorem that every connected
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component of lim I, is a simplex, i.e., edge adjacency is the kernel of the
semiconjugacy of fo, with f. We get hence a presentation of f G X as a
quotient of a shift of finite type by a shift of finite type.

4.4.4. Contracting groups and the nucleus.

Definition 4.4.15. Let (G,9) be a self-similar group, and let X be a basis
of M. The associataed self-similar action is said to be contracting if there
exists a finite set N G such that for every g € G there exists n such that
glo € N for every word v € X* of length at least n. The smallest set N/
satisfying this condition is called the nucleus of the action.

If the group is contracting, then the nucleus is well defined and is equal

to the set
N = U ﬂ{g|v :ve X", v = nl.
geG n=0

It is also equal to the set of elements GG such that there exist h € G, u,v € X*
such that |u| > 1, h|, = h, and g = hl,. In other words, it is the set of all
elements of G that can be reached from the cycles in the Moore diagram of
the full automaton of G (see for the definition of the full automaton).
The nucleus is state-closed, i.e., for every g € NV and = € X we have g|, € N.
We usually consider a nucleus as an automaton. In particular, we will talk
sometimes about the Moore diagram of the nucleus.

Example 4.4.16. Consider the binary odometer action generated by a =
o(1,a). Since a® = (a,a), we have a™|o = a™/? and a"|; = a™? if n is even,
and a"|p = a2 and a”|; = a"*V/2 if n is odd. It follows that the
nucleus of this action of Z is the set {1,a,a '}. Its Moore diagram is shown

on ...

The following proposition is proved in ...

Proposition 4.4.17. Let (G,9M) be a covering biset. If some self-similar
action associated with it is contracting, then every self-similar action asso-
ciated with it is contracting.

In other words, the property of being contracting is a property of the
biset. Note that the nucles of the self-similar action depends on the choice
of the basis X. In some cases we call the biset hyperbolic if the associated
self-similar actions are contracting. We say that a biset is sub-hyperbolic if
its faithful quotient is hyperbolic.

Definition 4.4.18. We say that a self-similar group (G, 9) is self-replicating
if the left G-action on 9 is transitive. Equivalently, a self-similar action
G ~ X* is self-replicating if and only if it is transitive on the first level of
the tree X* and the associated virtual endomorphism is onto.
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Proposition 4.4.19. If G ~ X* is a contracting self-replicating action of
a finitely generated group, then G is generated by its nucleus.

Proposition 4.4.20. Let f : X — X be an expanding self-covering of
a compact connected and locally connected metric space. Then My is a
sub-hyperbolic biset, i.e., IMG (f) is a contracting self-similar group.

Proof. ... Use covers U and consider sums of diameters of elements in a
chain.. Show that elements of the nucleus are defined by paths of finite
diameter.... |

4.4.5. Contraction coefficient. Let G be a finitely generated group, and
let ¢ : G — G be a virtual endomorphism. Denote by |g| the length of a
group element g € G with respect to some fixed finite generating set of G.
The contraction coefficient of ¢ is defined as

n
py = limsup  limsup o127 09)]

n— geDom ¢n,|g|—00 |g| '

The following propositions are proved in...

Proposition 4.4.21. Let G ~ X* be a level-transitive self-similar action
of a finitely generated group. It is contracting if and only if py < 1.

Moreover, if the action is contracting and level-transitive, then the con-
traction coefficient depends only on the biset.

Self-replicating?...

Proposition 4.4.22. Let G ~ X* be a self-similar contracting action of
a finitely-generated group. Let pgy be its contraction coefficient. Then the

orbital graphs of the induced action G ~ X¥ on the boundary of the tree X*
log [X]|
—logpg

Proof. ... O

have polynomial growth of degree not more than

As a corollary of Proposition [4.4.22] we get that the contraction coeffi-
cient of an infinite self-similar group is never less than ﬁ This value is
attained by the |X|-adic odometer and by the iterated monodromy group of
the Chebyshev polynomial Tjy;.

4.4.6. Algebraic properties of contracting groups. Not much is known
about algebraic properties of self-similar or even self-similar contracting
groups. Many interesting problems remain to be open (we will mention
some of them here). We will summarize some of the known facts in this
subsection. Throughout this subsection a contracting group means a group
acting by a faithful self-similar contracting action.
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For a proof of the following, see...

Proposition 4.4.23. The word problem is solvable in finitely generated con-

tracting groups in polynomial time. Namely, if G is a self-similar contracting

group acting on X*, and p is its contraction coefficient, then for every e > 0

there exists an lal%?‘m'thm solving the word problem in polynomial time of
og

degree at most Tlogp T €

Solvability of many algorithmic problems for contracting groups remain
to be open: conjugacy, isomorphism, finiteness, etc.. A particularly inter-
esting problem is deciding if two given faithfully acting on X* contracting
self-similar groups are equivalent.

Theorem 4.4.24. If G is a contracting self-similar group, then it has no
free non-abelian subgroups.

Proof. We will use Theorem Since the orbital graphs of the action
of G on the boundary X“ of the tree have polynomial growth, G can not
contain a free group acting freely on an orbit of a point of X“.

The action of g € G, on a neighborhood of w is uniquely determined by
glv for every beginning v of w. It follows that the number of elements of the
group of germs Gy/G ) can not be more than the size of the nucleus (in
fact, every group Gy, /G(w) is isomorphic to a finite group contained in the
nucleus). Consequently, cases (2) and (3) of Theorem [2.4.54] are not possible
for contracting groups, hence G has no free subgroups. U

We leave the following theorem as an exercise (see also ...)

Theorem 4.4.25. Let (G,"M) be a hyperbolic biset, and let (G,IN) be its
faithful quotient. Choose a basis X of M (identified with the corresponding
basis of MM ). Suppose that the nucleus of (G,M) defined for X does not
contain non-trivial elements in the kernel of the epimorphism G —> G.
Then an element g € G belongs to the kernel of the epimorphism if and only
if there exists n = 1 such that gl, = 1 and g(v) = v for all ve X".

We call self-similar groups G satisfying the conditions of Theorem 4.4.25
contracting overgroups of (G,9M). We say that G is self-replicating if its left
action on the biset I is transitive. Note that if G is self-replicating, then
G is too.

It is shown in ... that for any contracting finitely generated self-replicating
group (G,9M) there exists a finitely presented contracting overgroup G.
Namely, it is enough to take the nucleus of G as a generating set, and
define G by all relations of length 3 that are valid in G. We will give a
geometric proof of this fact later...
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Proposition 4.4.26. Let G be a contracting self-replicating overgroup of
a contracting finitely generated group G. Then for any finitely presented
group F and an epimorphism F — G there exists a subgroup of finite
index Fy < F and an epimorphism Fy — G.

Proof. By taking images of elements of G and F in G and then lifting
them to the other group, we can find generating sets {g1,92,...,9m} and
{f1, f2,---, fm} of G and F, respectively, such that the images of g; and
fi in G are equal for every ¢. Then F' is defined by a presentation with
the set of generators {f;} and a finite set of relations R. It follows from
Proposition that there exists n such that if r(f1, fo,..., fm) is a re-

lation from R, then for the corresponding word r(g1,g2,...,9m) in G we
have 7(g1,92,---,9m)|lv = 1 and (91,92, ..., 9m)(v) = v for every v € X".
In other words, every element r(g1,92,.-.,9m) for r € R has trivial image

under the wreath recursion ¢, : G — S(X") x G associated with the biset
MP". 1t follows that the map f; — ¢n(gi) extends to a homomorphism
F — S(X™) % G, Consider the subgroup Fj whose image in S(X") fixes
a word v € X". Projecting F; onto the coordinate of a corresponding
to v, we get a homomorphism F}; — G. Since G is self-replicating, the
homomorphism F; — G is onto. U

cite Grigorchuk-de la Harpe-Benli...

As a direct corollary of Proposition [£.4.26] and Theorem [£.4.24] we get
the following.

Corollary 4.4.27. Let G be a finitely generated self-replicating contracting
group, and let G be a contracting overgroup of G. If G has a free subgroup,
then G is not finitely presented.

Proof. Suppose that G is finitely presented. Then, by Proposition [£.4.26]
there exists an epimorphism from a subgroup of finite index of G to G. But
this implies that G has a free subgroup, which contradicts Theorem [£.4.24]

[l

Example 4.4.28. It is easy to check that the wreath recursion a = o(1,b),b =
(1,a) defining IMG (z2 — 1) is contracting on the free group generated by
a,b. It follows that IMG (22 — 1) is not finitely presented. We will see later
that a general argument shows that the iterated monodromy group of any
post-critically finite rational function is not finitely presented unless it is
virtually abelian (which happens only for z¢, 2=¢, Chebyshev polynomials,
and Lattés examples).

All known finitely presented contracting groups are virtually nilpotent.
It is an open question if there are other finitely presented contracting groups.
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Open questions: infinite presentation in general, weak branchness, amenabil-
ity, growth (say that more will be discussed later)...

4.4.7. The limit dynamical system. Let (G,X) be a contracting self-
similar group. Consider the space X~ of left-infinite sequences ...xox1 of
letters x; € X and the space X~ x GG, both with the direct product topology
(where X and G are discrete). The space X ¢ is obviously homeomorphic
to the space of the right-infinite sequences X* and is a Cantor set.

Definition 4.4.29. We say that two sequences ...ToT1,... Y2y are asymp-
totically equivalent (with respect to the action of G) if there exists a finite
set N c G and a sequence g, € N such that g, (2, ... x2x1) = yp ... y2y1 for
all n.

We say that ...xzox1-9,...y2y1-h € X~ x G are asymptotically equivalent
if there exists a finite set N < G and a sequence g, € N such that g, -
Tp...ToT1 + g = Yn-...y2y1h for every n. Recall that the last condition
means that g,(x, ... z121) = ypn ... y2y1 and gplz, . 29219 = h-

In particular, if G is finitely generated, the sequences ...zox1,...Y2y1
(resp. ...xox1 - g and ...y9y1 - h) are equivalent if and only if the distance
between x, . .. xox1 and y, . .. y2y1 (between @y, ... zox1-g and y,, ... Yoy - h,
resp.) in the graphs of the action of G on X™ (on the biset X"-G, resp.) is uni-
formly bounded. It is obvious that we get equivalence relations (also in the
infinitely generated case). The equivalence relation on X~ ¢ is invariant with
respect to the shift ...zomq — ... 2329, since go(Ty ... T221) = Ypn ... Y2u1
implies g, (2 ... T322) = Yp . . . T3T2.

Similarly, the equivalence relation on X~ x G is invariant under the
natural right G-action and under tensor products by elements of the biset
X - @, i.e., under the maps

C XX g .. XX - g®x - h = ... zax19(T) - g|Lh.

Definition 4.4.30. The quotient of X7 by the asymptotic equivalence
relation is called the limit space of the contracting group, and is denoted
Jax), or just Jg. The dynamical system s G Jg, where s is the map
induced by the shift X7 — X% is called the limit dynamical system of
the self-similar group.

The quotient of X~ x G by the asymptotic equivalence relation together
with the induced right G-action is the limit G-space, and is denoted X x)
or just Xg.

The following is proved in...
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Proposition 4.4.31. Sequences ...xox1,...Yy2y1 are asymptotically equiv-
alent if and only if there exists a sequence gn, n = 0, of elements of the
nucleus N such that g, - Ty = ypn * gn—1 for every n = 1.

Sequences ...ToT1-q, ...Yy2y1-h are asymptotically equivalent if and only
if there exists a sequence g, € N such that g, - Tpn = yYn - gn_1 for alln =1,
and gog = h.

In particular, the stabilizer of a point of Xz represented by a sequence
...xox1 - 1 is a finite subgroup of G contained in the nucleus. Moreover,
it also follows from Proposition that the action X5 v~ G is proper.
Note that Jg is obviously homeomorphic to the space of orbits of the action
Xg v G. Therefore, it is natural to consider Jg as an orbispace defined by
the groupoid of the action Xg  G.

Lemma 4.4.32. If the action G ~ X* is faithful, then its groupoid of germs
coincides with the groupoid of the action.

Proof. We have to prove that for every non-trivial ¢ € G and £ € Ag
the germ of the action of g on the neighborhoods of ¢ is non-trivial. Sup-
pose that it is not true. Let ...xzox1 - h represent £&. Then there exists
n such that for every ...ysy; € X™% the sequences ...yy1T,Tn_1...21h
and ...yY1TnTn_1-..2x1 - hg are equivalent. Let g1, g2, ..., gm be the list of
all non-trivial elements of the nucleus. Then there exists v; € X* such that
g1(v1) # v1. Find the smallest index 7 such that g;|,, # 1, and let vy € X* be
such that g;(ve) # vy. Then find the smallest index i such that g;|y,v, # 1,
and let v3 € X* be such that g;(vs) # vs. Continue this way until we find
a word w = vjvy...v € X* such that for every g; € N either g;|, = 1 or
gi(w) # w. Consider then any sequence ending by wx,z,—1...21 - h. Then
it follows from Proposition [£.4.31] that it is asymptotically equivalent only to
sequences of the form w'ana, 1 ...a1-h' for some word w’ # w of the length
equal to the length of w, or to a sequence of the form ... asa1-h. In particular,
sequences of the form . .. yoywxy,Ty_1...x1-hand ... Yoy WLy Ty 1 ...2T1-hg
can not be asymptotically equivalent. ([

Let us describe a more natural (without any reference to the basis X
of M) way of defining the space X and the G-action on it. The following
proposition is proved in...

Proposition 4.4.33. Let O be the biset of a contracting group G. Let
o= |J 4
Aco,|Al<wo

where A™% denotes the set of left-infinite sequences (...,xa,21) of elements
of A with the direct product topology. Endow Q) with the direct limit topology.
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We say that (..., x9,x1) is equivalent to (...,y2,y1) if there exists a finite
set N € G and a sequence g, € N such that gp - xn @ Tp_1 ® -+ @1 =
Yn®Yn—1®- - -Qy1 in ME™. Then the map . .. xow1-g — (..., 22, 71-g) induces
a homeomorphism of Xg with the quotient of Q) by the defined equivalence
relation conjugating the natural action Xg v G with the action induced by
the natural right G-action on 0 (the right action on the last coordinate).

Proposition [4.4.33] shows that the right G-space Xz can be naturally
seen as a version of the infinite tensor power IMS(—).,

4.4.8. Limit correspondence on the orbispace J;. The tensor prod-
uct Xg®agM of the right G-space X with the biset 91 is naturally identified

with Xg, see Proposition [4.4.33] After choosing a basis X of 9, this identi-
fication is given by the rule

221 - gy -h = ... z2219(y) - glyh.

This gives us a natural orbispace version of the limit dynamical system
s G Jg. Recall that the orbispace J¢ is defined by the groupoid ® = XgxG
of the action X x G. (Recall that since the G-action is from the right, we

have s(§,g9) = ¢ -g and r(§,9) = ¢.)
Namely, consider the space M = X5 x9N, the anchors P, P, : M — Xg
for the left and the right actions, respectively, given by

P& z) =¢, Pr(§,7)=§Qu
and the Xg x G-actions

(Clvg) ' (§,SU) = (g : g_lvg ' x)v (gvx) : (g> CZ) = (fax ' g)
for £,(1,(0e Xg,z € M, ge G, and we have (1 - g =&, (o =ER .

Note that the right action is free and proper, since (£, ) - (g, (2) = (&, )
implies that z = = - g, hence g = 1 (as the right action 9t~ G is free).
The quotient M/& by the right action is naturally Xo x 9M/G, and the
map P/& : M/& — &) is the projection X5 x IM/G —> Xg on the
first coordinate. Since 9M/G is finite and discrete, P,/® is a |9M/G|-to-one
covering map. Consequently, the constructed biaction & ~ M ~ & is a
virtual endomorphism of &.

Equivalently, we may choose a basis X of 91, and define the virtual
endomorphism by a groupoid automaton given by the map

The map ¢ : ) x X — & is then the map (£,z) — £ ®x. According to
Definition [4.3.18] the associated biaction will be on the space

{(£,$,(C,g))€XG XX x® : Cg:£®x}a
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which is naturally identified with M using the map (£, z-g) — (¢, 2, (@ -
g 1, 9)). We leave it as an exercise to check that this identification agrees
with the left and right actions given in Definition [4.3.18

We denote the orbispace defined by the biaction groupoid & x M x &
by J1, see Exercise Denote the morphisms J; — Jg given by the
projections & x M x & — & onto the left and the right copies of & by f
and ¢, respectively.

Since the right action M « & is free and proper, an equivalent atlas
for J; is the groupoid & x (M/®). If we choose a basis X of M, then M /&
is naturally identified with X5 x X, and the groupoid & x (M/®) as the
restriction of & x M x & to the transversal Xg x X © M. The corresponding
action of & on Xg x X is given by

(C1,9) - (&2) = (§- 97", 9(2)),
where the action is defined if and only if (1 - g = £ (compare this with the
definition of the left action & ~ M).

Every element (((1,9),(&,z)) € & x (Xg x X) satisfies ( - g = &, hence
is uniquely determined by ¢ and g € G. Therefore, we can describe the
elements of & x (M/B) = & x (Xg x (M/G) as triples (g,&,x) € G x Xg x X
with the source and range maps

s(9.6,2) = (&), r(&9) = (€9 ' g(@)),

and multiplication

(91,&1,21) (92, &2, 22) = (9192, &2, T2).

We see that the groupoid & x (M/®) is isomorphic to the skew-product
groupoid & x o defined by the natural cocycle o : & — S(X):

(9, )(x) = g(z).

Therefore the morphism f : J; — Jg is identified with the covering of
orbifolds J; — Jg defined by the cocycle o, i.e., with the projection

(4.4) F:(g,&x)— (&9

(See ... for the definition of coverings of orbifolds...).

Let us describe the projection ¢ : J; — Jg onto the right action in
terms of the groupoid B x (XgxX) = &xo. Anelement ((¢1,9), (&, ), (C2,h))
of & x M x & has source (§,z) - ((2,h) = (§,x-h) and range ((1,9)-(§,z) =
(€-9g7%, g-), and is projected by ¢ to the element ((2, h), where (o = Q. Let
us restrict this to the transversal Xg x X, and consider the projection of the
element (g,£,x) € G x Xg x X = & x (X5 x X). Consider the corresponding
element ((¢€-g71, g), (€, 2), (€®z,1)) of & x M x. Its source belongs to X x X,

but its range is (£- g1, g ) is equal to (£- g7, g(2)) - (£ g ®9(2),9l2),
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where the dot on the right-hand side of the equality is the right &-action.
It follows that the projection ¢ : J; — Jg can be defined by the functor

(4.5) I:(9,§,7) —~ ((®w,gls)

from & x o to &. More precisely, this functor as a morphism of groupoids is
isomorphic to the composition of the projection ¢ : & x M x & — & with
the equivalence of & x o and & X M x &.

The limit dynamical system is a self-covering of a topological space if
and only if the groupoid of germs of IMG (f) is principal... The limit dy-
namical system is a self-covering of an orbispace if and only if the groupoid
is Hausdorft...

4.4.9. Contracting correspondences. Let us generalize the notion con-
struction of the limit space Xz to the case of virtual endomorphisms of
groupoids.

Let & ~ M ~ & be a virtual endomorphism. Let A be a compact
subset of M, and denote by 4 the set of all sequences (..., x9,21) € A7
such that P(z,) = P(x,—1) for all n > 2. We take Q4 with the topology of
a subspace of the direct product A™%. Let Q = Qa4 be the inductive limit
of the spaces 24 with respect to the natural embeddings 24, — Q4, for
A1 C Az.

We say that (...x9,21),(...,y2,y1) € Q are asymptotically equivalent if
there exists a compact subset N < & and a sequence g, € & such that
In In@Tp_ 1@+ ®L1 =Y OYn—1 @+ -- Qy1 in M®,

Denote by M®(—%) the quotient of Q by the asymptotic equivalence. We
denote an element of M®) represented by a sequence (..., xz,x1) either
by the sequence itself or by ... ® zo ® 1. We have a natural right &-action
induced by (... ®22®x1)-g=...Qu2® (21 9).

Example 4.4.34. If & has one unit, i.e., if it is a group, then M is a
covering biset in the sense of Definition If M is hyperbolic, then
M®(—) ig the limit G-space Xg, see Proposition |4.4.33

Example 4.4.35. If & is trivial, then M is a covering correspondence, as in
Definition defined by the anchors P, = f, and P, = .. The map f is a
finite degree covering. Then M®" is the space M,, of orbits of length n, see
Proposition and the space M®(—%) is the inverse limit of the spaces
M, with respect to the maps v, (1,22, ..,Zn+1) = (T2, 23,...,Tpni1), S€C
the comments after Proposition If + is a homeomorphic embedding,
so that the correspondence is interpreted as a partial self-covering f of a
topological space X, then M,, is naturally identified with the domain of the
nth iterate of f, by the homeomorphism (z1,xs9,...,x,) — x1. Then the
maps ¢, are identical embeddings, and therefore M®(%) is the intersection
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of the domains M, i.e., the set of points x € X’ such that f"(z) is defined
for every n > 1.

The endomorphism is contracting if the action of & on M®) is proper
and co-compact and the maps & — ¢ ®z : M®(%) are uniformly contracting
(in the sense that uniformly bounded distances can be made arbitrarily
small)...

Shadowing property for virtual endomorphisms...

Definition 4.4.36. Let & ~ M ~ & be a virtual endomorphism of
an étale co-compact groupoid. We say that it is contracting if for ev-
ery compact subset X < M there exists a neighborhood of the diagonal
U c P.(X) x P.(X) and a compact set N < & such that for every pair
(...x9,21), (.., y2,y1) € Q2 X ¢ if there exists a bounded sequence g, € &
such that (P.(gn - xn), Pr(yn)) € U for all n, then there exists a sequence
hn € N such that ¢, 2, QX1 ®...®T1 = Yy R®Yn—1® ...y - hy for all
n big enough.

Example 4.4.37. If the virtual endormorphism is associated with a self-
covering of a topological space (i.e., if & is trivial, and P, is a homeomor-
phism), then every element of €2 is interpreted as a forward Pj-orbit, and
we get the usual definition of an expansive (equivalently, expanding) self-
covering, see Definition [1.4.1

Example 4.4.38. If & is a group, then we can take U to be equal to the
diagonal, and we get a version of the definition of a hyperbolic covering
biset.

Definition of a contracting virtual endomorphism of a groupoid... Prove
structural stability of virtual enodomorphisms with shadowing property and
that contracting implies shadowing property and homotopical structural sta-
bility...

Theorem 4.4.39. Let & ~ M & be a contracting virtual endomorphism
of a path-connected étale groupoid &. Let I be the induced biset on the
iterated monodromy group IMG (M). Then the action groupoid M) &
is equivalent to the action groupoid Xpgamy X IMG (M).

Proof. ............. O

4.4.10. Simplicial contracting models. Prove that for every cover by
small open sets there is an iteration f™ such that the corresponding simplical
correspondence is homotopic to a contracting correspondence...

Explain how finite covers lead to complexes of groups...

The case of expanding Thurston maps.. [BM] monograph...
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Definition of the topological nucleus... prove that it is homotopic to a
contracting map...

Basilica, 22 4 i, Gupta-Sidki group... Hubbard tree and Hubbard cactus
for polynomials...

Proposition 4.4.40. Let f G X be an expanding covering map, and let
0 be as in Lemma [1.4.37. Then the covering dimension of X is equal to
the minimal value of n such that there exists a cover of X by open sets of
diameter less than 6 of multiplicity n + 1.

Proof. For every finite open cover U of X by sets of diameter less than ¢
the maximal diameter of the covers U,, exponentially decrease. By Lebegues
covering lemma, this implies that for every open cover V of X there exists
n such that U, is subordinate to V. The multiplicity of U, is equal to the
multiplicity of & by Lemma [4.4.3 O

4.4.11. Topological properties of expanding maps. Local properties
and their formulation in algebraic terms: connectedness, local connected-
ness, when the limit dynamical system is a covering of spaces, when it is a
covering of orbi-spaces, principal groupoid of germs, Hausdorff groupoid of
germs of the group action vs the properties of the limit dynamical system...

Proposition 4.4.41. Let f G X be an expanding self-covering of a compact
metric space, and let § > 0 be its strong injectivity constant. Then the
topological dimension of X is equal to the smallest d such that there exists
an open cover of X of multiplicity d + 1 by sets of diameter less than 9.

Proof. One inequality is obvious, the other follows by lifting covers by
.. O

Corollary 4.4.42. Let f G X be an expanding self-covering. The topo-
logical dimension of X is equal to the smallest dimension of a contracting
stmplicial model of f G X.

4.4.12. Expanding endomorphisms of orbifolds. Gromov-Shub The-
orem, and its extension to orbifolds and locally simply connected spaces....
Numeration systems on R", digit tiles, literature on this, also in the nilpo-
tent case...

4.4.13. Topological dimension one. Remind what it is... All rational
functions whose Julia set is not the whole sphere... Show that they are
contracting on a virtually free group, and so can not be finitely presented...
Prove also that iterated monodromy groups of rational functions are not
finitely presented except for the obvious exceptions ... Examples with Sier-
pinski carpet... Mention D. Thurston’s work...
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4.5. Thurston maps and related structures

4.5.1. Basic definitions. See the definition of Thurston maps, i.e., post-
critically finite orientation preserving branched self-coverings of the sphere
5% inl4.3.3

It is natural to consider Thurston maps up to the following equivalence
relation.

Definition 4.5.1. Thurston maps fi, fo with post-critical sets Py, , Py, are
combinatorially equivalent if there exist homeomorphisms ¢1, ¢o : S? —> S?
such that ¢;(Py,) = Py,, ¢1 is homotopic to ¢o relative to Py, and the
diagram

52 L SQ
l 1 l ¢2
512 ﬁ) SQ

is commutative.

We consider and sometimes define Thurston maps up to combinatorial
equivalence. For example, we can compose f with an element of the pure
mapping class group G p, of (52, Py), i.e., with a homeomorphism h : $? —
S? acting identically on Py and defined up to a homotopy relative to P;.
The composition does not depend, up to combinatorial equivalence, on the
choice of a particular representative h in the homotopy class.

One of standard ways of describing a Thurston map is using subdivision
rules. A subdivision rule is a topological correspondence f,t: Ay — Ay,
where A; are finite CW-complexes homeomorphic to S?, f is an orientation
preserving branched covering that maps cells of A; homeomorphically to
cells of Ag, and ¢ is a homeomorphism such that ¢(A;) is a subdivision of
Ag. Note that it follows from the definitions that the post-critical set of
fou s a subset of the set of vertices of Ay, hence f o (™! is a Thurston
map.

Example 4.5.2. Consider the CW complex Aj obtained by gluing two
copies of a right isosceles triangle along the boundary (by the identity map).
Let Aq be obtained from Ay by subdividing both faces in two congruent right
triangles, as it is shown on the top half of Figure and let ¢ : Ay — Ag
be the identity homeomorphism. We color the faces of A; black and white
so that no two faces sharing an edge have the same color, see Figure
where only the “front” part is shown. Let f : Ay —> Ay be the branched
covering that maps white triangles homeomorphically to the front triangle
of Ag, black triangles the back of Ag, and maps the vertices of A; to the
vertices of Ag as it is shown on the figure. Note that it is not important
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how exactly the cells are mapped by f (we can choose the affine maps,
for example), since we consider the Thurston map up to a combinatorial
equivalence. Note that the critical points of f are the vertex of the right
angle and the midpoint of the hypotenuse. It follows that the post-critical
set of the described Thurston map is the set of vertices of Ay.

Example 4.5.3. One can also consider a similar “square” example, where a
square pillow made of two squares (black and white) is covered by itself via
a branched covering of degree four. The covering pillow is the same square
pillow in which both squares are subdivided into four squares colored black
and white in a checkerboard manner, so that no two small squares sharing
a side have the same color. We may choose the covering preserving the
colors and the vertical and horizontal directions. This example can be also
modified in the way shown on the bottom half of Figure 7?7, where a “flap”
is added to the covering surface. Namely, we make a slit along a side of a
square of the covering surface and attach to it a “pocket” obtained by gluing
two squares along three sides. We also color the squares of the subdivision
in two colors so that no two squares of the same color share an edge, and
map black (resp., white) squares of the covering surface to the black (resp.,
white) square of the pillow.

Combinatorial equivalence of Thurston maps can be formulated in terms
of the iterated monodromy groups (i.e., of the associated bisets) in the fol-
lowing way.

Theorem 4.5.4. Let f1, fo be Thurston maps with post-critical sets Py, , Py, .
Let My, My, be the associated m1(S?\Py,)-bisets. The maps fi and fo are
combinatorially equivalent if and only if there exists a bijection ¢ : My —>
My and an isomorphism hy : m(S*\Py,) —> m(S*\Py,) induced by an
orientation-preserving homeomorphism h : S*\Py, —> S?\Py,, such that
G917 - g2) = ha(g1) - ¢(x) - hu(g2) for all g1, 92 € T1(S*\Py,) and x € My.

A proof of this theorem can be found in ... and [Nek05) Theorem 6.5.2],
see also...

Iterated monodromy groups (i.e., the associated bisets) of Thurston
maps are easy to compute in the case when the maps are given by subdivi-
sion rules. One can replace the topological correspondence f,1: Ay — Ag
by the induced correspondence on the dual graphs in the following way. Let
I'o be the dual graph of Ag, seen as a subset of S2. Then I'y = f~(Ty)
is the dual graph of A;. Suppose that e is an edge of 'y corresponding
to a common side of two adjacent cells A and B of Ay. If «(A) and «(B)
are contained in different cells of Ag, then the image of the common side
either belongs to an edge of Ay, which we will denote ¢/(e). If t(A) and ¢(B)
are contained in the same cell, then we denote this cell by /(e). We get
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Figure 4.15. Subdivision rules

then a continuous map ¢/ : I'y — T'y. It is easy to see that the iterated
monodromy group of the correspondence f,:' : I'y — T’y is equivalent as a
self-similar group to the iterated monodromy group of f,v: Ay — Ay, i.e.,
to the iterated monodromy group of the Thurston map f o :~! defined by
the subdivision rule.

Example 4.5.5. Consider Example[£.5.2] The dual graphs I'1, 'y are shown
of Figure [£.16] Take the front vertex ¢ as the basepoing in I'g. Let eq, e, e3
be the edges of I'y oriented from t to the other vertex of I'g. The preimages
of ¢ are to and ¢; as shown on the left-hand side of Figure [4.16]

The map ¢/ : 'y — T'g collapses the preimages of e; to the vertices of
Iy, maps the two preimages of es to e3 (once preserving and once reverting
the orientation) and maps the preimages of e3 to ea and e; (preserving the
orientation in the case of e; and reverting it for eg), see the figure.

Denote a = egleg,b = efleg,c = eglel. Note that acb = 1. Let tg, 1
be the f-preimages of ¢ in the front and the back sells of Ag, respectively.
Then ¢/(tg) = t and ¢/(¢1) is the other vertex of T'y. Let us choose the trivial
connecting path from ¢ to t = ¢/(¢y) and the path e; from ¢ to /(t1). Then
taking lifts of the generators by f and mapping them back by ¢/, we get the
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Figure 4.16.

wreath recursion
a=(e]les,efteeser) = (b,e o) = (b, taT e),
b= a(eflel, 65161) =o(1,c0),

c=o(erles, ezter) = a(b,b7h).

4.5.2. Thurston theorem. It is natural to ask when a Thurston map is
combinatorially equivalent to a rational function on C. This question was
answered by W. Thurston, by showing that it happens if and only if the
map has no topological obstruction defined as follows.

Let f : 2 — S? be a Thurston map with post-critical set P;. A simple
closed curve 7 in SQ\Pf is said to be periferal if one of the regions bounded
by v contains less than two points of Pr. An f-invariant multicurve is a
collection C of simple closed curves in SQ\Pf that are disjoint, non-periferal,
pairwise non-homotopic and such that for every « € C each connected com-
ponent of f~!(y) is either peripheral or homotopic to an element of C. By
slightly abusing notation, we will denote sometimes by f~!(y) the set of
connected components of f1(7y).

If C is an f-invariant multicurve, then we consider the following linear
map T : RE — RC:

Ac (67) = 2 o]

acf iy des(f ra—1)

where e, is the basic vector of R corresponding to v € C; [a] = e, where
o € C homotopic to «, if a is non-peripheral, and 0 otherwise; and deg(f :
a —> ) is the degree of the corresponding covering.

Let S2 be the Thurston orbifold associated with f, see m The Fu-

(1 - ﬁ) If the Euler

characteristic is positive, then the fundamental group of the orbifold is fi-
nite (which never happens for orbifolds of Thurston maps). If it is equal to

ler characteristic of S2 is the number 2 — erPf
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zero, then the fundamental group (and hence also the iterated monodromy
group) is virtually abelian. If the Euler characteristic is negative, then the
fundamental group is hyperbolic, see....

Theorem 4.5.6. A Thurston map f : S?> — S? with negative Euler char-
acteristic of the associated orbifold is combinatorially equivalent to a rational
function if and only if for any f-invariant multicurve C the spectral radius
of Ac is less than one. If it is the case, the rational function is unique up
to a conjugation by a Mobius transformation.

In the Euclidean case (Euler characteristic zero) the Thurston map f is
equivalent to an endormophism of the orbifold of an action of an affine group
on R2. The affine group (the fundamental group of the orbifold) contains
a subgroup of finite index isomorphic to Z2. The virtual endomorphism
of the fundamental group associated with the self-covering will induce a
virtual endomorphism ¢ of Z2. If the eigenvalues of ¢ are complex, then f
is equivalent to a unique (up to conjugation) rational function. If they are
real and different, then f is not equivalent to a rational function. If they are
real and equal, then it is equivalent to a rational function, but the function
is not unique.

An f-invariant multicurve with spectral radius of A¢ greater or equal
to one is called an obstruction. The simplest class of obstructions are Levy
cycles: a sequence of simple, disjoint, pairwise non-homotopic, non-periferal
curves 71,72, - --,vn such that f : v — f(7;) is of degree 1 and f(v;) is
homotopic to ;+1, where the indices are taken modulo n. Note that the fact
that a Levy cycle is an obstruction for a Thurston map to be equivalent to a
rational function follows just from the fact that the (S, )-biset associated
with a post-critically finite rational function is hyperbolic, see... Existence
of a Levy cycle contradicts hyperbolicity of the biset, since we get then an
element of infinite order g € m1(S,) represented by 71 such that ¢"(g) = ¢
for a virtual endomorphism associated with the biset. Then all the elements
of the cyclic group generated by g must belong to the nucleus. In fact,
the converse statement is also true, and was proved by L. Bartholid and
D. Dudko, see...

Theorem 4.5.7. A Thurston map f has a Levy cycle if and only if the
m1(Sy)-biset associated with it (where S, is the Thurston orbifold of f) is
not hyperbolic.

We will see examples of Levy cycles later ... Here is a simple example of
an obstruction which is not a Levy cycle.

Example 4.5.8. Consider Example [£.5.3] It is easy to check that the Euler
characteristic of the associated orbifold is negative. Let v be a simple curve
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formed by two horizontal medians of the squares, see Figure [4.15] where
it is drawn blue. Then f!(v) is the union of horizontal medians of the
small squares of the covering surface. One of the connected components is a
closed curve on the flap and is periferal. Two other connected components
are homotopic to v and are mapped to v by a degree two covering. It follows
that C is an f-invariant multicurve and A¢ is the identity map.

4.5.3. Teichmiiller space dynamics. Let f : S — S? be a Thurston
map with the post-critical set Py. The Teichmiiller space Tp, of (52, Py) is
the space of homeomorphisms 7 : §? — C modulo the equivalence relation
identifying two homeomorphisms 7,79 if there exists a Mo&bius transfor-
mation ¢ : C —> C such that ¢ o 71 is isotopic to 7y relative to Py. We
interpret elements 7 : S? — C as complex structures on S2. For every
complex structure 7 € Tp, there exists a unique complex structure 7/ such
that the map f, = 7o f o (7/)"! closing the diagram

sz L, g
(4.6) 17/ lf
¢ L ¢

is a rational function. Essentially, 7’ is obtained from 7 by pulling it back
by the branched covering f. Let us denote 7" = (7). It follows from the
definitions that if g is a homeomorphism of S? acting identically on Py, then
we have

(4.7) Orog(T) = 0p(T) 09, 0gos(T) = 04(T09).

Thurston’s theorem is proved by studying dynamics of o¢. Namely,
it follows from the definitions that f is combinatorially equivalent to a ra-
tional function if and only if o has a fixed point. One can show that o is
non-uniformly contracting, and hence either iterations of oy converge to a
unique fixed point, or there is no fixed point and the iterations of o con-
verge to infinity. The latter implies degeneration of the associated complex
structures and existence of an obstruction. One can read about the details
of the proof in... and ...

The Moduli space Mp, is the space of injective maps 7 : Py —> C
modulo post-compositions with M6bius transformations. It is a classical fact
that 7p, is naturally identified with the universal covering of Mp,, and that
the fundamental group of Mp; is the (pure) mapping class group of (S 2, Py),
i.e., the group of homeomorphisms of S? fixing pointwise P; modulo isotopies
relative to Pr. We will denote this group Gp,. The covering Tp, — Mp,
is the map 7+ 7] p;- The action of the fundamental group on the universal
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covering by deck transformations is identified with the natural right action
of the mapping class group on 7p, by pre-compositions.

If we choose three points of Py, and specify the values of 7 on them (e.g.,
0,0, and 1) then a point of Mp, is uniquely determined by the values of

T:Pp— C on the remaining points of P;. This gives us an identification

of Mp, with the subset of CIPr1=3 consisting of vectors (21, 2, . . . , z‘pf‘_?,)
such that z; are pairwise different and not equal to 0 or 1.

The map oy : Tp, — Tp, naturally induces a correspondence on Mp, in
the following way. Let (G1 be the subgroup of elements of the mapping class
group G p; consisting of all liftable homeomorphisms, i.e., homeomorphisms
g : (S? Pr) —> (Sa, Py) for which there exists a homeomorphism ¢’ of S?
fixing pointwise Py and such that the diagram

/

52 AN SQ

bl

52 AN SQ

is commutative.

It is known that G is a subgroup of finite index in Gp, and that g is
unique, so that ¢y : ¢’ — g is a virtual endomorphism of the mapping class
group, see [KPS16l, Proposition 3.1].

Let W be the quotient of Tp, by G1. Since G is a finite index subgroup
of the mapping class group, the identity map on 7p, induces a finite degree
covering map F': W —> Mp,. For every g € G1 and 7 € Tp,, we have
0p(T09g) = 040f(T) = 0pog = 04(1) 0 g, by (4.7)). If we use right actions for
both Gp, and oy, then we get the relation g - oy = oy g

It follows that 7 — oy(7) induces a continuous map ¢ : W — Mp,.
We get a correspondence F,¢ : W —> Mp,. We call it the moduli space
correspondence associated with f. If we interpret ¢ as a model of the iden-
tity map, then the correspondence is the projection of the correspondence
of(1) = 7 to the moduli space. More on this correspondence and a more
direct description of it see in [Koc13].

Denote by T be associated biset over the fundamental group Gp, of
Mp,. According to Propsition it is naturally identified with the set of
maps g1+ 0f * g2 = Ogofogs 10T g1,92 € pr with the natural action of pr.

4.5.4. Maps on the moduli spaces and skew products. The moduli
space correspondence F, . : W — M p, associated with a Thurston map f is
sometimes (but not always) a partial self-covering, i.e., ¢ is a homeomorphic
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embedding, and we get a commutative diagram

9f
Tp, <« Tp

l l

F
Mpf e Mpf.

Example 4.5.9. Let f be a degree two branched covering, with one fixed
critical point x, and one critical point y belonging to a cycle yg = v, y1,-- -, Yn—1
with f(y;) = yi+1, where indices are taken modulo n. Let 7 be a point of
Tp,. The corresponding point of the moduli space is the restriction of 7

to the set Py = {z,y0,91,-..,Yn—1} to C modulo Mébius transformations.
By choosing the appropriate Mobius transformation, we may assume that
7(z) = o, 7(y0) = 0, and 7(y1) = 1. Then the point of the moduli space is
identified with the vector (7(y2),7(y3), ..., 7(Yn—1))-

Consider the diagram for this situation. If 7’ is also normal-
ized the same way as 7 (i.e., if 7(z) = o0,7'(y0) = 0,7'(y1) = 1), then
fr is a rational function such that oo is a totally invariant critical point,
0 is a critical point, mapped by f, to 1, and f-(7'(y;)) = 7(yiz1). If
(p2, 03,y Pn-1) = (7" (y2), 7" (y3), ..., 7' (yn—1)) is the tuple representing 7/,
then we have f-(0) = 1, f(1) = 29, fr(pi) = zi41 for i =2,...,n — 2, and
fr(Pn-1) = 0.

We conclude that f; is a quadratic polynomial with critical point 0 such
that f-(0) = 1, hence f.(z) = az? + 1 for some non-zero coefficient a, and

we have fT(l) = ZQafT(pQ) = 23, 7f7'(pn*2) = anbfﬂ'(pnfl) = 0. Note
that the last equality implies a = —1%, so that

n—1
2
z
fT(Z) =1- 5
Ph1
and
1 p2 pQ,
22=1— 3 ,23—1— 22, ,anl—l— 32.
n—1 n—1 pn—l

It follows that if we identify the moduli space with a subset of C"~2
as above, then the map F equal to the projection of the correspondence
of(1) — 7 to the moduli space is given by the formula

1 p3 P
F(pQ)p37"'apn1):(1_2,]-_ 22 ,...,1— 32 .
yo .| yom .| Prn-1

Note that in this case the map F' can be extended to an endomorphism
of the projective space PC"~2 given in the homogeneous coordinates by

[p1:p2c.c.ipn1] = [Phy Py =PI iDo — D5t Dol — Da o).
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S. Koch showed that F extends to an endomorphism of PC"~2 for any
unicritical (i.e., having a unique finite critical point) post-critically finite
polynomial...
We can also put the moduli space correspondence F' and the rational

function f, together into one skew product map:

2 2 2

z 1 D Pn—2
(z7p27p37"'7pn—1)'_)(1_ 2 71_ 2 71_ 22 7"'71_ ;L )
Pp—1 Pp—1 Pp—1 Pp—1

It also extends to an edomorphism of the projective space.

Such and similar constructions are sources of (otherwise hard to find) ex-
amples of post-critically finite endomorphisms of PC", i.e., endomorphisms
such that the set of post-critical points is a union of a finite number of
varieties. See more on this in ...

Example 4.5.10. Consider a degree 2 Thurston map with two critical
points xg,x; such that f?(z;) = x;. Then the post-critical set consists
of four points xg, f(xo),x1, f(x1). Let as identify z¢ with 0, x; with oo,
and f(z1) with 1. Then a point of the moduli space is represented by the
position p of f(xzg). Then f; is a rational function with critical points 0, co,
such that f,(0) = 1, fr(1) = oo, fr(p) = 0, f-(0) = F(p), where F is the
moduli space correspondence.

Any quadratic rational function f;(z) with critical points 0 and oo is of

the form gj;j_rs If fr(e0) =1 and f;(1) = oo, then it is of the form jzfll’

It follows from the condition f;(p) = 0 that f;(z) = z;ipf. Consequently,
F(p) = f-(0) = p?. Note that the fixed points of F(p) are 0,1, 00, which
do not belong to M. This implies that there are no rational functions with
the given dynamics on the post-critical set. We will see later that there
exist obstructed Thurston maps realizing this dynamics (e.g., the mating of
two copies of 22 — 1, see...). Any such Thurston map f has a Levy cycle

consisting of a single closed curve separating {z¢, z1} from {f(z¢), f(x1)}.

The corresponding skew product map is given by (z,p) — (2271’2 p2).

221"

It does not extend to an endomorphism of PC2.

Example 4.5.11. This is an example from [buff-coch... page 571]... Con-
sider a Thurston map f of degree 3 with two fixed simple (i.e., of local
degree 2) critical points and two simple critical points that are interchanged

by f. An example of such a map is f(z) = 25’;11 with critical points

0,1,—1/2 4+ i4/3/2. The first two critical points are fixed, the other two
are interchanged. Let us assume that one of the fixed critical points of the
Thurston map f is 1, and that the critical points that are swapped are
w=—-1/2+1iy/3/2 and @ = —1/2 — 4/3/2. Then a point 7|p, of Mp, is
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represented by the position p of the other critical point. Then the corre-
sponding rational function f; is represented by a rational of degree 3 that
has a fixed critical point 1, swaps two critical points w and @, and has the
fourth critical point p.

i = [a: C =p! ; : _ az’+3bz%42a
For a point o = [a : b] of[(C = I, consider the function g, = 575 -5
6(b%z—a?)(1—2%)

Its derivative is hence the critical points of g, are 1, w,w, and

(2b23+3az+b)?
2 _ a+3b+2a __ _ a+3bw+2a _ w(3b+3aw _ —
a”. Note also that go(1) = 575,55 = 1, 9a(W) = 5730055 = 30480 = ©

and similarly g,(@) = w. It follows that g, satisfies the same conditions on
the critical points as f;. Then g, — f; has critical points at 1, w,w and equal
to zero at these critical points. It follows that the numerator of g, — f; is
divisible by (23 —1)2, and since it is of degree not more than 6, we get that
it is equal to a(z® — 1)? for some a € C. In particular, it is true for the
numerators of gy — fr and g — fr. Let P(z) and Q(z) be the numerator
and the denominator of f,, respectively. Then (222 4 1)P(z) — 322Q(z) and
3zP(2) — (22 +2)Q(2) are both equal to (2% —1)? times a complex number.
It follows that there exist a,b € C such that

a(32P(z) — (22 + 2)Q(2)) + b((223 + 1) P(2) — 32%Q(2)) = 0,

. . . z (1/23 22
which implies f(z) = ggzg = % = Ga:t)(2)

every point of Mp, there exists an o € C such that fr = go. The point of

the moduli space is represented by «?. The image of the critical point a? is

(a?) = a’+3a4 120 _ (®+1)(a’+20) _ ati2a
Yo 206+303+1  (aP+1)(203+1)  2a3+1°

Consequently, for

We see that in this case the moduli space correspondence F,.: M’ —

3
/A\/lisgivenbytvvomaApsL:ab—>oz2 and F' : a — 0‘2(2371? Here M =
C\{1,w,w} and M’ = C\{#£1, tw, +w} (check that if & is a cubic root of 1,

then the only solutions of O‘Q(zgif) = ¢ are ¢ (three times) and —¢).

Here is another interesting example from... [BEKP]...

Example 4.5.12. Consider the polynomial f(z) = ((i—1)2%2+1)2. Its finite

critical points are z = 0 and z = 44 /ﬁ. The orbits of the critical points

are
1

“V1-—4
hence {00, 0,1, —1} is the post-critical set of f.

+

P01l -1 -1,

We can write f(z) as the composition hog of g: z +> 22 and h : z >
((i — 1)z + 1)2. The sets of critical values of both g and h are {0,00}. Let
A ={0,1,0} and B = {0,00,1,—1}. Then B = g7'(A4) and A = h=}(B). It
follows that g and h induce pull-back maps oy : T4 —> Tp and 0}, : Tp —
Ta, and that oy = 040 0p,. But T4 is a single point, since the dimension
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of Tp is equal to |P| — 2. It follows that oy is constant. In particular, the
map ¢ in the associated moduli space correspondence F,. : M' — M is
constant.

4.5.5. The iterated monodromy group of the moduli space cor-
respondence. Let f be a Thurston map with post-critical set Pr. Recall
that the fundamental group of the moduli space Mp, is naturally identi-
fied with the pure mapping class group of (52, Py), i.e., with the group of
homeomorphisms g : $2 — S? acting identically on P; modulo isotopies
relative to P;. Every such a homeomorphism induces an automorphism g,
of the fundamental group S2\Pf, defined up to inner automorphisms. We
get a homomorphism from 73 (M pf) to the group of outer automorphisms
of 1 (S?\Pf). It is known that this homomorphism is an embedding...

The associated biset over the mapping class group also has a natural
interpretation. Consider the set F of all homotopy classes relative to Py of
the maps of the form g;0 fogo, where g1, go are elements of the mapping class
group G. Then F is naturally a G-biset. It follows from the description of the
virtual endomorphism ¢ associated with the correspondence F,¢: M’ —
M that F is isomorphic to the biset associated with the correspondence....

Let ¢ be the virtual endomorphism of m(S*\Py) induced by f, i.e., by
lifting loops by f. Let u be the virtual endomrophism of m (M pf) induced
by the moduli space correspondence. Its domain is the subgroup G; of
homeomorphisms liftable by f, and if g € G1, then u(g) is the lift of g by f
acting identically on f~!(Pf), see.... It follows directly from the definition
that the action of m (Mp,) on 1 (S*\Py) agrees with ¢ and p in the sense
that for every g € Gy there exists § € m(S?\Py) such that

(4.8) $(79) = p(y)9°

for all v in the domain of ¢. (relation between the domains of ¢ and p...)
Since ¢ is surjective, equation determines u(g) uniquely as the only au-
tomorphism of G mapping ¢(y) to ¢(79). This makes it possible to compute
1b.

The procedure is interpreted in terms of bisets in the following way. If
¢ is an endomorphism of a group G, then the associated biset is G as a set
with the following left and right actions:

hi-g-ha = hgha,

where the dots on the left hand side represent the actions on the biset, h(f is
the action of the automorphism on hy, and multiplication on the right-hand
side is the usual multiplication in G. In order to avoid confusion, we will
denote the element of the biset corresponding to g € G by ¢ - g. Then the
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formula for the actions looks more natural:
hi-¢-g-hy=d-h{ghs.

We will denote this biset by [¢]. Note that [¢] is a covering biset, the single-
ton {¢-1} is its basis, and the homomorphism ¢ is the virtual endomorphism
(this time everywhere defined) associated with [¢] and ¢ - 1.

It is also easy to see that two bisets [¢1], [¢2] are isomorphic if and only
if there exists an element g € G such that 2?1 = (z1)9 for all z € G. In
other words, if and only if ¢ and ¢9 differ by an inner automorphism of G.

It follows directly from the definitions that [¢1 - ¢2] is isomorphic to
[61] ® [¢2], where ¢1 - ¢2 is the composition (in terms of a right action) of
the endomorphisms. In particular, the set of isomorphism classes of bisets
[¢] defined by automorphisms ¢ of G is a group in terms of tensor products
naturally isomorphic to the outer automorphism group of G.

Suppose now that 90 is a G-biset, and let H be a subgroup of the
outer automorphism group of G. Then the induced H-biset is the set of
isomorphism classes of bisets of the form [h1] ® M ® [ha] where hy, hy € H
with the natural left and right H-actions.

A particular case of this situation is the moduli space correspondence.
If f is a Thurston map, then the biset over the pure mapping class group
associated with the moduli space correspondence is naturally isomorphic
to the biset induced on the mapping class group (seen as a subgroup of
the outer automorphism group of m1(S%\Pf)) induced by the m1(S%\Pf)-
biset M; associated with the Thurston map. A biset [hi] @ M @ |h2] is
isomorphic to the biset My, o fon, (check the sides...) associated with the
Thurston map hj o f o hs.

The biset ... is essential in the study of combinatorial equivalence of
Thurston maps (see...) and obstructions. Recall that if v is a closed simple
curve on a surface, then the Dehn twist about « is the following homeo-
morphism (defined up to an isotopy). Consider a narrow annulus along ~,
and let 7 and 72 be the inner and the outer curves bounding it (both of
them are homotopic and close to ). The twist acts identically outside the
annulus, and rotates 1 by a full turn, see Figure... write better...

Let C be a multicurve. The Dehn twists about the elements of C pairwise
commute and freely generate the abelian group Z¢ < G p;- It is easy to
check that the map A¢ from Theorem is precisely the restriction of
the virtual endomorphism associated with ... to this group. In particular,
Theorem [£.5.7]implies that if f has an obstruction, then ... is not hyperbolic.
In fact, it also follows that if any of the Thurston maps h; o fo hy € ... is
obstructed, then the biset ... is not hyperbolic.
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The bisets of the form [¢] ® M and M ® [¢] are easy to compute using
the following description of the corresponding wreath recursions.

Proposition 4.5.13. Let 9 be a covering G-biset, and let X be a basis.
Let Wgp : G —> Sy x GX be the corresponding wreath recursion. Let ¢ be
an endomorphism of G. Then {¢} ® X and X ® {¢} are bases of the bisets
[¢] ® M and M [P], respectively. Let Vgem, Yagle] * G —> Sx ¥ GX
be the associated wreath recursions, where we identify {¢} @ X and X ® {¢}
with X by the bijections ¢ @ x — = and x Q ¢ — x. Then

Vigem(9) = ¥(g?),  Vangpe)(9) = (¥(9))?,

where ¢ acts in the second equality on Sx x GX diagonally: (0(gz)zex)? =
7 (95 aex-

The proposition follows directly from the definitions and we leave its
proof to the reader as an exercise.

Example 4.5.14. Consider the case when f is the rabbit polynomial 2>+ c,
where for ¢ & —0.1226 + 0.7449i is such that f3(0) = 0. The biset 9 is
given by the wreath recursion

a=o0(l,c), b=(1,a), c=(1,b),

see ... Denote this biset over the free group {a,b,c | &) (which is the
fundamental group of the corresponding punctured sphere C\Py) by 9.
Consider also the biset 9t; given by

a=o(l,c), b=1(a,1), c=(1,b).

The pure mapping class group is generated by two Dehn twists S and T’
acting on the fundamental group (from the right) by the automorphisms

GS =a, bS _ be, CS' _ ccb

)
and

aT — aba7 bT — bba, CT = c.

Using Proposition [4.5.13] we see that the biset [S] ® 9y is given then
by the wreath recursion

o(1,0),
= (1,0)" = (1,0,
— (17b) (1,ba) _ (1,bba),

—~

which implies that [S] ® DMy is isomorphic to Mo @ [17].
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Similarly, [S] ® 9

o(1,c),
(a, )(“b) = (a,1),
(1,

b) " = (1,0),

which gives [S]® 9ty = ;.
The biset [T] ® My is given by
= (0(1,0))7 @) = g(a,ae),
b=(1,0)°") = (a,1),
= (1,b).

Conjugating the right-hand side by (a~!,1), we get the wreath recursion
defining 91;.

The biset [T'] ® My is given by
a=(0(1,¢)°1 = g(c ra e, ac),
b=(a,1)°1 = (1,¢ Lac),
= (1,b).
Conjugating the right hand side by (c'ac, 1), we get an isomorphism of

[T] ® My with M ® [R], where R is the automorphism

aR — CLaC, bR — b, CR — coc

—1 —1 —1 —1 —1,.-1 —1 —1 —1
Note that a®  =a,b° =1 ,¢5 =¢ ¢ andadl =da b7 =

)

pa ' TN = ¢ Tt follows that
ol 5T = (babil)si1 = cbetach et = g e
bT_IS_1 — (baba—lb—l)s_l — bc_la_lcb_lc_1
CT71$71 S 1 b 1 71

Conjugating the right-hand side by ¢bc lac, we conclude that R = 71871,
so that [T] ® My is isomorphic to Mo @ [T 151

Consequently, the biset associated with the corresponding moduli space
correspondence is given by the wreath recursion

S=(11), T=0c1,T7's™).

It is easy to check that it coincides with the iterated monodromy group of
the rational function p — 1 — pg, which is a realization of the moduli space

correspondence, as explained in Example m (make an exercise...)

Example 4.5.15. 22 4 i... obstructed maps in the corresponding family...
then move to exercises...
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Figure 4.17. The iterated monodromy group of ((i — 1)z2 4 1)?

Example 4.5.16. Consider the polynomial f(z) = ((i — 1)2? + 1)? from
Example Take the generators a, b, ¢ shown on the left-hand side part
of Figure.., going around the post-critical points in the positive direction.
The right-hand side part shows their preimages and the connecting paths
we are using to compute the wreath recursion.. We get

a=(l,a,¢c,1), b=(12)(34), c=(23)(1,b,1,1).
Denote by 9 the corresponding biset. Let 911 be the biset given by

a=(1,a,c1), b=(13)(24), c=(14)(1,1,1,b).

Consider the same Dehn twists S and T as in the previous example.
Let 9 be the biset associated with f. We have cb = (1342)(b,1,1,1), ba =
(12)(34)(a,1,1,c) for My, and cb = (1342)(1,b,1,1), ba = (13)(24)(c, 1,1, a)
for M.

The biset [S] ® My is then given by

a = (17 a7 C7 1)7

b= (13)(24)(b,1,b 1, 1),
(14)(b,1,1,1).

Conjugating the right-hand side by (b=1,1,1,1), we get ;.
The biset [S] ® M is given by
a = (17 a? C7 1)’
b= (12)34)(b"",b,1,1),
c = (23)(1,b,1,1).

Conjugating by (b,1,1,1), we get that [S] ® 91 is isomorphic to M.
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The biset [T ® My is given by
a=(a,1,1,c),
b= (12)(34)(a,a ' c,c ),
c=(23)(1,b,1,1).
Conjugating by (a1, 1,1, ¢)(1342) we get M;.
Similarly, [T] ® 91 is given by
a=(c1,1,a),
b= (13)(24)(c,at, ¢t a),
c=(14)(1,1,1,b).
Conjugation of the right-hand side by (1, a, ¢, 1)(1243) produces the wreath
recursion associated with 9.

We see that the subgroup G of the liftable elements of the mapping
class group has index 2 and is mapped to the trivial element by the virtual
endomorphism. This agrees with the fact that the lifting map o is constant.

Example 4.5.17. Computations become much more complicated for higher
degree and for post-critical sets of larger size. The iterated monodromy

2
group of the map F(py,p2) = <1 - 1’;—%, 1— ]%), which equal to the mod-
1 1
uli space map associated with a quadratic polynomial whose critical point
belongs to a cycle of length 4, was computed by J. Belk and S. Koch in

[BKOS...]. It is generated by the wreath recursion

a=(b1,1,b), d=(12)(34)(1,a,1,a),
b=(crc1,1), e=(f,1,1,1),

c= (14)(23)(d’ dy’da:a 1)7
f=(13)24)(b",1,eb,e),

where d, = (fa)™! and d, = (ceb)~!.

Even though the computations often become too complicated to do them
by hand, they can be efficiently implemented on computer, see the papers
.. and the computer packages...

Solution of the “twisted rabbit” problem... The problem is to decide for
a given Thurston map f and a homeomorphisms A1, ho of S2\Pf when the
Thurston maps hy o f and ho o f are combinatorially equivalent.

It follows from Theorem that hyo f and ho o f are combinatorially
equivalent if and only if there exists an element h of the pure mapping
class group such that the bisets [h *hi] @ M ® [h] and [h1] @ My are
isomorphic. Thus, the question of combinatorial equivalence of compositions
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T A/ D\
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f——

Figure 4.18.

of f with homeomorphisms is equivalent to the conjugacy in the biset over
the mapping class group..., i.e., to the question when for given two elements
x1, 9 of the biset ... there exists h such that o = A~ 21 - h.

Note that if hy -z = x - hg, then hy - and hy - x are conjugate (since we
have ho -z = hy - (x - ho) -h2_1). Suppose that {x = z1,x2,..., 2y} is a basis
of the biset ..., and suppose that fi, fs,..., fin are such that x = f; - z; for
every i (we may assume that f; = 1). We have g -z = z; - g|, for some z;.
Then we have g-z = f[l -x - g|s, hence g -z is combinatorially equivalent to
g|wf;1. We have a map A : g — g|xf;1, where i is such that g -z = z; - g|,.
If the biset ... is hyperbolic, then A is contracting the length of ¢, and there
exists a finite subset A G such that for every g € GG there exists n = 0
such that A™(g) € A. Then the problem of classifying the elements of ... up
to combinatorial equivalence is reduced to classification of the elements of
A@My. Even if ... is not hyperbolic, it is often possible to understand the
dynamics of the map A on G and reduce the problem to a manageable part
of ...

Example 4.5.18. The twisted rabbit problem...

Example 4.5.19. 22 +i...

Combinatorial models for hyperbolic polynomials...

4.5.6. Iterated monodromy groups of skew product maps. Recall
the definition of the skew product map...
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o® e Qg

Figure 4.19.

The skew product structure of the map makes it possible to draw the
z-slices... They are the Julia sets of forward iterations ...

For example, see Figure where the z-slices of the Julia set of

F(z,p) = (1 — ;—;, 1- 1%) are shown. The figure shows the Julia set of

the second coordinate 1 — 1% (of the moduli space map) and the slices of the

Julia set for the corresponding values of p.

The iterated monodromy groups of the skew product correspondences
can be computed in a way similar to the computation of the iterated mon-
odromy groups of moduli space correspondences....

Let 90 be the 71 (S?\Pr)-biset associated with the Thurston map f. The
fundamental group of the space ... of the skew product correspondence is
the semidirect product m1(S*\Pf) x G p;- 1t acts faithfully on 71 (S?\Py)...

Let {9, My, ..., M—1} be a basis of the biset T associated with the
moduli space correspondence. Each of 9; is an (isomorphism class) of a
m1(5%\Py)-biset of the form [h1] ® M@ [he] for hy, hy € Gp,. Consider the
Wl(Sz\Pf)—biset Mo @M ® -+ - @ My,—1 (where, as always, @ denotes the
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Figure 4.20.

disjoint union of bisets), and choose bases X; of 9;. Let h be an element of
the mapping class group Gp,. Then for every i = 0,1,...,m — 1, the biset
[h]®M; is isomorphic to a biset of the form M;®[A;] for some h; € Gp,. The
set h@X; = {h®z : x € X;} is a basis of || @9M;, while {x®@h; : x € X;}is
a basis of M; @ [hi]. The wreath recursion associated with the basis h ® X;
isg— \Ifi(gh), where W, is the wreath recursion associated with 9; and X;.
The wreath recursion associated with X; ® h; is g = (¥;(g))". Since two
bisets are isomorphic, there exists an element ¢ ; € Sx, X 7T1(S2\Pf) such
that

W) = (Ws(g))" 0
for all g € m (SH\Py). ...

Example 4.5.20. Consider again the case of the rabbit polynomial from
Example The biset 9o @ My is given by the recursion

a = (12)(34)(1’67]‘70)7 b: (1?a7a7 ]‘)? c= (17b7 1?b)'
The computation in Example shows the following relations:
[S]@M =N @[T], [S] @M =Ny,

which implies
S=(T,T,1,1).
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We also have
[T]1@ Mo =My - (a,1), [T]@M =M@ [R]- (¢ tale, 1),
where R = T~1S~1ebetac. Tt follows that
T = (13)(24)(a, 1,718 teb, T 1S Lebe Lac).

Consequently, the iterated monodromy group of the skew product map
(z,p) — <1 _2 p%) is given by the wreath recursion

ol
a=o(l,c1,c),
b=(1,a,a,1),
c=(1,b1,b),
S=(T,T,1,1),

T =m(a, 1, T 1S teb, T71S tebe Lac),
where o = (12)(34) and 7 = (13)(24).

Example 4.5.21. Consider the mating of 22 — 1 with itself. It is generating
by two copies of the iterated monodromy group a = o(a~!,ba),b = (1,a) of
22 — 1. We get the wreath recursion

a] = U(afl, biay), ag = a(a;l, baas),
by = (1,a1), by = (1,a9).
We impose the relation bia; = baao, so that the above wreath recursion is
considered to be on a free group of rank 3 generated by a1, b1, ba. We have
ag = b;lblal.
We get then the recursion 9y over the free group generated by a1, b1, ba:
a; = a(afl,blal),
by = (1,a1),
by = (1,b5 'bras).
Consider also another recursion, denoted 9);:
a] = a(l,aflblal),
by = (a1, 1),
by = (1,65 'bras).
Consider the following Dehn twists:
al =al™, ol =00, b = b,

and
—1
D by b2 D D
ay = all s bl = bl, b2 = b2.
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Direct computations show then the following relations:
[T] @My = My, [T]@ M = Mo @ [T]
and

[D] @My = My ® [D] - (1,b, by), [D]® My = My - (a; *, by "bray).

It follows that the iterated monodromy group of the corresponding skew
2

product (z,p) — (ZZQf’l ,pQ) is given by the recursion

a) = J(afl,blal, l,aflblal),
by = (1,a1,a1,1),

ag = o(ay ', baag, ayt, boas),
by = (1,a9,1,as),

T =nx(1,1,T,7),

D = (D, Dby 'b1,a7t, as),

where o = (12)(34) and 7 = (13)(24).

The skew product structure of the map (z,7) — (f-(z), F (7)) is reflected
in the structure of the iterated monodromy group. Namely, as the map does
not depend on z in the second coordinate, we get a semiconjugacy from the
skew product map to the moduli space map F. This semiconjugacy induces
a natural semiconjugacy from the iterated monodromy group of the skew
product to the iterated monodromy group of the moduli space map acting
on the corresponding trees.

For instance, if we take the group G = {a, b, ¢, S, T from Example
then the map {1,2,3,4}* — {0,1}* is generated by 1 — 0,2 — 0,3 —
1,4 — 1. This maps agrees with the wreath recursion so that it induces
the natural epimorphism from the group G to the group IMG (1 — 1/p2)
generated by

S=(T,1), T=(01)(1, T 's™1).

The group Gy = {a,b,c) generated by the loops in the z-plane belongs to
the kernel of the epimorphism. (In fact, one can prove that it is equal to
the kernel.)

In general we have the map .... and the epimorphism...

The group Gy = {a,b,c) is self-similar, but not level-transitive. The
quotient of the tree {1,2,3,4} is the tree {0,1}* on which IMG (1 — 1/p?)
(i.e., the quotient G/Gp) acts. The group Gy is the faithful quotient of the
free group for the biset My D M.
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The preimage of a path in the quotient tree {1,2,3,4}*/Gy is a binary
Go-invariant subtree on which G acts level-transitively. The action is nat-
urally identified with the left action on the space of right orbits of the biset
BL_ My, @M, @ -+ - @M, for the sequence w = (41,2, . ..) describing the
path in the quotient tree. (make the indexing nice...) The action is not
faithful. Let us denote by ... Description of the family...

Example 4.5.22. Let f(2) = 22 +i. The corresponding skew product

2 2
map is conjugate to F'(z,p) = ((1 — %Z) , (1 — %) ), see ... Its iterated

monodromy group is generated by
a=(12)(34), R =(13)(24)(1,b,1,b),

b=(a,c,a,), S=(T,T,S,8S),
c= (b71717b)7

where T = babcbS™'R™!, see Exercise
Consider a bigger group ...

Example 4.5.23. Let m = Z;io k;2" for an infinite sequence koki ... €
{0, 1}* of zeros and ones be a dyadic integer. Then 7™ is well defined and is
given by the wreath recursion 7™ = (72, 77/2) if m is even (i.e., if ko = 0)
and 7" = o (r(M=D/2 7(m+D/2) if m,, is odd (if ko = 1).
Let
a=o(a"t,ba), b=(1,a)

be the generators of basilica, and consider the family of groups
G = {a,b, a’”, b7m>.

Informally, the group G,, is obtained by taking two copies of the basilica
group IMG (22 — 1) and “rotating” one of them by a power of the adding
machine (i.e., the loop around infinity).

If m is even, then we have

Tm

" =a(a™", (b)), b7

If m is odd, then

a" = o1, (a )™ ), b = (@ ).
Note that m/2 if m is even and (m — 1)/2 if m is odd is the dyadic integer
Z?io ki 12°, i.e., the integer corresponding to the shift kiks ... of the se-
quence koki .... We see that the groups GG, form a family with the universal
group equal to the subgroup {ay, b1, as, b2) of the group from Example(4.5.21
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Tn—-1|Tn-1

0|1
a1 ap—1
x|z Tn—2|Tn—2
a2
°
°
T2|T2 °
as z3|7s aq

Figure 4.21. Automata generating IMG (f) for hyperbolic quadratic polynomials

4.6. Iterations of polynomials

4.6.1. Iterated monodromy groups of sequences of polynomials.
Let aj,aqg,...,ar be a sequence of elements of the symmetric group S(X)
for a finite set X. Consider the following oriented CW-complex. Its set of
vertices is X; for every permutation a; and for every cycle (x1,x2,...,2,)
of a; we have a cell with vertices x1,xo,..., 2, going around the cell in
the given order, according to the orientation. Different cells do not have
common edges. We will call this complex the cycle diagram of the sequence
a;.

Definition 4.6.1. A sequence aq,as,...,a; € S(X) is dendroid if its cycle
diagram is contractible.

For example (12)....

Polynomial iterations, relation with dendroid automorphisms of a rooted
tree... Examples of self-similar families... random compositions of z? and
1 — 22... coming from the skew product maps...

4.6.2. External rays and iterated monodromy groups of polyno-
mials. The case of one polynomial, kneading automata,

4.6.3. Quadratic polynomials. Quadratic polynomials, their symbolic
dynamics...
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For example, for Ry is the Basilica group from Example... The groups
Koo and K11 are the iterated monodromy groups of the “Rabbit” and “Air-
plane” quadratic polynomials, respectively...

4.7. Functoriality

4.7.1. General discussion. Maps between bisets and the induced semi-
conjugacies of the limit dynamical systems... When it is onto, when it is
one-to-one... ....

Let G; ~ X; be actions of groups. We say that a bijection f : X1 — X
is a bounded orbit equivalence if for every g € Gy there exists a finite set
Ay < Gy such that for every = € X; and g € G there exists h € A, such
that f(g(x)) = h(f(z)), and if also for every h € Ga there exists a finite set
Bj, © (G1 such that for every x € Xy and h € G5 there exists g € By, such

that f=1(h(z)) = g(f~(z)). See ...

Proposition 4.7.1. Let G; ~ X¥ be contracting self-similar group actions.
If the identity map X* — X“ is a bounded orbit equivalence (equivalently, if
the identity map X* — X* is a bounded orbit equivalence) then the identity
map X% — X7¥ induces a conjugacy of the limit dynamical systems s G
le and s G jG2.

Proof. ... O

4.7.2. Plane filling curves. Let X = {0,1,2}. The group generated by
the recursion

k = (02)(k, k, k), b = (012)(1, 1, b).

It is checked directly that if we naturally identify X“ with the set of 3-
adic integers (identifying 0, 1,2 with the digits 0, 1,2), then k acts on Zs by
x +— —x, and b acts by x — x+ 1. It follows that the limit dynamical system
of the group (k,b) is the map induced by x — 3z on the orbifold of the
action of R of the infinite dihedral group generated by the transformations
x+— —z and x — x + 1 of R. (It topologically conjugate to the action of
the Chebyshev polynomial 75 on [—1,1].)

Consider the direct square of the action, i.e., the action of the direct
square of (k,by on X¥ x X¥. Let us identify X¥ x X¥ with X* by the map

(oT1 ..., Yoy1--.) & ToYoT1Y1 - - - -
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oj1 01
a bok:
12 12
2(0

b1ko
Figure 4.22. Automaton for the Peano curve

Then the action of (k,b)? is also self-similar and generated by the recursion
bop = (012)(1,1,b1),
b1 = (bo, bo, bo),
ko = (02)(k1, k1, k1),
k1 = (ko, ko, ko)-
The limit dynamical system of H = (kg, k1, bg, b1 ) is then the map induced by

(x,7) — (y,3z) on the quotient of R? by the group of the affine transforma-
tions of the form (z,y) — ((=1)%x +ng, (—1)*1y +ny) for ko, k1, ng, n1 € Z.

Let us through in a new element
a = (0].2)(]4307 ko, CL),
and let G = (H,a). Note that we have
bok1 = (012)(ko, ko, b1ko),
b1ko = (02)(bok1, bok1, boki),
a = (012)(]{70, k(), a).
If £ = 0 is the number of leading digits 2 of a word v, then it follows from
the above recursions that a(v) = bok;(v), if k is even, and a(v) = biko(v), if
k is odd, see Figure
It follows that the limit dynamical systems of G and H are topologi-
cally conjugate (moreover, the identity map on X * induces the topological
conjugacy).
If we conjugate the right-hand side of the wreath recursion by (1, kg, 1),
then we get
a = (012)(1,1,a),
hence {a) is the usual 3-adic odometer. Its limit space is the circle R/Z.
Note that it follows from ... that the corresponding map between the bisets
induces a surjective semiconjugacy from the limit dynamical system of the
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Figure 4.23. Peano curve

odometer onto the limit dynamical system of G (equivalently, of G). This
map is precisely the classical Peano curve (cite...). Its approximation using
orbital graphs of the action on X" for n = ... is shown on Figure

We have “unwrapped” the limit space and the orbital graph, i.e., have
drawn a tile diagram....

It is interesting that our description is very close to the original descrip-
tion of the Peano curve given in ... It is described there using 3-adic reals
and using symbolic transformations. It remained only to translate it into
the language of self-similar groups in a very straightforward fashion.

Some other classical plane filling curves can be naturally described using

self-similar groups. For example, the Sierpinski curve is associated with the
following group acting on {0, 1}*.

b= (a,c),
¢ = (b,b),
x = (a,x).

We have seen in ... that {a,b,c) is virtually abelian, and that its limit
dynamical system is folding of a right isosceles triangle. We also know ...
that the limit dynamical system of the group {(a, ) is the tent map acting on
the segment. Check that if v starts with an even number of 1s then z(v) =
b(v), otherwise x(v) = c(v). It follows that the limit dynamical system
of {a,b,c,z) is the same as of {a,b,c). The embedding {(a,z) < {(a,b,c,x)
induces a surjective map from the segment to the isosceles right triangle. Its
approximation using the graphs of actions is shown on Figure

4.7.2.1. A surjective map from the Julia set of 2> + i to a triangle. An
example somewhat analogous to the Sierpinski curve is a surjective map
from the Julia set of 22 + i to the triangle, defined in the following way.
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Figure 4.24. Sierpinski curve

Figure 4.25. A surjection from the Julia set of z2 4 i to the triangle

Consider the iterated monodromy group of 22 + i:
a=o0, b=(a,c), c=(b1).

It is easy to see that the graphs of the action of this group on the levels
of the tree are subgraphs of the graphs of the action of

a=o0, b=(a,c), c=(bb),

which, as we have seen ..., are “triangles”, see... The inclusion of the graphs
defines in the limit a semiconjugacy of the action of 22 4 i on its Julia set
with the triangle folding map. See Figure

4.7.3. Mating and tuning. Definition of mating...

As an example, consider the mating of 22 + i with itself. The iterated
monodromy IMG (22 + z) is, in terms of the group G, so it is given



338 4. Iterated monodromy groups

by the wreath recursion

T/6 = 0(7-1/37_1/677_1/67_1/3)>
T3 = (7-1/677-2/3):

o3 = (T1/3, 1),

where 7 = 71 /671/373/3 = 0(1,7) is the adding machine.
The other copy of IMG (z2 + z) can be considered as the iterated mon-

odromy group of the complex conjugate polynomial IMG (22 — i), i.e., the
group Gs/s. Its recursion is

55/6 = 0(55/652/37 52/355/6)7
da/3 = (0173, I5/6),
613 = (1,69/3).

Note that 51/362/365/6 =T.

The group G = {715, T1/3, To/3,01/3,02/3) is the iterated monodromy
group of the formal mating of 22 + i with itself. We have removed d5 /6
from the generating set, since d5/5 = 02/301/371/6T1/3T2/3-

Conjugation of the right-hand side by (1,737 /) produces the following
recursion for G

Ti/6 = 0,
T1/6> 2%371/6),
T1/35 1),
S 0 ™)

T1/3T1/6
1,855 "°).

T1/3 =
T2/3 =

(
(
da3 = (
(

013 =

T1/3T1/6 __ T2/3T1/3T1/6 ¢T1/6 T1/6 __ T1/3T1/6
We have 52/3 (55/6 51/3 ) and 51/3 = (52/3 ,1).

_ IV _ _T1/3T1/6 T2/3T1/37T1/6 __
Let us rename a1 = 165 by = i3 €L = Ty , Qg = (55/6 =

71/67-1/37—2/352/351/37 bQ = (5;}:/537-1/6, and Cy = 51-%36 Then we have as =

c1babicoaq, and the new recursion for G is
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Figure 4.26. Mating of 2% + i with itself

Consider the subgroup H = {aj,bica,c1bs) of G. Denote bjcy = B and
c1by = C. Then it satisfies the recursion

ay = o, B =(C,a1), C = (CBay, B).

This is a virtually abelian group of affine transformations...

A similar example is given by the mating of the polynomial f;,, with
itself....

Paper-folding family, rotated matings...

Other examples of Lattes matings: 5/1241/12, 1/6+5/14, 1/4+1/4
(Milnor’s example)

4.7.4. More examples. Show how to understand the topology of a Julia
set...

The limit spaces of families of groups: rabbit and airplane family, rotated
basilicas family...

Skew product examples, their topology from the iterated monodromy
group...
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Figure 4.27. Paper folding curve

The 2D moduli space map, the tori in the Julia set...

Exercises

4.1. Compute the iterated monodromy groups (as self-similar groups) of the
following rational functions:
(a) 22 —2;
(b) 22 +1;
(c) 2% + ¢ for every c such that 0 belongs to a cycle of length 3: 0
c—ct+em 0.

(d) 22— 32;

—aN2
() (37)°
(f) Chebyshev polynomials.
4.2. Let ¢ ~ 0.2956 be the real root of the polynomial 22 + 22+ 3z — 1. Prove
that the iterated monodromy group of z;;‘i is generated by the wreath
recursion

a=o(l,b), b={(c1),
c=(d,a), d=o(a, a_l),

where d = a='b~t¢~1. The Julia set of this rational function is shown

on Figure [I.31}
4.3. Let ¢ be one of the complex roots &~ —0.6478 +1.72147 of the polynomial

23 + 22 4 32 — 1. Prove that the iterated monodromy group of jj;g is
generated by the wreath recursion

a= J(c_la_l,d), b=(1,c),
Cc= (CL, d)7 d= g,
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4.4.

4.5.

4.6.
4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

where d = bac = ¢ ta b1,

Consider the standard action a = o(1, a),b = (b, 1) of the iterated mon-
odromy group of the Chebyshev polynomial 75. Prove that if we start
from v = 00...0 € X" and apply the generators a,b, we get a Hamil-
tonian path v, a{v), ba(v), aba(v), ... passing through every vertex of the
n-dimensional cube {0,1}". It is called the Gray code, see...

Show that the iterated monodromy group of any uniformization of the
tent map is equivalent to one of the groups described in In other
words, by considering only graphs of two groups connected by an edge
instead of considering all possible orbispaces with the underlying space
a segment we did not change the set of the iterated monodromy groups.

Prove that the map f,, : X,11 — &), defined in ... is a covering.

Prove that the group generated by
CL:U(b,b), b= (C,(L), c= (CL,CL)

contains a finite index subgroup isomorphic to Z3.

Prove that the group generated by
a=o(bb), b=(cc), c=/(ca)

contains a finite index subgroup isomorphic to Z.

Show (using the wreath recursion) that the group generated by

@ = 0, BZ(Q,O&), 7:(67/8)7 5:(57’7)

contains an index two subgroup equivalent to the iterated monodromy
group from 77.

Let ¢ : Z™ --+ Z™ be a virtual endomorphism, and let A be its matrix
as a linear operator on Q™. Show that the associated self-similar action
is faithful if and only if no eigenvalue of A is an algebraic integer.

Describe, up to equivalence of self-similar groups, all self-replicating
contracting actions of Z? on the binary rooted tree.

Prove that if [c| > 4, then the restriction of f.(2) = 1+ 5 to its Julia set
is topologically conjugate to the action of z~2 on the unit circle. (Hint:
Show that f. is hyperbolic, compute its iterated monodromy group, and
then use...)

Prove that the iterated monodromy group of 1 + 25, where ¢, is defined
in Problem..., is equivalent as a self-similar group to G, 3 from ...

Consider a degree 4 Thurston map f with one totally invariant point z,
and three simple critical points aq,ag, as such that f(a1) = f(a2) = as,
and f2(a3) is a fixed point, so that we have four post-critical points
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as, f(az), f*(a3), and z. Let us, as before, choose three values of post-
critical points: & = o0, ag = 0, and f(ag) = 1. Then a point of the
moduli space is uniquely determined by the position p of f?(a3). Show
that for p # —1 the associated moduli space correspondence is given

2
by F(p) = (g;;}) . (We have seen in Example 4.5.12| that in the case
p = —1 the pull-back map oy and hence the correspondence F' are

constant.)

4.15. The mapping class group biset for 22 + i and for external ray 1/4...

4.16. Solution of the twisted 22 +i problem (without classifying the obstructed
cases)...

4.17. Show that the iterated monodromy group of the skew product F(z,p) =
2 2
(< — %) , (1 — %) ) is generated by the wreath recursion
a=(12)(34), R—=(13)(24)(1,b,1,b),
b= (a,c,a,”), S=(T,T,8S,8S),
c=(b1,1,b),
where T' = babcbS—'R™1.
4.18. Show that the iterated monodromy group of the skew product map

2 2
F(z,p) = ((p2f1 - 1) , (%) ) is generated by
a = o(b,b,ba,ab), P =m,

b= (1,bab,a,1), S =on(Pr PSS 177181,
c=(c¢,b,c,b),

where 7 = cab, o = (12)(34), = = (13)(24).

4.19. Let f(z) be a rational function with real coefficients and real critical
values. Suppose that its post-critical set has n points. Consider the
quotient f G D of the dynamical system f G C by the complex con-
jugation, see Show that IMG (?) is generated by a self-similar
set S consisting of n + 1 elements such that for every s € S and = € X
if s(z) # x, then s|, = 1. In other words, only the arrows ending in
the trivial state are labeled by pairs of different letters in the Moore
diagram of S.

4.20. Consider a self-similar action of Z" transitive on the first level. Let ¢
be the associated virtual endomorphism of Z", seen as a linear transfor-
mation. Prove that the action is contracting if and only if the spectral
radius of ¢ is less than one, and that then the contraction coefficient pg
is equal to the spectral radius of ¢.
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4.21.

4.22.

4.23.

4.24.

Let us mate the quadratic polynomials corresponding to the external
angles 1/6 and 5/14. The iterated monodromy group of the formal
mating is generated by Gy and Gg/4. Let us denote the standard
generators of Gy g by 716, T1/3, T2/3, and the standard generators of Gg14
by 09/14:02/7,04/7,01y7. Let T = 716713703 = 01/709/704/709/14 be the
odometer.

_ 51/7 _ 52/751/7 o _ _ sT1/6 —
Denote a = 16 » b= 13 €T Ty and x = 017,y = 52/7 2=

51}/7371/6. Show that (b, c) = (Z/2Z)?, {x,y,z) = (Z/27)>, and that the

iterated monodromy group of the mating is generated by the recursion
a=o, x = (1,z),
b=(a,c?), y=(PaQ,u),
(1,69), == (Ly),
PaQ = 0(Qa, aQ),
where P = be, QQ = zyz.

C =

Show that the subgroup {a, P, @) of the iterated monodromy group from
the previous problem has the same limit dynamical system as the iter-
ated monodromy group and is equivalent as a self-similar group to the
group of affine transformations of C generated by

za=—z, z-P=—2z42\ 2-Q=-z+1,

and the biset generated by
1+ A 1+ A

z®0=)\z+T, Z®1=_)\Z+Ta

where \ = _1+T\ﬁi is the root of 222 + \ + 1.

Consider f(z) = 1+ 5, where ¢ & —2.02949 is such that the criti-
cal points of f belong to a cycle of length 6. Prove that its iterated
monodromy group is generated by

a1 = o(ag, 1),

B = (B2, 1),

7 = (72,1),

az = o(a1fr, 07"),
B2 = (m,1),

Yo = (l,afl).

(Probably the easiest way is to use the method of [4.3.2.3])

Use the last recursion to prove that f(z) is equivalent to the following
Thurston map f. Take two complex planes C,Cy compactified by the
circle at infinity. Let f; : C; — C5 and fo : Co —> (7 be given
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4.25.

Figure 4.28.

by fi(z) = 22, fa(z) = 2% + ¢, where ¢  —1.229 is the real root of
23(x® + 1)* + 1. Paste C; and Cy along the circle at infinity (in the
same way as it is done for matings). Define f: CruCy — CyuCy by
fley = fi1 and flo, = fo.

In particular, we get that the second iteration of f is the mating of
the polynomials z* 4 ¢ and (22 + ¢)?.
Let f(z) = z* + ¢ be a polynomial such that 0 belongs to a cycle.
Consider, generalizing the previous example, two complex planes C1, Csy
and the maps f1 : C; — Cy : z — 22 and fy : Cy — Cy : 2z —
22+ c. Show that if we paste C; and Cs along the circle at infinity, then
the obtained Thurston map is combinatorially equivalent to a rational
function of the form 1 + ZC—;
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