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Abstract: We consider the asymptotic behavior of perturbations of standing wave
solutions arising in evolutionary PDE of generalized Cahn–Hilliard form in one space
dimension. Such equations are well known to arise in the study of spinodal decom-
position, a phenomenon in which the rapid cooling of a homogeneously mixed binary
alloy causes separation to occur, resolving the mixture into its two components with their
concentrations separated by sharp transition layers. Motivated by work of Bricmont, Ku-
piainen, and Taskinen [5], we regard the study of standing waves as an interesting step
toward understanding the dynamics of these transitions. A critical feature of the Cahn–
Hilliard equation is that the linear operator that arises upon linearization of the equation
about a standing wave solution has essential spectrum extending onto the imaginary
axis, a feature that is known to complicate the step from spectral to nonlinear stability.
Under the assumption of spectral stability, described in terms of an appropriate Evans
function, we develop detailed asymptotics for perturbations from standing wave solu-
tions, establishing phase-asymptotic orbital stability for initial perturbations decaying
with appropriate algebraic rate.

1. Introduction

We consider the asymptotic behavior of perturbations of standing-wave solutions ū(x),
ū(±∞) = u± arising as equilibrium solutions in equations of generalized Cahn–Hilliard
form

ut = (b(u)ux )x − (c(u)uxxx )x , x, u, b, c ∈ R, t > 0, (1.1)

for which we assume

(H0) b, c ∈ C2(R),
(H1) b(u±) > 0, c(ū(x)) ≥ c0 > 0, x ∈ R.

Our analysis is motivated by the distinguished role the Cahn–Hilliard model plays
in the study of spinodal decomposition, a phenomenon in which the rapid cooling of a
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homogeneously mixed binary alloy causes separation to occur, resolving the mixture into
its two components with their concentrations separated by sharp transition layers [9, 11].
In this context, and for the case of incompressible fluids, the Cahn–Hilliard equation is

ut = ∇ · {M(u)∇(F ′(u)− κ�u)},
∂u

∂ν
= ∂�u

∂ν
= 0; x ∈ ∂�, (1.2)

where � denotes a bounded open subset of R
n (n typically 2 or 3), ν denotes the unit

normal vector to�, u denotes the concentration of one component of the binary alloy (or
possibly a difference between this concentration and the concentration at homogenous
mixing), F(u) denotes the bulk free energy of the alloy, and the typically small param-
eter κ is a measure of the strength of interfacial energy. (In the case that κ depends on
u, a new term appears in (1.2)) of the form − 1

2κ
′(u)|∇u|2; see [9]. We take this natural

form of the equation from [12].)
An intesting feature of equations of form (1.1) is that the second and fourth order reg-

ularizations can balance, and a wide variety of stationary solutions can arise, including
standing waves. For example, in the case of (1.1) with

b(u) = 3

2
u2 − 1

2
; c(u) ≡ 1 (1.3)

(the case studied in [5], corresponding with F(u) = (1/8)u4 − (1/4)u2, M(u) ≡ 1, and
κ = 1 in (1.2)), one readily verifies that the standing wave

ū(x) = tanh
( x

2

)
(1.4)

is such a solution, often referred to as the kink solution. Motivated by the elegant result
of Bricmont, Kupiainen, and Taskinen [5] (which we state below for comparison with
the current analysis), we regard the study of standing waves as an interesting first step
toward understanding the dynamics of these transitions. (See also [36] and [38] for
related results in the case of multiple space dimensions). We stress that our focus is on
standing waves only, and remark that linearization of (1.1) about a traveling wave leads
to a linearized problem with non-vanishing convection and consequently an entirely
different flavor than the problem that arises upon linearization about a standing wave.
Indeed, upon shifting to a coordinate system moving along with the shock, a flux function
is introduced f (u) = −su, and the wave can be regarded as a regularized undercom-
pressive shock profile. Such problems have been considered in [16], and are quite similar
to the problems considered in [25, 26].

A critical feature of equations of form (1.1) is that the linear operator that arises
upon linearization of the equation about a standing wave solution has essential spec-
trum extending onto the imaginary axis, a feature that is known to complicate the step
from spectral to nonlinear stability. The purpose of this paper is to study precisely this
step from spectral to nonlinear stability. In particular, under the assumption of spectral
stability (described below in terms of an appropriate Evans function and verified in the
particular case (1.1)–(1.3) with wave (1.4)), we develop detailed asymptotics for per-
turbations from standing wave solutions, establishing phase-asymptotic orbital stability
for initial perturbations decaying with algebraic rate (1 + |x |)−3/2.

Our approach to this problem will be to extend to this setting methods developed pre-
viously in the context of conservation laws with diffusive and/or dispersive regularity,

ut + f (u)x = (b(u)ux )x + (c(u)uxx )x + . . . , (1.5)
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which also have no spectral gap. More precisely, we proceed by computing pointwise
estimates on the Green’s function for the linear equation that arises upon linearization
of (1.1) about the wave ū(x) (employing a contour-shifting approach introduced in [22,
52]; see also [23, 45]). Such estimates are dependent upon the spectrum of the linear
operator, which we understand here in terms of an appropriate Evans function (see, for
example, [14, 21, 35, 52] and the discussion and references below). Finally, we employ
the local tracking method developed in [34], an approach through which Green’s func-
tion estimates on the linearized operator can be used to approximately locate shifts from
the standing wave ū. Our general approach is similar to the analysis of [5], in which
case the authors also employ Green’s function estimates on the linear operator in order
to close an iteration on the perturbation in some appropriately weighted space. A fun-
damental difference between the two analyses is that in [5], this iteration is carried out
by the renormalization group method, a theory that has its origins in particle physics
(see [8]) and was introduced in the context of time-asymptotic behavior for nonlinear
PDE in [17, 18, 20], and further developed in [3, 4] (it pre-dates the current approach
by about eight years). Briefly, the renormalization group method is an approach toward
understanding asymptotic behavior of PDE that makes use of certain natural scalings in
the PDE. This method is ideally suited for cases such as (1.1), for which the equation
that arises upon linearization about the wave ū(x) has the same natural scaling as one
would use for the heat equation. Indeed, though the analysis of [5] is carried out in the
context of a self-adjoint linearized equation (the integrated equation), the method could
in principle be extended to the current setting for which the linearized operator is not
generally self-adjoint even after integration. Nonetheless, the Green’s function estimates
required for any such extension would almost certainly be obtained by methods very
similar to those employed here, which have been developed particularly for the case of
non-self-adjoint problems. In this way, the current approach seems to represent a change
of thinking from the point of view of classical mathematical physics to that of modern
Evans function techniques. We emphasize, however, that the spectral analysis of both
[5] and the current analysis rely on the self-adjoint nature of the equation, and in the
non-self-adjoint case spectral stability is left as a separate analysis (see the discussion
following Remark 1.1). A more fundamental difficulty with the use of such a scaling
technique as the renormalization group method in the context of the Cahn–Hilliard equa-
tion arises in the extension to multiple space dimensions, in which case it is known that
the leading eigenvalue of the linearized operator about a planar wave ū(x1) (leading in
the case of stability) scales as λ ∼ |ξ |3 (see [50]), and consequently introduces a new
cubic scale into the problem, which competes with the natural heat-equation scaling of
(1.1). (Here, ξ ∈ R

d−1 denotes a Fourier variable associated with spatial components
transverse to the planar wave.) A different approach is taken in this setting in [36, 38],
quite similar to the method employed here, and the authors conclude stability in space
dimensions d ≥ 3 for the planar wave

ū(x1) = tanh
x1

2
,

arising in (1.2) with F(u) = (1/8)u4 − (1/4)u2, M(u) ≡ 1 and κ = 1. The primary
difference between the approach of [36, 38] and the current analysis is the local tracking
function δ(t) employed here, which can be generalized to the case of multiple space
dimensions as a function of t and the transverse variable x̃ = (x2, x3, . . . , xd) (see
[25–28]). It is precisely this local tracking, which does not seem to fit in any straight-
forward fashion into the renormalization group framework, that allows us here to obtain



768 P. Howard

stability for more slowly decaying data than considered in [5], and that allows for the
extension of this method to the case of space dimensions d ≥ 2 (an analysis we carry out
in a separate paper). Finally, we note that in addition to the standing waves considered
in the current analysis and the planar waves discussed above, the Cahn–Hillard equation
admits a wide range of periodic solutions, and the methods here can be extended to that
setting in a manner similar to the analyses of Oh and Zumbrun in the case of periodic
solutions arising in the context of viscous conservation laws [46, 47].

Before setting up the analysis, we mention that equations of form (1.1) have been
shown to arise in the area of mathematical biology in the context of cell formation and
aggregation [44], and also that equations similar to (1.1) arise naturally in the modeling
of thin film flows, for which under certain circumstances, the height h(t, x) of a film
moving along an inclined plane can be modeled by fourth order equations

ht + (h2 − h3)x = β(u3ux )x − γ (u3uxxx )x

(see [6] and the references therein).
As in the case of conservation laws, it is readily seen that solutions u(t, x) initially near

ū(x), will not generally approach ū(x), but rather will approach a translate of ū(x) deter-
mined uniquely by the amount of perturbation mass (measured as

∫
R
(u(0, x)− ū(x))dx)

carried into the shock layer. We proceed, then, by defining the perturbation

v(t, x) = u(t, x + δ(t))− ū(x), (1.6)

for which δ(t) will be chosen by the analysis to track the location of the perturbed solu-
tion in time. In this way, we compare the shapes of u and ū rather than their locations.
(The type of stability we will conclude is orbital.) Substituting v into (1.1), we obtain
the perturbation equation

vt +(a(x)v)x = (b(x)vx )x −(c(x)vxxx )x + δ̇(t)(ūx (x)+vx )+ Q(x, v, vx , vxxx )x , (1.7)

with

a(x) = −b′(ū)ūx + c′(ū)ūxxx ; b(x) = b(ū(x)); c(x) := c(ū(x));
Q(x, v, vx , vxxx ) = O(|vvx |) + O(|vvxxx |) + O(e−η|x |v2), (1.8)

where η > 0 and Q is a continuously differentiable function of its arguments. According
to Hypotheses (H0)–(H1), we have that a ∈ C1(R), b, c ∈ C2(R) and for k = 0, 1,

|∂k
x a(x)| = O(e−α|x |); |∂k

x (b(x)−b±)| = O(e−α|x |); |∂k
x (c(x)− c±)| = O(e−α|x |),

(1.9)
where α > 0 and ± represent the asymptotic limits as x → ±∞. Regarding the con-
vection coefficient a(x), we note that it decays to 0 at both ±∞ (see Sect. 2 for more
details). In comparison with conservation laws

ut + f (u)x = (b(u)ux )x ,

this corresponds with the degenerate case, for which one of the asymptotic convection
coefficients a± = f ′(u±) for a traveling wave ū(x − st) is equal to the wave speed s,
and both values can be taken without loss of generality as 0 (see [23, 24]). In the case
(1.1)–(1.3) the wave (1.4) satisfies

a(x) = −3ū(x)ūx (x),
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from which we see that for x < 0, we have a(x) > 0, while for x > 0, we have a(x) < 0.
In this way, the wave (1.4) is similar to Lax waves in the sense that characteristic speeds
(values of the convection coefficient a(x)) impinge on the transition layer from both
sides. The critical difference, again, is that in the case of equations of form (1.1) these
characteristic speeds approach 0 asymptotically. Finally, we mention that whereas this
decay of a(x) is algebraic in the case of degenerate viscous shock waves, it is exponential
in the current setting, a difference critical in the Evans function analysis of Sect. 2.

Another important feature of equations of form (1.1) is that the diffusion coefficient
b(ū(x)) may not always be positive. In the case (1.1)–(1.3) with wave (1.4), we have

b(ū) = 3

2
ū2 − 1

2
, (1.10)

which is asymptotically positive at both ±∞, but negative near the transition layer at
x = 0. Our assumptions (H0)–(H1) clearly do not give us control over the possible
destabilizing effect of this feature of the equations. The effect is, however, encoded in
the spectrum of the linear operator

Lv = −(c(x)vxxx )x + (b(x)vx )x − (a(x)v)x , (1.11)

which we discuss further below. For now, we suffice to remark that the essential spectrum
of L consists of the negative real axis, up to the imaginary axis, and so as in the case
of regularized conservation laws, the step from spectral stability to nonlinear stability is
problematic.

Integrating (1.7), we have (after integration by parts and upon observing that eLt ūx =
ūx ) the integral equation

v(t, x) =
∫ +∞

−∞
G(t, x; y)v0(y)dy + δ(t)ūx (x)

−
∫ t

0

∫ +∞

−∞
G y(t − s, x; y)

[
Q(y, v, vy, vyyy) + δ̇(s)v

]
dy ds, (1.12)

where G(t, x; y) denotes a Green’s function for the linear part of (1.7):

Gt = LG; G(0, x; y) = δy(x). (1.13)

We divide G(t, x; y) into terms for which the x dependence is exactly ūx (x) (the excited
terms) and the remainder, G̃(t, x; y). In general, the excited terms do not decay for
large time and correspond with mass accumulating at the origin, shifting the asymptotic
location of the waves. Writing

G(t, x; y) = G̃(t, x; y) + ūx (x)e(t, y),

we have
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v(t, x) =
∫ +∞

−∞
G̃(t, x; y)v0(y)dy + ūx (x)

∫ +∞

−∞
e(t, y)v0(y)dy + δ(t)ūx (x)

−
∫ t

0

∫ +∞

−∞
G̃ y(t − s, x; y)

[
Q(y, v, vy, vyyy) + δ̇(s)v

]
dy ds

− ūx (x)
∫ t

0

∫ +∞

−∞
ey(t − s, y)

[
Q(y, v, vy, vyyy) + δ̇(s)v

]
dy ds.

Choosing δ(t) to eliminate precisely the excited term, we have

δ(t) = −
∫ +∞

−∞
e(t, y)v0(y)dy +

∫ t

0

∫ +∞

−∞
ey(t −s, y)

[
Q(y, v, vy, vyyy)+ δ̇(s)v

]
dyds,

(1.14)
after which, we have

v(t, x) =
∫ +∞

−∞
G̃(t, x; y)v0(y)dy

−
∫ t

0

∫ +∞

−∞
G̃ y(t − s, x; y)

[
Q(y, v, vy, vyyy) + δ̇(s)v

]
dy ds. (1.15)

Integral equations for vx and δ̇ can immediately be obtained by differentiation of both
sides of (1.14) and (1.15). Our approach will be to determine estimates on G̃(t, x; y) and
e(t, y) sufficient for closing simultaneous iterations on v(t, x), vx (t, x), δ(t), and δ̇(t).
To this end, we analyze the Green’s function G(t, x; y) through its Laplace transform
Gλ(x, y), which satisfies the ODE (t transformed to λ)

LGλ − λGλ = −δy(x), (1.16)

and can be estimated by standard methods. Letting φ+
1 (x; λ) and φ+

2 (x; λ) denote the
(necessarily) two linearly independent asymptotically decaying solutions at +∞ of the
eigenvalue ODE,

Lφ = λφ, (1.17)

and φ−
1 (x, λ) and φ−

2 (x, λ) similarly the two linearly independent asymptotically decay-
ing solutions at −∞, we write Gλ(x, y) as a linear combination

Gλ(x, y) =
{
φ−

1 (x; λ)N +
1 (y; λ) + φ−

2 (x; λ)N +
2 (y; λ), x < y

φ+
1 (x; λ)N−

1 (y; λ) + φ+
2 (x; λ)N−

2 (y; λ), x > y.
(1.18)

Insisting, as usual, on the continuity of Gλ(x, y) and its first two x-derivatives in x , and
on the jump in ∂3

x Gλ(x, y) at x = y, we have

N +
1 (y; λ) = W (φ+

1 , φ
+
2 , φ

−
2 )

c(y)Wλ(y)
; N +

2 (y; λ) = −W (φ+
1 , φ

+
2 , φ

−
1 )

c(y)Wλ(y)
;

N−
1 (y; λ) = −W (φ−

1 , φ
−
2 , φ

+
2 )

c(y)Wλ(y)
; N−

2 (y; λ) = W (φ−
1 , φ

−
2 , φ

+
1 )

c(y)Wλ(y)
,

(1.19)

where W (φ1, φ2, . . . , φn) denotes a square determinant of column vectors created by
augmentation with an appropriate number of x-derivatives and Wλ(y) := W (φ−

1 , φ
−
2 , φ

+
1 ,

φ+
2 ). We see immediately from (1.18) and (1.19) that, away from essential spectrum,
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Gλ(x, y) is bounded so long as Wλ(y) is bounded away from 0. Since Wλ(y) is a
Wronskian for (1.17), for each fixed λ its sign does not change as y varies. In light of
this, we define the Evans function as

D(λ) = Wλ(0). (1.20)

Introduced by Evans in the context of nerve impulse equations [14] (see also the early
analysis of Jones for pulse solutions to the FitzHugh–Nagumo equation [35]), the Evans
function serves as a characteristic function for the operator L . More precisely, away from
essential spectrum, zeros of the Evans function correspond in location and multiplicity
with eigenvalues of the operator L , an observation that has been made precise in [1]
in the case—pertaining to reaction–diffusion equations—of isolated eigenvalues, and
in [21, 52] and [40] in the cases—pertaining respectively to conservation laws and the
nonlinear Schrödinger equation—of nonstandard “effective” eigenvalues embedded in
essential spectrum. (The latter correspond with resonant poles of L , as also examined in
[48].)

Briefly, we remark on the connection between our form of the Evans function (1.20)
and the definition of Evans et al. [1, 14, 35]. Letting �±

k := (φ±
k , φ

±
k

′
, φ±

k
′′
, φ±

k
′′′
)tr,

define
Y±(x; λ) = �±

1 (x; λ) ∧�±
2 (x; λ), (1.21)

where ∧ represents a wedge product on the space of vectors in R
4 (i.e., ∧ denotes an

associative, bilinear operation on vectors v ∈ R
4, characterized by the relation between

standard R
4 basis vectors e j and ek , e j ∧ek = −ek ∧e j ). In this case, we obtain through

straightforward calculation that

D(λ) = e− ∫ x
0 trA(y;λ)dyY−(x; λ) ∧ Y+(x; λ), (1.22)

which is the form of [1, 14, 35]. (As described below, the matrix A is simply the matrix
that arises when (1.17) is written as a first order system.) One notable advantage of the
formulation (1.22) is that the 2-forms Y±(x; λ) are the asymptotically decaying solutions
of the equations

Y ′± = A±(x; λ)Y±,

where A is defined by

Y ′± = (�±
1 ∧�±

2 )
′ = �±

1
′ ∧�±

2 +�±
1 ∧�±

2
′

= (A�±
1 ) ∧�±

2 +�±
1 ∧ A�±

2 = A±�±
1 ∧�±

2 = A±Y±.

In this way, the wedge formulation can remain analytically valid in cases for which
the wedge products Y± cannot be uniquely resolved into components. In the current
setting, the �±

k remain sufficiently distinct (away from essential spectrum) that the two
formulations are equivalent.

We will observe in Sect. 2 that D(λ) is not analytic at λ = 0, but can be extended
analytically on the Riemann surface ρ = √

λ. (This is quite similar to the analysis of
Kapitula and Rubin in the case of the complex Ginzburg–Landau equation [39], and the
analyses of Guès et al. and of Zumbrun in the case of multidimensional shock stability
in the vicinity of glancing points [19, 51], but differs markedly from the case of degen-
erate conservation laws, for which the Evans function has a dependence of the form√
λ ln λ [23, 24].) In light of this, we define the function Da(ρ) := D(λ). The primary
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concern of this analysis is to show that under assumptions (H0)–(H1), nonlinear stability
of standing wave solutions ū(x) of (1.1) is implied by the spectral condition (D):
(D): The Evans function D(λ) has precisely one zero in {Reλ ≥ 0}, necessarily at 0,

and ∂ρρDa(0) = 0.

Remark 1.1. Under the assumption of Condition (D), the point spectrum of L , aside
from the distinguished point at λ = 0, lies to the left of a parabolic contour, which
passes through the negative real axis and opens into the negative real half plane,

λs(k) = −c̃2k2 + i c̃1k + c̃0. (1.23)

We will denote this contour �s . The essential spectrum of L consists of the negative real
axis.

While Condition (D) is generally quite difficult to verify analytically (see, for exam-
ple, [13, 15, 35]), it can be analyzed numerically [2, 33, 31]. In the case of Eqs. (1.1)–(1.3)
and the standing wave (1.4), (D) is straightforward to verify (see [5] or Lemma 2.6 of the
current analysis, in which we review the analysis of [5] for the sake of completeness).

We are now in a position to state the first theorem of the paper.

Theorem 1.1. Suppose ū(x) is a standing wave solution to (1.1) and suppose (H0)–(H1)
hold, as well as stability criterion (D). Then for some fixed C and CE , and for positive
contants M and K sufficiently large, and for η > 0, depending only on the spectrum
and coefficients of L, the Green’s function G(t, x; y) described in (1.13) satisfies the
following estimates for y ≤ 0 (with symmetric estimates in the case y ≥ 0).
(I) For either |x − y| ≥ K t or t ≤ 1, and for α a multi-index in the variables x and y,

|∂αG(t, x; y)| ≤ Ct−
1+|α|

4 e
− |x−y|4/3

Mt1/3 , |α| ≤ 3.

(II) For |x − y| ≤ K t and t ≥ 1,

G(t, x; y) = G̃(t, x; y) + E(t, x; y),

where

(i) y ≤ x ≤ 0:

G̃(t, x; y) = C√
4b−t

[
e
− (x−y)2

4b− t − e
− (x+y)2

4b− t
]

+ O(t−1)e− (x−y)2

Mt ,

G̃ y(t, x; y) = C√
4b−t

∂y

[
e
− (x−y)2

4b−t − e
− (x+y)2

4b− t
]

+ O(t−3/2)e− (x−y)2

Mt + O(
|x + y|

t3/2 )e− (x+y)2

Mt ,

G̃x (t, x; y) = O(
|x − y|

t3/2 )e− (x−y)2

Mt + O(t−1/2e−η|x |)e− y2

Mt + O(t−3/2)e− (x−y)2

Mt ,

G̃xy(t, x; y) = O(t−3/2)e− (x−y)2

Mt + O(
|y|
t3/2 e−η|x |)e− y2

Mt .
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(ii) x ≤ y ≤ 0:

G̃(t, x; y) = C√
4b−t

[
e
− (x−y)2

4b− t − e
− (x+y)2

4b− t
]

+ O(t−1)e− (x−y)2

Mt ,

G̃ y(t, x; y) = O(
|x − y|

t3/2 )e− (x−y)2

Mt + O(t−3/2)e− (x−y)2

Mt ,

G̃x (t, x; y) = C√
4b−t

∂x

[
e
− (x−y)2

4b− t − e
− (x+y)2

4b−t
]

+ O(t−1/2e−η|x |)e− y2

Mt + O
( |x + y|

t3/2

)
e− (x+y)2

Mt + O(t−3/2)e− (x−y)2

Mt ,

G̃xy(t, x; y) = O(t−3/2)e− (x−y)2

Mt .

(iii) y ≤ 0 ≤ x:

G̃(t, x; y) = O(t−1/2)e−
(x−

√
b+
b− y)2

Mt ,

G̃ y(t, x; y) = O

⎛
⎝ |x −

√
b+
b− y|

t3/2

⎞
⎠ e−

(
x−
√

b+
b− y

)2

Mt

+ O
( |y|

t3/2 e−η|x |
)

e− y2

Mt + O(t−3/2)e−
(

x−
√

b+
b− y

)2

Mt ,

G̃x (t, x; y) = O

⎛
⎝ |x −

√
b+
b− y|

t3/2

⎞
⎠ e−

(
x−
√

b+
b− y

)2

Mt + O
(

t−1/2e−η|x |) e− y2

Mt

+ O(t−3/2)e−
(

x−
√

b+
b− y

)2

Mt ,

G̃xy(t, x; y) = O(t−3/2)e−
(

x−
√

b+
b− y

)2

Mt + O
( |y|

t3/2 e−η|x |
)

e− y2

Mt ,

and in all cases

E(t, x; y) = CE ūx (x)
∫ y√

4b− t

−∞
e−ζ 2

dζ
(

1 + O(e−η|y|)
)
,

Ey(t, x; y) = CE√
4b−t

ūx (x)e
− y2

4b− t
(

1 + O(e−η|y|)
)
.

The estimates of Theorem 1.1 are quite similar to those of Lemma 2.1 in [38], in
which the authors are considering a multidimensional generalization of (1.1)–(1.3). Sim-
ilar estimates are also obtained in [5] during the course of the analysis, though in that
case the authors work with the integrated equation and consequently the term E(t, x; y),
which does not decay as t grows, does not appear. In both of these cases, the analysis is
restricted to the case of (1.2), with F(u) = (1/8)u4 − (1/4)u2, M(u) ≡ 1, and κ = 1,
and the wave (1.4).
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The estimates of Theorem 1.1 are sufficient for establishing the following theorem
on the perturbations v(t, x).

Theorem 1.2. Suppose ū(x) is a standing wave solution to (1.1), and suppose (H0)–(H1)
hold, as well as stability criterion (D). Then for Hölder continuous initial perturbations
(u(0, x)− ū(x)) ∈ C0+γ (R), γ > 0, with

∫ +∞

−∞
(u(0, x)− ū(x))dx = 0

|u(0, x)− ū(x)| ≤ E0(1 + |x |)−3/2, (1.24)

for some E0 sufficiently small, and for δ(t) as defined in (1.14), there holds

|u(t, x + δ(t))− ū(x)| ≤ C E0(1 + |x | +
√

t)−3/2,

|∂x (u(t, x +δ(t))−ū(x))| ≤ C E0

[
t−1/4(1+t)−1/4(1+|x |+√

t)−3/2+(1+t)−3/4e−η|x |],
|δ(t)| ≤ C E0(1 + t)−1/4,

|δ̇(t)| ≤ C E0(1 + t)−5/4. (1.25)

In the estimates of Theorem 1.2, we have included vx (t, x) in order to take advantage
of the particular form of the nonlinearity Q, in which the term O(|vvx |) is better than
O(v2), which arises in a similar analysis in the case of regularized conservation laws.

Remark 1.2. We note that in the current setting the assumption of zero mass initial data
can be taken without loss of generality. As in the case of Lax waves arising in regularized
conservation laws, the asymptotic shift of the wave can be located here entirely from the
initial perturbation. In this way, the shift to a zero mass perturbation is simply a change
of perspective, in which we consider the stability of the asymptotically selected wave
rather than of the original wave. The validity of this a priori selection of the asymptotic
translate is justified precisely by our decay estimate on δ(t), from which we verify that
perturbations of the zero-mass wave do indeed approach the zero-mass wave. Of course,
this means the stability we conclude is orbital.

In light of Remark 1.2, we can state the following theorem regarding initial pertur-
bations with non-zero mass.

Corollary 1.1. Suppose ū(x) is a standing wave solution to (1.1), and suppose (H0)–
(H1) hold, as well as stability criterion (D). Then for Hölder continuous initial pertur-
bations (u(0, x)− ū(x)) ∈ C0+γ (R), γ > 0, with

|u(0, x)− ū(x)| ≤ E0(1 + |x |)−3/2, (1.26)

for some E0 sufficiently small, there holds

|u(t, x + x0)− ū(x)| ≤ C E0

[
(1 + |x | +

√
t)−3/2 + (1 + t)−1/4e−η|x |], (1.27)

where

x0 = − 1

u+ − u−

∫ +∞

−∞
u(0, x)− ū(x)dx .
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We note specifically the relationship between Corollary 1.1 and the result of [5]. In
[5], the authors employ the renormalization group method to establish the following
result on (1.1)–(1.3):

BKT Theorem 1.1. For any p > 2, there exists δ > 0 such that for ‖v0‖X p ≤ δ,

X p :=
{
v0 ∈ C0(R) : ‖v0‖X := sup

x∈R

(1 + |x |p+1)|v0(x)| < ∞
}
,

the Cauchy problem (1.1)–(1.3) with

u(1, x) = ū(x) + v0(x),

where ū(x) is as in (1.4), has a unique smooth solution u(t, x), t ∈ (1,∞) satisfying

‖u(t, ·)− ū(· − x0)‖L∞(R) → 0 as t → ∞,

for some x0 ∈ R depending only on v0.
Moreover, for some constants A and B depending only on v0, there holds

u(t, x + x0) = ū(x) +
1√
4π t

d

dx

(
e− x2

4t (Aū(x) + B)
)

+ o(t−1).

The difference between Corollary 1.1 and the result of [5] (for Eq. (1.1)–(1.3), with
wave (1.4)) lies predominately in the difference in assumptions on the initial perturbation.
In taking more rapidly decaying initial perturbations, we could increase the decay rate of
our perturbation in time. More precisely, in the estimate of Theorem 1.2, for 1 < r < 2
initial perturbations of size (1 + |x |)−r give temporal decay on u(t, x + δ(t)) − ū(x)
at rate (1 + t)−r/2 and δ(t) decay at rate (1 + t)(1−r)/2. For r > 2, δ(t) decays at the
maximal rate (1 + t)−1/2, and the estimate of Corollary 1.1 becomes

|u(t, x + x0)− ū(x)| ≤ C E0

[
(1 + t)−1/2e−η|x | + (1 + t)−1], (1.28)

which almost recovers the detail of [5] Theorem 1.1. Finally, we note that the second
order term in [5] Theorem 1.1 is the analogue here of the diffusion waves of Liu [41], and
could be recovered in the current setting by an analysis similar to that of [29, 30, 49].

Outline of the paper. In Sect. 2, we carry out a general analysis of the Evans function
for the eigenvalue problem (1.17), providing full details in the case (1.1)–(1.3) with wave
(1.4). In addition, we use this analysis to develop estimates on the Laplace-transformed
Green’s function Gλ(x, y). In Sect. 3, we prove Theorem 1.1, while in Sect. 4 we prove
Theorem 1.2. Finally, some representative estimates on the integrations arising from our
integral equations are provided in Sect. 5.

2. Analysis of the Evans Function

In this section we analyze the Evans function, as defined in (1.20), for our linear eigen-
value problem (1.17). We begin with a remark on the structure of standing waves ū(x)
arising in the context of (1.1). Upon substitution of such a wave into (1.1), we have the
ODE,

(c(ū)ūxxx )x − (b(ū)ūx )x = 0. (2.1)
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Observing that ūx (x) → 0 as x → ±∞, we can integrate (2.1) to obtain the third order
equation

c(ū)ūxxx − b(ū)ūx = 0. (2.2)

Asymptotically, solutions to (2.2) behave like solutions to the constant coefficient equa-
tions

c±ūxxx − b±ūx = 0, (2.3)

whose solutions grow and decay with rates ±√
b±/c± and 0. Since the solutions with

rate 0 correspond with constant solutions to (2.1), we see that any solution that does not
blow up must approach its endstates at exponential rate.

We now begin our analysis of the Evans function by writing the eigenvalue problem
(1.17) as a first order system

W ′ = A(x; λ)W, (2.4)

where

A(x; λ) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

− λ
c(x) − a′(x)

c(x) − a(x)
c(x) + b′(x)

c(x)
b(x)
c(x) − c′(x)

c(x)

⎞
⎟⎟⎠ .

Under assumptions (H0)–(H1), A(x; λ) has the asymptotic behavior

A(x; λ) =
{

A−(λ) + E(x; λ), x < 0
A+(λ) + E(x; λ), x > 0,

where

lim
x→±∞ A(x; λ) = A±(λ) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

− λ
c± 0 b±

c± 0

⎞
⎟⎟⎠ , (2.5)

and for |λ| bounded E(x; λ) = O(e−α|x |). The eigenvalues of A±(λ) satisfy the relation,

μ2 =
−b± ±

√
b2± − 4λc±

−2c±
.

Ordering these so that j < k ⇒ Reμ j (λ) ≤ Reμk(λ), we have

μ±
1 (λ) = −

√
b±
c±

+ O(|λ|); μ±
2 (λ) = − 1√

b±

√
λ + O(|λ|3/2),

μ±
3 (λ) = +

1√
b±

√
λ + O(|λ|3/2); μ±

4 (λ) = +

√
b±
c±

+ O(|λ|),

with associated eigenvectors V ±
k = (1, μ±

k , (μ
±
k )

2, (μ±
k )

3)tr. A straightforward way in
which to understand these expressions is through the relationship

√
b± −

√
b2± − 4λc± =

√
4c±

√
λ√

b± +
√

b2± − 4λc±
,
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where the right-hand side is now in the form of
√
λ multiplied by a function that for |λ|

sufficiently small is analytic in λ. We note that for |λ| sufficiently small, and away from
essential spectrum (the negative real axis), these eigenvalues remain distinct. Also, we
clearly have μ±

1 = −μ±
4 and μ±

2 = −μ±
3 .

Lemma 2.1. For the eigenvalue problem (1.17), assume a ∈ C1(R), b, c ∈ C2(R),
with b± > 0 and c± > 0, and additionally that (1.9) holds. Then for some ᾱ > 0
and k = 0, 1, 2, 3, we have the following estimates on a choice of linearly independent
solutions of (1.17). For |λ| ≤ r , some r > 0 sufficiently small, there holds:

(i) For x ≤ 0:

∂k
xφ

−
1 (x; λ) = eμ

−
3 (λ)x (μ−

3 (λ)
k + O(e−ᾱ|x |)),

∂k
xφ

−
2 (x; λ) = eμ

−
4 (λ)x (μ−

4 (λ)
k + O(e−ᾱ|x |)),

∂k
xψ

−
1 (x; λ) = eμ

−
1 (λ)x (μ−

1 (λ)
k + O(e−ᾱ|x |)),

∂k
xψ

−
2 (x; λ) = 1

μ−
2 (λ)

(
μ−

2 (λ)
keμ

−
2 (λ)x − μ−

3 (λ)
keμ

−
3 (λ)x

)
+ O(e−ᾱ|x |).

(ii) For x ≥ 0:

∂k
xφ

+
1 (x; λ) = eμ

+
1 (λ)x (μ+

1(λ)
k + O(e−ᾱ|x |)),

∂k
xφ

+
2 (x; λ) = eμ

+
2 (λ)x (μ+

2(λ)
k + O(e−ᾱ|x |)),

∂k
xψ

+
1 (x; λ) = 1

μ+
3(λ)

(
μ+

3(λ)
keμ

+
3 (λ)x − μ+

2(λ)
keμ

+
2 (λ)x

)
+ O(e−ᾱ|x |),

∂k
xψ

+
2 (x; λ) = eμ

+
4 (λ)x (μ+

4(λ)
k + O(e−ᾱ|x |)).

Proof. Lemma 2.1 can be proved by standard methods such as those of [52], pp.
779–781. We remark here only on the choice of our slow growth solutionsψ−

2 (x; λ) and
ψ+

1 (x; λ). We could alternatively make the choice

∂k
x ψ̃

−
2 (x; λ) = eμ

−
2 (λ)x (μ−

2 (λ)
k + O(e−ᾱ|x |)),

∂k
x ψ̃

+
1 (x; λ) = eμ

+
3 (λ)x (μ+

3(λ)
k + O(e−ᾱ|x |)).

The difficulty with this choice is that these growth solutions coalesce with the slow decay
solutions φ−

1 and φ+
2 as λ → 0. (See [23], in which this latter convention is taken.) Fol-

lowing the analysis of [5], we take the linear combination of solutions stated in order to
have a set of solutions of (1.17) that remains linearly independent as λ → 0.

In order to see that ψ−
2 (x; λ) and ψ+

1 (x; λ) are valid choices, we note that their der-
ivation depends precisely on this coalescence with the slow decay solutions φ−

1 and φ+
2

as λ → 0. In the case, for example, of ψ−
2 (x; λ), we proceed by letting φ−

0 (x) be any
λ = 0 solution of (1.17) that neither grows nor decays as x → −∞. (The existence of
such a solution follows immmediately from the slow decay solution φ−

1 .) We search for
solutions of the form ψ−

2 (x; λ) = φ−
0 (x)w(x; λ), for which direct substitution reveals
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− c(x)φ−
0

′′′
w′ −

(
c(x)

(
3φ−

0
′′
w′ + 3φ−

0
′
w′′ + φ−

0 w
′′′))′

+b(x)φ−
0

′
w′ + (b(x)φ−

0 w
′)′ − a(x)φ−

0 w
′ = λφ−

0 w, (2.6)

and we make the critical observation that the only coefficient of undifferentiated w is
λφ−

0 . In this way, the first order system associated with (2.6) has the form (Wk = ∂kw)

W ′ = A−(λ)W + E(x; λ)W,
where A−(λ) is precisely as in (2.5), while E(x; λ) has the particular form

E(x; λ) =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

λO(e−α|x |) O(e−α|x |) O(e−α|x |) O(e−α|x |)

⎞
⎟⎠ , (2.7)

for some α > 0. Searching for solutions W = eμ
−
3 x Z , we have the equation

Z ′ + μ−
3 I Z = A−(λ)Z + E Z ,

which can be integrated as

Z(x) =V −
3 (λ) +

∫ x

−∞
e(A−μ−

3 )(x−y)PE(y; λ)Z(y; λ)dy

+
∫ −M

x
e(A−μ−

3 )(x−y)QE(y; λ)Z(y; λ)dy,

where similarly as in [52], P is a projection operator projecting onto the eigenspace
associated with μ−

1 , μ−
2 , and μ−

3 , while Q is the projection operator projecting onto the
eigenspace associated with μ−

4 . In this way, the first integral decays at exponential rate
due to the exponential decay of E and the second integral decays at exponential rate
due to the exponential decay of the combination e(μ

−
4 −μ−

3 )(x−y)E(y; λ). Consequently,
a standard contraction mapping closes for all |x | sufficiently large. This in turn justi-
fies a direct iteration, in which V3(λ) is taken as a first approximation for Z(x). Upon
substitution for a second iterate, we observe

E(y; λ)V +
3 (λ) =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

λO(e−α|y|) O(e−α|y|) O(e−α|y|) O(e−α|y|)

⎞
⎟⎠

⎛
⎜⎜⎝

1
μ−

3 (λ)

μ−
3 (λ)

2

μ−
3 (λ)

3

⎞
⎟⎟⎠

= O(|λ1/2|e−α|y|).

Continuing the iteration, we conclude

φ−
1 (x; λ) = eμ

−
3 (λ)xφ−

0 (x)(1 + O(|λ1/2|e−α|x |)).

Similarly, a slow growth solution can be constructed from φ−
0 (x), as

ψ̃−
2 (x; λ) = eμ

−
2 (λ)xφ−

0 (x)(1 + O(|λ1/2|e−α|x |)).
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Any linear combination of φ−
1 (x; λ) and ψ̃−

2 (x; λ) is also a solution of (1.17), and so
we are justified in defining

ψ−
2 (x; λ) := 1

μ−
2

(
ψ̃−

2 (x; λ)− φ−
1 (x; λ)

)
.

We have, then,

1

μ−
2

(
ψ̃−

2 (x; λ)− φ−
1 (x; λ)

)

= 1

μ−
2

(
eμ

−
2 (λ)xφ−

0 (x)(1 + O(|λ1/2|e−α|x |))− eμ
−
3 (λ)xφ−

0 (x)(1 + O(|λ1/2|e−α|x |)).
)

= φ−
0 (x)

μ−
2

(
eμ

−
2 (λ)x − eμ

−
3 (λ)x + O(|λ1/2|e−α|x |)

)
.

The estimate we state is obtained by scaling φ−
0 (x) as

φ−
0 (x) = 1 + O(e−α|x |).

The case of ψ+
1 (x; λ) can be analyzed similarly. ��

Lemma 2.2. Under the assumptions of Lemma 2.1, and for φ±
k , ψ±

k as in Lemma 2.1,
with k = 0, 1 and for D(λ) as in (1.20) we have the following estimates. For some
α̃ > 0,
(i) For x ≤ 0:

∂k
x

W (φ−
1 , φ

−
2 , ψ

−
1 )

c(x)Wλ(x)

= 1

c(0)D(λ)
e−μ−

2 (λ)x
(
(−μ−

2 )
k(μ−

1 − μ−
4 )(μ

−
1 − μ−

3 )(μ
−
4 − μ−

3 ) + O(e−α̃|x |)
)
,

∂k
x

W (φ−
1 , φ

−
2 , ψ

−
2 )

c(x)Wλ(x)

= 1

c(0)D(λ)
e−μ−

1 (λ)x
(
(−μ−

1 )
k(μ−

2 − μ−
4 )(

μ−
2 − μ−

3

μ−
2

)(μ−
4 − μ−

3 ) + O(e−α̃|x |)
)
,

∂k
x

W (φ−
1 , ψ

−
1 , ψ

−
2 )

c(x)Wλ(x)

= 1

c(0)D(λ)
e−μ−

4 (λ)x
(
(−μ−

4 )(μ
−
2 − μ−

1 )(
μ−

2 − μ−
3

μ−
2

)(μ−
1 − μ−

3 ) + O(e−α̃|x |)
)
,

∂k
x

W (φ−
2 , ψ

−
1 , ψ

−
2 )

c(x)Wλ(x)

= 1

c(0)D(λ)

( (μ−
2 − μ−

1 )(μ
−
2 − μ−

4 )(μ
−
1 − μ−

4 )

μ−
2

)(
e−μ−

3 (λ)x (−μ−
3 )

k

− e−μ−
2 (λ)x (−μ−

2 )
k + O(|λ1/2|e−α̃|x |)

)
.
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(ii) For x ≥ 0:

∂k
x

W
(
φ+

1 , φ
+
2 , ψ

+
1

)

c(x)Wλ(x)

= 1

c(0)D(λ)
e−μ+

4 (λ)x
(
(−μ+

4)
k(
μ+

3 − μ+
2

μ+
3

)(μ+
3 − μ+

1)(μ
+
2 − μ+

1) + O(e−α̃|x |)
)
,

∂k
x

W
(
φ+

1 , φ
+
2 , ψ

+
2

)

c(x)Wλ(x)

= 1

c(0)D(λ)
e−μ+

3 (λ)x
(
(−μ+

3)
k(μ+

4 − μ+
2)(μ

+
4 − μ+

1)(μ
+
2 − μ+

1) + O(e−α̃|x |)
)
,

∂k
x

W
(
φ+

1 , ψ
+
1 , ψ

+
2

)

c(x)Wλ(x)

= 1

c(0)D(λ)

( (μ+
4 − μ+

3)(μ
+
4 − μ+

1)(μ
+
3 − μ+

1)

μ+
3

)(
e−μ+

2 (λ)x (−μ+
2)

k

− e−μ+
3 (λ)x (−μ+

3)
k + O(|λ1/2|e−α̃|x |)

)
,

∂k
x

W (φ+
2 , ψ

+
1 , ψ

+
2 )

c(x)Wλ(x)

= 1

c(0)D(λ)
e−μ+

1 (λ)x
(
(−μ+

1)
k(μ+

4 − μ+
3)(μ

+
4 − μ+

2)

(
μ+

3 − μ+
2

μ+
3

)
+ O(e−α̃|x |)

)
.

Proof. The estimates of Lemma 2.2 are each carried out in a similar straightforward
manner, so we proceed only in the case of

∂x
W
(
φ−

2 , ψ
−
1 , ψ

−
2

)

c(x)Wλ(x)
.

Computing directly, and observing (c(x)Wλ(x))′ = 0, we have

∂x
W (φ−

2 , ψ
−
1 , ψ

−
2 )

c(x)Wλ(x)
= ∂x W (φ−

2 , ψ
−
1 , ψ

−
2 )

c(x)Wλ(x)
.

For the denominator, we note Abel’s relation,

W ′
λ(x) = Wλ(0)e

∫ x
0 trA(y;λ)dy = D(λ)e− ∫ x

0
c′(y)
c(y) dy

= D(λ)
c(0)

c(x)
,

or

c(x)Wλ(x) = c(0)D(λ). (2.8)
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For the numerator, we compute

∂x W (φ−
2 , ψ

−
1 , ψ

−
2 ) = det

⎛
⎝
φ−

2 ψ−
1 ψ−

2
φ−

2
′

ψ−
1

′
ψ−

2
′

φ−
2

′′′
ψ−

1
′′′

ψ−
2

′′′

⎞
⎠

= 1
μ−

2
det

⎛
⎝

1 1 1
μ−

4 μ−
1 μ−

2
(μ−

4 )
3 (μ−

1 )
3 (μ−

2 )
3

⎞
⎠ e(μ

−
1 +μ−

2 +μ−
4 )x

− 1
μ−

2
det

⎛
⎝

1 1 1
μ−

4 μ−
1 μ−

3
(μ−

4 )
3 (μ−

1 )
3 (μ−

3 )
3

⎞
⎠ e(μ

−
1 +μ−

3 +μ−
4 )x + O(e−α̃|x |). (2.9)

We mention particularly that in the exponentially decaying terms of this last calculation,
we have observed the estimate

∣∣∣ 1

μ−
2 (λ)

(eμ
−
2 (λ)x − eμ

−
3 (λ)x )O(e−ᾱ|x |)

∣∣∣ ≤ C1
1

μ−
2 (λ)

|√λx |O(e−ᾱ|x |)

= O(e−α̃|x |),

for some 0 < α̃ < ᾱ. Computing the determinants, we find

∂x W (φ−
2 , ψ

−
1 , ψ

−
2 ) = 1

μ−
2

[
(−μ−

3 )(μ
−
2 − μ−

1 )(μ
−
2 − μ−

4 )(μ
−
3 − μ−

4 )e
(μ−

1 +μ−
2 +μ−

4 )x

− (−μ−
2 )(μ

−
3 − μ−

1 )(μ
−
3 − μ−

4 )(μ
−
1 − μ−

4 )
]
e(μ

−
1 +μ−

3 +μ−
4 )x + O(e−α̃|x |),

for which we observe that with μ−
1 = −μ−

4 and μ−
2 = −μ−

3 , we have

(μ−
2 − μ−

1 )(μ
−
2 − μ−

4 )(μ
−
3 − μ−

4 ) = (μ−
3 − μ−

1 )(μ
−
3 − μ−

4 )(μ
−
1 − μ−

4 ),

and
e(μ

−
1 +μ−

2 +μ−
4 )x = e−μ−

3 x ,

e(μ
−
1 +μ−

3 +μ−
4 )x = e−μ−

2 x .

Combining these last observations with (2.8), we conclude our argument for the case of
interest. The remaining estimates follow similarly. ��

In addition to Lemmas 2.1 and 2.2, we have the following estimates on the N±
k .

Lemma 2.3. Under the assumptions of Theorem 1.1, we have the following estimates
on the N±

k of (1.19) (with similar estimates for x ≥ 0).
For x ≤ 0, k = 0, 1, and for |λ| ≤ r , some r sufficiently small,

∂k
x N−

1 (x; λ) = O(|λ−1+ k
2 |)e−μ−

2 (λ)x ,

∂k
x N−

2 (x; λ) = O(|λ− 1
2 + k

2 |)e−μ−
2 (λ)x ,

∂k
x N +

1 (x; λ) = O(|λ− 1
2 |)
(

eμ
−
2 (λ)xμ−

2 (λ)
k − eμ

−
3 (λ)xμ−

3 (λ)
k
)

+ O
(
|λ− 1

2 + k
2 |
)

eμ
−
3 (λ)x ,

∂k
x N +

2 (x; λ) = O
(
|λ−1+ k

2 |
)

e−μ−
2 (λ)x + O(1)e−μ−

4 (λ)x .
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Proof. We note at the outset that for x ≤ 0, we will take the expansions

φ+
k (x; λ) = A+

k (λ)φ
−
1 (x; λ) + B+

k (λ)φ
−
2 (x; λ) + C+

k (λ)ψ
−
1 (x; λ) + D+

k (λ)ψ
−
2 (x; λ).

(2.10)
Without loss of generality, we take the convention

φ+
1 (x; 0) = ūx (x) = φ−

2 (x; 0), (2.11)

according to which there must hold

A+
1(λ) = O(|λ1/2|); B+

1 (λ) = 1 + O(|λ1/2|); C+
1 (λ) = O(|λ1/2|);

D+
1 (λ) = O(|λ1/2|); A+

2(λ) = O(1); B+
2 (λ) = O(1); C+

2 (λ) = O(1);
D+

2 (λ) = O(1). (2.12)

As each estimate of Lemma 2.3 is proven similarly, we provide details only in the
case of ∂x N−

1 . We have, similarly as in the proof of Lemma 2.2,

∂x N−
1 (x; λ) = −∂x W (φ−

1 , φ
−
2 , φ

+
2 )

c(x)Wλ(x)
,

for which we compute

∂x W (φ−
1 , φ

−
2 , φ

+
2 ) = det

⎛
⎝
φ−

1 φ−
2 φ+

2
φ−

1
′

φ−
2

′
φ+

2
′

φ−
1

′′′
φ−

2
′′′

φ+
2

′′′

⎞
⎠ .

In order to derive expressions for the terms φ±
k

′′′
, we consider the eigenvalue problem

(1.17). In general, we have the relation

−(c(x)φ±
k

′′′
)′ + (b(x)φ±

k
′
)′ − (a(x)φ±

k )
′ = λφ±

k . (2.13)

For φ−
1 and φ−

2 , upon integration from −∞ up to x , and keeping in mind that a(x)
decays at an exponential rate as x → ±∞, we have

−c(x)φ−
k

′′′
+ b(x)φ−

k
′ − a(x)φ−

k = λ

∫ x

−∞
φ−

k (y; λ)dy.

The most straightforward case is φ−
2 (x; λ), which for x < 0 decays at an exponential

rate even for λ = 0. In this case, we define

W−
2 (x; λ) =

∫ x

−∞
φ−

2 (y; λ)dy = O(1)eμ
−
4 (λ)x . (2.14)

Proceeding similarly for φ−
1 (x; λ), which fails to decay for λ = 0, we define

W−
1 (x; λ) = √

λ

∫ x

−∞
φ−

1 (y; λ)dy = √
λ

∫ x

−∞
eμ

−
3 (λ)y(1 + O(e−ᾱ|y|))dy

= √
λ

1

μ−
3 (λ)

eμ
−
3 (λ)x +

√
λO(e−α|x |),

so that
−c(x)φ−

1
′′′

+ b(x)φ−
1

′ − a(x)φ−
1 = √

λW−
1 (x; λ),



Transition Fronts for Cahn–Hilliard Equations 783

with

W−
1 (x; λ) = eμ

−
3 (λ)x (

√
λ

μ−
3 (λ)

+ O(|λ1/2|e−α|x |).

Finally, for φ+
2 (x; λ) in the case x < 0, we must expand in terms of the linearly inde-

pendent solutions φ−
k and ψ−

k ,

φ+
2 (x; λ) = A+

2(λ)φ
−
1 (x; λ) + B+

2 (λ)φ
−
2 (x; λ) + C+

2 (λ)ψ
−
1 (x; λ) + D+

2 (λ)ψ
−
2 (x, λ).

In this case, we integrate (2.13) for y ∈ [x,+∞) to obtain

c(x)φ+
2

′′′
(x; λ)−b(x)φ+

2
′
(x; λ)+a(x)φ+

2 (x; λ) = λ

∫ +∞

x
φ+

2 (y; λ)dy =: √
λW+

2 (x; λ),

where we divide this final integration up as

∫ +∞

x
φ+

2 (y; λ)dy =
∫ −M

x
φ+

2 (y; λ)dy +
∫ +∞

−M
φ+

2 (y; λ)dy,

where M > 0 is chosen sufficiently large so that the estimates of Lemma 2.1 hold for
x ≤ −M . For the integration over y > −M , we have

∫ +∞

−M
φ+

2 (y; λ)dy =
∫ 0

−M
O(1)dy +

∫ +∞

0
eμ

+
2 (λ)y(1 + O(e−ᾱ|y|))dy = O(|λ−1/2|).

On the other hand, for integration over y < −M , we have

∫ −M

x
φ+

2 (y; λ)dy = A+
2(λ)

∫ −M

x
φ−

1 (y; λ)dy + B+
2 (λ)

∫ −M

x
φ−

2 (y; λ)dy

+ C+
2 (λ)

∫ −M

x
ψ−

1 (y; λ)dy + D+
2 (λ)

∫ −M

x
ψ−

2 (y, λ)dy.

Combining these last observations, we conclude

W+
2 (x; λ) = O(1) +

√
λ
[

A+
2(λ)

∫ −M

x
φ−

1 (y; λ)dy + B+
2 (λ)

∫ −M

x
φ−

2 (y; λ)dy

+ C+
2 (λ)

∫ −M

x
ψ−

1 (y; λ)dy + D+
2 (λ)

∫ −M

x
ψ−

2 (y, λ)dy
]

= O(1)eμ
−
1 (λ)x .
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Omitting coefficient dependence on y for brevity of notation, we have

det

⎛
⎝
φ−

1 φ−
2 φ+

2
φ−

1
′

φ−
2

′
φ+

2
′

φ−
1

′′′
φ−

2
′′′

φ+
2

′′′

⎞
⎠

= det

⎛
⎜⎝

φ−
1 φ−

2 φ+
2

φ−
1

′
φ−

2
′

φ+
2

′
b
cφ

−
1

′ − a
cφ

−
1 −

√
λ

c W−
1

b
cφ

−
2

′ − a
cφ

−
2 − λ

c W−
2

b
cφ

+
2

′ − a
cφ

+
2 −

√
λ

c W+
2

⎞
⎟⎠

= det

⎡
⎢⎣
⎛
⎝

1 0 0
0 1 0

− a
c

b
c 1

⎞
⎠

⎛
⎜⎝

φ−
1 φ−

2 φ+
2

φ−
1

′
φ−

2
′

φ+
2

′

−
√
λ

c W−
1 −λ

c W−
2 −

√
λ

c W+
2

⎞
⎟⎠

⎤
⎥⎦

= det

⎛
⎜⎝

φ−
1 φ−

2 φ+
2

φ−
1

′
φ−

2
′

φ+
2

′

−
√
λ

c W−
1 −λ

c W−
2 −

√
λ

c W+
2

⎞
⎟⎠ . (2.15)

We proceed by expanding this last determinant along its bottom row, giving

−
√
λ

c(x)
W−

1 (x; λ)W (φ−
2 , φ

+
2 )+

λ

c(x)
W−

2 (x; λ)W (φ−
1 , φ

+
2 )+

√
λ

c(x)
W+

2 (x; λ)W (φ−
1 , φ

−
2 ).

(2.16)
For the first expression in (2.16), we observe

W (φ−
2 , φ

+
2 ) = A+

2(λ)W (φ−
2 , φ

−
1 ) + C+

2 (λ)W (φ−
2 , ψ

−
1 ) + D+

2 (λ)W (φ−
2 , ψ

−
2 )

= O(1)e(μ
−
1 +μ−

4 )y = O(1),

while similarly

W (φ−
1 , φ

+
2 ) = O(1)e(μ

−
1 +μ−

3 )y .

In this way, the terms in (2.16) give respectively

O(|λ1/2|)e(μ−
1 +μ−

3 +μ−
4 )y + O(|λ|)e(μ−

1 +μ−
3 +μ−

4 )y + O(|λ1/2|)e(μ−
1 +μ−

3 +μ−
4 )y .

We now recall the relationship μ−
3 + μ−

2 = 0, and note that according to spectral crite-
rion (D), there holds D(λ) = c1λ + O(|λ3/2|). Upon division, then, by c(y)Wλ(y) =
c(0)D(λ), we conclude the claimed estimate.

The remaining estimates of Lemma 2.3 follow similarly. ��
Lemma 2.4. Under the assumptions of Theorem 1.1, and for C+

k (λ)and D+
k (λ)as defined

in (2.10), there holds

C+
1 (λ)D

+
2 (λ)− C+

2 (λ)D
+
1 (λ) = O(|λ|).

Proof. We first observe that by augmenting (2.10) with y-derivatives up to third order,
we obtain the matrix equations
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⎛
⎜⎜⎝

φ−
1 φ−

2 ψ−
1 ψ−

2
φ−

1
′

φ−
2

′
ψ−

1
′

ψ−
2

′

φ−
1

′′
φ−

2
′′

ψ−
1

′′
ψ−

2
′′

φ−
1

′′′
φ−

2
′′′

ψ−
1

′′′
ψ−

2
′′′

⎞
⎟⎟⎠

⎛
⎜⎝

A+
k

B+
k

C+
k

D+
k

⎞
⎟⎠ =

⎛
⎜⎜⎝
φ+

k
φ+

k
′

φ+
k

′′
φ+

k
′′′

⎞
⎟⎟⎠ . (2.17)

Proceeding by Cramer’s rule, we have, for example,

C+
1 (λ) = W (φ−

1 , φ
−
2 , φ

+
1 , ψ

−
2 )

W (φ−
1 , φ

−
2 , ψ

−
1 , ψ

−
2 )
,

where the W notation is defined immediately following (1.19). By linear independence,
the denominator of this last expression is non-zero, while for the numerator, we compute
similarly as in (2.15),

W (φ−
1 , φ

−
2 , φ

+
1 , ψ

−
2 )

= det

⎛
⎜⎜⎜⎝

φ−
1 φ−

2 φ+
1 ψ−

2
φ−

1
′

φ−
2

′
ψ+

1
′

ψ−
2

′

φ−
1

′′
φ−

2
′′

ψ+
1

′′
ψ−

2
′′

−
√
λ

c(x)W−
1 − λ

c(x)W+
2 − λ

c(x)W+
1 ψ

−
2

′′′ − b(x)
c(x)ψ

−
2

′
+ a(x)

b(x)ψ
−
2

⎞
⎟⎟⎟⎠

=
(
ψ−

2
′′′ − b(x)

c(x)
ψ−

2
′
+

a(x)

b(x)
ψ−

2

)
W (φ−

1 , φ
−
2 , φ

+
1 ) + O(|λ|),

where ψ−
2 is treated in a distinguished manner because it cannot be integrated to an

asymptotic limit. Proceeding similarly, we also have

W (φ−
1 , φ

−
2 , φ

−
1 , ψ

−
2 )C

+
2 (λ) = W (φ−

1 , φ
−
2 , φ

+
2 , ψ

−
2 )

=
(
ψ−

2
′′′ − b(x)

c(x)
ψ−

2
′
+

a(x)

b(x)
ψ−

2

)

× W (φ−
1 , φ

−
2 , φ

+
2 ) + O(|λ1/2|),

W (φ−
1 , φ

−
2 , φ

−
1 , ψ

−
2 )D

+
1 (λ) = W (φ−

1 , φ
−
2 , ψ

−
1 , φ

+
1 )

= −
(
ψ−

1
′′′ − b(x)

c(x)
ψ−

1
′
+

a(x)

b(x)
ψ−

1

)

× W (φ−
1 , φ

−
2 , φ

+
1 ) + O(|λ|),

W (φ−
1 , φ

−
2 , φ

−
1 , ψ

−
2 )D

+
2 (λ) = W (φ−

1 , φ
−
2 , ψ

−
1 , φ

+
2 )

= −
(
ψ−

1
′′′ − b(x)

c(x)
ψ−

1
′
+

a(x)

b(x)
ψ−

1

)

× W (φ−
1 , φ

−
2 , φ

+
2 ) + O

(
|λ1/2|

)
.
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Combining these observations, we compute

W (φ−
1 , φ

−
2 , φ

−
1 , ψ

−
2 )
(

C+
1 (λ)D

+
2 (λ)− C+

2 (λ)D
+
1 (λ)

)

=
[(
ψ−

2
′′′ − b(x)

c(x)
ψ−

2
′
+

a(x)

b(x)
ψ−

2

)
W (φ−

1 , φ
−
2 , φ

+
1 ) + O(|λ|)

]

×
[

−
(
ψ−

1
′′′ − b(x)

c(x)
ψ−

1
′
+

a(x)

b(x)
ψ−

1

)
W (φ−

1 , φ
−
2 , φ

+
2 ) + O(|λ1/2|)

]

−
[(
ψ−

2
′′′ − b(x)

c(x)
ψ−

2
′
+

a(x)

b(x)
ψ−

2

)
W (φ−

1 , φ
−
2 , φ

+
2 ) + O(|λ1/2|)

]

×
[

−
(
ψ−

1
′′′ − b(x)

c(x)
ψ−

1
′
+

a(x)

b(x)
ψ−

1

)
W (φ−

1 , φ
−
2 , φ

+
1 ) + O(|λ|)

]

=
(
ψ−

2
′′′ − b(x)

c(x)
ψ−

2
′
+

a(x)

b(x)
ψ−

2

)
W (φ−

1 , φ
−
2 , φ

+
1 )O(|λ1/2|)

−
(
ψ−

1
′′′ − b(x)

c(x)
ψ−

1
′
+

a(x)

b(x)
ψ−

1

)
W (φ−

1 , φ
−
2 , φ

+
2 )O(|λ|)

−
(
ψ−

2
′′′ − b(x)

c(x)
ψ−

2
′
+

a(x)

b(x)
ψ−

2

)
W (φ−

1 , φ
−
2 , φ

+
2 )O(|λ|)

+
(
ψ−

1
′′′ − b(x)

c(x)
ψ−

1
′
+

a(x)

b(x)
ψ−

1

)
W (φ−

1 , φ
−
2 , φ

+
1 )O(|λ1/2|)

+ O(|λ3/2|).
Recalling that φ−

2 (x; 0) = ūx (x) = φ+
1 (x, 0), we have that determinants involving both

of these functions must vanish as λ → 0, necessarily at rate |λ1/2| or better by analyticity
in ρ. We conclude the claimed estimate. ��

We next state our main theorem on behavior of the Evans function for small values of
λ, which we note is simply the extension to the current setting of Proposition 2.7 of [7].

Lemma 2.5. Under the assumptions of Theorem 1.1, and for D(λ) as defined in (1.20),
we have

D(λ) = γ (u+ − u−)λ + O(|λ3/2|),
with

γ = − 1

c(0)
det

⎛
⎝
φ−

1 (0; λ) ūx (0) φ+
2 (0; λ)

φ−
1

′
(0; λ) ūxx (0) φ+

2
′
(0; λ)

φ−
1

′′
(0; λ) ūxxx (0) φ+

2
′′
(0; λ)

⎞
⎠ .

Proof. Observing that the solutions φ±
k (x; λ) are analytic in the variable ρ := √

λ, we
set

Da(ρ) := D(λ).

We have, then,

∂ρDa(0) = W (∂ρφ
−
1 , φ

−
2 , φ

+
1 , φ

+
2 ) + W (φ−

1 , ∂ρφ
−
2 , φ

+
1 , φ

+
2 )

+ W (φ−
1 , φ

−
2 , ∂ρφ

+
1 , φ

+
2 ) + W (φ−

1 , φ
−
2 , φ

+
1 , ∂ρφ

+
2 )

= W (φ−
1 , ∂ρ(φ

−
2 − φ+

1 ), ūx (0), φ
+
2 ),
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where the terms for which neither φ+
1 nor φ−

2 are differentiated are 0 due to the choice
of scaling (2.11). We observe here that the fast-decaying solutions φ−

2 and φ+
1 have been

derived analytically in λ = ρ2, and thus

∂ρφ
−
2 (x; 0) = 0,

∂ρφ
+
1 (x; 0) = 0.

(2.18)

In this way, we see immediately that ∂ρDa(0) = 0.
Proceeding similarly for ∂ρρDa(ρ), we find

∂ρρDa(0) = 2W (∂ρφ
−
1 (0; 0), ∂ρ(φ

−
2 − φ+

1 )(0; 0), ūx (0), φ
+
2 (0; 0))

+ 2W (φ−
1 (0; 0), ∂ρ(φ

−
2 − φ+

1 )(0; 0), ūx (0), ∂ρφ
+
2 (0; 0))

+ 2W (φ−
1 (0; 0), ∂ρφ

−
2 (0; 0), ∂ρφ

+
1 (0; 0), φ+

2 (0; 0))

+ W (φ−
1 (0; 0), ∂ρρ(φ

−
2 − φ+

1 )(0; 0), ūx (0), φ
+
2 (0; 0)).

Upon substitution of (2.18), all terms with only single partials are eliminated, and we
have

∂ρρDa(0) = W (φ−
1 (0; 0), ∂ρρ(φ

−
2 − φ+

1 )(0; 0), ūx (0), φ
+
2 (0; 0)).

In order to understand ρ derivatives of φ−
2 and φ+

1 , we proceed similarly as in (2.13),
setting

−(c(x)φ±
k

′′′
)′ + (b(x)φ±

k
′
)′ − (a(x)φ±

k )
′ = ρ2φ±

k , (2.19)

where prime here denotes differentiation with respect to x . Keeping in mind that φ−
2

and φ+
1 both decay at exponential rate even for λ = 0, we have, upon integration on

(−∞, x],
−c(x)φ−

2
′′′

+ b(x)φ−
2

′ − a(x)φ−
2 = ρ2W−

2 ,

where W−
2 is as in (2.14), and similarly for φ+

1 . Upon differentiation with respect to ρ,
we find

−c(x)(∂ρφ
−
2 )

′′′
+ b(x)(∂ρφ

−
2 )

′ − a(x)(∂ρφ
−
2 ) = 2ρW−

2 + ρ2(∂ρW−
2 ),

with again a similar relationship for φ+
1 . We next take a second ρ derivative of (2.19) to

obtain, upon integration and evaluation at ρ = 0,

−c(x)(∂ρρφ
−
2 )

′′′
+ b(x)(∂ρρφ

−
2 )

′ − a(x)(∂ρρφ
−
2 ) = 2W−

2 (x; 0).

Recalling that

W−
2 (x; ρ) :=

∫ x

−∞
φ−

2 (y; ρ)dy,

we have

W−
2 (x; 0) =

∫ x

−∞
ū y(y)dy = ū(x)− u−,

and similarly

W+
1 (x; 0) =

∫ x

−∞
ū y(y)dy = ū(x)− u+.

We conclude

−c(x)(∂ρρ(φ
−
2 − φ+

1 ))
′′′

+ b(x)(∂ρρ(φ
−
2 − φ+

1 ))
′ − a(x)(∂ρρ(φ

−
2 − φ+

1 )) = 2(u+ − u−).
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Finally, we have

∂ρρDa(0) = det

⎛
⎜⎜⎝

φ−
1 (0; 0) ∂ρρ(φ

−
2 − φ+

1 )(0; 0) ūx (0) φ+
2 (0; 0)

φ−
1

′
(0; 0) ∂ρρ(φ

−
2 − φ+

1 )
′
(0; 0) ūxx (0) φ+

2
′
(0; 0)

φ−
1

′′
(0; 0) ∂ρρ(φ

−
2 − φ+

1 )
′′
(0; 0) ūxxx (0) φ+

2
′′
(0; 0)

φ−
1

′′′
(0; 0) ∂ρρ(φ

−
2 − φ+

1 )
′′′
(0; 0) ūxxxx (0) φ+

2
′′′
(0; 0)

⎞
⎟⎟⎠

= det

⎛
⎜⎜⎜⎝

φ−
1 (0; 0) ∂ρρ(φ

−
2 − φ+

1 )(0; 0) ūx (0) φ+
2 (0; 0)

φ−
1

′
(0; 0) ∂ρρ(φ

−
2 − φ+

1 )
′
(0; 0) ūxx (0) φ+

2
′
(0; 0)

φ−
1

′′
(0; 0) ∂ρρ(φ

−
2 − φ+

1 )
′′
(0; 0) ūxxx (0) φ+

2
′′
(0; 0)

0 − 2
c(0) (u+ − u−) 0 0

⎞
⎟⎟⎟⎠ ,

from which the claimed relationship is immediate. ��
We now state for completeness a lemma asserting that (D) is known to hold in the

case (1.1)–(1.3) with wave (1.4).

Lemma 2.6. For the case (1.1)–(1.3), and for the standing front (1.4), spectral condition
(D) holds.

Proof. In order to verify the first assertion of (D)—that the only zero that D(λ) has
with non-negative real part is λ = 0—we first note that the integrated variable w(x) =∫ x
−∞ φ(y; λ)dy satisfies the integrated eigenvalue problem

Lw = λw; Lw := ∂x

[
(−∂xx + 1 + V (x))wx

]
,

where V (x) = −(3/2) cosh−2(x/2), and L is clearly a self-adjoint operator. Away from
essential spectrum, the eigenvalues of L correspond with those of L , and so aside from
the point λ = 0 (which is an eigenvalue of L but not of L), our study reduces to that of
L, which has been considered in [5, 36, 38] (see additionally the alternative analysis of
[10]). For completeness, we briefly review the observations of [5, 36, 38]. As pointed
out in [36, 38], the middle operator

Mw := −wxx + (1 + V (x))w

has been shown in [43] to have two isolated eigenvalues at 0 and 3
4 , and essential spec-

trum on the line [1,∞). It is an immediate consequence of the Spectral Theorem (see
e.g. [37], p. 360) that M is a (non-strictly) positive operator. In the event that λ is an
eigenvalue of L (necessarily real), we have that for some eigenfunction w associated
with λ that (Mwx )x = λw. Upon multiplication by w̄ and integration over R, we have

−
∫ +∞

−∞
w̄x Mwx dx = λ‖w‖2

L2 .

We can conclude by the positivity of M that λ ≤ 0.
According to Lemma 2.5, the second assertion in stability criterion (D) is verified if

γ = 0. This can be checked by a careful study of solutions to the eigenvalue problem
(1.17). In the case of (1.1)–(1.3), and profile (1.4), (1.17) becomes

−φxxxx + (b(x)φ)xx = λφ, (2.20)
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with

b(x) = 3

2
ū(x)2 − 1

2
; ū(x) = tanh

x

2
.

In the case of φ−
1 (x; λ), (2.20) can be integrated on x ∈ (−∞, x], and we obtain

−φ−
1 xxx + (b(x)φ−

1 )x = √
λW−

1 (x; λ),
where as in the proof of Lemma 2.3,

W−
1 (x; λ) = eμ

−
3 (λ)x

( √
λ

μ−
3 (λ)

+ O(|λ1/2|e−α|x |
)
.

Setting λ = 0, we have

−φ−
1 (x; 0)xxx + (b(x)φ−

1 (x; 0))x = 0. (2.21)

Proceeding similarly, we see that φ+
2 (x; 0) solves precisely the same equation. We can

solve (2.21) exactly by integrating once, and solving the equation

−φxx + b(x)φ = c1.

Taking c1 = 1, we find the three linearly independent solutions

φ0
1(x) = ūx (x),

φ0
2(x) = ūx (x)

[
2 sinh

x

2
cosh3 x

2
+ 3 sinh

x

2
cosh

x

2
+

3

2
x

]
,

φ0
3(x) = cosh2 x

2
.

It follows that φ−
1 (x; 0) and φ+

2 (x; 0) must both be linear combinations of φ0
2 and φ0

3 ,
where without loss of generality we can choose to remove a constant multiple of the
exponentially decaying function ūx without affecting the estimates of Lemma 2.1. More
precisely, we obtain a scaling that agrees with that of Lemma 2.1 by choosing

φ−
1 (x; 0) = −(φ0

2(x) + φ0
3(x)),

φ+
2 (x; 0) = φ0

2(x)− φ0
3(x).

Computing directly, we find γ = 2.
This concludes the proof of Lemma 2.6. ��
We conclude this section by combining the estimates of Lemmas 2.1–2.3 to obtain

estimates on Gλ(x, y) for values of |λ| sufficiently small. We have the following lemma.

Lemma 2.7. Under the assumptions of Theorem 1.1, and for Gλ(x, y) as defined in
(1.18), we have the following estimates. For

Gλ(x, y) = G̃λ(x, y) + Eλ(x, y),

and |λ| < r , for some suitably small constant r , there holds
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(i) For y ≤ x ≤ 0:

G̃λ(x, y) = c1λ
−1/2(eμ

−
2 (λ)x − eμ

−
3 (λ)x )e−μ−

2 (λ)y + O(|λ−1/2|)eμ−
3 (λ)(x+y)

+ O(1)eμ
−
2 (λ)(x−y),

∂y G̃λ(x, y) = c1
−μ−

2 (λ)

λ1/2 (eμ
−
2 (λ)x − eμ

−
3 (λ)x )e−μ−

2 (λ)y + O(1)eμ
−
3 (λ)(x+y)

+ O(|λ1/2|)eμ−
2 (λ)(x−y) + O(|λ−1/2|e−η|x |)e−μ−

2 (λ)y + O(e−η|x−y|),

∂x G̃λ(x, y) = O(1)(eμ
−
2 (λ)x + eμ

−
3 (λ)x )e−μ−

2 (λ)y + O(|λ−1/2|e−η|x |)e−μ−
2 (λ)y

+ O(e−η|x−y|),

∂xy G̃λ(x, y) = O(|λ1/2|)(eμ−
2 (λ)x + eμ

−
3 (λ)x )e−μ−

2 (λ)y + O(e−η|x |)e−μ−
2 (λ)y

+ O(e−η|x−y|).

(ii) For x ≤ y ≤ 0:

G̃λ(x, y) = c2λ
−1/2e−μ−

2 (λ)x (eμ
−
2 (λ)y − eμ

−
3 (λ)y) + O(|λ−1/2|)eμ−

3 (λ)(x+y)

+ O(1)eμ
−
3 (λ)(x−y),

∂y G̃λ(x, y) = O(1)e−μ−
2 (λ)x (eμ

−
2 (λ)y + eμ

−
3 (λ)y) + O(|λ−1/2e−η|x ||)e−μ−

2 (λ)y

+ O(e−η|x−y|),

∂x G̃λ(x, y) = c2
−μ−

2 (λ)

λ1/2 e−μ−
2 (λ)x (eμ

−
2 (λ)y − eμ

−
3 (λ)y) + O(1)eμ

−
3 (λ)(x+y)

+ O(|λ1/2|)eμ−
3 (λ)(x−y) + O(|λ−1/2e−η|x ||)e−μ−

2 (λ)y + O(e−η|x−y|),

∂xy G̃λ(x, y) = O(|λ1/2|)e−μ−
2 (λ)x (eμ

−
2 (λ)y + eμ

−
3 (λ)y) + O(|λ1/2|e−η|x |)e−μ−

2 (λ)y

+ O(e−η|x−y|).

(iii) For y ≤ 0 ≤ x :

G̃λ(x, y) = O(|λ−1/2|)eμ+
2 (λ)x−μ−

2 (λ)y,

∂y G̃λ(x, y) = O(1)eμ
+
2 (λ)x−μ−

2 (λ)y + O(e−η|x |)e−μ−
2 (λ)y,

∂x G̃λ(x, y) = O(1)eμ
+
2 (λ)x−μ−

2 (λ)y + O(|λ−1/2|e−η|x |)e−μ−
2 (λ)y,

∂xy G̃λ(x, y) = O(|λ1/2|)eμ+
2 (λ)x−μ−

2 (λ)y + O(e−η|x |)e−μ−
2 (λ)y,

and in all cases

Eλ(x, y) = cE

λ
ūx (x)e

−μ−
2 (λ)y(1 + O(e−η|y|)),

∂y Eλ(x, y) = cE
−μ−

2 (λ)

λ
ūx (x)e

−μ−
2 (λ)y(1 + O(e−η|y|)).

(2.22)

Remark 2.1. We note that the difference terms

c1λ
−1/2

(
eμ

−
2 (λ)x − eμ

−
3 (λ)x

)
,
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which clearly vanish at x = 0, arise naturally from our choice ofψ−
2 (x; λ) and moreover

are expected since the mass accumulating near x = 0 is recorded in the excited terms.
However, since we additionally have a term

O(|λ−1/2|)eμ−
3 (λ)(x+y),

there is no real advantage to be taken from the cancellation. In this way, our estimates do
not seem quite as sharp as those of [38], obtained for a multidimensional generalization
of (1.1)–(1.3). We would also mention that we will point out in the proof of Lemma
2.7 precisely why it is that y-derivatives of Eλ(x, y) do not have a term that would
correspond with differentiation of e−ηy .

Proof. We observe at the outset the relations,

∂y N−
1 (y; λ) = −C+

2 (λ)
∂y W (φ−

1 , φ
−
2 , ψ

−
1 )(y; λ)

c(y)Wλ(y)
− D+

2 (λ)
∂y W (φ−

1 , φ
−
2 , ψ

−
2 )(y; λ)

c(y)Wλ(y)
,

∂y N−
2 (y; λ) = C+

1 (λ)
∂y W (φ−

1 , φ
−
2 , ψ

−
1 )(y; λ)

c(y)Wλ(y)
+ D+

1 (λ)
∂y W (φ−

1 , φ
−
2 , ψ

−
2 )(y; λ)

c(y)Wλ(y)
.

(2.23)
Since proofs of the four estimates in each case are similar, we provide details only

for the estimates on y-derivatives. The case of y-derivatives is chosen because there is
a subtle point in this case in which the estimates of Lemma 2.2 do not quite suffice, and
we must use (2.23) and the estimates of Lemma 2.3.

Case (i): y ≤ x ≤ 0. For y ≤ x ≤ 0, we have

∂yGλ(x, y) = φ+
1 (x; λ)∂y N−

1 (y; λ) + φ+
2 (x; λ)∂y N−

2 (y; λ)
=
[
(A+

2C+
1 − A+

1C+
2 )φ

−
1 (x) + (B+

2 C+
1 − B+

1 C+
2 )φ

−
2 (x)

+(D+
2 C+

1 − D+
1 C+

2 )ψ
−
2 (x)

]∂y W (φ−
1 , φ

−
2 , ψ

−
1 )(y)

c(y)Wλ(y)

+
[
(A+

2 D+
1 − A+

1 D+
2 )φ

−
1 (x) + (B+

2 D+
1 − B+

1 D+
2 )φ

−
2 (x)

+(D+
1 C+

2 − D+
2 C+

1 )ψ
−
1 (x)

]∂y W (φ−
1 , φ

−
2 , ψ

−
2 )(y)

c(y)Wλ(y)
. (2.24)

We group these into three sets of terms, beginning with the leading order G̃λ expression

(D+
2 C+

1 − D+
1 C+

2 )ψ
−
2 (x)

∂y W (φ−
1 , φ

−
2 , ψ

−
1 )(y)

c(y)Wλ(y)

= (c1λ
−1/2 + O(1))(eμ

−
2 (λ)x − eμ

−
3 (λ)x

+ O(|λ1/2|e−α|x |))e−μ−
2 (λ)y(−μ−

2 (λ) + O(e−α̃|y|))

= c1
−μ−

2 (λ)

λ1/2 (eμ
−
2 (λ)x − eμ

−
3 (λ)x )e−μ−

2 (λ) + O(|λ1/2|)eμ−
2 (λ)(x−y)

+ O(|λ1/2|e−η|x |)e−μ−
2 (λ)yO(e−η(|x |+|y|)).

We note in particular that we have made critical use here of Lemma 2.4; otherwise, we
have employed the estimates of Lemma 2.2 in straightfoward fashion.
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Next, we consider contributions to the excited term ∂y Eλ(x, y). In this case, we take

−B+
1 (λ)φ

−
2 (x; λ)

[
C+

2 (λ)
∂y W (φ−

1 , φ
−
2 , ψ

−
1 )(y; λ)

c(y)Wλ(y)
+ D+

2 (λ)
∂y W (φ−

1 , φ
−
2 , ψ

−
2 )(y; λ)

c(y)Wλ(y)

]

= B+
1 (λ)φ

−
2 (x; λ)∂y N−

1 (y; λ)
=
(

c1λ
−1/2 + O(1)

)(
ūx (x) + O(|λ1/2|e−η|x |)

)
e−μ−

2 (λ)y(1 + O(e−η|y|))

= c1λ
−1/2ūx (x)e

−μ−
2 (λ)y(1 + O(e−η|y|)) + O(e−η|x |)e−μ−

2 (λ)x .

It is of particular importance to note that the undifferentiated excited term is precisely
the same thing with y-derivatives omitted. In this way, we see that y-differentiation
improves the singularity of Eλ(x, y) as λ → 0.

For the remaining terms, we group according to (2.23) in order to obtain

A+
2(λ)φ

−
1 (x; λ)∂y N−

2 (y; λ) + A+
1(λ)φ

−
1 (x; λ)∂y N−

1 (y; λ)
+B+

2 (λ)φ
−
2 (x; λ)∂y N−

2 (y; λ) + (D+
2 (λ)C

+
1 (λ)

−D+
1 (λ)C

+
2 (λ))ψ

−
1 (x; λ)∂y W (φ−

1 , φ
−
2 , ψ

−
2 )

c(y)Wλ(y)
. (2.25)

For the first three terms on the right hand side of (2.25), we have an estimate by
(

c1 + O(|λ1/2|)
)

eμ
−
3 (λ)x−μ−

2 (λ)y(1 + O(e−η|x |))

= O(1)eμ
−
3 (λ)x−μ−

2 (λ)y .

For the third term on the right hand side of (2.25), keeping in mind Lemma 2.4, we have

(D+
2 (λ)C

+
1 (λ)− D+

1 (λ)C
+
2 (λ))ψ

−
1 (x; λ)∂y W (φ−

1 , φ
−
2 , ψ

−
2 )

c(y)Wλ(y)
= O(1)eμ

−
1 (λ)(x−y).

(2.26)
Case (ii): x ≤ y ≤ 0. For x ≤ y ≤ 0, we have

∂yGλ(x, y) = φ−
1 (x; λ)∂y N +

1 (y; λ) + φ−
2 (x; λ)∂y N +

2 (y; λ). (2.27)

Beginning again with the leading order G̃λ estimate, we have

φ−
1 (x; λ)∂y N +

1 (y; λ) = O(1)eμ
−
3 (λ)(x−y), (2.28)

while for the excited and correction terms, we compute

φ−
2 (x; λ)∂y N +

2 (y; λ)
=
(

ūx (x) + O(|λ1/2|e−η|x |)
)[(

k1λ
−1/2

+ O(1)
)

e−μ−
2 (λ)y

(
1 + O(e−α|y|)

)
+ O(1)e−μ−

4 (λ)y
]

= k1λ
−1/2ūx (x)e

−μ−
2 (λ)y(1 + O(e−α|y|)) + O(e−η|x |)e−μ−

2 (λ)y + O(e−η|x−y|).
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For the excited term, we take

∂y Eλ(x, y) = k1λ
−1/2ūx (x)e

−μ−
2 (λ)y(1 + O(e−α|y|)).

Case (iii): y ≤ 0 ≤ x. For y ≤ 0 ≤ x , we have

∂yGλ(x, y) = φ+
1 (x; λ)∂y N−

1 (y; λ) + φ+
2 (x; λ)∂y N−

2 (y; λ). (2.29)

For the leading order G̃λ term, we take

φ+
2 (x; λ)∂y N−

2 (y; λ) = O(1)eμ
+
2 (λ)x−μ−

2 (λ)y,

while for the excited and correction terms, we compute

φ+
1 (x; λ)∂y N−

1 (y; λ) =
(

ūx (x) + O(|λ1/2|e−η|x |)
)

× (n1λ
−1/2 + O(1))e−μ−

2 (λ)y(1 + O(e−α̃|y|)).

For the excited term, we take

∂y Eλ(x, y) = n1ūx (x)λ
−1/2e−μ−

2 (λ)y(1 + O(e−α̃|y|)).

The remaining cases can be established similarly. ��
Lemma 2.8. Suppose the conditions of Theorem 1.1 hold, and Gλ(x, y) is as defined in
(1.18). Then for |λ| ≥ R, some R sufficiently large, and for λ to the right of the contour
�s defined in Remark 1.1, we have the following estimates. For some β > 0 and for
multi-index α in x and y,

|∂αGλ(x, y)| ≤ C |λ− 3−k
4 |e−β|λ1/4||x−y|, |α| ≤ 3.

Remark 2.2. Regarding the proof of Lemma 2.8, we note that large |λ| behavior corre-
sponds with small t behavior, for which the fourth order effects dominate. Consequently,
the proof of Lemma 2.8 is almost precisely the same as that of the corresponding Lemma
3.2 of [25], carried out in the case of multidimensional equations

ut +
d∑

j=1

f j (u)x j = −
∑
jklm

(
b jklm(u)ux j xk xl

)
xm
.

We omit it here.

Lemma 2.9. Suppose the conditions of Theorem 1.1 hold, and Gλ(x, y) is as defined in
(1.18). Then for r ≤ |λ| ≤ R, r as in Lemma 2.7 and R as in Lemma 2.8, and for λ to
the right of the contour �s defined in Remark 1.1, we have the following estimates. For
some constant C sufficiently large, and for multi-index α in x and y,

|∂αGλ(x, y)| ≤ C, |α| ≤ 3.
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3. Proof of Theorem 1.1

In this section, we obtain estimates on the Green’s function G(t, x; y) through the inverse
Laplace transform representation

G(t, x; y) = 1

2π i

∫

�

eλt Gλ(x, y)dλ, (3.1)

where � denotes a contour that lies to the right of the point spectrum of L and loops
through the point at ∞. The validity of (3.1) can be established in a straightforward
manner from the estimates of Lemmas 2.7, 2.8, and 2.9. See, in particular, Corollary 7.4
of [52].

3.1. Small time estimates. In the case |x − y| ≥ K t , for some K sufficiently large, and
also in the case of t ≤ 1 (in fact, for any fixed finite bound) behavior of the Green’s
function is entirely dominated by fourth order effects. In this case, the analysis of [25],
carried out in the case of multidimensional equations

ut +
d∑

j=1

f j (u)x j = −
∑
jklm

(
b jklm(u)ux j xk xl

)
xm
,

extends immediately to the current setting and we can conclude, as there,

|∂αG(t, x; y)| ≤ Ct−
1+|α|

4 e
− |x−y|4/3

Mt1/3 ,

where α denotes a standard multi-index in x and y with |α| ≤ 3. The proof is carried
out through the estimates of Lemma 2.8 and representation (3.1).

3.2. Large time estimates. In the case |x − y| ≤ K t , K as in Sect. 3.1, we proceed
predominately through the estimates of Lemma 2.7, employing Lemmas 2.8 and 2.9
only for integration over |λ| ≥ r , which corresponds roughly with the non-critical cases
of small and medium range times. As the analyses of several of the terms in Lemma 2.7
are quite similar, we will proceed by giving full details only for the most critical cases
and pointing out the salient points for the remainder.
Case (i), y ≤ x ≤ 0. For the case y ≤ x ≤ 0, we begin with the leading term

c1λ
−1/2(eμ

−
2 (λ)x − eμ

−
3 (λ)x )e−μ−

2 (λ)y,

for which we first evaluate

c1

2π i

∫

�

eλt+μ−
2 (λ)(x−y)

√
λ

dλ.

Recalling the expansion

μ−
2 (λ) = −

√
λ

b−
+ O(|λ3/2|),



Transition Fronts for Cahn–Hilliard Equations 795

we have that for |λ3/2(x − y)| ≤ ε, ε > 0 sufficiently small, there holds

eλt+μ−
2 (λ)(x−y) = e

λt−
√

λ
b− |x−y|

(1 + O(|λ3/2(x − y)|)).
We focus first, then, on integrals

c1

2π i

∫

�

e
λt−

√
λ

b− (x−y)

√
λ

dλ,

and treat the higher order terms later as small corrections. For |x − y| ≤ ε1t , ε1 > 0
sufficiently small, we take the contour

√
λ

b−
= |x − y|

2tb−
+ ik. (3.2)

Our approach will be to follow the contour (3.2) until we strike the contour�s of Remark
1.1, and from that point to follow �s out to the point at ∞, employing the estimates of
Lemma 2.8 and 2.9. We denote the truncated contour taken prior to intersection with
�s as �∗, and let ±k∗ denote the values of k at which �∗ strikes �s . We remark before
proceeding that in the case ε1 ≤ |x − y| ≤ K t , we take the similar contour

√
λ

b−
= (x − y)

Lt
+ ik, (3.3)

where L is chosen sufficiently large, and we have

λ(k) = b−
(x − y)2

L2t2 + 2ikb−
x − y

Lt
− b−k2; dλ = 2i

√
b−

√
λ.

In this case, we lose the precise kernel scaling—as stated for the leading order G̃ term
in Theorem 1.1—but with |x − y| ≥ ε1t , we have exponential decay in t , and the term
can be subsumed into the higher order estimates.

Returning to our main contour (3.2), we observe the relationships

λ(k) = (x − y)2

4b−t2 + ik
x − y

t
− b−k2; dλ = 2i

√
b−

√
λdk. (3.4)

In this way,

c1

2π i

∫

�∗
e
λt−

√
λ

b− |x−y|
√
λ

dλ = c1
√

b−
π

e
−(x−y)2

4b− t

∫ +k∗

−k∗
e−b−k2t dk = c1√

π t
e

−(x−y)2

4b− t , (3.5)

wherein we arrive at the sharp leading order estimate of Theorem 1.1. Along the con-
tour �s , we clearly have exponential decay in t , which in the case |x − y| ≤ K t gives
an estimate which can be subsumed into the higher order terms (see the more detailed
remarks in the paragraph labeled higher order corrections). Proceeding similarly in the
case

c1

2π i

∫

�

eλt−μ−
3 (λ)x−μ−

2 (λ)y√
λ

dλ,
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and keeping in mind that μ−
2 (λ) = −μ−

3 (λ), we determine as above an expression

c1√
π t

e
− (x+y)2

4b− t ,

plus higher order corrections.
Higher order corrections. We next consider in more detail the higher order corrections
left over from the estimates above. First, we have the O(|λ3/2|) correction, arising from
integrals

∫

�

e
λt−

√
λ

b− (x−y)

√
λ

O(|λ3/2(x − y)|)dλ.
Proceeding with the contour (3.3), we have

∣∣∣
∫

�∗
e
λt−

√
λ

b− (x−y)

√
λ

O(|λ3/2(x − y)|)dλ
∣∣∣

≤ Ce− (x−y)2

2Lt

∫ +k∗

−k∗
e−b−k2t O(| |x − y|3

t2 | + |k2||x − y|)dk

=
(

O(
|x − y|3

t2 ) + O(
|x − y|

t3/2 )
)

e− (x−y)2

2Lt = O(
|x − y|

t3/2 )e− (x−y)2

4Lt .

Also, regarding the correction terms from the scattering estimates, we note that in the
case |x − y| ≤ K t , we have

t ≥ |x − y|
K

≥ |x − y|
K

|x − y|
K t

= |x − y|2
K 2t

,

so that exponential decay in time, which is always the case along the contour �s , gives
the broadened kernel decay.
Second and third summands in G̃λ(x, y). The second estimate on G̃λ(x, y) in the case
y ≤ x ≤ 0 can be analyzed precisely as above. Though the third can also be analyzed
in a similar manner, we carry out a portion of the calculation in order to indicate one
important feature of most of the derivative estimates. We have

1

2π i

∫

�

O(1)eλt+μ−
2 (λ)(x−y)dλ.

Proceeding as above along the contour (3.2) (for |λ| suitably small and to first order in
|λ1/2|), we have

1

2π i
e
− (x−y)2

4b− t

∫ +k∗

−k∗
O(1)e−b−k2t 2i

[ |x − y|
2tb−

+ ik
]
dk.

For the first term in the square brackets, we immediately obtain the sought estimate by

C
|x − y|

t3/2 e
(x−y)2

4b− t ,

subject to higher order corrections as discussed above. For the second term in the square
brackets, a normed estimate provides the slightly worse estimate by

Ct−1e
(x−y)2

4b−t .
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The point we would like to make here is that the analyticity of our O(1) term in ρ = √
λ

allows us to take advantage of the cancellation
∫ +k∗

−k∗
e−b−k2t kdk = 0.

In this way, the final estimate on this term takes the form

O
( |x − y|

t3/2

)
e− |x−y|2

Mt .

Case (iii), y ≤ 0 ≤ x. In the case y ≤ 0 ≤ x , we have the leading term

O(|λ−1/2|)eμ+
2 (λ)x−μ−

2 (λ)y,

which differs from the case x ≤ y ≤ 0 only in the different forms of μ+
2(λ) and μ−

2 (λ).
Recalling the expansions

μ−
2 (λ) = −

√
λ

b−
+ O(|λ3/2|),

μ+
2(λ) = −

√
λ

b+
+ O(|λ3/2|),

we write

μ+
2(λ)x − μ−

2 (λ)y = −
√
λ

b+
x +

√
λ

b−
y + O(|λ3/2|(|x | + |y|)).

We focus on the primary contribution,

1

2π i

∫

�

O(|λ−1/2|)eλt−
√

λ
b+

x+
√

λ
b− y

dλ= 1

2π i

∫

�

O(|λ−1/2|)eλt−
√

b−
b+

(√
λ

b− (x−
√

b+
b− y)

)
dλ,

which can be analyzed precisely as in the previous cases if (for |x −
√

b+
b− y| ≤ εt , some

ε suitably small) we take the contour
√
λ

b−
=

|x −
√

b+
b− y|

2b−t
+ ik,

through which we obtain the estimate by

O(t−1/2)e
−
(

x−
√

b+
b− y

)2

4b− t .

Similarly as in the previous cases, for |x −
√

b+
b− y| ≥ εt , we take the crude contour

√
λ

b−
=
∣∣∣x −

√
b+
b− y

∣∣∣
Lt

+ ik,

for a suitably large choice of L .
We finally remark that estimates on the excited terms can be obtained similarly, as

can estimates on differentiated terms. ��
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4. Proof of Theorem 1.2

In this section, we combine the estimates of Theorem 1.1 with the integral represen-
tations (1.14) and (1.15)—and corresponding integral representations for vx and δ̇(t)
found by direct differentiation—to determine estimates on the perturbation v(t, x) and
the local tracking function δ(t). To this end, we state two lemmas corresponding with
estimates on the linear and nonlinear integrals in (1.14) and (1.15).

Lemma 4.1. For G(t, x; y) as described in Theorem 1.1, and for v0(y) as described in
Theorem 1.2, there holds
∣∣∣∣
∫ +∞

−∞
G̃(t, x; y)v0(y)dy

∣∣∣∣ ≤ C E0(1 + |x | +
√

t)−3/2,

∣∣∣∣
∫ +∞

−∞
G̃x (t, x; y)v0(y)dy

∣∣∣∣≤C E0t−1/4(1+t)−1/4
[
(1+|x |+√

t)−3/2 + (1+t)−1/4e−η|x |],
∫ +∞

−∞
|ey(t, y)||V0(y)|dy ≤ C(1 + t)−1/4,

∫ +∞

−∞
|eyt (t, y)|V0(y)dy ≤ C(1 + t)−5/4.

Lemma 4.2. For G(t, x; y) as in Theorem 1.1, and

�(s, y) = s−3/4(1 + s)−1/2(1 + |y| +
√

s)−3/2 + s−3/4(1 + s)−3/4e−η|y|,

there holds
∫ t

0

∫ +∞

−∞
|G̃ y(t − s, x; y)|�(s, y)dyds ≤ C(1 + |x | +

√
t)−3/2,

∫ t

0

∫ +∞

−∞
|G̃ yx (t − s, x; y)|�(s, y)dyds ≤ Ct−1/4(1 + t)−1/4(1 + |x | +

√
t)−3/2,

∫ t

0

∫ +∞

−∞
|ey(t − s, y)|�(s, y)dyds ≤ C(1 + t)−1/2,

∫ t

0

∫ +∞

−∞
|eyt (t − s, y)|�(s, y)dyds ≤ C(1 + t)−1.

We note that the expressions in �(s, y) follow from the linear estimates of Lemma
4.1 and the nonlinearites

O(|vvx |), O(|vvxxx |), O(|e−η|x |v2|), O(|δ̇(t)v|).
In addition to Lemma 4.1 and Lemma 4.2, we require the following lemma regarding

small time behavior of the perturbation v(t, x). The salient points are that (1) for small
t , the behavior of v(t, x) is dominated by fourth order effects, and (2) the behavior of
derivatives vx , vxx , and vxxx can be linked to the behavior of v.

Lemma 4.3. Under the assumptions of Theorem 1.1, and under the additional restric-
tion of Hölder continuity on the initial perturbation v0 ∈ C0+γ , γ > 0, the integral
equations (1.14) and (1.15) determine a unique local solution v ∈ C0+ γ4 (t) ∩ C0+γ (x),
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δ ∈ C1+ γ4 (t), extending so long as |v|C0+γ remains bounded. Moreover, on this time
interval

sup
x∈R

|v(t, x)|(1 + |x | +
√

t)3/2

remains continuous so long as both it and δ̇(t + 1) are uniformly bounded, and for τ > 0
sufficiently small and t ≥ τ ,

sup
x∈R

|∂k
x v(t, x)|(1 + |x | +

√
t)3/2 ≤ Cτ−k/4 sup

x∈R

|v(t − τ, x)|(1 + |x | +
√

t − τ)3/2,

for k = 1, 2, 3, and

sup
x∈R

|∂k+1
x v(t, x)|

[
t−1/4(1 + t)−1/4(1 + |x | +

√
t)−3/2 + (1 + t)−3/4e−η|x |]−1

≤ Cτ−k/4 sup
x∈R

|∂xv(t − τ, x)|
[
(t − τ)−1/4(1 + (t − τ))−1/4(1 + |x | +

√
t − τ)−3/2

+ (1 + (t − τ))−3/4e−η|x |]−1
,

for k = 1, 2.

We proceed now by defining the iteration variable

ζ(t) = sup
s∈[0,t],y∈R

[ |v(s, y)|
(1 + |y| +

√
s)−3/2

+
|vy(s, y)|

s−1/4(1 + s)−1/4(1 + |y| +
√

s)−3/2 + (1 + s)−3/4e−η|y|

+
|δ(s)|

(1 + s)−1/4 +
|δ̇(s)|

(1 + s)−5/4

]
.

(4.1)

Claim 4.1. Suppose there exists a constant C so that

ζ(t) ≤ C(E0 + ζ(t)2), (4.2)

where E0 is as in Theorem 1.2. Then for E0 sufficiently small, there holds

ζ(t) < 2C E0.

Proof of Claim 4.1. We first observe that we have control over ζ(0) directly from the
definition of ζ(t). Recalling the relation

|v(0, y)| ≤ E0(1 + |y|)−3/2,

we see immediately that the first quotient in the definition of ζ(0) is bounded by E0. In
addition, according to Lemma 4.3 there holds

sup
y∈R

|vy(s, y)|
(1 + |y| +

√
s)−3/2

≤ Cτ−1/4 sup
y∈R

|vy(s − τ, y)|
(1 + |y| +

√
s − τ)−3/2

,

for s ≥ τ , τ suitably small, so that

sup
y∈R

lim
s→0

|vy(s, y)|
s−1/4(1 + s)−1/4(1 + |y| +

√
s)−3/2

≤ C sup
y∈R

|v(0, y)|
(1 + |y|)−3/2 ≤ C E0.
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Finally, we can choose δ(t) in a smooth fashion so that δ(0) = 0 and δ̇(0) = 0. In this
way, we have

ζ(0) ≤ C1 E0,

for a constant C1. We proceed now by choosing E0 sufficiently small so that C2
1 E0 < 1

and 4C2 E0 < 1. First, this choice insures

ζ(0) ≤ C(E0 + ζ(0)2) ≤ C(E0 + C2
1 E2

0) < 2C E0.

Next, let T denote the first time (if it exists) for which we have equality ζ(T ) = 2C E0.
We have, then,

ζ(T ) ≤ C(E0 + ζ(T )2) = C(E0 + 4C2 E2
0) < 2C E0,

a contradiction. We observe that continuity of ζ(t), critical for our argument, is clear
from the short time estimates of Lemma 4.3.

This concludes the proof of Claim 4.1. ��
We proceed now to verify the assumption of Claim 4.1 through a straightforward

calculation involving the integral representations (1.14) and (1.15), combined with the
small time estimates of Lemma 4.3. In particular, for the variable vxxx , which is not
carried through the iteration, we employ Lemma 4.3 to write

|vyyy(s, y)| ≤ Cs−1/2
[
s−1/4(1 + s)−1/4(1 + |y| +

√
s)−3/2 + (1 + s)−3/4e−η|y|]ζ(0).

Focusing on the case v(t, x), we have

|v(t, x)| ≤
∣∣∣
∫ +∞

−∞
G̃(t, x; y)v0(y)dy

∣∣∣

+
∫ t

0

∫ +∞

−∞
|G̃ y(t − s, x; y)|

[
|Q(y, v, vy, vyyy)| + |δ̇(s)v|

]
dyds

≤ C E0(1 + |x | +
√

t)−3/2

+ ζ(t)2
∫ t

0

∫ +∞

−∞
|G̃ y(t − s, x; y)|

[
s−3/4(1 + s)−1/2(1 + |y| +

√
s)−3/2

+ s−3/4(1 + s)−3/4e−η|y|]dyds

≤ C(E0 + ζ(t)2)(1 + |x | +
√

t)−3/2.

In this way, we have

|v(t, x)|
(1 + |x | +

√
t)−3/2

≤ C1 E0(1 + ζ(t)2).

Taking a supremum norm over both sides of this last expression, and noting that ζ(t) is
a non-decreasing function, we conclude

sup
x∈[0,t],y∈R

|v(t, x)|
(1 + |x | +

√
t)−3/2

≤ C1 E0(1 + ζ(t)2).

Proceeding similarly for vx , δ(t), and δ̇(t), we conclude

ζ(t) ≤ C E0(1 + ζ(t)2),

from which Theorem 1.2 follows from Claim 4.1. ��
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5. Proof of Technical Lemmas

In this section, we prove Lemma 4.1 and Lemma 4.2. The proof of Lemma 4.3 is almost
identical to that of Lemma 3.4 of [26] and is omitted. At the outset, we recall the notation

G(t, x; y) = G̃(t, x; y) + E(t, x; y),

E(t, x; y) = ūx (x)e(t, y).

Proof of Lemma 4.1. We divide the analysis up into Cases I and II from Theorem 1.1.
Case I, |x − y| ≥ K t or t ≤ 1. For |x − y| ≥ K t or for t ≤ 1, and for the first

estimate of Lemma 4.1, we have integrals
∫ +∞

−∞
t−1/4e

− |x−y|4/3
Mt1/3 (1 + |y|)−3/2dy,

where for simplicity we have extended the range of y over all of R. We first observe that
for |x − y| ≥ K t , the kernel decays at exponential rate in t , and we have

e− K 4/3
2M t

∫ +∞

−∞
t−1/4e

− |x−y|4/3
2Mt1/3 (1 + |y|)−3/2dy.

(For t ≤ 1, we need not keep track of t decay.) We now divide the integration over y
into the subintervals y ∈ [−|x |/2, |x |/2], and its complement, for which we compute

∫ + |x |
2

− |x |
2

t−1/4e
− |x−y|4/3

2Mt1/3 (1 + |y|)−3/2dy +
∫
[
− |x |

2 ,
|x |
2

]c t−1/4e
− |x−y|4/3

2Mt1/3 (1 + |y|)−3/2dy

≤ C1t−1/4e
− x4/3

M27/3 t1/3 + C2(1 + |x |)−3/2, (5.1)

where the expressions on the final right-hand side are respective estimates, the first
obtained by integration of (1 + |y|)−3/2 and the second obtained through integration of
the L1 kernel. Finally, we note that for t ≥ |x |, we have exponential decay in both t
and |x | from the term exp(−K 4/3/(2M)t), while for |x | ≥ t , the kernel decay in (5.1)
gives exponential decay in |x |. Combining these observations, we obtain a much better
estimate than the one claimed; in fact, the estimate here is already sufficient to give
the second estimate of Lemma 4.1 as well. (The analysis is clearly driven by the case
|x − y| ≤ K t .)
Case II, |x − y| ≤ K t and t ≥ 1. For the case |x − y| ≤ K t and t ≥ 1, we first observe
through integrating by parts and taking advantage of our zero-mass condition on v0 that
we have sufficient decay in t . In order to see this more precisely, we write

∣∣∣∣
∫ +∞

−∞
G̃(t, x; y)v0(y)dy

∣∣∣∣ =
∣∣∣∣
∫ +∞

−∞
G̃ y(t, x; y)V0(y)dy

∣∣∣∣ ,

where

V0(y) =
∫ y

−∞
v0(z)dz,

and consider the primary G̃ y contribution

O
( |x − y|

t3/2

)
e− (x−y)2

Mt = O(t−1)e− (x−y)2

2Mt . (5.2)



802 P. Howard

For this contribution, we estimate
∫ +∞

−∞
t−1e− (x−y)2

2Mt (1 + |y|)−1/2dy

=
∫ +

√
t

−√
t

t−1e− (x−y)2

2Mt (1 + |y|)−1/2dy +
∫

|y|≥√
t
t−1e− (x−y)2

2Mt (1 + |y|)−1/2dy ≤ Ct−3/4,

which gives the required decay in time. (The calculations for other contributions to G̃
are almost identical.)

In order to establish the appropriate decay in |x |, we divide the integration up as

∫ +∞

−∞
G̃(t, x; y)v0(y)dy

=
∫ + |x |

2

− |x |
2

G̃(t, x; y)v0(y)dy +
∫

[− |x |
2 ,+

|x |
2 ]c

G̃(t, x; y)v0(y)dy. (5.3)

For the first integral on the right-hand side of (5.3), we integrate by parts to obtain

G̃(t, x; |x |
2
)V0(|x |/2)−G̃(t, x;−|x |

2
)V0(−|x |/2)−

∫ + |x |
2

− |x |
2

G̃ y(t, x; y)V0(y)dy. (5.4)

In all cases, the first two (boundary) expressions in (5.4) provide the estimate

Ct−1/2e− x2
Lt (1 + |x |)−1/2,

for some constants C and L sufficiently large. We easily obtain the claimed decay in |x |
upon observing (for |x | ≥ 1)

t−1/2e− x2
Lt = t−1/2 |x |

|x |e− x2
Lt ≤ C1|x |−1e− x2

2Lt . (5.5)

For the final expression in (5.4), we again specialize to the case (5.2), for which we have

e− x2
4Mt

∫ + |x |
2

− |x |
2

t−1e− (x−y)2

4Mt (1 + |y|)−1/2dy ≤ Ct−1(1 + |x |)1/2e− x2
4Mt ,

which can be shown by an argument similar to (5.5) to give decay |x |−3/2. For the second
integral on the right-hand side of (5.3), we observe that in all cases integrability of G̃
immediately gives the spatial decay (1 + |x |)−3/2. These two decay rates (1 + t)−3/4 and
(1 + |x |)−3/2 are sufficient to give the claimed estimate.

The analysis of the second integral in Lemma 4.1 is almost identical to that of the
first. We note here only that it is the expression

O(
y

t3/2 e−η|x |)e− y2

Mt

that gives rise to the exponentially decaying estimate.
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Excited estimates. For the third estimate in Lemma 4.1, we integrate by parts and estimate
(specializing to the case y ≤ 0)

∫ 0

−∞
CE√
4b−t

e
− y2

4b− t (1 + |y|)−1/2dy

=
∫ −√

t

−∞
CE√
4b−t

e
− y2

4b− t (1 + |y|)−1/2dy +
∫ 0

−√
t

CE√
4b−t

e
− y2

4b− t (1+|y|)−1/2dy ≤ Ct−1/4.

For the fourth estimate in Lemma 4.1, we explicitly compute the time derivative of
ey(t, y) as

eyt (t, y) =
[

− 2CE b−
(4b−t)3/2

e
− y2

4b− t +
CE y2

(4b−)3/2t5/2
e
− y2

4b− t

]
(1 + O(e−η|y|)),

from which the primary contribution is

∫ 0

−∞
t−3/2e

− y2

4b− t (1 + |y|)−1/2dy ≤ Ct−5/4.

By virtue of the alternative Case I estimate for t ≤ 1, we can take δ̇(t) bounded as t → 0.
This concludes the proof of Lemma 4.1. ��

Proof of Lemma 4.2. For Lemma 4.2, we have two nonlinearities to consider, the sum-
mands of �(s, y). For each estimate on G(t, x; y), we will carry out detailed estimates
only for the first of these summands, noting only that the analysis of the second is almost
identical. Proceeding as in the proof of Lemma 4.1, we first divide the analysis into
Cases I and II.
Case I, |x − y| ≥ K (t − s) or t − s ≤ 1. For |x − y| ≥ K (t − s) or t − s ≤ 1, and for
the first estimate of Lemma 4.2, we have integrals

∫ t

0

∫ +∞

−∞
(t − s)−1/2e

− |x−y|4/3
M(t−s)1/3 �(s, y)dyds,

where for simplicity we have extended the range of integration over all of R. For the
first nonlinearity in �(s, y), we have integrals

∫ t

0

∫ +∞

−∞
(t − s)−1/2e

− |x−y|4/3
M(t−s)1/3 s−3/4(1 + s)−1/2(1 + |y| +

√
s)−3/2dyds. (5.6)

Proceeding similarly as in Case I of Lemma 4.1, we first observe that for |x − y| ≥
K (t − s), the kernel decays at exponential rate in (t − s), and we have

∫ t

0
e− K 4/3

2M (t−s)
∫ +∞

−∞
(t − s)−1/2e

− |x−y|4/3
2M(t−s)1/3 s−3/4(1 + s)−1/2(1 + |y| +

√
s)−3/2dyds.
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We now divide the integration over y into the subintervals y ∈ [−|x |
2 ,

|x |
2 ] and its com-

plement, for which we compute

∫ t

0
e− K 4/3

2M (t−s)
∫ |x |

2

− |x |
2

(t − s)−1/2e
− |x−y|4/3

2M(t−s)1/3 s−3/4(1 + s)−1/2(1 + |y| +
√

s)−3/2dyds

+
∫ t

0
e− K 4/3

2M (t−s)
∫
[
− |x |

2 ,
|x |
2

]c (t − s)−1/2e
− |x−y|4/3

2M(t−s)1/3 s−3/4(1+s)−1/2(1+|y|+√
s)−3/2dyds

≤ C1

∫ t

0
e− K 4/3

2M (t−s)(t − s)−1/4e
− |x |4/3

27/3 M(t−s)1/3 s−3/4(1 + s)−1/2(1 +
√

s)−3/2ds

≤ C2

∫ t

0
e− K 4/3

2M (t−s)(t − s)−1/4s−3/4(1 + s)−1/2(1 + |x | +
√

s)−3/2ds. (5.7)

In both of the last two estimates of (5.7), we can integrate the exponential decay in
(t − s). We observe that for s ∈ [0, t/2], we have exponential decay in t , while for
s ∈ [t/2, t], we have algebraic decay at rate (1 + t)−2. In the event that |x | ≥ t , we
clearly have a sufficient estimate due to the |x | decay, while for |x | ≤ t , we have a
sufficient estimate due to the t decay. We proceed in almost identical fashion for the
remaining nonlinearity. Again, the analysis is driven by the case |x − y| ≤ K (t − s).
Case II, |x − y| ≤ K (t − s) and (t − s) ≥ 1. For the case |x − y| ≤ K (t − s), and for
(t − s) ≥ 1, we proceed through the observation that in Cases (i) and (ii) of Theorem
1.1, we have the crude estimate (for t ≥ 1)

∣∣∣∣G̃ y(t, x; y)

∣∣∣∣ ≤ C(1 + t)−3/2(1 + |x − y|)e− (x−y)2

Mt ,

with additionally

|G̃xy(t, x; y)| ≤ C(1 + t)−3/2e− (x−y)2

Mt + (1 + t)−3/2(1 + |y|)e−η|x |e− y2

Mt ,

while for Case (iii) we have

|G̃ y(t, x; y)| ≤ C(1 + t)−3/2(1 + |x − y|)e− (x−y)2

Mt + C(1 + t)−3/2(1 + |y|)e−η|x |e− y2

Mt ,

with additionally

|G̃xy(t, x; y)| ≤ C(1 + t)−3/2e− (x−y)2

Mt + (1 + t)−3/2(1 + |y|)e−η|x |e− y2

Mt .

In Cases (i) and (ii), and for the first summand of �(s, y), we consider integrals

∫ t

0

∫ 0

−∞
(1 + (t − s))−3/2(1 + |x − y|)e− (x−y)2

M(t−s) s−3/4(1 + s)−1/2(1 + |y| +
√

s)−3/2dyds.

(5.8)
For t decay, we divide the integration over s into the subintervals s ∈ [0, t/2] and
s ∈ [t/2, t]. Observing the inequality

x − y

(t − s)1/2
e− (x−y)2

M(t−s) ≤ Ce− (x−y)2

2M(t−s) , (5.9)
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we determine an estimate by

C1(1 + t)−1
∫ t/2

0

∫ 0

−∞
s−3/4(1 + s)−1/2(1 + |y| +

√
s)−3/2dyds

+C2t−3/4(1 + t)−5/4
∫ t

t/2

∫ 0

−∞
(1 + (t − s))−1e− (x−y)2

Mt dyds

≤ C3(1 + t)−1
∫ t/2

0
s−3/4(1 + s)−1/2(1 +

√
s)−1/2ds

+C2t−3/4(1 + t)−5/4
∫ t

t/2

∫ 0

−∞
(1 + (t − s))−1/2ds

≤ C(1 + t)−1. (5.10)

For |x | decay, we divide the integration into subintervals of y, y ∈ (−∞, x/2] and
y ∈ [x/2, 0]. For y ∈ (−∞, x/2], we observe (5.9) and integrate the heat kernel to
obtain an estimate by

C(1 + |x |)−3/2
∫ t

0
(1 + (t − s))−1/2s−3/4(1 + s)−1/2ds ≤ C(1 + |x |)−3/2.

Alternatively, for y ∈ [x/2, 0], we observe that we have kernel decay

e− x2
Lt ,

and can otherwise proceed precisely as in (5.10) to obtain an estimate by

C(1 + t)−1e− x2
Lt .

This last estimate is sufficient by the argument of (5.5).
For the second (x-derivative) estimate of Lemma 4.2 in Cases (i) and (ii), we have

two Green’s kernels to consider, of which we begin with integrals
∫ t

0

∫ 0

−∞
(1 + (t − s))−3/2e− (x−y)2

M(t−s) s−3/4(1 + s)−1/2(1 + |y| +
√

s)−3/2dyds. (5.11)

For t decay, we divide the integration over s into subintervals s ∈ [0, t/2] and s ∈ [t/2, t]
and obtain an estimate by

C1(1 + t)−3/2
∫ t/2

0
s−3/4(1 + s)−1/2(1 +

√
s)−1/2ds

+ C2t−3/4(1 + t)−1/2(1 +
√

t)−3/2
∫ t

t/2
(1 + (t − s))−1ds

≤ C(1 + t)−3/2.

For |x | decay, we divide the integration into subintervals of y, y ∈ (−∞, x/2] and
y ∈ [x/2, 0]. For y ∈ (−∞, x/2], we integrate the heat kernel to obtain an estimate by

C(1 + |x |)−3/2
∫ t

0
(1 + (t − s))−1s−3/4(1 + s)−1/2ds ≤ C(1 + t)−1(1 + |x |)−3/2.
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Alternatively, for y ∈ [x/2, 0], our t-decay argument leads to an estimate by

C(1 + t)−3/2e− x2
Lt ,

which is sufficient by the argument of (5.5). For the second Green’s kernel, we have
integrals
∫ t

0

∫ 0

−∞
(1 + (t − s))−3/2(1 + |y|)e−η|x |e− y2

M(t−s) s−3/4(1 + s)−1/2(1 + |y|+
√

s)−3/2dyds.

(5.12)
In this case, we always have exponential decay in |x |, and so we focus entirely on tem-
poral decay. Dividing the integration over s into subintervals, we obtain an estimate
by

C1e−η|x |(1 + t)−3/2
∫ t

0

∫ 0

−∞
(1 + |y|)−1/2e− y2

M(t−s) s−3/4(1 + s)−1/2dyds

+ C2e−η|x |t−3/4(1 + t)−1/2(1 +
√

t)−3/2
∫ t

0

∫ 0

−∞
(1 + (t − s))−1e− y2

2M(t−s) dyds

≤ C(1 + t)−5/4e−η|x |,
much better than required.

The case y ≤ 0 ≤ x can be analyzed similarly as were the previous cases.
Excited estimates. We last consider the third and fourth estimates of Lemma 4.2. For the
third, and for the first summand in �(s, y), we estimate

∫ t

0

∫ 0

−∞
CE√

4b−(t − s)
e
− y2

4b−(t−s) s−3/4(1 + s)−1/2(1 + |y| +
√

s)−3/2dyds

≤ C1t−1/2
∫ t/2

0
s−3/4(1 + s)−1/2(1 +

√
s)−1/2ds + C2t−3/4(1 + t)−5/4

∫ t

t/2
ds

≤ Ct−1/2, (5.13)

where the seeming blow-up as t → 0 can be eliminated by proceeding alternatively for
t small.

For the fourth estimate in Lemma 4.2, and for the first summand of �(s, y), we
estimate

∫ t−1

0

∫ 0

−∞
(t − s)−3/2e− y2

M(t−s) s−3/4(1 + s)−1/2(1 + |y| +
√

s)−3/2dyds

≤ C1t−3/2
∫ t/2

0
s−3/4(1 + s)−3/4 + C2t−3/4(1 + t)−5/4

∫ t−1

t/2
(t − s)−1ds

≤ Ct−3/2,

where we can eliminate the seeming blow-up as t → 0 by proceeding alternatively for
t small, and where the integration over s ∈ [t − 1, t] involves the small time estimates
on G(t, x; y) and can be carried out as in Case I.

This concludes the proof of Lemma 4.2. ��
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