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Abstract

We study the pointwise behavior of perturbations from a viscous shock solution
to a scalar conservation law, obtaining an estimate independent of shock strength.
We find that for a perturbation with initial data decaying algebraically or slower,
the perturbation decays in time at the rate of decay of the integrated initial data
in anyLp norm,p≥ 1. Stability in anyLp norm is a direct consequence. The ap-
proach taken is that of obtaining pointwise estimates on the perturbation through
a Duhamel’s principle argument that employs recently developed pointwise es-
timates on the Green’s function for the linearized equation.c© 1999 John Wiley
& Sons, Inc.

1 Introduction

We consider the scalar viscous conservation law

ut + f (u)x = uxx, f ,u,x∈ R, t ∈ R+ , u(0,x) = u0(x) ,(1.1)

wheref ∈C2(R) andu0(x)→ u± asx→±∞. Physical contexts in which equations
of form (1.1) arise are discussed, for example, in [9]. We will be concerned with
traveling wave solutionsto (1.1), that is, solutions of the form ¯u(x−st) that satisfy
ū(±∞) = u± and the Rankine-Hugoniot condition

s(u+−u−) = f (u+)− f (u−) .

We note that by a translation of coordinates we may takes = 0 without loss of
generality. In particular, we will consider Lax shocks, that is,u satisfying f ′(u+) <
s< f ′(u−). In the scalar case with diffusion only, this just rules outsonicshocks
for which f ′(u−) or f ′(u+) is equal tos.

The result obtained is a pointwise estimate on perturbations from viscous pro-
file solutions to (1.1), an estimate that agrees with the exact analysis of Burgers’
equation carried out by Nishihara [18]. From our estimate, nonlinear orbital stabil-
ity follows in anyLp norm,p≥ 1. Our key observation is a precise formulation of
how spatial decay of initial data leads directly to temporal decay of the perturba-
tion. Nishihara observed this fact for Burgers’ equation and general algebraically
decaying data, and Liu [11] observed it forn-dimensional systems of conserva-
tion laws for weak shocks and data decaying as(1+ |x|)−3/2. A method by which
the constant diffusion term in our analysis may be replaced by the more general
(b(u)ux)x (whereb(ū) > b0 > 0 andb∈C1+ᾱ, ᾱ > 0) is given in [23] but not em-
ployed here.
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The study of stability for scalar viscous conservation laws was initiated by Hopf
in his study of the large-time behavior of Burgers’ equation [4]. Il’in and Oleı̆nik
[8] proved through a maximum principle argument that viscous profiles of (1.1)
are stable in theL∞ norm under the assumptions of a convex nonlinear term and
exponentially decaying initial data. Peletier then employed energy estimates—a
more generalizable method—to gain an alternate proof of Il’in and Oleı̆nik’s result
[20].

In 1976 Sattinger [21] extended these results to a nonconvex nonlinear term
(still exponentially decaying initial data), using a weighted norm approach that
took advantage of the semigroup structure of the solution operator. Under a mild
assumption on the initial data, Osher and Ralston [19] used the semigroup frame-
work of Sattinger to prove the stability of viscous profile solutions in theL1 norm.
Jones, Gardner, and Kapitula [9] obtained the first stability result for algebraically
decaying initial data (generalf ), employing a new technique for getting estimates
on the resolvent and explicitly trading spatial decay for temporal decay during the
analysis. The results of [9] were extended by Matsumura and Nishihara [16], who
obtained a better rate of decay while also proving the stability of sonic shocks, ex-
tending the work of Mei [17]. Freistühler and Serre achievedL1 stability for data in
L1+L∞, extending the result of Osher and Ralston by eliminating their assumption
on the initial data [2].

Here, we employ the pointwise approach developed in (among others) [5, 6, 10,
11, 12, 14, 15, 22, 23] to get a stability result for algebraically and slower decaying
initial data. In particular, we employ the pointwise estimates of [5, 6] made on the
Green’s function of the convection-diffusion equation resulting from the lineariza-
tion of (1.1) about a viscous shock profile to get estimates on the perturbation.

1.1 Definitions

Before stating our main theorem, we make the following definitions:

DEFINITION 1.1 (Class of Initial Data) Denote by∆ the space of functionsd ≥ 0
such thatd∈ L1(R)∩L∞(R), d(·) nonincreasing onx≥ 0, nondecreasing onx≤ 0,
andd(γt)≤C(γ)d(t) ∀γ > 0. (The paradigmatic element of∆ is (1+ |x|)−r , r > 1.)
We will denote byD the asymptotically decaying antiderivative ofd,

D(x) :=

{∫ x
−∞ d(y)dy, x < 0,∫ +∞
x d(y)dy, x≥ 0.

We remark that the class∆ contains all functions steadily decaying at an alge-
braic or slower rate. The analysis for exponentially decaying data has already been
carried out by Sattinger [21]. Our interest here, following [9, 11], is to study slower
decaying initial data. The analysis could be altered to accommodate faster decay-
ing data, but the proof, along with the precise statement, of Theorem 1.4 would
have to change appreciably.
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DEFINITION 1.2 (Asymptotic Stability) We say that a traveling wave solution ¯u
to (1.1) isasymptotically stablein norm ‖ · ‖ if there exists anε > 0 such that if
another solution,u, to (1.1) satisfies‖u(0,x)− ū(x)‖ < ε, then‖u(t,x)− ū(t,x)‖
decays to zero in time.

In general, we will not be able to get asymptotic stability for viscous profile
solutions to (1.1), becauseu andū are both solutions to the conservation law (1.1),
so they must be conserved quantities, satisfying (assumingu− ū∈ L1(R))

d
dt

∫ +∞

−∞
(u− ū)dx= 0.

In order to have hope of convergence, we must then have
∫
R
(u− ū)dx= 0. This

may not be true for generic ¯u, but it will certainly be true for some translate of ¯u,
sayūl := ū(x− l), as can readily be seen through

d
dl

∫ +∞

−∞
(u(x)− ū(x− l))dx= u+−u−

so that ∫ +∞

−∞
(u(x)− ū(x− l))dx= (u+−u−)l +

∫ +∞

−∞
(u(x)− ū(x))dx.

Clearly, we can choosel to make the right-hand side zero. With this in mind, we
make the following more apposite stability definition:

DEFINITION 1.3 (Orbital Stability) We say that a traveling wave solution ¯u to (1.1)
is orbitally stablein norm ‖ · ‖ if there exists anε > 0 and a translate of ¯u, say
ūl := ū(x− l), such that if another solution,u, to (1.1) satisfies‖u(0,x)− ūl(x)‖< ε,
then‖u(t,x)− ūl (t,x)‖ decays to zero in time.

1.2 Main Result
We now state the main result of the paper, from which orbital stability follows

in anyLp norm:

THEOREM 1.4 Supposēu is a traveling wave solution to(1.1)and f ∈C2(R) sat-
isfies f′(u+) < s< f ′(u−). Then for initial data

u0(x)− ū(x) ∈ Aζ ,

Aζ := {v0(x) : |v0(x)| ≤ ζd(x), some d∈ ∆,

∫
R

v0(x)dx= 0} ,

andζ sufficiently small, we get the estimate

|u(t,x)− ū(x−st)| ≤Cζ[e−δr |x−st|D(t)+d(|x−st|+ t)]

for 0< δr < δ, whereδr depends on the rate of decay of D(·) andδ > 0 is a positive
constant as in(2.6)below.

Before giving the proof of Theorem 1.4, we make two remarks and mention
two applications.
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Remarks.Using an explicit solution, Nishihara has obtained a precise estimate on
solutions of Burgers’ equation [18]. His estimate shows that if the integral of initial
disturbance isO(|x|1−r)(r > 1), then the solution converges in theL∞ norm to the
traveling wave solution at the same algebraic rate int, O(t1−r). He also notes that,
in general, this time decay rate is optimal for convergence to the asymptotically
selected translate.

The significance of our result is that we get an explicit decay rate,D(t), from
the analysis for general data, and can consequently directly observe thatx-decay of
the initial data leads in general tot-decay of the solution.

1.3 Applications

In the case that|u0(x)− ū(x)| ≤ ζd(x), whered(x) = (1+ |x|)−r , we get that
(lettingv = u− ū)

|v(t,x)| ≤C[e−δr |x|(1+ t)1−r +(1+ |x|+ t)−r ]

≤C(1+ |x|+ t)1−r(1+ |x|)−1 .

In theorem 1.1 of [9], Jones, Gardner, and Kapitula obtain an estimate onv
(under the same assumptions made here) of the form

||(1+ |x|)v||L∞ ≤Ck(1+ t)−
k
2 ||(1+ |x|)1+kv0||L∞

for all k≥ 2 (||(1+ |x|)1+kv0||L∞ sufficiently small).
In order to draw a comparison with our result, we write

|(1+ |x|)1+kv0| ≤ ε ,

someε sufficiently small, so thatv0 ≤ ε(1+ |x|)−1−k, k≥ 2. That is, forr = 1+k≥
3, they obtain the estimate

|v(t,x)| ≤Cr(1+ t)
1−r

2 (1+ |x|)−1 .

In particular, we extend this result tor > 1, with improved decay in both time and
space.

We can also get anL1 stability result from Theorem 1.4 in the spirit of Freistüh-
ler and Serre [2], though under much more stringent assumptions on initial data
(we assume initial data inAζ, whereas they assume only initial data inL1 + L∞).
We compute∫ +∞

−∞
|v(t,x)|dx≤C

∫ +∞

−∞
(e−δr |x|D(t)+d(|x|+ t))dx

= CD(t)
∫ +∞

−∞
e−δr |x| dx+C

∫ +∞

−∞
d(|x|+ t)dx≤CD(t) ,

where the constantC has changed from step to step.
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Further, we note that for any 1< p < ∞, we get∫ +∞

−∞
|v|pdx≤C

∫ +∞

−∞
(e−δr |x|D(t)+d(|x|+ t))pdx

≤C(D(t)+d(t))p−1
∫ +∞

−∞
(e−δr |x|D(t)+d(|x|+ t))dx

≤C(D(t)+d(t))p−1D(t) ≤CD(t)p .

Hence we arrive at the estimate(∫ +∞

−∞
|v|pdx

)1/p ≤CD(t) .

Thus, forv ∈ Aζ, the decay rate ofv in Lp for any 1 ≤ p ≤ ∞ is againD(t) (cf.
corollary 1.2 of [11]).

1.4 Plan of the Paper

In Section 2 we give an outline of the general procedure based on [15, 23],
reducing the proof of Theorem 1.4 to gaining tight estimates on certain Duhamel
integrals. In Section 3 we carry out the analysis by obtaining the necessary esti-
mates.

2 General Procedure

We begin by letting ¯u(x−st) denote a traveling wave solution to (1.1). Letting
u = ū+v be another solution, our goal will be to obtain pointwise estimates on the
perturbationv.

First, we choose a translate of ¯u (renamed ¯u for convenience) so that (see dis-
cussion after Definition 1.2) ∫ +∞

−∞
(u− ū)dx= 0.

Substitutingu = ū+v into (1.1), we arrive at the linearized equation forv

vt +( f ′(ū)v)x = vxx+O(v2)x .(2.1)

We now make the changew(·,x) =
∫ x
−∞ v(·,ξ)dξ. Note that we have chosen our

profile so that
∫ +∞
−∞ v(·,ξ)dξ = 0, giving∫ x

−∞
v(·,ξ)dξ = −

∫ +∞

x
v(·,ξ)dξ ,

and so we also have thatw(0,x) = −∫ +∞
x v(0,ξ)dξ. In the following analysis, we

will mean by
∫ xv(0,ξ)dξ whichever representation is most useful.

Integrating (2.1) from−∞ to x, we get∫ x

−∞
vt(t,ξ)dξ+ f ′(ū)v(t,x) = vx(t,x)+O(v2)
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or

wt + f ′(ū)wx = wxx+O(v2) ,

the integrated form of (2.1). We note that the big O term is left as a function ofv2

for later convenience.
The need to work with the integrated equation is a consequence of the pointwise

Green’s function estimates in [5, 6] holding only in situations for which there are
no eigenvalues (point spectrum) at the origin. In the Lax case for the nonintegrated
equation, there is an eigenvalue at the origin. In the integrated case, however, there
is never an eigenvalue at the origin, as is easy to see through a direct computation.

We remark that this eigenvalue at the origin is a permanent fixture of viscous
conservation laws, and that in general (in the case of higher-order scalar equations
and systems of any order) this eigenvalue cannot be projected out (integrated out).
In these cases, a similar analysis maintains, in which the eigenvalue is taken into
account through a residue analysis (see [7] for the case of higher-order scalar equa-
tions and [23] for the case of systems).

Define now the linear operator

Lw := wxx− ( f ′(ū)w) .

With a(x) := f ′(ū), theorem 1.1 of [6] (see Proposition 2.2 below) gives bounds on
the Green’s function,G(t,x;y), for

wt = Lw.(2.2)

What we are interested in here, however, is the forced equation

wt −Lw = O(v2) .(2.3)

Applying Duhamel’s principle to (2.3), we get

w(t,x) = eLtw(0,x)+
∫ t

0
eL(t−s)O(v2)(s,x)ds

=
∫ +∞

−∞
G(t,x;y)w(0,y)dy+

∫ t

0

∫ +∞

−∞
G(t −s,x;y)O(v2)(s,y)dyds.

We now take anx-derivative of this integral equation to arrive at

wx(t,x) =
∫ +∞

−∞
Gx(t,x;y)w(0,y)dy

+
∫ t

0

∫ +∞

−∞
Gx(t −s,x;y)O(v2)(s,y)dyds.

Writing the above integral equation again in terms ofv yields

v(t,x) =
∫ +∞

−∞
Gx(t,x;y)

∫ y
v(0,ξ)dξdy

+
∫ t

0

∫ +∞

−∞
Gx(t −s,x;y)O(v2)(s,y)dyds.
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The following lemma, an integrated form of lemma 1.5 from [23], will provide
a direct means for using this representation to obtain a pointwise estimate onv:

LEMMA 2.1 Let C1 and C2 be constants, and let h0(x),h(t,x) ≥ 0 satisfy the rela-
tions ∫ +∞

−∞
|Gx(t,x;y)|

∫ y
h0(ξ)dξdy≤C1h(t,x) or

∫ +∞

−∞

∣∣∣∣
∫ y

Gx(t,x;ξ)dξ
∣∣∣∣h0(y)dy≤C1h(t,x)

and ∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|h(s,y)2dyds≤C1h(t,x)(2.4)

for all t > 0 and x∈ R, and where
∫ x can be chosen either as

∫ x
−∞ or

∫ +∞
x for each

x. If then|v(0,x)| ≤ ζ0h0(x) for ζ0 sufficiently small, then|v(t,x)| ≤C2ζ0h(t,x) for
all t > 0 and x∈ R, where v is the solution to(2.1).

PROOF: We define

ζ(t) := sup
y,s≤t

|v/h|(s,y)

andζ(0) := ζ0. Then,

|v(t,x)| ≤
∣∣∣∣
∫ +∞

−∞
Gx(t,x;y)

∫ y
v(0,ξ)dξdy

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫ +∞

−∞
Gx(t −s,x;y)O(v2)dyds

∣∣∣∣ .
Employing the assumption|v(0,y)| ≤ ζ0h0(y), the definition ofζ(t) and the

inequality|O(v2)| ≤ Mv2 for someM, we get

|v(t,x)| ≤
∫ +∞

−∞
|Gx(t,x;y)|ζ0

∫ y
h0(ξ)dξdy

+
∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|Mζ(t)2h(s,y)2dyds

= ζ0

∫ +∞

−∞
|Gx(t,x;y)|

∫ y
h0(ξ)dξdy

+Mζ(t)2
∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|h(s,y)2dyds,

where in order to take advantage of the second condition, we integrate by parts
before pulling the absolute values inside. The bounds (2.4) then give

|v(t,x)| ≤ ζ0C1h(t,x)+ζ(t)2MC1h(t,x) .

Dividing by h(t,x) and taking the supremum on both sides, we get

ζ(t) ≤ ζ0C1 +ζ(t)2MC1 ≤C(ζ0 +ζ(t)2) ,
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whereC := max{C1,C1M}. Takingζ0 small enough so that 4C2ζ0 < 1, we apply
continuous inductionto show thatζ(t) ≤ 2Cζ0. That is, by the continuity ofζ(t),
we can takeC large enough so that we havestrict inequality (ζ(t) < 2Cζ0) on
some sufficiently small intervalt ∈ [0,T]. LetT be the first time for which equality
occurs (ζ(T) = 2Cζ0). If no suchT exists, we are done. If such aT does exist, we
compute

ζ(T) ≤C(ζ0 +ζ(T)2) = C(ζ0 +4C2ζ2
0) < Cζ0 +Cζ0 = 2Cζ0 .

This contradiction completes the proof.

We will achieve the estimates assumed in Lemma 2.1 through the pointwise
Green’s function estimates of theorem 1.1 in [6], given below for the Lax case as
Proposition 2.2.

PROPOSITION2.2 Under the hypotheses of Theorem1.4, the Green’s function for

wt + f ′(ū)wx = wxx,(2.5)

where a(x) := f ′(ū) and a± := limx→±∞ a(x) in the Lax case(a+ < 0< a−) satisfies
the estimate( for x≥ 0)

|Gx(t,x;y)| ≤



C1e−δ|x|√
t

e−
(x−y−a+t)2

Mt + C1
t e−

(x−y−a+t)2

Mt , y≥ 0,

C1e−δ|x|√
t

e−
(x−y−a−t)2

Mt + C1e−δ|x|
t e−

(x−y−a−t)2

Mt , y≤ 0,
(2.6)

where we have subsumed certain constants into M and C1 (the subscript follows
the notation of [6] and is indicative of the first derivative), and where M, C1, and
δ each depend upon the asymptotic behavior of f′(ū(x)) and on the spectrum of
the associated linearized operator L(defined above). Symmetric estimates hold for
x≤ 0.

PROOF: As discussed in [6], the elliptic eigenvalue equation associated with
(2.5) has no eigenvalues on or to the left of the imaginary axis. Further,f ∈C2(R)
givesa∈C1(R), satisfying the assumptions needed in theorem 1.1 of [6] for first-
order derivative estimates.

We note before proceeding that results similar to that of Proposition 2.2 can be
obtained for a broad class of linear equations, including those obtained through the
linearization of higher-order scalar conservation laws [7], those obtained through
the linearization of systems of conservation laws [23], and (through a somewhat
similar analysis in a different setting) a very general class of second-order elliptic
operators with complex, bounded, measurable coefficients inR

n [1].
In each of the cases arising from the analysis of conservation laws, the spectral

approach of [13] is employed and extended to the nonconstant coefficient case
through the semigroup framework of [9, 21]. In particular, the analysis breaks
into two parts: a small-time/large-eigenvalue portion that follows the outline of a
Fourier transform analysis of the constant-coefficient evolution equation with only
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the highest-order spatial derivative considered, and a large-time/small-eigenvalue
portion that follows the outline of a Fourier transform analysis of the constant-
coefficient evolution equation with only the lowest two-order spatial derivatives
considered. The analysis of [1] is similar to the small-time analysis mentioned
above.

In the next section we find an appropriatetemplate function, h(t,x) (see [11, 14,
15, 23]), and employ it to prove Theorem 1.4.

3 Proof of Theorem 1.4

In the scalar case with diffusion only, we only have a viscous profile when the
Lax entropy condition holds (f ′(ū+) < s< f ′(ū−) or with s= 0, a+ < 0< a−, that
is n+1 = 2 incoming characteristics). Without loss of generality (by symmetry of
the estimates of Proposition 2.2), we may takex ≥ 0. The following lemma will
greatly simplify the forthcoming analysis:

LEMMA 3.1 Let f(y)≥ 0 be a nonincreasing function onR+, with f(0) < C1. As-
sume further that there exist constantsγ > 0 andω > 1 so that f(y)≥ γe−

a
2(1− 1

ω )2y2

onR+. Then, for a,z> 0∫ +∞

0
e−a(z−y)2

f (y)dy≤ C(ω)√
a

f (z/ω) .

Remark3.2. By symmetry we have forz< 0∫ 0

−∞
e−a(z−y)2

f (y)dy≤ C(ω)√
a

f (z/ω)

for ω < −1 and f nonincreasing onR− and satisfying the same lower bound as
above. Thispeak estimatecharacterizes how the kernel

√
ae−a(z−y)2

behaves like a
delta-function.

Remark3.3. Also convenient for the forthcoming analysis is the observation that
for z≥ 0, y≤ 0, anda > 0, we have thetail estimate

∫ y

−∞
e−a(z−ξ)2

dξ ≤ 1
2

√
2π
a

e−
a
2(z−y)2

,

with a symmetric result true forz≤ 0 andy≥ 0. This observation is easily recog-
nized through the computation∫ y

−∞
e−a(z−ξ)2

dξ =
∫ y

−∞
e−

a
2(z−ξ)2− a

2(z−ξ)2
dξ =

∫ y

−∞
e−

a
2(z−ξ)2

e−
a
2(z−ξ)2

dξ

≤ e−
a
2(z−y)2

∫ y

−∞
e−

a
2(z−ξ)2

dξ ≤ e−
a
2(z−y)2 1

2

√
2π
a

.
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PROOF OFLEMMA 3.1: We break the integration into two regions as follows:∫ +∞

0
e−a(z−y)2

f (y)dy=
∫ z/ω

0
e−a(z−y)2

f (y)dy+
∫ +∞

z/ω
e−a(z−y)2

f (y)dy.(3.1)

We note that the result follows immediately for the second integral on the right-
hand side of (3.1), since we can write∫ +∞

z/ω
e−a(z−y)2

f (y)dy≤ f (z/ω)
∫ +∞

x/ω
e−a(z−y)2

dy≤ C√
a

f (z/ω) .

For the first integral on the right-hand side of (3.1), we compute∫ z/ω

0
e−a(z−y)2

f (y)dy≤ f (0)(z/ω)e−a(1− 1
ω )2z2

≤ f (0)
ω√
a

e−
a
2(1− 1

ω )2z2 ≤ C(ω)√
a

f (z/ω) ,

where we have used above thatze−
a
2(1− 1

ω )2z2 ≤C(ω)/
√

a for some constantC(ω).
This completes the proof.

We are now prepared to prove two lemmas regarding the behavior of elements
of ∆ integrated againstGx(t,x;y).

LEMMA 3.4 Under the assumptions of Theorem1.4 and with G(t,x;y) being the
Green’s function for(2.2), we have for d(x) ∈ ∆,∫ +∞

−∞
|Gx(t,x;y)|

∫ y
d(ξ)dξ dy≤C

[
e−δr |x|D(t)+d(|x|+ t)

]
or ∫ +∞

−∞

∣∣∣∣
∫ y

Gx(t,x;ξ)dξ
∣∣∣∣d(y)dy≤C

[
e−δr |x|D(t)+d(|x|+ t)

]
for 0 < δr < δ, whereδr depends on the rate of decay of D(·), δ is as in(2.6), and∫ y =

∫ y
−∞ or

∫ +∞
y .

Remark3.5. We will take advantage in the proof of Lemma 3.4 of the identity∫ +∞

−∞
Gx(t,x;y)dy= 0

by using ∫ y

−∞
Gx(t,x;ξ)dξ = −

∫ +∞

y
Gx(t,x;ξ)dξ .

This identity is clear from the relationship betweenG andG̃, the Green’s function

for the unintegrated problem, namely,Gx(t,x;y) d=G̃y(t,x;y). We can see this as
follows: Letw solve the integrated equation andv the unintegrated equation so that
wt = Lw andvt = L̃v, whereL̃ is the spatial operator for the unintegrated equation
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(2.1) (minus the error term). We then have thatw = G∗w0 andv = G̃∗ v0, where
w0 andv0 are initial data. Sincev = wx, we getv = Gx ∗w0, but sincew0y = v0,
we also havev = G̃∗v0 = G̃∗w0y = G̃y∗w0. Comparing gives the claim under

distribution, which is what we mean by
d=.

PROOF OFLEMMA 3.4: Without loss of generality (by symmetry), we need
only concern ourselves with the casex≥ 0.

3.1 Large-Time Estimates

Assumet ≥ 1. In this case we can uset−1/2 ≤C(1+ t)−1/2. The estimate will
follow immediately in the casey≤ 0 from the additional exponential decay inx.

We compute∫ +∞

−∞
|Gx(t,x;y)|

∫ y
d(ξ)dξdy=

∫ 0

−∞
|Gx(t,x;y)|D(y)dy+

∫ +∞

0
|Gx(t,x;y)|D(y)dy.

For the integral overy≤ 0 we have a bound by∫ 0

−∞

C1e−δ|x|
√

t
e−

(x−y−a−t)2

Mt D(y)dy+
∫ 0

−∞

C1e−δ|x|

t
e−

(x−y−a−t)2

Mt D(y)dy.

We consider two cases:x ≥ εt andx ≤ εt for some 0< ε � a−. In the case
thatx≥ εt, the exponentialx-decay also gives exponentialt-decay, better than our
claimed estimate. In the casex≤ εt, we have thatx−a−t < 0, so that Remark 3.2
applies, giving a bound by

C1e−δ|x|D(−x+a−t)+C1e−δ|x|t−1/2D(−x+a−t) ≤
C1e−δ|x|D((a−− ε)t)+C1t

−1/2e−δ|x|D((a−− ε)t) .
Note that here and in the following computations, we will use our assumption that
d is radial to keep the argument ofd andD positive.

We now consider the integral overy≥ 0, which, as above, is bounded by
∫ +∞

0

[
C1e−δ|x|

√
t

e−
(x−y−a+t)2

Mt +
C1

t
e−

(x−y−a+t)2

Mt

]
D(y)dy≤

C1e−δ|x|D(x+ |a+|t)+C1t
−1/2D(x+ |a+|t) ,

where the inequality is an application of Lemma 3.1.
We note that for the second term in the last expression we can do better. In fact,

as we need anL1 bound onv, we mustdo better. Motivated by the observation
that we would like to achieved(|x|+ t) decay, we now estimate theparts integral
of Lemma 2.1. Recalling that by Remark 3.5 we can take

∫ yGxdξ =
∫ y
−∞ Gxdξ or

−∫ +∞
y Gxdξ (but keeping in mind we must then be careful which estimate we use

onGx), we now arrange terms so as never to integrate over the peak aty= x−a+t.



1306 P. HOWARD

Fory≤ x−a+t, we will integrate on(−∞,y], and fory≥ x−a+t we will integrate
on [y,+∞). That is, we write∫ +∞

0

∣∣∣∣
∫ y

Gx(t,x;ξ)dξ
∣∣∣∣d(y)dy

=
∫ +∞

0

∣∣∣∣
∫ y

−∞
Gx(t,x;ξ)dξ

∣∣∣∣d(y)I{y≤x−a+t}dy

+
∫ +∞

0

∣∣∣∣
∫ +∞

y
Gx(t,x;ξ)dξ

∣∣∣∣d(y)I{y≥x−a+t}dy,

whereIA represents an indicator function on the setA. Recalling thatx≥ 0, a+ ≤ 0
so thatx−a+t ≥ 0, we then obtain a bound by∫ +∞

0

∫ 0

−∞

[
C1e−δ|x|

√
t

+
C1e−δ|x|

t

]
e−

(x−ξ−a−t)2

Mt dξd(y)I{y≤x−a+t}dy

+
∫ +∞

0

∫ y

0

[
C1e−δ|x|

√
t

+
C1

t

]
e−

(x−ξ−a+t)2

Mt dξd(y)I{y≤x−a+t}dy(3.2)

+
∫ +∞

0

∫ +∞

y

[
C1e−δ|x|

√
t

+
C1

t

]
e−

(x−ξ−a+t)2

Mt dξd(y)I{y≥x−a+t}dy.

We now estimate each of the integrals of (3.2). First, forξ ∈ (−∞,0], we note that,
extending theξ-integration over all space and using thatd(·) is integrable, we get a
bound byCe−δ|x| with no t-decay. For the second integral (ξ ∈ [0,y]), we note that
y ≤ x−a+t so that the integration does not run across the peak. Hence, Remark
3.3 applies, giving a bound by

(3.3)
∫ +∞

0

[
C1e−δ|x|e−

(x−ξ−a+t)2

Mt +
C1

t
e−

(x−ξ−a+t)2

Mt

]
d(y)I{y≤x−a+t}dy≤

C1e−δ|x|√td(x+ |a+|t)+C1d(x+ |a+|t) ,
the second term of which is as claimed and the first term of which is bounded by
C1e−δ|x|D(t) by the integrability ofd(·). For the third integral in (3.2), we similarly
arrive at exactly the same estimates. Combining these estimates with (3.3), we have∫ +∞

0
|Gx(t,x;y)|D(y)dy≤C1min

{
e−δ|x|, t−1/2D(x+ t)

}
,

where on the left-hand side we mean either the integral listed or the parts integral.
We now achieve the desired estimates by breaking thetx-plane into regions and

observing that one of the above bounds always yields the claim. Consider first the
region in whicht1/2 ≥ e(δ/r)|x|, so that lnt1/2 ≥ (δ/r)|x| and thus|x| ≤ (r/2δ) ln t.
In this region, our bound oft−1/2D(x+ t) gives rise to a bound ofe−(δ/r)|x|D(x+ t),
or e−δr |x|D(x+ t), with δr := (δ/r). We remark here that this argument is the only
place in our proof in which it arises that the exponential space decay depends on
the rater.
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Next, we consider the estimate we can obtain when|x| ≥ (r/2δ) ln t. In this
case we use our bound bye−δ|x| to compute a bound by

e−δ|x| = e−
δ
2 |x|e−

δ
2 |x| ≤ e−

δ
2 |x|e−

δ
2

r
2δ ln t = e−

δ
2 |x|t−r/4 ,(3.4)

where the constant has been omitted. Thus, ifD(t) decays slower thant−r/4 and
δr ≤ δ/2, this is better than the claimed result. We conclude that for each rate
of decayr/4 there exists aδr , namely,δr := δ/2r (redefined as smaller than in
the previous paragraph) such that we can achieve the claim for that algebraic rate.
Hence, we have the claim for all algebraic rates of decay. Note that for decay
slower than algebraic we can taker = 1.

3.2 Small-Time Estimates

Assume nowt ≤ 1. We note that small-time behavior ofG̃ (=
∫

Gxdy by Re-
mark 3.5) is known and can be found, for example, in Friedman [3]. An analysis
is included here to keep the work self-contained. In this case our goal is to get
x-decay only. We will take advantage here of the fact that there exist constantsC1

andC2 so that

(x−y)2

t
≤C1

(x−y−a+t)2

t
+C2 ,(3.5)

and similarly for(x−y−a−t)/t. This is clear since

(x−y−a+t)2

t
=

(x−y)2

t
−2a+(x−y)+a2

+t ≥ C̃1
(x−y)2

t
−C̃2

for someC̃1 andC̃2, since for|x− y| ≤ 1, 2a+|x− y| ≤ C̃2, and for |x− y| ≥ 1,
|x−y| ≤ (x−y)2.

In this case, we again want to estimate the parts integral of Lemma 2.1. For
y≤ 0 and by using (3.5), we compute∫ +∞

−∞

∣∣∣∣
∫ y

Gx(t,x;ξ)dξ
∣∣∣∣d(y)dy

=
∫ 0

−∞

∫ y
[

C1e−δ|x|
√

t
e−

(x−ξ−a−t)2

Mt +
C1e−δ|x|

t
e−

(x−ξ−a−t)2

Mt

]
dξ d(y)dy

≤
∫ 0

−∞

∫ y
[

C1e−δ|x|
√

t
e−

(x−ξ)2
Mt +

C1e−δ|x|

t
e−

(x−ξ)2
Mt

]
dξ d(y)dy,

where our constantsC1 andM have changed. According to Remark 3.3 and our
assumption thatd(y) ∈ L∞(R), this is bounded by

∫ 0

−∞
C1

[
e−δ|x|e−

(x−y)2
Mt +

e−δ|x|
√

t
e−

(x−y)2
Mt

]
dy≤C1e−δ|x|(

√
t +1) .
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Fory≥ 0, we have a bound by∫ +∞

0

∫ y
[

C1e−δ|x|
√

t
e−

(x−ξ)2
Mt +

C1

t
e−

(x−ξ)2
Mt

]
dξ d(y)dy

=
∫ +∞

0

∫ +∞

y

[
C1e−δ|x|

√
t

e−
(x−ξ)2

Mt +
C1

t
e−

(x−ξ)2
Mt

]
dξ d(y)I{y>x}(y)dy

+
∫ +∞

0

∫ y

−∞

[
C1e−δ|x|

√
t

e−
(x−ξ)2

Mt +
C1

t
e−

(x−ξ)2
Mt

]
dξ d(y)I{y<x}(y)dy

≤
∫ +∞

0
C1

[
e−δ|x|e−

(x−y)2
Mt +

C1√
t
e−

(x−y)2
2Mt

]
d(y)dy,

where this last inequality is a result of Remark 3.3. We can now apply Lemma 3.1
to get a bound by

C1e−δ|x|√td(x)+C1d(x) ,

completing the proof.

LEMMA 3.6 Under the assumptions of Theorem1.4 and with G(t,x;y) being the
Green’s function for(2.2), we have for d(x) ∈ ∆,∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|d2(|y|+s)dyds≤C

[
e−δ|x|D(t)+d(|x|+ t)

]
,

δ as in(2.6).

PROOF: As before, we will make the computation through theGx bounds of
(2.6) and by breaking the integral into a region ofy≤ 0 and a region ofy≥ 0. In
particular, we write∫ t

0

∫ +∞

−∞
Gx(t −s,x;y)d2(|y|+s)dyds

=
∫ t

0

∫ 0

−∞
Gx(t −s,x;y)d2(|y|+s)dyds

+
∫ t

0

∫ +∞

0
Gx(t −s,x;y)d2(|y|+s)dyds.

(3.6)

We first analyze the integral overy≤ 0. In this case, we get a bound by

C1

∫ t

0

∫ 0

−∞

e−δ|x|
√

t −s
e−

(x−y−a−(t−s))2

M(t−s) d2(|y|+s)dyds

+C1

∫ t

0

∫ 0

−∞

e−δ|x|

t −s
e−

(x−y−a−(t−s))2

M(t−s) d2(|y|+s)dyds.(3.7)

As in the previous proof, we now consider two regions:x ≥ εt andx ≤ εt for
ε� a− (in particular,ε < a−/2). In the casex≥ εt, the exponentialx-decay implies
exponentialt-decay, and we get decay faster than that claimed. In the casex≤ εt,



POINTWISE APPROACH TO STABILITY 1309

we break thes-integration into two intervals,[0, t
2] and[ t

2, t], obtaining a bound for
the first integral on the right-hand side of (3.6) of

C1

∫ t/2

0

∫ 0

−∞

e−δ|x|
√

t −s
e−

(x−y−a−(t−s))2

M(t−s) d2(|y|+s)dyds

+C1

∫ t

t/2

∫ 0

−∞

e−δ|x|
√

t −s
e−

(x−y−a−(t−s))2

M(t−s) d2(|y|+s)dyds.(3.8)

For the first integral in (3.8),t − s≥ t
2, so thatx−a−(t − s) < εt −a−(t/2) < 0.

Remark 3.2 applies, then, giving a bound by

C1e−δ|x|
∫ t/2

0
d2(−x+ |a−|(t −s)+s)ds

≤C1e−δ|x| d(t)
∫ t/2

0
d(−x+ |a−|(t −s)+s)ds

≤C1e−δ|x| d(t)D(t) ,

better than the claimed decay.

For the second integral in (3.8), we have a bound by

C1e−δ|x|d(t)
∫ t

t/2

∫ 0

−∞

1√
t −s

e−
(x−y−a−(t−s))2

M(t−s) d(|y|+s)dyds

= C1e−δ|x| d(t)
∫ t∗

t/2

∫ 0

−∞

1√
t −s

e−
(x−y−a−(t−s))2

M(t−s) d(|y|+s)dyds

+C1e−δ|x|d(t)
∫ t

t∗

∫ 0

−∞

1√
t −s

e−
(x−y−a−(t−s))2

M(t−s) d(|y|+s)dyds,

wheret∗ is defined as before by the relationx = a−(t − t∗). Hence, on the first
integral ([ t

2, t∗]) x−a−(t −s) ≤ x−a−(t − t∗) = 0, so that Remark 3.2 applies. On
the second integral,x−a−(t−s)≥ x−a−(t− t∗) = 0, so thatx−y−a−(t−s)≥ 0,
and we can apply Remark 3.3. Combining these two observations, we get a bound
by

C1e−δ|x|d(t)
∫ t∗

t/2
d(−x+ |a−|(t −s)+s)ds+C1e−δ|x|d2(t)

∫ t

t∗
e−

(x−a−(t−s))2

M(t−s) ds.

(3.9)

Both integrals in (3.9) give decay better than that claimed, by the integrability of
d(·).

For the second integral in (3.7), we get better decay byt−1/2 on the interval
[0, t/2]. For the integral over[t/2, t] we arrive by an analysis precisely as above at
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a bound by

C1e−δ|x|d(t)
∫ t∗

t
2

1√
t −s

d(−x+ |a−|(t −s)+s)ds

+C1e−δ|x|d2(t)
∫ t

t∗

1√
t −s

e−
(x−a−(t−s))2

M(t−s) ds,

(3.10)

wheret∗ is defined as above. In the first integral of (3.10), we make the change of
variableξ =

√
t −s, which leads to the representation

C1e−δ|x|d(t)
∫ √

t/2

√
t−t∗

2d(−x+ |a−|ξ2 + t −ξ2)dξ

≤C1e−δ|x|d(t)
∫ √

t/2

√
t−t∗

2d(−x+ |a−|ξ2 + t/2)dξ

≤C1e−δ|x|d(t)
∫ √

t/2

√
t−t∗

2d(−x+ |a−|ξ2 +ξ)dξ

≤C1e−δ|x| d(t) ,(3.11)

by the integrability ofd(·), and where the last inequality is valid fort large (for
t small the estimate is obvious). A similar argument leads to precisely the same
bound on the second integral of (3.9).

This completes the analysis of the case withy≤ 0. We now consider the case
y≥ 0. For the second integral on the right-hand side of (3.6), we have∫ t

0

∫ +∞

0
|Gx(t,x;y)|d2(|y|+s)dyds

≤C1

∫ t

0

∫ +∞

0

e−δ|x|
√

t −s
e−

(x−y−a+(t−s))2

M(t−s) d2(y+s)dyds

+C1

∫ t

0

∫ +∞

0

1
t −s

e−
(x−y−a+(t−s))2

M(t−s) d2(y+s)dyds.

An application of Lemma 3.1 (a+ < 0, sox−a+(t −s) > 0) yields a bound by

C1e−δ|x|
∫ t

0
d2(x+ |a+|(t −s)+s)ds

+C1

∫ t

0

1√
t −s

d2(x+ |a+|(t −s)+s)ds

≤C1e−δ|x|d(x+ t)
∫ t

0
d(x+ |a+|(t −s)+s)ds

+C1d(x+ t)
∫ t

0

1√
t −s

d(x+ |a+|(t −s)+s)ds

≤C1e−δ|x| d(x+ t)+C1d(x+ t) ,
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where these last estimates are the result of an argument similar to that in (3.11).
This completes the proof of Lemma 3.6.

LEMMA 3.7 Under the assumptions of Theorem1.4 and with G(t,x;y) being the
Green’s function for(2.2), we have for d(x) ∈ ∆,∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|e−2δr |y|D2(s)dyds≤Ce−δr |x|D2(t) ,

δr as in the statement of Lemma3.6.

PROOF: The proof of Lemma 3.7 follows similarly (more directly, in fact) to
the proof of Lemma 3.6 and is here omitted. The interested reader is referred to [5]
for details.

PROOF OFTHEOREM 1.4: Letting

h(t,x) = e−δr |x|D(t)+d(|x|+ t) ,

Lemma 3.4 combined with Lemmas 3.6 and 3.7 will yield the result through Lem-
ma 2.1. In order to apply Lemma 2.1 to solutions for (1.1), we need two estimates.
First, we need ∫ +∞

−∞
|Gx(t,x;y)|

∫ y
h0(ξ)dξ ≤C1h(t,x) .

With h0(ξ) ≤ d(ξ) we can achieve this directly from Lemma 3.4. A similar argu-
ment works for the parts assumption. We also need the estimate∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|h(s,y)2 dyds≤C1h(t,x) .

We can achieve this through Lemmas 3.6 and 3.7 and Young’s inequality as fol-
lows: ∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|h(s,y)2dyds

≤C
∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|[e−δr |x|D(t)+d(x+ t)]2dyds

≤C
∫ t

0

∫ +∞

−∞
|Gx(t −s,x;y)|e−2δr |x|D2(t)+d2(x+ t)dyds.

Applying then Lemma 2.1 withv0 ∈ Aζ0
andζ0 sufficiently small, we get

|v(t,x)| ≤Cζ0
[
e−δr |x|D(t)+d(x+ t)

]
.

By the above-mentioned symmetry for the casex≤ 0, this completes the proof
of Theorem 1.4.
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