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Pointwise Green’s Function Estimates Toward
Stability for Degenerate Viscous ShockWaves

PETER HOWARD

Department of Mathematics, Texas A & M University, College Station,
Texas, USA

We consider degenerate viscous shock waves arising in systems of two conservation
laws, where degeneracy describes viscous shock waves for which the asymptotic
endstates are sonic to the hyperbolic system (the shock speed is equal to one of
the characteristic speeds). In particular, we develop detailed pointwise estimates on
the Green’s function associated with the linearized perturbation equation, sufficient
for establishing that spectral stability implies nonlinear stability. The analysis of
degenerate viscous shock waves involves several new features, such as algebraic
(nonintegrable) convection coefficients, loss of analyticity of the Evans function at
the leading eigenvalue, and asymptotic time decay of perturbations intermediate
between that of the Lax case and that of the undercompressive case.
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1. Introduction

We consider degenerate viscous shock waves arising in the system:

ut + f�u�x = uxx� u� f ∈ �2�

u�0� x� = u0�x��
(1.1)

that is, solutions of the form ū�x − st� = �ū1�x − st�, ū2�x − st��tr, ū�±�� =
�u±

1 � u
±
2 �

tr, that satisfy the Rankine–Hugoniot condition

s = fk�u
+
1 � u

+
2 �− fk�u

−
1 � u

−
2 �

u+
k − u−

k

� k = 1� 2�
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and for which s ∈ Spectrum�df�u±�� = �a±
k �

2
k=1. Throughout the analysis, we will

make the following assumptions on the structure of (1.1) and the wave ū:

(H0) f ∈ C2���;
(H1) (Lax degeneracy) Either a−

1 < s < a−
2 and a+

1 < s = a+
2 (right side degenerate)

or a−
1 = s < a−

2 and a+
1 < s < a+

2 (left side degenerate);
(H2) (First order degeneracy) For either case a±

k = s (right or left side degeneracy),
we assume there holds

l±k d
2f�u±��r

±
k � r

±
k � �= 0�

where l±k and r±k denote the left and right eigenvectors of df�u±� respectively,
and d2f�u±� denotes the operator

d2f�u±��v� v�

=
(

1
2�u1u1f1�u

±
1 � u

±
2 �v

2
1 + �u1u2f1�u

±
1 � u

±
2 �v1v2 + 1

2�u2u2f1�u
±
1 � u

±
2 �v

2
2

1
2�u1u1f2�u

±
1 � u

±
2 �v

2
1 + �u1u2f2�u

±
1 � u

±
2 �v1v2 + 1

2�u2u2f2�u
±
1 � u

±
2 �v

2
2

)
�

Under assumption (H2), both ū1�x − st� and ū2�x − st� decay to the degenerate side
endstate with rate �x − st�−1 (see Howard and Zumbrun, 2004). Though (H1)–(H2)
are stated for clarity in terms of an arbitrary wave speed s, the generality of f
allows us to take s = 0 without loss of generality by shifting to a moving coordinate
frame x �→ x − st and replacing f with f − su, which continues to satisfy our only
general requirement (H0). Throughout the article, then, we will consider a standing
wave ū�x�.

We note that assumptions (H1) and (H2) describe the most generic degenerate
case. In particular, (H1) asserts that there is only degeneracy on one side, and not
associated with both characteristics, while (H2) is analogous to the condition for
single equations f ′′�u±� �= 0 (see Howard, 2002a,b). Finally, we mention that our
restriction to the case of identity viscosity and two equations follows from technical
restrictions in the Evans function analysis of Howard and Zumbrun (2004), and
that we regard the cases of general viscosity (including partial regularization) and
an arbitrary number of equations as interesting directions for future work.

Under the assumption of conditions (H0)–(H2), we develop detailed estimates
on the Green’s function of the linearized perturbation equation sufficient for
establishing that spectral stability implies nonlinear stability for degenerate viscous
shock waves arising in (1.1). The full development of nonlinear stability is carried
out in a companion article, (Howard, 2005). We remark that the only systems
analysis to date in the case of degenerate viscous shock profiles regards the partially
regularized p-system,

vt − ux = 0

ut − p�v�x = uxx�

which can be reduced through coupling to a scalar analysis and analyzed by energy
methods (see Nishihara, 1995).

Our interest in the degenerate case is motivated both by the physical application
to detonation waves (see Howard, 2002a and the references therein) and by
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its position as a boundary case between Lax and undercompressive waves. The
critical new feature in the analysis of degenerate waves, necessarily absent in the
case of nondegenerate waves (for which s � Spectrum�df�u±��), is the algebraic
(nonintegrable) decay to endstate of the degenerate wave (see hypothosis (H2)). As
a consequence of this slow decay, the convection coefficients for the perturbation
equation found by linearizing (1.1) about ū�x� are also nonintegrable, and the
consequent asymptotic analysis is considerably more complicated than that of
the nondegenerate case. More important, the Evans function associated with the
linearized operator has terms of the form

√
	 ln 	, and hence analyticity is lost at

the critical point 	 = 0, around which long time behavior is determined. This loss
of analyticity has two critical consequences: (1) the study of the point spectrum of
the linear operator near 	 = 0 is more delicate; and (2) the time decay of the linear
semigroup operator eLt is reduced. While the former of these has been considered in
Howard and Zumbrun (2004)—in the case of conservation laws—and in Sandstede
and Scheel (2004)—in the case of reaction–diffusion systems—the latter has not (to
our knowledge) been addressed. This, then, is the critical issue of the current analysis.

It is well known that solutions u�t� x� of (1.1), initialized by u�0� x� near a
standing wave solution ū�x�, will not generally approach ū�x�, but rather will
approach a translate of ū�x� determined by the amount of mass (measured by∫
��u�0� x�− ū�x��dx) carried into the shock as well as the amount carried out to
the far field along outgoing characteristics. In our framework, a local tracking
function 
�t� will serve to approximate the shift of this translate at each time t.
Following Howard and Zumbrun (2000), we build this shift into our model by
defining our perturbation v�t� x� as v�t� x� �= u�t� x + 
�t��− ū�x�. We will say that
ū�x� is (orbitally) stable with respect to some measure if for v�0� x� sufficiently small
in that measure we have v�t� x� → 0 as t → �.

Substituting v�t� x� = u�t� x + 
�t��− ū�x� into (1.1), we obtain the perturbation
equation

vt = Lv+Q�v�x + 
̇�t��ūx�x�+ vx�� (1.2)

where Lv �= vxx − �A�x�v�x, A�x� = df�ū�x��, and Q�v� = O�v2� is a smooth
function of v. Restricting the discussion without loss of generality to the case
of right-side degeneracy (see (H1)), we observe that according to hypotheses
(H0)–(H2), we have, for A± �= limx→±� A�x�, that A�x� ∈ C1��� and

��kx�A�x�− A+�� = O��x�−k−1�� k = 0� 1� �degenerate side�

��kx�A�x�− A−�� = O�e−��x��� k = 0� 1� �nondegenerate side��

for some � > 0.
Integrating (1.2), we have (after integration by parts on the second integral and

observing that eLtūx�x� = ūx�x�),

v�t� x� =
∫ +�

−�
G�t� x� y�v0�y�dy + 
�t�ūx�x�

−
∫ t

0

∫ +�

−�
Gy�t − s� x� y�Q�v�s� y��+ 
̇�s�v�s� y��dy ds�
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where G�t� x� y� represents a Green’s function for the linear part of (1.2):

Gt + �A�x�G�x = Gxx� G�0� x� y� = 
y�x�I� (1.3)

The goal of the current analysis is to develop pointwise estimates on G�t� x� y�
sufficient for establishing that an iteration on v�t� x� will close. The estimates on
G�t� x� y� will be divided into those terms for which the x dependence is exactly ūx�x�
(referred to as the excited terms, and denoted E�t� x� y� = ūx�x�e�t� y�) and those for
which the x dependence is not exactly ūx�x�. Typically, the excited terms do not
decay in t, and represent mass that accumlates in the shock layer, shifting the shock.
Our approach will be to choose our shift 
�t� to annihilate this mass, so that we
track the shock in time. Following Howard and Zumbrun (2000), we write

G�t� x� y� = G̃�t� x� y�+ ūx�x�e�t� y��

for which we have

v�t� x� =
∫ +�

−�
G̃�t� x� y�v0�y�dy + ūx�x�

∫ +�

−�
e�t� y�v0�y�dy + 
�t�ūx�x�

−
∫ t

0

∫ +�

−�
Gy�t − s� x� y�Q�v�s� y��+ 
̇�s�v�s� y��dy ds�

Choosing 
�t� to eliminate the linear excited terms, we have


�t� �= −
∫ +�

−�
e�t� y�v0�y�dy� (1.4)

and consequently

v�t� x�=
∫ +�

−�
G̃�t� x� y�v0�y�dy−

∫ t

0

∫ +�

−�
Gy�t − s� x� y�Q�v�s� y��+ 
̇�s�v�s� y��dy ds�

We mention that in the iteration on v�t� x�, we only require an estimate on 
̇�t�, so
in practice we consider the time derivative of (1.4).

Typically, we analyze G�t� x� y� through its Laplace transform, G	�x� y�, which
satisfies the ODE (t → 	)

G	xx
− �A�x�G	�x − 	G	 = −
y�x�I�

and can be estimated by standard methods. Letting �+
1 and �+

2 represent the
(necessarily) two linearly independent asymptotically decaying solutions at +� of
the eigenvalue ODE

L� = 	�� (1.5)

(L as in (1.2)) and �−
1 and �−

2 similarly the two linearly independent asymptotically
decaying solutions at −�, we write G	�x� y� as a linear combination,

G	�x� y� =
{
�+
1 �x�N

−
1 �y�+ �+

2 �x�N
−
2 �y�� x > y

�−
1 �x�N

+
1 �y�+ �−

2 �x�N
+
2 �y�� x < y�
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where we observe the notation

�±
k N

∓
k =

(
�±
k1

�±
k2

) (
N∓

k1 N∓
k2

) = (�±
k1N

∓
k1 �±

k1N
∓
k2

�±
k2N

∓
k1 �±

k2N
∓
k2

)
�

Insisting on the continuity of G	�x� y� across y = x and a step in �xG	�x� y� (leading
to the Dirac delta), we have

��+
1 N

−
1 + �+

2 N
−
2 − �−

1 N
+
1 − �−

2 N
+
2 � = 0�

��+′
1 N−

1 + �+′
2 N−

2 − �−′
1 N+

1 − �−′
2 N+

2 � = −I�
(1.6)

Equations (1.6) represent eight equations and eight unknowns, which decouple into
two sets of four equations and four unknowns. Solving by Cramer’s formula, we
have, for example,

N−
11�y� 	� = −

det

�+
21 �−

11 �−
21

�+
22 �−

12 �−
22

�+′
22 �−′

12 �−′
22


det

(
�+
1 �+

2 �−
1 �−

2

�+′
1 �+′

2 �−′
1 �−′

2

) �

Clearly, then, G	�x� y� will be well behaved so long as

W�x� 	� �= det

(
�+
1 �+

2 �−
1 �−

2

�+′
1 �+′

2 �−′
1 �−′

2

)
�= 0�

We define the Evans function as D�	� �= W�0� 	�, which in our setting is equivalent
to the wedge-product formulations of Alexander et al. (1990), Evans (1972/1975),
Gardner and Zumbrun (1998), Jones (1984), and Kapitula and Sandstede (1998).
More precisely, in the wedge-product formulation, we denote

�±
k =

(
�±
k

�±
k

′

)
�

and set

Y±�x� 	� = �±
1 �x� 	� ∧�±

2 �x� 	��

where ∧ denotes a general wedge product on the space of vectors in �4 (i.e., ∧
denotes an associative, bilinear operation on vectors v ∈ �4 for which v ∧ v = 0).
In this case, we obtain through straightforward calculation that

D�	� = e−
∫ x
0 tr��y�	�dyY−�x� 	� ∧ Y+�x� 	�� (1.7)

which is the form considered in Alexander et al. (1990), Evans (1972/1975),
Gardner and Zumbrun (1998), Jones (1984), and Kapitula and Sandstede (1998).
(As described below, the matrix � is simply the matrix that arises when (1.5)
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is written as a first order system.) One advantage of (1.7) is that the two (six-
component) vectors Y± are the asymptotically decaying solutions of

Y ′
± = ��x� 	�Y±�

where � is defined by

Y ′
± = ��±

1 ∧�±
2 �

′ = �±
1
′ ∧�±

2 +�±
1 ∧�±

2
′

= ���±
1 � ∧�±

2 +�±
1 ∧��±

2 = �±�
±
1 ∧�±

2 �

In this way, the formulation (1.7) may remain valid in cases when our formulation
is not. In the current setting, however, the vectors �±

k can be distinctly defined, and
our formulation is valid.

In order to understand the behavior of the Evans function, consider an
eigenvector, V�x� 	�, of the linear operator

Lv = vxx − �A�x�v�x�

Since V�x� 	� must decay at both ±�, it must be a linear combination of �+
1 ,

and �+
2 , and also of �−

1 and �−
2 . Consequently, these four solutions must be

linearly dependent, and their Wronskian must be zero. In general, away from
essential spectrum, zeros of the Evans function correspond with eigenvalues of the
operator L, an observation that has been made precise in Alexander et al. (1990)
in the case—pertaining to reaction diffusion equations—of isolated eigenvalues, and
in Zumbrun and Howard (1998/2002), Gardner and Zumbrun (1998) in the case—
pertaining to conservation laws—of nonstandard “effective” eigenvalues embedded
in essential spectrum of L. (The latter correspond with resonant poles of L, as
examined in the scalar context in Pego and Weinstein, 1992.)

In Howard and Zumbrun (2004), the authors established that under assumptions
(H0)–(H2), D�	� can be written as an analytic function plus a small error,

D�	� = Da�	�+O��	3/2 ln 	��� as 	 → 0�

where Da�	� = O��	�� is analytic in a neighborhood of 	 = 0. Following Howard
and Zumbrun (2004), we introduce the following stability condition ���.

��� � D�	� has precisely one zero in �Re 	 ≥ 0�� necessarily at 	 = 0�

and D′
a�0� �= 0�

While condition ��� is generally quite difficult to verify analytically (see, for
example, Jones, 1984 in the context of the FitzHugh–Nagumo equations, and Dodd,
1996; Freistuhler and Szmolyan, 2002; Goodman, 1986; Humpherys and Zumbrun,
2002; Kawashima and Matsumura, 1985; Kawashima et al., 1986; Matsumura and
Nishihara, 1985, and Plaza and Zumbrun, 2004 in the case of conservation laws), it
can be checked numerically (see Brin, 2001; Oh and Zumbrun, 2003). A condition
that lends itself more readily to exact study is the stability index, typically defined as

� �= sgnD′
a�0�× sgn lim

�	→�
D�	��
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For 	 ∈ �+, we have Da�	� ∈ �, so that in the event that � = −1, D�	� must
have a positive real root, which guarantees instability. In the case that � = +1,
the question of stability remains undecided. It is shown, for example, in Howard
and Zumbrun (2004) that the degenerate wave arising in the context of the fully
regularized p-system

vt − ux = vxx

ut − �v+ v3�x = uxx�

satisfies � = +1.
Finally, we observe that if stability condition ��� holds, there exists a contour

�d defined through

	d�k� = −d0 + id1k− d2k
2� (1.8)

with d0 and d2 both positive constants, so that aside from the eigenvalue 	 = 0, the
point spectrum of L lies entirely to the left of �d. We are now in a position to state
the main result of the article.

Theorem 1.1. Suppose ū�x� is a standing wave solution to (1.1) and suppose
(H0)–(H2) hold, as well as stability criterion ���. Then for some positive constants M ,
K, P+, �0 and �, depending only on df�ū�x�� and the spectrum of L, the Green’s function
G�t� x� y� described through (1.3) satisfies the following estimates.

(i) y ≤ x ≤ 0:

G�t� x� y� = O�t−1/2�e−
�x−y−a−2 t�2

Mt +O�t−1/2�e−

(
x− a−1

a−2
y−a−1 t

)2
Mt + ūx�x�e−�t� y�

+O
((

1+
∣∣∣∣x − a−

1

a−
2

y − a−
1 t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{∣∣x− a−1

a−2
y

∣∣≤�a−1 �t
}�

Gy�t� x� y� = O�t−1�e−
�x−y−a−2 t�2

Mt +O�t−1�e−

(
x− a−1

a−2
y−a−1 t

)2
Mt + ūx�x��ye−�t� y�

+O
((

1+
∣∣∣∣x − a−

1

a−
2

y − a−
1 t

∣∣∣∣+ t1/2
)−5/2

ln�e+ t�

)
I{∣∣x− a−1

a−2
y

∣∣≤�a−1 �t
}�

where

e−�t� y� = O�1�e−
�y+a−2 t�2

Mt +O�1�I��y�≤�a−2 �t��

�ye−�t� y� = O�t−1/2�e−
�y+a−2 t�2

Mt +O
((
1+ �y + a−

2 t� + t−1/2�−3/2 ln�e+ t�
)
I��y�≤�a−2 �t��

�te−�t� y� = O�t−1/2�e−
�y+a−2 t�2

Mt +O
((
1+ �y + a−

2 t� + t−1/2�−3/2 ln�e+ t�
)
I��y�≤�a−2 �t��

(ii) x ≤ y ≤ 0:

G�t� x� y� = O�t−1/2�e−
�x−y−a−1 t�2

Mt +O�t−1/2�e−

(
x− a−1

a−2
y−a−1 t

)2
Mt + ūx�x�e−�t� y�

+O
((

1+
∣∣∣∣x − a−

1

a−
2

y − a−
1 t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{∣∣x− a−1

a−2
y

∣∣≤�a−1 �t
}�



80 Howard

Gy�t� x� y� = O�t−1�e−
�x−y−a−1 t�2

Mt +O�t−1�e−

(
x− a−1

a−2
y−a−1 t

)2
Mt + ūx�x��ye−�t� y�

+O
((

1+
∣∣∣∣x − a−

1

a−
2

y − a−
1 t

∣∣∣∣+ t1/2
)−5/2

ln�e+ t�

)
I{∣∣x− a−1

a−2
y�≤�a−1

∣∣t}�
(iii) x ≤ 0 < K ≤ y:

G�t� x� y�

= O�t−1/2�e−
(
x−a−1

∫ y
K

ds
a1�s�

−a−1 t

)2
Mt + ūx�x�e+�t� y�+O�t−1/2�e−

�x−a−1 t�2

Mt I{∣∣x−∫ yK ds
a1�s�

∣∣≤�a−1 �t
}

+O
((

1+
∣∣∣∣x − a−

1

∫ y

K

ds

a1�s�
− a−

1 t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{∣∣x−a−1

∫ y
K

ds
a1�s�

∣∣≤�a−1 �t
}

+O��1+ �x − a−
1 t� + t1/2�−3/2�O�1+ �y��I{∣∣x−∫ yK ds

a1�s�

∣∣≤�a−1 �t
}�

Gy�t� x� y�

= [O�t−1�1+ t�1/4� ∧O�t−1�1+ �y���]e−
(
x−a−1

∫ y
K

ds
a1�s�

−a−1 t

)2
Mt + ūx�x��ye+�t� y�

+O
((

1+
∣∣∣∣x − a−

1

∫ y

K

ds

a1�s�
− a−

1 t

∣∣∣∣+ t1/2
)−5/2

ln�e+ t�

)
I{∣∣x−a−1

∫ y
K

ds
a1�s�

∣∣≤�a−1 �t
}

+O
(
�1+ �x − a−

1 t� + t1/2�−3/2
)
I{∣∣x−∫ yK ds

a1�s�

∣∣≤�a−1 �t
}�

where

e+�t� y� = O�1�e−
(∫ y

K
ds

a1�s�
+ t

)2
Mt +O�1�I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}+O�1�e−
y2

Mt �

�ye+�t� y� = O�t−1/2�e−
(∫ y

K
ds

a1�s�
+ t

)2
Mt +O�t−1/2�1+ t�−1/2�1+ �y���e− y2

Mt

+
((

1+
∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}�
�te+�t� y� = O�t−1/2�e−

(∫ y
K

ds
a1�s�

+t

)2
Mt +O�t−1/2�1+ t�−1/2�e−

y2

Mt

+
((

1+
∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}�
(iv) y ≤ 0 ≤ x:

G�t� x� y� = O�t−1/2�1+ t�1/4�O��1+ �x��−1�e−
�x−y−a−2 t�2

Mt I��y�≥a−2 t� + ūx�x�e−�t� y�

+O��1+ �y + a−
2 t��−1/2�O��1+ �x��−1�e−

x2
Mt I��y�≤a−2 t�
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+O�t−1/2�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−
�x−y−a−2 t�2

Mt I��y�≥a−2 t�

+O��1+ �y + a−
2 t��−1/2 ln�e+ t��O��1+ �x��−2�e−

x2
Mt I��y�≤a−2 t��

Gy�t� x� y� = O�t−1�1+ t�1/4�O��1+ �x��−1�e−
�x−y−a−2 t�2

Mt I��y�≥a−2 t� + ūx�x��ye−�t� y�

+O��1+ �y + a−
2 t��−3/2�O��1+ �x��−1�e−

x2
Mt I��y�≤a−2 t�

+O�t−1�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−
�x−y−a−2 t�2

Mt I��y�≥a−2 t�

+O��1+ �y + a−
2 t��−3/2 ln�e+ t��O��1+ �x��−2�e−

x2
Mt I��y�≤a−2 t��

(v) 0 < K ≤ y ≤ x:

G�t� x� y�

= O�t−1/2�O��1+ �x��−1�O�1+ �y��e− �x−y�2

Mt +P+ūx

(
I��x−y�≤�0

√
t� − I��y�≤�0

√
t�

)
+ ūx�x�e+�t� y�+O�t−1/2ln�e+ t��2�O��1+ �x��−2�O�1+ �y��e− �x−y�2

Mt

+O�t−1/2�1+ t�1/4�O��1+ �x��−1�e−
(∫ x

K
ds

a1�s�
+∫ yK ds

a1�s�
+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}
+O�t−1/2�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−

(∫ x
K

ds
a1�s�

+∫ yK ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}�
Gy�t� x� y�

= O�t−1�O��1+ �x��−2�O�1+ �y��e− �x−y�2

Mt + ūx�x��ye+�t� y��

+O�t−1�1+ t�−1/2 ln�e+ t��O��1+ �x��−1�e−
�x−y�2

Mt

+O�t−1�1+ t�−1/2�O��1+ �x��−1�O�1+ �y��e− �x−y�2

Mt

+O�t−1 ln�e+ t��O��1+ �x��−2�e−
�x−y�2

Mt +O�t−3/4 ln�e+ t��O�e−��x−y��

+O�t−1�1+ t�1/4�O��1+ �x��−1�e−
(∫ x

K
ds

a1�s�
+∫ yK ds

a1�s�
+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}�
(vi) 0 < K ≤ x ≤ y

G�t� x� y�

= O�t−1/2�O��1+ �x��−1�O�1+ �y��e− �x−y�2

Mt + P+ūx

(
I��x−y�≤�0

√
t� − I��y�≤�0

√
t�

)
+ ūx�x�e+�t� y�+O�t−1/2ln�e+ t��2�O��1+ �x��−1�e−

�x−y�2

Mt

+O�t−1/2�e−
(∫ y

x
ds

a1�s�
+t

)2
Mt

+O
((

1+
∣∣∣∣ ∫ y

x

ds

a1�s�
+ t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{∣∣ ∫ y

x
ds

a1�s�

∣∣≤t

}
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+O�t−1/2�1+ t�1/4�O��1+ �x��−1�e−
(∫ x

K
ds

a1�s�
+∫ yK ds

a1�s�
+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}
+O�t−1/2�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−

(∫ x
K

ds
a1�s�

+∫ yK ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}
+O�t−1/2�1+ t�1/4�O��1+ �x��−1�e−

(∫ y
K

ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}
+O�t−1/2�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−

(∫ y
K

ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}
+O

((
1+

∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣)−1/2)
O��1+ �x��−1�e−

x2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}
+O

((
1+

∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣)−1/2

ln�e+ t�

)
O��1+ �x��−2�e−

x2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}�
Gy�t� x� y�

= O�t−1�O��1+ �x��−1�O�1+ �y��e− �x−y�2

Mt +O�t−1�e−
(∫ y

x
ds

a1�s�
+t

)2
Mt

+ ūx�x��ye+�t� y�+O
((

1+
∣∣∣∣ ∫ y

x

ds

a1�s�
+ t

∣∣∣∣+ t1/2
)−5/2

ln�e+ t�

)
I�� ∫ yx ds

a1�s�
�≤t�

+O�t−1�1+ t�1/4�O��1+ �x��−1�e−
(∫ x

K
ds

a1�s�
+∫ yK ds

a1�s�
+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}
+O�t−1�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−

(∫ x
K

ds
a1�s�

+∫ yK ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}
+O�t−1�1+ t�1/4�O��1+ �x��−1�e−

(∫ y
K

ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}
+O�t−1�1+ t�1/4 ln�e+ t��O��1+ �x��−2�e−

(∫ y
K

ds
a1�s�

+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}
+O

((
1+

∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣)−3/2)
O��1+ �x��−1�e−

x2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}
+O

((
1+

∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣)−3/2

ln�e+ t�

)
O��1+ �x��−2�e−

x2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}�
For 0 ≤ y < K, the integrals

∫ y

K
ds

a1�s�
can be replaced by zero, and similarly for x.

We observe that the extensive number of summands in the cases x, y ≥ 0
arises from the various interactions between the degenerate and nondegenerate
characteristic speeds, and also from the two different decay rates �1+ �x��−1 and
�1+ �x��−2 ln�e+ t�. In practice, most of these terms give a negligible contribution in
the nonlinear iteration of Howard (2005), but we record them here for completeness.
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Expressions of the form
∫ x

K
ds

a1�s�
will be fully explained in the analysis; we point out

here only that they are clearly necessary inasmuch as the behavior of a1�s� is only
understood asymptotically, and the algebraic nature of the approach of a1�s� to a+

1
precludes the possibilty of working (as in the nondegenerate case) with asymptotic
endstates. We also mention that the behavior for small t (that is, �x − y� ≥ �Kt for
some fixed constant �K) is of the form of heat kernels

O�t−1/2�e−
�x−y�2

Mt �

which can be subsumed into the estimates of Theorem 1.1.
Of particular interest are the estimates on G�t� x� y� with decay rate t−1/4. In the

case 0 < K ≤ x ≤ y, the ODE Green’s functions associated with degenerate decay
in x and nondegenerate decay in y takes the form

S	�x� y� = O��	−1/2��O��x�−1�e−
√
	x−∫ yK �3�s�	�ds�

In the case y = 0, we can proceed here as though analyzing the heat equation to
immediately recover an estimate of the form

O�t−1/2�O��x�−1�e−
x2
Mt I�y=0��

The difficulty arises in the limit as x goes to zero, in which case he have an estimate
of the form

S	�x� y� = O��	−1/2��e−
∫ y
K �3�s�	�ds�

The exponent
∫ y

K
�3�s� 	�ds is O��	�� and thus near 	 = 0 gives slower decay in t than

e−
√
	y. We observe, however, that this reduced t decay occurs only for �y� ≥ a−

2 t, and
this allows the loss of decay in t to be compensated by decay in y.

Regarding the excited terms, we note the relation

e�t� y� = e−�t� y�I�y≤0� + e+�t� y�I�y>0��

Also, we observe that in the case x ≤ 0 < K ≤ y, the term

P+ūx�x�I��y�≤�0
√
t�

arises naturally in the analysis, and is bounded by the expression

ūx�x�O�1�e−
y2

Lt �

In the cases x� y ≥ K > 0, the term that arises naturally in the analysis is

P+ūx�x�I��x−y�≤�0
√
t��

and we replace this with

P+ūx�x�I��x−y�≤�0
√
t� = P+ūx�x�I��y�≤�0

√
t� + P+ūx�x�

(
I��x−y�≤�0

√
t� − I��y�≤�0

√
t�

)
� (1.9)

where the first expression on the right-hand side of (1.9) is an expression of e+�y� t�
and the second appears in G̃.
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2. ODE Estimates

In this section we establish the critical estimates on �±
k �x� 	�, as well as on a

choice of asymptotically growing solutions of (1.5) and dual solutions to both. Our
eigenvalue ODE (1.5) takes the form

v1xx − �a11�x�v1�x − �a12�x�v2�x = 	v1

v2xx − �a21�x�v1�x − �a22�x�v2�x = 	v2� (2.1)

where akj�x� = �uj fk�ū1�x�� ū2�x��. Writing V1 = v1, V2 = v2, V3 = v1x , V4 = v2x , we
have the first order system

V ′ = ��x� 	�V� (2.2)

We will also be interested in the associated integrated equation

w1xx
− a11�x�w1x

− a12�x�w2x
= 	w1

w2xx
− a21�x�w1x

− a22�x�w2x
= 	w2� (2.3)

In particular, we will find it convenient when possible to compute growth and decay
solutions of (2.1) by computing growth and decay solutions of (2.3) and computing
their derivatives. We stress that from this point of view, no assumptions regarding
integrability need be made. It is a question, rather, of scaling.

Writing (2.3) as a first order system with W1 = w1, W2 = w2, W3 = w1x
, W4 = w2x

,
we have

W ′ = ��x� 	�W� ′ �= �x�

where

��x� 	� =


0 0 1 0
0 0 0 1
	 0 a11�x� a12�x�

0 	 a21�x� a22�x�

 �

which has four eigenvalues �k�x� 	� satisfying

�1�x� 	� =
a1�x�−

√
a1�x�

2 + 4	
2

� �2�x� 	� =
a2�x�−

√
a2�x�

2 + 4	
2

�

�3�x� 	� =
a1�x�+

√
a1�x�

2 + 4	
2

� �4�x� 	� =
a2�x�+

√
a2�x�

2 + 4	
2

�

with associated eigenvectors

P�x� 	� � = �V1� V2� V3� V4�

=
(

r1�x� r2�x� r1�x� r2�x�

r1�x��1�x� 	� r2�x��2�x� 	� r1�x��3�x� 	� r2�x��4�x� 	�

)
�



Pointwise Green’s Function Estimates 85

Here, a1�x� ≤ a2�x� are the eigenvalues of

A�x� =
(
a11�x� a12�x�

a21�x� a22�x�

)
�

namely

a1�x� =
trA−√�trA�2 − 4 detA

2
�

a2�x� =
trA+√�trA�2 − 4 detA

2
�

with associated eigenvectors rk =
(
1� ak�x�−a11�x�

a12�x�

)tr = (1� ak�x�rk2�x�−a21�x�

a22�x�

)tr
. At x=+�,

we have �+
1 �	� = O�1�, �+

2 �	� = O�
√
	�, �3�	� = O�	�, and �+

4 �	� = O�
√
	�,

prompting our designation of �1 and �3 as nondegenerate modes, and �2 and �4

as degenerate modes. According to our assumption (H1) (and without loss of
generality, taking s = 0 and right side degeneracy), we have

detA+ = 0� trA+ ≤ −
 < 0�

from which we observe that there exists a constant K sufficiently large so that

x > K ⇒ �trA�2 − 4 detA > 0�

In the analysis that follows, we often proceed in the case x ≥ K, observing that for
x ≤ K, all growth and decay solutions can be regarded as O�1� in x.

We note, prior to the statements of our lemmas, that the asymptotic limits
x → ±� of the �k�x� 	� represent the growth and decay rates of solutions to both
our unintegrated equation (2.1) and our integrated equation (2.3). Setting

�±
k �	� = lim

x→±�
�k�x� 	��

we have, for �	� sufficiently small,

Re �−
1 �	� ≤ −
 < 0 Re �−

2 �	� = O��	���
Re �−

4 �	� ≥ +
 > 0 Re �−
3 �	� = O��	���

Re �+
1 �	� ≤ −
 < 0 Re �+

3 �	� = O��	���

Finally, we mention that throughout the analysis order, terms involving �x� refer to
behavior as �x� → �, while order terms involving 	 refer to behavior as �	� → 0.

The following lemma is proven in Howard and Zumbrun (2004).

Lemma 2.1. Under the assumptions of Theorem 1.1, there exists some constant r
sufficiently small so that for �	� ≤ r	 �= �− we have the following estimates on
degenerate solutions of the integrated equation (2.3).
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For x ≥ 0, k = 1� 2

W+
2k�x� 	� = e−

√
	x�ūk�x�− u+

k ��1+ E2k�x� 	���

W+
2�k+2��x� 	� = e−

√
	x�ūk�x�− u+

k �

×
(
−√

	+ ūkx
�x�

ūk�x�− u+
k

+ E2�k+2��x� 	�+
ūkx

�x�

ūk�x�− u+
k

E2k�x� 	�

)
�

W+
4k�x� 	� = e+

√
	x�ūk�x�− u+

k ��1+ E4k�x� 	���

W+
4�k+2��x� 	� = e+

√
	x�ūk�x�− u+

k �

×
(
+√

	+ ūkx
�x�

ūk�x�− u+
k

+ E4�k+2��x� 	�+
ūkx

�x�

ūk�x�− u+
k

E4�k−2��x� 	�

)
�

where

E2k�x� 	�� E4k�x� 	� = O��	1/2 ln 	�� ∧O��x�−1�� k = 1� 2

(∧ represents min), and

E2k�x� 	�� E4k�x� 	� = O��	1/2��O��x�−1�� k = 3� 4�

Additionally, we have for �	1/2x� ≤ 1, the error estimates

Ejk�x� 	� = Ejk�0� 	�+O��	1/2��O��x���

Proof. The only statement in Lemma 2.1 not established in Howard and Zumbrun
(2004) is the �	1/2x� ≤ 1 estimate on Ejk�x� 	�. Following the proof of Lemma 4.1
in Howard and Zumbrun (2004), we write w1�x� from Equation (2.3) as w1�x� =
�ū1�x�− u+

1 �u1�x�, for which

u1�x� = e−
√
	x�1+ E21�x� 	���

u1x
�x� = e−

√
	x�−√

	+ E23�x� 	���

We have, then, the ODE for E21�x� 	�, �xE21�x� 	�−
√
	E21�x� 	� = E23�x� 	�.

Integrating, we find

E21�x� 	� = e
√
	xE21�0� 	�+

∫ x

0
e
√
	�x−��E23��� 	�d��

from which the estimate is clear. The remaining cases are similar. �

We remark that the ln 	 behavior in Lemma 2.1 appears in the analysis of single
equations as well, and appears to be sharp (see Howard, 2002a; Howard, 2002b;
Pego and Weinstein, 1992; Sandstede and Scheel, 2004).

Differentiating the estimates of Lemma 2.1, we obtain estimates on growth and
decay solutions of the unintegrated equation (2.1).

Lemma 2.2. Under the assumptions of Theorem 1.1 and for K large enough so that
x ≥ K assures �trA�2 − 4 detA ≥ 0, there exists some constant r sufficiently small
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so that for �	� ≤ r, we have the following estimates on solutions of the unintegrated
equation (2.2).

(i) x ≤ 0:

�−
k �x� 	� = e�

−
k+2�	�x�V−

k+2�	�+O�e−��x����

�−
k �x� 	� = e�

−
k �	�x�V−

k �	�+O�e−��x����

where k = 1� 2, and �−
k �	� and V−

k �	� are eigenvalue–eigenvector pairs for the
matrix �−�	� �= limx→−� ��x� 	�.

(ii) (nondegenerate solutions) For x ≥ K:

��+
11� �

+
12�

tr =� �+
1 �x� 	� = e

∫ x
K �1�s�	�ds�r+1 +O��x�−1���

��+′
11� �

+′
12�

tr = ��+
13� �

+
14�

tr =� �+′
1 �x� 	� = e

∫ x
K �1�s�	�ds�r+1 �

+
1 �	�+O��x�−1���

��+
11� �

+
12�

tr =� �+
1 �x� 	� = e

∫ x
K �3�s�	�ds�r+1 +O��x�−1���

��+′
11� �

+′
12�

tr = ��+
13� �

+
14�

tr =� �+′
1 �x� 	� = e

∫ x
K �3�s�	�ds�r+1 �

+
3 �	�+O��x�−1���

while for 0 ≤ x ≤ K each term is O�1�.
(iii) (degenerate solutions) For x ≥ 0, k = 1� 2, and 	 � �−:

�+
2k�x� 	� = e−

√
	x�ūk�x�− u+

k �

×
(
−√

	+ ūkx
�x�

ūk�x�− u+
k

+ E2�k+2��x� 	�+
ūkx

�x�

ūk�x�− u+
k

E2k�x� 	�

)
�

�+′
2k�x� 	� = e−

√
	x
(
ūkxx

+ �ak1�x�ū1x
E21 + ak2�x�ū2x

E22�+O��	1/2��O��x�−2�

+O��	��O��x�−1�
)
�

�+
2k�x� 	� = e+

√
	x�ūk�x�− u+

k �

×
(
+√

	+ ūkx
�x�

ūk�x�− u+
k

+ E4�k+2��x� 	�+
ūkx

�x�

ūk�x�− u+
k

E4k�x� 	�

)
�

�+′
2k�x� 	� = e+

√
	x�ūkxx

+ �ak1�x�ū1x
E41 + ak2�x�ū2x

E42�

+O��	1/2��O��x�−2�+O��	��O��x�−1���

where the Ekj�x� 	� are as in Lemma 2.1.

Proof. The estimates of Lemma 2.2 on degenerate solutions follow directly from
Lemma 2.1 and Equation (2.3). For the nondegenerate solutions, standard theory
suffices. (See, for example, Zumbrun and Howard, 1998/2002.) �

Lemma 2.3. The Evans function associated with Equation (2.2), defined by

D�	� �= det
(
�−

1 �0� 	� �−
2 �0� 	� �+

1 �0� 	� �+
2 �0� 	�

)
�
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satisfies

D�	� = det

(
�+

1 �0� 0� �+
2 �0� 0� �−

1 �0� 0� �−
2 �0� 0�

	� +
1 �0� 0� 	� +

2 �0� 0� −a−
1 r

−
1 	� −

2 �0� 0�

)
+O��	3/2 ln 	��

=� Da�	�+O��	3/2 ln 	��� �	� → 0�

where

�±
k = ��±

k1� �
±
k2�

tr�

Proof. Though Lemma 2.3 has been proven in Howard and Zumbrun (2004), we
restate a brief account of the argument for later reference. This development follows
that of Gardner and Zumbrun (1998).

Fast decay ODE solutions (�±
k �x� 0� = O�e−��x��). The fast decay solutions in

this analysis are �−
2 and �+

1 . For the first, proceeding as in Gardner and Zumbrun
(1998), we integrate

�−′′
2 − �A�x��−

2 �x = 	�−
2

on �−�� x� to obtain

�−′
2 �x� 	�− A�x��−

2 �x� 	� = 	
∫ x

−�
��s� 	� =� 	� −

4 �x� 	��

where � −
2 �x� 	� is analytic in 	. Similarly, for �+

1 we have

�+′
1 �x� 	�− A�x��+

1 �x� 	� = 	� +
1 �x� 	��

where � +
1 �x� 	� is analytic in 	.

Slow decay ODE solutions (�+
1 �x� 0� = O�1�). The only slow decay solution in

this analysis is �−
1 �x� 	�. Integrating again on �−�� x�, we have

�−′
1 �x� 	�− A�x��−

1 �x� 	�+ A−r
−
1 = 	� −

3 �x� 	��

where � −
3 �x� 	� is analytic in 	, and r−1 is the eigenvector of A− associated with the

eigenvalue a−
1 .

Degenerate decay ODE solutions (�+
2 �x� 0�= ūx�x�). Integrating our degenerate

ODE solution on x�+�� we have by construction,

�+′
2 �x� 	�− A�x��+

2 �x� 	� = 	� +
2 �x� 	� = 	

(
W+

21�W
+
22

)tr
�

where by Lemma 2.1 � +
2 �0� 	� = � +

2 �0� 0�+O��	1/2 ln 	��.
Now, we compute

D�	� = det

(
�+

1 �+
2 �−

1 �−
2

�+′
1 �+′

2 �−′
1 �−′

2

) ∣∣∣∣
y=0

= det

(
�+

1 �+
2 �−

1 �−
2

A�+
1 + 	� +

1 A�+
2 + 	� +

2 A�−
1 − a−

1 r
−
1 + 	� −

3 A�−
2 + 	� −

4

) ∣∣∣∣
y=0
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= det

[(
I 0

A I

)(
�+

1 �+
2 �−

1 �−
2

	� +
1 	� +

2 −a−
1 r

−
1 + 	� −

3 	� −
2

)] ∣∣∣∣
y=0

= det

[(
�+

1 �+
2 �−

1 �−
2

	� +
1 	� +

2 −a−
1 r

−
1 + 	� −

3 	� −
2

)] ∣∣∣∣
y=0

�

From this final expression we see immediately that D�0� = 0. The standard
approach toward gaining higher order information on the Evans function at 	 = 0
involves differentiating this final expression with respect to 	 (see for example,
Gardner and Zumbrun, 1998). Since in the case of a degenerate wave, the Evans
function is not analytic at 	 = 0, we cannot follow this approach. As observed in
Howard and Zumbrun (2004), however, the claim of Lemma 2.3 can be established
directly from our detailed ODE estimates of Lemma 2.2. �

In addition to the estimates of Lemma 2.2, we require estimates on the solutions
dual to �±

k and �±
k . The ODE dual to (2.1) takes the form

z1xx + a11�x�z1x + a21�x�z2x = 	z1

z2xx + a12�x�z1x + a22�x�z2x = 	z2� (2.4)

whose solutions we will denote �̃±
k �x� 	�, �̃±

k �x� 	�. Denoting Z1 = z1, Z2 = z2,
Z3 = z1x , and Z4 = z2x , we have the associated first order system

Z′ = Z�̃�x� 	�� (2.5)

where

�̃�x� 	� =


0 0 1 0
0 0 0 1
	 0 −a11�x� −a21�x�

0 	 −a12�x� −a22�x�

 �

We will employ the following lemma from Zumbrun and Howard (1998/2002).

Lemma 2.4. Suppose V�x� 	� satisfies (2.2). Then Z�x� 	� is a solution of (2.5) if and
only if ZSV = constant, where

S�x� =
(−A�x� I

−I 0

)
�

According to Lemma 2.4, we can describe dual solutions through the relations

�̃+
j �x� 	�S�x��

+
k �x� 	� = �̃+

j �x� 	�S�x��
+
k �x� 	� = 0� ∀j� k = 1� 2

�̃+
j �x� 	�S�x��

+
k �x� 	� = �̃+

j �x� 	�S�x��
+
k �x� 	� = 0� ∀j �= k

�̃+
1 �x� 	�S�x��

+
1 �x� 	� = �̃+

1 �x� 	�S�x��
+
1 �x� 	� = 1

�̃+
2 �x� 	�S�x��

+
2 �x� 	� = �̃+

2 �x� 	�S�x��
+
2 �x� 	� = 	3/2� (2.6)
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and similarly,

�̃−
j �x� 	�S�x��

−
k �x� 	� = �̃−

j �x� 	�S�x��
−
k �x� 	� = 0� ∀j� k = 1� 2

�̃−
j �x� 	�S�x��

−
k �x� 	� = �̃−

j �x� 	�S�x��
−
k �x� 	� = 
jk� ∀j� k = 1� 2� (2.7)

We remark that the distinguished relations

�̃+
2 �x� 	�S�x��

+
2 �x� 	� = �̃+

2 �x� 	�S�x��
+
2 �x� 	� = 	3/2�

are taken as a result of the coalescence of �+
2 �x� 	� and �+

2 �x� 	� at 	 = 0 (see
Lemma 2.2(iii)).

Accordingly, we have the following estimates on solutions of (2.4).

Lemma 2.5. Under the assumptions of Theorem 1.1, there exists some constant r
sufficiently small so that for �	� ≤ r, we have the following estimates on solutions
of (2.4). (The order expression Oa�·� refers to a term meromorphic in �	� ≤ 
s.)

(i) x ≤ 0:

�̃−
k �x� 	� = e−�−k+2�	�x�Ṽ−

k+2�	�+O�e−��x����

�̃−
k �x� 	� = e−�−k �	�x�Ṽ−

k �	�+O�e−��x����

where k = 1� 2, the �−
k �	� are as in Lemma 2.2, and Ṽ−

j �	� are the eigenvectors of

limx→−� �̃�x� 	�, scaled so that Ṽ±
j �	�V

±
k �	� = 


j
k� Moreover, �̃−

23�x� 	�, �̃
−
24�x� 	�,

�̃−
13�x� 	�� and �̃−

14�x� 	� are all Oa��	��.
(ii) (nondegenerate solutions) For x ≥ K, k = 1� 2:

�̃+
1k�x� 	� = e−

∫ x
K �1�s�	�dsOa�1�+O��	1/2 ln 	���

�̃+′
1k�x� 	� = �̃+

1�k+2��x� 	� = e−
∫ x
K �1�s�	�dsOa�1�+O��	1/2 ln 	����

�̃+
1k�x� 	� = e−

∫ x
K �3�s�	�dsOa�1�+O��	1/2 ln 	���

�̃+′
1k = �̃+

1�k+2��x� 	� = e−
∫ x
K �3�s�	�dsOa��	��+O��	3/2 ln 	����

while for x ≤ K each expression is O�1�, except �̃+′
1k , which is O��	��.

(iii) degenerate solutions x ≥ 0:

�̃+
2k�x� 	� = e

√
	x
(
Oa�1�+O��	1/2��O��x��+O��	1/2 ln 	��)

�̃+′
2k�x� 	� = �̃+

2�k+1��x� 	� = e
√
	xO��	��O��x��

�̃+
2k�x� 	� = e−

√
	x
(
Oa�1�+O��	1/2��O��x��+O��	1/2 ln 	��)

�̃+′
2k�x� 	� = �̃+

2�k+2��x� 	� = e−
√
	xO��	��O��x���

where k = 1� 2.

Proof. The case x ≤ 0 is nondegenerate, and since the solutions do not coalesce
at 	 = 0, straightforward (see, for example, Zumbrun and Howard, 1998/2002).
The only new assertion regards the O��	�� behavior of �̃−′

2 �y� 	� and �̃−′
1 �y� 	�. Such
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behavior is most directly observed by choosing the fast growth solution �−
1 �x� 	� as

the derivative of a solution to the integrated equation (2.3). In this way, we insure
by construction that

�−′
1 − A�−

1 = O��	��e�−1 �	�x

Then, according to (2.7), we must have

M̃−�x� 	��̃−
2 �x� 	�

tr = �0� 0� 0� 1�tr�

where, omitting independent variables for brevity,

M̃±�x� 	� =


−a11�

±
11 − a12�

±
12 + �±

13 −a21�
±
11 − a22�

±
12 + �±

14 −�±
11 −�±

12

−a11�
±
21 − a12�

±
22 + �±

23 −a21�
±
21 − a22�

±
22 + �±

24 −�±
21 −�±

22

−a11�
±
11 − a12�

±
12 + �±

13 −a21�
±
11 − a22�

±
12 + �±

14 −�±
11 −�±

12

−a11�
±
21 − a12�

±
22 + �±

23 −a21�
±
21 − a22�

±
22 + �±

24 −�±
21 −�±

22

 �

Applying Cramer’s rule and transposing the matrices, we find

�̃−
23�x� 	�

=

det

 �−
12 �−

22 �−
12

−a11�
−
11 − a12�

−
12 + �−

13 −a11�
−
21 − a12�

−
22 + �−

23 −a11�
−
11 − a12�

−
12 + �−

13

−a21�
−
11 − a22�

−
12 + �−

14 −a21�
−
21 − a22�

−
22 + �−

24 −a21�
−
11 − a22�

−
12 + �−

14


det
(
�−

1 �−
2 �−

1 �−
2

)

=

det

 �−
12 �−

22 �−
12

−a11�
−
11 − a12�

−
12 + �−

13 O��	�� O��	��
−a21�

−
11 − a22�

−
12 + �−

14 O��	�� O��	��


det
(
�−

1 �−
2 �−

1 �−
2

) = O��	��e−�−2 �	�x�

The calculations for �̃−
24�x� 	�, �̃

−
13�x� 	�, and �̃−

14�x� 	� are similar.
For x ≥ 0, the analysis is considerably more delicate, and we carry out a full

analysis for the cases �̃+
1 �x� 	� and �̃+

2 �x� 	� only. For �̃
+
1 �x� 	�, from (2.6) we have

the relation

M̃�x� 	��̃+
1 �x� 	�

tr = �1� 0� 0� 0�tr�

Applying Cramer’s rule, we find

�̃+
13�x� 	�

=

det

 �+
22 �+

12 �+
21

−a11�
+
21 − a12�

+
22 + �+

23 −a11�
+
11 − a12�

+
12 + �+

13 −a11�
+
21 − a12�

+
22 + �+

23

−a21�
+
21 − a22�

+
22 + �+

24 −a21�
+
11 − a22�

+
12 + �+

14 −a21�
+
21 − a22�

+
22 + �+

24


det
(
�+

1 �+
2 �+

1 �+
2

) �
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We observe now that by our construction from the integrated equation (2.3), we
have the reduced form

�̃+
13�x� 	� = −

det

 �+
22 �+

12 �+
22

	W+
21 W+

31 	W+
41

	W+
22 W+

32 	W+
42


det
(
�+

1 �+
2 �+

1 �+
2

) �
Computing directly, we observe that the numerator has the form

	W+
31��

+
22W

+
42 − �+

22W
+
22�+ 	2�+

12�W
+
41W

+
22 −W+

21W
+
42�+ 	W+

32��
+
22W

+
21 − �+

22W
+
41��

For the terms in parentheses, we have cancellation, exemplified by the calculation,

�+
22W

+
42 − �+

22W
+
22 = �ū2�x�− u+

2 �
2

[(
−√

	+ ū2x

ū2 − u+
2

+ E24 +
ū2x

ū2 − u+
2

E22

)
�1+ E42�

−
(√

	+ ū2x

ū2 − u+
2

+ E44 +
ū2x

ū2 − u+
2

E42

)
�1+ E22�

]
= �ū2�x�− u+

2 �
2
[− 2

√
	+ �E24 − E44�−

√
	�E42 + E22�

+ �E42E24 − E22E44�
]

= O��x�−2�O��	1/2��+O��x�−2�O��	 ln 	���

with similar estimates on the remaining terms. We conclude that the numerator has
the form

e
∫ x
K �3�s�	�ds

[
O��x�−2�O��	3/2��+O��x�−2�O��	2 ln 	��]�

Computing directly (i.e. expanding the determinants), according to the estimates of
Lemmas 2.1 and 2.2, we find

det
(
�+

1 �+
2 �+

1 �+
2

)
= e

∫ x
K �1�s�	�+�3�s�	�ds

(
ord�	3/2�ord��x�−2�+ ord�	�ord��x�−3�Ẽ�x� 	�

)
�

where by ord( ) we mean strict order, bounded above and below (hence a term we
can divide by), and by Ẽ we mean

Ẽ�x� 	� = E41�x� 	�+ E22�x� 	�− E42�x� 	�− E21�x� 	� = O��	1/2 ln 	�� ∧O��x�−1��

Combining these representations, we find that

�̃+
13�x� 	� = e−

∫ x
K �1�s�	�dsOa�1�+O��	1/2 ln 	����

Integrating �̃+
13�x� 	� on x�+��, we obtain a similar estimate on �̃+

11�x� 	�. For
�̃+

2 �x� 	�, we have

M̃�x� 	��̃+
2 �x� 	�

tr = �0� 	3/2� 0� 0�tr�
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Applying Cramer’s rule, we find

�̃+
21�x� 	�

= −	3/2

det

 �+
11 �+

11 �+
21

�+
12 �+

12 �+
22

−a21�
+
11 − a22�

+
12 + �+

14 −a21�
+
11 − a22�

+
12 + �+

14 −a21�
+
21 − a22�

+
22 + �+

24


det
(
�+

1 �+
2 �+

1 �+
2

) �

We observe now that by our construction from the integrated equation (2.3), we
have the reduced form

�̃+
21�x� 	� = −	3/2

det

 �+
11 �+

11 �+
21

�+
12 �+

12 �+
22

	W+
12 W+

32 	W+
42


det
(
�+

1 �+
2 �+

1 �+
2

) �
Expanding as in the case �̃+

21�x� 	�, we have

det

 �+
11 �+

11 �+
21

�+
12 �+

12 �+
22

	W+
12 W+

32 	W+
42


= e

√
	x+∫ xK��1�s�	�+�3�x�	��ds

(
O��x�−2�+O��	�1/2�O��x�−1�+O��	1/2 ln 	��)�

from which our estimate on �̃+
21�x� 	� is immediate. The remaining cases are

similar. �

Lemma 2.6. Under the assumptions of Lemma 2.5, we observe the following critical
cancellation estimates, for which, as in Lemma 2.5, the expression Oa�·� refers to terms
meromorphic in a neighborhood of 	 = 0.

(i) For k = 1� 2,

	−3/2�E4k�0� 	�− E2k�0� 	��+m�	� = Oa��	−1��+O��	−1/2�ln 	�2���

(ii) d+
22�	��

+
2 �x� 	�− 	−3/2�+

2 �x� 	�

= e
√
	x

(
P+ūx

	
+O��	−1/2�ln 	�2��O��x�−1�+O��	−1/2�� ∧O��	−1��O��x�−1�

)
(iii) d+

22�	��̃
+
2 �x� 	�+ 	−3/2�̃+

2 �x� 	�

= e
√
	x
(
Oa��	−1��+O��	−1/2�ln 	�2��O��x��+ �O��	−1/2��O��x�2��

∧ �O��	−1��O��x�−1��
)

(iv) d+
22�	��̃

+′
2 �x� 	�+ 	−3/2�̃+′

2 �x� 	�

= e
√
	x
(
O�� ln 	��+O��	1/2�ln 	�2��O��x��+ �O��	1/2��O��x�2�� ∧ �O��x���)�
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where m�	� and d+
22�	� are defined through the relation

d+
22�	� = 	−3/2 det

(
�+

1 �+
2 �−

1 �−
2

)
det
(
�+

1 �+
2 �−

1 �−
2

) = 	−3/2 +m�	�� (2.8)

for which m�	� = O��	−1 ln 	��.
Proof. The cancellation in Lemma 2.6 arises from the coalescing of the decay and
growth degenerate solutions. In the case of nondegenerate waves, independence of
these solutions plays a critical role in the determination of the behavior of the
scattering coefficients (see, for example, Zumbrun and Howard, 1998/2002). Here,
rather, the scattering coefficients must be understood first so that the extent of the
dependence can be observed.

We begin by observing that the estimate (2.8) on the scattering coefficient d+
22�	�

(and on m�	�) is a direct result of the relationship

�+
2 �0� 	� = �+

2 �0� 	�+O��	1/2 ln 	���
which is immediate from the estimates of Lemma 2.2. In particular, since d+

22�	� does
not depend on x, we can evaluate the determinant quotient at any value of x, and
we evaluate it at x = 0.

Taking k = 1 for definiteness in (i), we first compute

d+
22�	��

+
21�x� 	�− 	−3/2�+

21�x� 	�

= �	−3/2 +m�	���+
21�x� 	�− 	−3/2�+

21�x� 	�

= �	−3/2 +m�	��e−
√
	x�ū1�x�− u+

1 �

×
(
−√

	+ ū1x

ū1 − u+
1

+ E23�x� 	�+
ū1x

ū1 − u+
1

E21�x� 	�

)
− 	−3/2e

√
	x
(
ū1�x�− u+

1

)(√
	+ ū1x

ū1 − u+
1

+ E43�x� 	�+
ū1x

ū1 − u+
1

E41�x� 	�

)
�

In the case �√	x� ≤ 1, we have

�	−3/2 +m�	���1+O��√	x����ū1�x�− u+
1 �

×
(
−√

	+ ū1x

ū1 − u+
1

+ E23�x� 	�+
ū1x

ū1 − u+
1

E21�x� 	�

)
− 	−3/2�1+O��√	x����ū1�x�− u+

1 �

×
(√

	+ ū1x

ū1 − u+
1

+ E43�x� 	�+
ū1x

ū1 − u+
1

E41�x� 	�

)
= Oa��	−1��O��x�−1�+ ū1x

�x���E21�x� 	�− E41�x� 	��	
−3/2 +m�	��

+O��	−1/2�ln 	�2��O��x�−1�+O��	−1/2�� ∧O��	−1��O��x�−1�� (2.9)

According to Lemma 2.3, spectral stability implies

d+
22�	��

+
21�0� 	�− 	−3/2�+

21�0� 	� = Oa��	−1��+O��	−1/2 ln 	���
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Combining these last two equalities, we conclude (i). Recalling from Lemma 2.1 the
relations Ejk�x� 	� = Ejk�0� 	�+O��	1/2��O��x��, we have

ū1x
�x�
(
�E21�x� 	�− E41�x� 	��	

−3/2 +m�	�
)

= ū1x
�x�
(
�E21�0� 	�− E41�0� 	��	

−3/2 +m�	�+O��	1/2��O��x��	−3/2
)

= ū1x
�x�
(
Oa��	−1��+O��	−1/2 ln 	��+Oa��	−1��O��x��)�

from which we conclude (ii). In the case �√	x� ≥ 1, we observe that �x�−1 ≤ √
	 from

which (ii) follows immediately from (2.9).
For estimate (iii), we observe as in the proof of Lemma 2.5 that

�̃+
21�x� 	� = −	3/2

det

 �+
11 �+

11 �+
21

�+
12 �+

12 �+
22

	W+
12 W+

32 	W+
42


det
(
�+

1 �+
2 �+

1 �+
2

)
= −	3/2

det
(
�+

1 �+
2 �+

1 �+
2

) [W+
32��

+
21�

+
12 − �+

11�
+
22�+O��	��]�

with also

�̃+
21�x� 	� = −	3/2

det

 �+
11 �+

21 �+
11

�+
12 �+

22 �+
12

	W+
12 	W+

22 W+
32


det
(
�+

1 �+
2 �+

1 �+
2

)
= −	3/2

det
(
�+

1 �+
2 �+

1 �+
2

) [W+
32��

+
11�

+
22 − �+

21�
+
12�+O��	��]�

We have, then,

d+
22�	�+ �̃+

2 �x� 	�+ 	−3/2�̃+
2 �x� 	�

= −	3/2��+
11 − a11�x��

+
11 − a12�x��

+
12�

det
(
�+

1 �+
2 �+

1 �+
2

)
× [�+

12�d22�	��
+
21 − 	−3/2�+

21�− �+
11�d22�	��

+
22 − 	−3/2�+

22�
]+O��	���

Combining (ii) with the estimate

det
(
�+

1 �+
2 �+

1 �+
2

)
= e

∫ x
K �1�s�	�+�3�s�	�ds

(
ord�	3/2�ord��x�−2�+ ord�	�ord��x�−3�Ẽ

)
�

and repeating the analysis for �̃+
22 and �̃+

22, we obtain (iii).
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Finally, for estimate (iv) we note that

�̃+′
21�x� 	� = 	3/2

det

 �+
12 �+

12 �+
22

	W+
11 W+

31 	W+
41

	W+
12 W+

32 	W+
42


det
(
�+

1 �+
2 �+

1 �+
2

)
= 	3/2

det
(
�+

1 �+
2 �+

1 �+
2

)
× [�	�+

12W
+
42 − 	�+

22W
+
12�W

+
31 + �	�+

22W
+
11 − 	�+

12W
+
41�W

+
32 +O��	2��]�

with also

�̃+′
21�x� 	� = 	3/2

det

 �+
12 �+

22 �+
12

	W+
11 	W+

21 W+
31

	W+
12 	W+

22 W+
32


det
(
�+

1 �+
2 �+

1 �+
2

)
= 	3/2

det
(
�+

1 �+
2 �+

1 �+
2

)
× [�	�+

12W
+
21 − 	�+

22W
+
11�W

+
32 + �	�+

22W
+
12 − 	�+

12W
+
22�W

+
31 +O��	2��]�

Combining, we have

d+
22�	��̃

+′
2 �x� 	�+ 	−3/2�̃+′

2 �x� 	� = 	5/2W+
31

det
(
�+

1 �+
2 �+

1 �+
2

) [d22�	���
+
22W

+
12 − �+

12W
+
22�

+ 	−3/2��+
12W

+
42 − �+

22W
+
12�+O��	��]

− 	5/2W+
31

det
(
�+

1 �+
2 �+

1 �+
2

) [d22�	���
+
12W

+
21 − �+

22W
+
11�

+ 	−3/2��+
22W

+
11 − �+

12W
+
41�+O��	��]

= 	5/2W+
31

det
(
�+

1 �+
2 �+

1 �+
2

) [W+
12�d22�	��

+
22 − 	−3/2�+

22�

−�+
12�d22�	�W

+
22 − 	−3/2W+

42�+O��	��]
− 	5/2W+

32

det
(
�+

1 �+
2 �+

1 �+
2

) [W+
11�d22�	��

+
22 − 	−3/2�+

22�

−�+
12�d22�	�W

+
21 − 	−3/2W+

41�+O��	��]�
from which we have (iv). �

3. Estimates on G��x� y�

In this section we develop estimates on G	�x� y�, first for the critical case of 	 near
zero (which will correspond with large t behavior).
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Lemma 3.1 (Small �	� G	�x� y� estimates). Under the assumptions of Theorem 1.1,
there exists r sufficiently small so that for �	� ≤ r, and for some constant K
sufficiently large, we have the following estimates, for which terms containing Oa�·� are
meromorphic to the right of �d, while the remaining terms are analytic to the right of
�d and away from the negative real axis.

(i) y ≤ x ≤ 0:

G	�x� y� = Oa�1�e
�−2 �	��x−y� +Oa�1�e

�−3 �	�x−�−2 �	�y +O��	1/2 ln 	��e�−3 �	�x−�−2 �	�y

+ ūx�x�
(
Oa��	−1��+O��	−1/2 ln 	��)e−�−2 �	�y�

�yG	�x� y� = Oa��	��e�−2 �	��x−y� +Oa��	��e�−3 �	�x−�−2 �	�y +Oa�1�e
�−1 �	��x−y�

+O��	3/2 ln 	��e�−3 �	�x−�−2 �	�y + ūx�x�
(
Oa�1�+O��	1/2 ln 	��)e−�−2 �	�y�

(ii) x ≤ y ≤ 0:

G	�x� y� = Oa�1�e
�−3 �	��x−y� +Oa�1�e

�−3 �	�x−�−2 �	�y +O��	1/2 ln 	��e�−3 �	�x−�−2 �	�y

+ ūx�x�
(
Oa��	−1��+O��	−1/2 ln 	��)e−�−2 �	�y�

�yG	�x� y� = Oa��	��e�−3 �	��x−y� +Oa��	��e�−3 �	�x−�−2 �	�y +Oa�1�e
�−4 �	��x−y�

+O��	3/2 ln 	��e�−3 �	�x−�−2 �	�y + ūx�x�
(
Oa�1�+O��	1/2 ln 	��)e−�−2 �	�y�

(iii) x ≤ 0 < K ≤ y:

G	�x� y� = Oa�1�e
�−3 �	�x−

∫ y
K �3�s�	�ds +O��	1/2 ln 	��e�−3 �	�x−

∫ y
K �3�s�	�ds

+O�1�e�
−
3 �	�x−

√
	y + ūx�x�

(
Oa��	−1��+O��	−1/2 ln 	��

)
e−

∫ y
K �3�s�	�ds

+ ūx�x�
(
Oa��	−1��+O��	−1/2 ln 	��)e−√

	y�

�yG	�x� y� = Oa��	��e�−3 �	�x−
∫ y
K �3�s�	�ds +O��	3/2 ln 	��e�−3 �	�x−

∫ y
K �3�s�	�ds

+O��	��O��y��e�−3 �	�x−
√
	y + ūx�x�

(
Oa�1�+O��	1/2 ln 	��)e− ∫ yK �3�s�	�ds

+ ūx�x�O��y��e−
√
	y�

(iv) y ≤ 0 < K ≤ x:

G	�x� y� = O��	−1/2��O��x�−1�e−
√
	x−�−2 �	�y +O��	−1/2 ln 	��O��x�−2�e−

√
	x−�−2 �	�y

+ ūx�x�Oa��	−1��e−�−2 �	�y�

�yG	�x� y� = O��	1/2��O��x�−1�e−
√
	x−�−2 �	�y +O��	1/2 ln 	��e

√
	x−�−2 �	�y

+ ūx�x�Oa�1�e
−�−2 �	�y�

(v) 0 < K ≤ y ≤ x:

G	�x� y�

= e−
√
	�x−y�[O��	−1/2�O��x�−1�O��y��+ ūx�x�Oa��	−1��

+O��	−1/2�ln 	�2��O��x�−2�O��y��]
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+ e−
√
	x−∫ yK �3�s�	�ds

[
O��	−1/2��O��x�−1�+O��x�−2�O��	−1/2 ln 	��]

+Oa�1�e
∫ x
y �1�s�	�ds + ūx�x�Oa��	−1��e−

∫ y
K �3�s�	�ds�

�yG	�x� y�

= e−
√
	�x−y�[O��x�−2�O��y��+O��	1/2 ln 	��O��x�−1�+O��	1/2��O��x�−1�O��y��

+O�� ln 	��O��x�−2�
]+O��	1/2��O��x�−1�e−

√
	x−∫ yK �3�s�	�ds

+ ūx�x�Oa�1�e
− ∫ yK �3�s�	�ds +Oa�1�e

∫ x
y �1�s�	�ds +O��	1/2 ln 	��e

∫ x
y �1�s�	�ds�

(vi) 0 < K ≤ x ≤ y:

G	�x� y� = e−
√
	�x−y�[O��	−1/2��O��x�−1�O��y��+ ūx�x�Oa��	−1��O��x�−2�

+O��	−1/2�ln 	�2��O��x�−1�
]+ e−

∫ y
x �3�s�	�ds

[
Oa�1�+O��	1/2 ln 	��]

+ e−
√
	x−∫ yK �3�s�	�ds

[
O��	−1/2��O��x�−1�+O��x�−2�O��	−1/2 ln 	��]

+ ūx�x�Oa��	−1��e−
∫ y
K �3�s�	�ds�

�yG	�x� y� = e−
√
	�x−y�O��x�−1�O��y��+Oa��	��e−

∫ y
x �3�s�	�ds

+O��	1/2��O��x�−1�e−
√
	x−∫ yK �3�s�	�ds + ūx�x�Oa�1�e

− ∫ yK �3�s�	�ds

+O��	3/2 ln 	��e−
∫ y
x �3�s�	�ds�

For 0 ≤ y ≤ K, the expressions e
∫ y
K �3�s�	�ds can be replaced by O�1� and similarly

for x.

Remarks on Lemma 3.1. The fundamentally new aspect of the estimates of
Lemma 3.1 with respect to analogous results for nondegenerate waves is the loss of
analyticity in a neighborhood of 	 = 0. On the degenerate side (x > 0), our linear
equation behaves like a heat equation, and we expect such loss of analyticity, at least
with terms of the form

√
	. Even on the nondegenerate side, however, the Green’s

function is constructed from solutions that decay at both ±� and our expansion
coefficients carry

√
	 and

√
	 ln 	 behavior.

Proof of Lemma 3�1. Following Zumbrun and Howard (1998/2002), we establish
estimates on G	�x� y� through the useful representation(

G	 G	y

G	x
G	xy

)
=
{
�+�x� 	�M+�	��̃−�y� 	�� x > y

�−�x� 	�M−�	��̃+�y� 	�� x < y�

where

�± =
(
�±

1 �±
2

�±′
1 �±′

2

)
denote solutions to the eigenvalue ODE (2.1), while

�̃± =
(
�̃±

1 �̃±′
1

�̃±
2 �̃±′

2

)
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denote solutions to the dual ODE (2.4). According to Zumbrun and Howard
(1998/2002) and the methods described there, we have the additional
representations,(

G	 G	y

G	x
G	xy

)
=
{−�0��−�x� 	����+�y� 	���−�y� 	��−1S�y�−1� x ≤ y

��+�x� 	�� 0���+�y� 	���−�y� 	��−1S�y�−1� x ≥ y
(3.1)

and

(
G	 G	y

G	x
G	xy

)
=


−S�x�−1

(
�̃−�x� 	�

�̃+�x� 	�

)−1 (
0

�̃+�y� 	�

)
� x ≤ y

S�x�−1

(
�̃−�x� 	�

�̃+�x� 	�

)−1 (
�̃−�y� 	�

0

)
� x ≥ y�

(3.2)

In order to see the validity of these relationships, we briefly recall the development
of Zumbrun and Howard (1998/2002). Observing the jump condition,[

G	 G	y

G	x
G	xy

]
=
(
0 −I

I −A

)
=� S−1�

we have

�+�y� 	�M+�	��̃+�y� 	�−�−�y� 	�M−�	��̃+�y� 	� = S�y�−1�

or in matrix form

��+�y� 	���−�y� 	��
(
M+�	� 0

0 −M−�	�

)(
�̃−�y� 	�

�̃+�y� 	�

)
= S�y�−1�

from which we conclude the critical relation(
M+�	� 0

0 −M−�	�

)
= ��+�y� 	���−�y� 	��−1S�y�−1

(
�̃−�y� 	�

�̃+�y� 	�

)−1

�

In order to establish (3.1), we rewrite this last relationship as

��+�y� 	���−�y� 	��−1S�y�−1 =
(
M+�	� 0

0 −M−�	�

)(
�̃−�y� 	�

�̃+�y� 	�

)
�

and for x > y multiply on both sides by ��+�x� 	�� 0� and for x < y multiply on
both sides by −�0��−�y� 	��. The case of (3.2) is similar.

Case (i) y ≤ x ≤ 0. In the case y ≤ x ≤ 0, we compare representations(
G	 G	y

G	x
G	xy

)
=

2∑
j�k=1

�−
k �x� 	�d

−
kj�	��̃

−
j �y� 	�+

2∑
j�k=1

�−
k �x� 	�e

−
kj�	��̃

−
j �y� 	�
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and (
G	 G	y

G	x
G	xy

)
= S�x�−1

(
�̃−�x� 	�

�̃+�x� 	�

)−1 (
�̃−�y� 	�

0

)

=
2∑

j=1

S�x�−1

(
�̃−�x� 	�

�̃+�x� 	�

)−1

Ej�̃
−
j �y� 	�

to obtain the relation

2∑
k=1

�−
k �x� 	�d

−
kj�	�+

2∑
k=1

�−
k �x� 	�e

−
kj�	� = S�x�−1

(
�̃−�x� 	�

�̃+�x� 	�

)−1

Ej� (3.3)

Multiplying (3.3) on the left by �̃−
l �x� 	�S�x�, and recalling relations (2.7), we find

e−lj �	� = �̃−
l �x� 	�

(
�̃−�x� 	�

�̃+�x� 	�

)−1

Ej�

for which e−lj �	� is the jth component of the vector J satisfying(
�̃−�x� 	�

�̃+�x� 	�

)
J = �̃−

l �x� 	��

Proceeding by Cramer’s rule, we have for j = 1

e−l1�	� =
det
(
�̃−

l �x� 	�
tr �̃−

2 �x� 	�
tr �̃+

1 �x� 	�
tr �̃+

2 �x� 	�
tr
)

det
(
�̃−

1 �x� 	�
tr �̃−

2 �x� 	�
tr �̃+

1 �x� 	�
tr �̃+

2 �x� 	�
tr
) = {1� l = 1

0� l = 2�

and similarly for j = 2, so that e−lj �	� = 

j
l , where 


j
l represents the Kronecker

delta.
Alternatively, multiplying (3.3) on the left by �̃−

l �x� 	�S�x� we find

d−
lj �	� = �̃−

l �x� 	�

(
�̃−�x� 	�

�̃+�x� 	�

)−1

Ej�

Proceeding again by Cramer’s rule and observing the estimates of Lemma 2.5
�̃−′

1 �x� 	� = O��	�� and �̃−′
2 �x� 	� = O��	��, we find the estimates d−

11�	� = Oa��	��+
O��	3/2 ln 	��, d−

12�	� = Oa�1�+O��	1/2 ln 	��, d21�	� = Oa�1�+O��	1/2 ln 	��, and
d−
22�	� = Oa��	−1��+O��	−1/2 ln 	��. Collecting these observations, we have(

�−
1 �x� 	��̃

−
1 �y� 	�

�−
1 �x� 	��̃

−′
1 �y� 	�

)
=
(
Oa�1�e

�−1 �	��x−y�

Oa�1�e
�−1 �	��x−y�

)
�

(
�−

2 �x� 	��̃
−
2 �y� 	�

�−
2 �x� 	��̃

−′
2 �y� 	�

)
=
(
Oa�1�e

�−2 �	��x−y�

Oa��	��e�−2 �	��x−y�

)
�
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(
�−

1 �x� 	�d
−
11�	��̃

−
1 �y� 	�

�−
1 �x� 	�d

−
11�	��̃

−′
1 �y� 	�

)
=
(
�Oa��	��+O��	3/2 ln 	���e�−3 �	�x−�−1 �	�y

�Oa��	��+O��	3/2 ln 	���e�−3 �	�x−�−1 �	�y

)
�

(
�−

1 �x� 	�d
−
12�	��̃

−
2 �y� 	�

�−
1 �x� 	�d

−
12�	��̃

−′
2 �y� 	�

)
=
(
�Oa�1�+O��	1/2 ln 	���e�−3 �	�x−�−2 �	�y

�Oa��	��+O��	3/2 ln 	���e�−3 �	�x−�−2 �	�y

)
�

(
�−

2 �x� 	�d
−
21�	��̃

−
1 �y� 	�

�−
2 �x� 	�d

−
21�	��̃

−′
1 �y� 	�

)
=
(
�Oa�1�+O��	1/2 ln 	���e�−4 �	�x−�−1 �	�y

�Oa�1�+O��	1/2 ln 	���e�−4 �	�x−�−1 �	�y

)
�

(
�−

2 �x� 	�d
−
22�	��̃

−
2 �y� 	�

�−
2 �x� 	�d

−
22�	��̃

−′
2 �y� 	�

)
=
(
�Oa��	−1��+O��	−1/2 ln 	���e�−4 �	�x−�−2 �	�y

�Oa�1�+O��	1/2 ln 	���e�−4 �	�x−�−2 �	�y

)
�

Finally, observing that �−
1 �x� 0� does not decay as x → −�, we conclude that

�−
2 �x� 0� = Pūx�x��

for some projection constant P, from which the estimates of Case (i) are immediate.

Case (ii) x ≤ y ≤ 0. The analysis of Case (ii) is almost identical to the analysis
of Case (i). The only new terms are �−

1 �x� 	��̃
−
1 �x� 	� and �−

2 �x� 	��̃
−
2 �x� 	�, for

which we find (
�−

1 �x� 	��̃
−
1 �y� 	�

�−
1 �x� 	��̃

−′
1 �y� 	�

)
=
 Oa�1�e

�−3 �	��x−y�

Oa��	��e�−3 �	��x−y�

 �

(
�−

2 �x� 	��̃
−
2 �y� 	�

�−
2 �x� 	��̃

−′
2 �y� 	�

)
=
(
Oa�1�e

�−4 �	��x−y�

Oa�1�e
�−4 �	��x−y�

)
�

Case (iii) x ≤ 0 < K ≤ y. In the case x ≤ 0 < K ≤ y, we compare the
representations (

G	 G	y

G	x
G	xy

)
=

2∑
j�k=1

�−
k �x� 	�dkj�	��̃

+
j �y� 	� (3.4)

and (
G	 G	y

G	x
G	xy

)
= −�0��−�x� 	����+�y� 	���−�y� 	��−1S�y�−1

= −
2∑

k=1

�−
k �x� 	�E

tr
2+k��

+�y� 	���−�y� 	��−1S�y�−1

to obtain the relation

2∑
j=1

d−
kj�	��̃

+
j �y� 	� = −Etr

2+k��
+�y� 	���−�y� 	��−1S�y�−1�

(We observe that the scattering coefficients dkj�	� here are not necessarily the same
as the coefficients d−

kj�	� from Cases (i) and (ii).) Multiplying this last equation on



102 Howard

the right by S�y��+
l �y� 	�, we find

dkl�	��̃
+
l �y� 	�S�y��

+
l �y� 	� = −Etr

2+k��
+�y� 	���−�y� 	��−1�+

l �y� 	��

Proceeding as in Case (i) and the proof of Lemma 2.3, we find

d11�	� =
det��+

1 � �
+
2 � �

+
1 � �

−
2 �

det��+
1 � �

+
2 � �

−
1 � �

−
2 �

= Oa�1�+O��	1/2 ln 	���

d21�	� =
det��+

1 � �
+
2 � �

−
1 � �

+
1 �

det��+
1 � �

+
2 � �

−
1 � �

−
2 �

= Oa��	−1��+O��	−1/2 ln 	���

On the other hand, for d12�	� and d22�	� we have, due to our scaling (2.6),

d12�	� = 	−3/2 det��
+
1 � �

+
2 � �

+
2 � �

−
2 �

det��+
1 � �

+
2 � �

−
1 � �

−
2 �

�

d21�	� = 	−3/2 det��
+
1 � �

+
2 � �

−
1 � �

+
2 �

det��+
1 � �

+
2 � �

−
1 � �

−
2 �

�

In this case, we observe that the fast growth solution �+
2 can without loss of

generality be constructed by determining the fast growth solution to the integrated
equation (2.3) and computing its derivative. Constructed in this way, �+

2 clearly
satisfies (

�+′
2 − A�x��+

2

)∣∣
	=0

= 0�

according to which

det��+
1 � �

+
2 � �

+
2 � �

−
2 � = det

(
�+

1 �+
2 �+

2 �−
2

	� +
1 	� +

2 	� +
4 	� −

2

)
�

Proceeding as in Lemma 2.3 and observing cancellation between the degenerate
solutions �+

2 and �+
2 as in Lemma 2.6, we conclude

d12�	� = Oa�1�+O��	1/2 ln 	���

and similarly,

d22�	� = Oa��	−1��+O��	−1/2 ln 	���

Gathering these observations, we have the estimates,(
�−

1 �x� 	�d11�	��̃
+
1 �y� 	�

�−
1 �x� 	�d11�	��̃

+′
1 �y� 	�

)
=
(
�Oa�1�+O��	1/2 ln 	���e�−3 �	�x−∫ yK �3�s�	�ds

�Oa��	��+O��	3/2 ln 	���e�−3 �	�x−∫ yK �3�s�	�ds

)
�

(
�−

1 �x� 	�d12�	��̃
+
2 �y� 	�

�−
1 �x� 	�d12�	��̃

+′
2 �y� 	�

)
=
(

O�1�e�
−
3 �	�x−

√
	y

O��	��O��y��e�−3 �	�x−√
	y

)
�
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(
�−

2 �x� 	�d21�	��̃
+
1 �y� 	�

�−
2 �x� 	�d21�	��̃

+′
1 �y� 	�

)
=
(
�Oa��	−1��+O��	−1/2 ln 	���e�−4 �	�x−∫ yK �3�s�	�ds

�Oa�1�+O��	1/2 ln 	���e�−4 �	�x−∫ yK �3�s�	�ds

)
�

(
�−

2 �x� 	�d22�	��̃
+
2 �y� 	�

�−
2 �x� 	�d22�	��̃

+′
2 �y� 	�

)
=
(
�Oa��	−1��+O��	−1/2 ln 	���e�−4 �	�x−√

	y

O��y��e�−4 �	�x−√
	y

)
�

Case (iv) y ≤ 0 < K ≤ x. In the case y ≤ 0 < K ≤ x, we compare
representations (

G	 G	y

G	x
G	xy

)
=

2∑
j�k=1

�+
k �x� 	�d̄kj�	��̃

−
j �y� 	�

and (
G	 G	y

G	x
G	xy

)
= ��+�x� 	�� 0���+�y� 	���−�y� 	��−1S�y�−1

=
2∑

k=1

�+
k �x� 	�E

tr
k ��

+�y� 	���−�y� 	��−1S�y�−1�

to obtain the relation

2∑
j=1

d̄kj�	��̃
−
j �y� 	� = Etr

k ��
+�y� 	���−�y� 	��−1S�y�−1� (3.5)

Multiplying Equation (3.5) by S�y��−
l �y� 	� on the right, we find

d̄kl�	� = Etr
k ��

+�y� 	���−�y� 	��−1�−
l �y� 	��

Proceeding as in Case (iii), we determine d̄11�	� = Oa�1�+O��	1/2 ln 	��, d̄21�	� =
Oa�1�+O��	1/2 ln 	��, and d̄22�	� = Oa��	−1��+O��	−1/2 ln 	��. Moreover, for the
critical term d̄12�	�, we have

d̄12�	� =
det��−

2 � �
+
2 � �

−
1 � �

−
2 �

det��+
1 � �

+
2 � �

−
1 � �

−
2 �

�

According to our scaling, �+
2 �x� 0� and �−

2 �x� 0� are both proportional to ūx�x�, and
the numerator vanishes at 	 = 0, giving

d̄12�	� = O��	−1/2 ln 	��+O�� ln 	���

Collecting these observations, we find(
�+

1 �x� 	�d̄11�	��̃
−
1 �y� 	�

�+
1 �x� 	�d̄11�	��̃

−′
1 �y� 	�

)
=
(
�Oa�1�+O��	1/2 ln 	���e∫ xK �1�s�	�ds−�−1 �	�y

�Oa�1�+O��	1/2 ln 	���e∫ xK �1�s�	�ds−�−1 �	�y

)
�

(
�+

1 �x� 	�d̄12�	��̃
−
2 �y� 	�

�+
1 �x� 	�d̄12�	��̃

−′
2 �y� 	�

)
=
(
�O��	−1/2 ln 	��+O�� ln 	���e∫ xK �1�s�	�ds−�−2 �	�y

�Oa�1�+O��	1/2 ln 	��e∫ xK �1�s�	�ds−�−2 �	�y

)
�
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(
�+

2 �x� 	�d̄21�	��̃
−
1 �y� 	�

�+
2 �x� 	�d̄21�	��̃

−′
1 �y� 	�

)
=
(
�O��	1/2��O��x�−1�+O��x�−2��e−

√
	x−�−1 �	�y

�O��	1/2��O��x�−1�+O��x�−2��e−
√
	x−�−1 �	�y

)
�

(
�+

2 �x� 	�d̄22�	��̃
−
2 �y� 	�

�+
2 �x� 	�d̄22�	��̃

−′
2 �y� 	�

)

=
([

Oa��	−1��O��x�−2�+O��	−1/2��O��x�−1�+O��	−1/2 ln 	��O��x�−2�
]
e−

√
	x−�−2 �	�y[

O��	1/2��O��x�−1�+O��x�−2�
]
e−

√
	x−�−2 �	�y

)
�

Case (v) 0 < K ≤ y ≤ x. In the case 0 < K ≤ y ≤ x, we compare
representations(

G	 G	y

G	x
G	xy

)
=

2∑
j�k=1

�+
k �x� 	�d

+
kj�	��̃

+
j �y� 	�+

2∑
j�k=1

�+
k �x� 	�e

+
kj�	��̃

+
j �y� 	� (3.6)

and (
G	 G	y

G	x
G	xy

)
= ��+�x� 	�� 0���+�y� 	���−�y� 	��−1S�y�−1

=
2∑

k=1

�+
k �x� 	�E

tr
k ��

+�y� 	���−�y� 	��−1S�y�−1� (3.7)

to obtain the relation

2∑
j=1

d+
kj�	��̃

+
j �y� 	�+

2∑
j=1

e+kj�	��̃
+
j �y� 	� = Etr

k ��
+�y� 	���−�y� 	��−1S�y�−1� (3.8)

Multiplying Equation (3.8) by S�y��+
l �y� 	� on the right and employing relations

(2.6), we obtain

e+kl�	��̃
+
l �y� 	�S�y��

+
l �y� 	� = Etr

k ��
+�y� 	���−�y� 	��−1�+

l �y� 	��

In the case k = l = 2, we have

	3/2e+22�	� = �0� 1� 0� 0���+�y� 	���−�y� 	��−1�+
2 �y� 	��

Observing that J = ��+�y� 	���−�y� 	��−1�+
2 �y� 	� is a matrix equation, we apply

Cramer’s rule to determine

e+22�	� = 	−3/2J2�	� = 	−3/2 det
(
�+

1 �+
2 �−

1 �−
2

)
det
(
�+

1 �+
2 �−

1 �−
2

) = 	−3/2�

Similarly, e+12�	� = e+21�	� = 0, and e+11�	� = 1. We analyze the d+
kj�	� similarly,

arriving at d+
11�	� = O��	−1/2 ln 	��, d+

12�	� = O��	−1/2 ln 	��, d+
21�	� = Oa��	−1��+

O��	1/2 ln 	��, and d+
22�	� = 	−3/2 +m�	�, where m�	� = O��	−1 ln 	��. (This last

decomposition is as in the case of Lemma 2.6.)
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Combining these observations and expanding G	�x� y� in detail, we have (for
0 ≤ y ≤ x)(

G	 G	y

G	x
G	xy

)
= �+

1 �x� 	�d
+
11�	��̃

+
1 �y� 	�+ �+

1 �x� 	�d
+
12�	��̃

+
2 �y� 	�

+�+
2 �x� 	�d

+
21�	��̃

+
1 �y� 	�+ �+

2 �x� 	�d
+
22�	��̃

+
2 �y� 	�

+�+
1 �x� 	��̃

+
1 �y� 	�+ 	−3/2�+

2 �x� 	��̃
+
2 �y� 	��

Computing directly from Lemma 2.2 and from Lemma 2.6, we have

�+
1 �x� 	�d

+
11�	��̃

+
1 �y� 	� =

(
O��	−1/2 ln 	��)e∫ xK �1�s�	�ds−

∫ y
K �3�s�	�ds�

�+
1 �x� 	�d

+
11�	��̃

+′
1 �y� 	� = O��	1/2 ln 	��e

∫ x
K �1�s�	�ds−

∫ y
K �3�s�	�ds�

�+
1 �x� 	�d

+
12�	��̃

+
2 �y� 	� =

(
O��	−1/2 ln 	��+O��y��O�� ln 	��)e∫ xK �1�s�	�ds−

√
	y�

�+
1 �x� 	�d

+
12�	��̃

+′
2 �y� 	� = O��	1/2 ln 	��O��y��e

∫ x
K �1�s�	�ds−

√
	y�

�+
1 �x� 	��̃

+
1 �y� 	� = Oa�1�e

∫ x
y �1�s�	�ds +O��	1/2 ln 	��e

∫ x
y �1�s�	�ds�

�+
1 �x� 	��̃

+′
1 �y� 	� = Oa�1�e

∫ x
y �1�s�	�ds +O��	1/2 ln 	��e

∫ x
y �1�s�	�ds�

�+
2 �x� 	�d

+
21�	��̃

+
1 �y� 	� =

(
Oa��	−1��O��x�−2�+O��	−1/2��O��x�−1�+O��x�−2�

×O��	−1/2 ln 	��)e−√
	x−∫ yK �3�s�	�ds�

�+
2 �x� 	�d

+
21�	��̃

+′
1 �y� 	� = (O��x�−2�+O��x�−2�	1/2 ln 	��+O��	1/2��O��x�−1�

)
× e−

√
	x−∫ yK �3�s�	�ds�

and finally, according to Lemma 2.6,

�+
2 �x� 	�

(
d+
22�	��̃

+
2 �y� 	�+ 	−3/2�̃+

2 �y� 	�
)

= e−
√
	�x−y�

[
O��	−1/2��O��x�−1�O��y��+ P+

1 ūx

	
+O��	−1/2�ln 	�2��O��x�−2�O��y��

]
�

�+
2 �x� 	�

(
d+
22�	��̃

+′
2 �y� 	�+ 	−3/2�̃+′

2 �y� 	�
)

= e−
√
	�x−y�[O��x�−2�O��y��+O��	1/2 ln 	��O��x�−1�+O��	1/2��O��x�−1�O��y��

+O�� ln 	��O��x�−2�
]
�

Case (vi) 0 < K ≤ x ≤ y. The case 0 < K ≤ x ≤ y is similar to Case (v), with
only two new terms, namely,

�+
1 �x� 	��̃

+
1 �y� 	� = O�1�e−

∫ y
x �3�s�	�ds +O��	1/2 ln 	��e−

∫ y
x �3�s�	�ds�

�+
1 �x� 	��̃

+′
1 �y� 	� = Oa��	��e−

∫ y
x �3�s�	�ds +O��	1/2 ln 	��e−

∫ y
x �3�s�	�ds�
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and, according to Lemma 2.6,(
�+

2 �x� 	�d22�	�− 	−3/2�+
2 �x� 	�

)
�̃+

2 �y� 	�

= e−
√
	�x−y�[O��	−1/2��O��x�−1�O��y��

+Oa��	−1��O��x�−2�+O��	−1/2�ln 	�2��O��x�−1�
]
�(

�+
2 �x� 	�d22�	�− 	−3/2�+

2 �x� 	�
)
�̃+′

2 �y� 	� = e−
√
	�x−y�O��x�−1�O��y��� �

Lemma 3.2 (Large �	� G	�x� y� estimates). For 	 bounded to the right of �d and for
�	� ≥ M , some constant M sufficiently large, there exist constants C,� > 0 so that

�G	�x� y�� ≤ C�	−1/2�e−�−1/2�	1/2��x−y��

��yG	�x� y�� ≤ Ce−�−1/2�	1/2��x−y��

Proof. The large �	� behavior of G	�x� y� depends on viscosity rather than
convection and can be developed exactly as in the nondegenerate case. See in
particular Zumbrun and Howard (1998/2002), p. 806. �

Lemma 3.3 (Medium �	� G	�x� y� estimates). For 	 bounded to the right of �d and
for r ≤ �	� ≤ R, any fixed constants R > r > 0, there exists C > 0 so that

�G	�x� y�� ≤ C�

��yG	�x� y�� ≤ C�

Proof. The medium �	� estimates follow from decay properties rather than decay
rates and can be developed exactly as in the nondegenerate case. See in particular
Zumbrun and Howard (1998/2002), p. 805. �

4. Estimates on G�t� x� y�

We now employ the estimates of Lemmas 3.1, 3.2, and 3.3 to derive estimates on the
Green’s function G�t� x� y� through the inverse Laplace transform representation

G�t� x� y� = 1
2�i

∫
�
e	tG	�x� y�d	�

where the contour of integration � must encircle the poles of G	 (which occur at
point spectrum for the operator L).

Before beginning the detailed proof of Theorem 1.1, we give a brief overview of
the approach taken and set some notation. The analysis is divided into two cases,
�x − y� ≤ Kt and �x − y� ≥ Kt, where K is a constant chosen sufficiently large in
the analysis. Generally speaking, in the case �x − y� ≤ Kt, we use the estimates of
Lemma 3.1, while in the case �x − y� ≥ Kt, we use the estimates of Lemma 3.2,
though in all cases contours must eventually involve large �	� estimates.

In the cases for which we use Lemma 3.1, the estimates on G	�x� y� are divided
into a number of terms that can be integrated separately against e	t. For every such
term, the contour of integration, � , will be chosen to depend on t� x� and y. In the
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Figure 1. Contours in the case of analyticity at 	 = 0.

event that �x − y� � t, it will typically be advantageous to take a (parabolic) contour
that crosses the real axis far to the right of the imaginary axis, while for �x − y� � t,
it will typically be advantageous to take a contour to the left of the imaginary axis
(see Figure 1). In either case, we only follow our contour of choice until it strikes
the contour �d, defined in (1.8), which aside from the point 	 = 0 lies to the right of
the point spectrum of L. Throughout the analysis, then, for chosen contour � , we
will use the notation �∗ to indicate the truncated portion of the contour that stops
at �d.

While there are a great many terms in G	�x� y� to analyze, the analysis of several
is similar. Two particularly important terms are the scattering and excited terms
from the case 0 ≤ x ≤ y (�x − y� ≤ Kt),

S	�x� y� = O��	−1/2��O��x�−1�O��y��e−
√
	�x−y�� and

E	�x� y� = ūx�x�Oa��	−1��e−
√
	�x−y��

Though several estimates will be more technical than these, the fundamental ideas
are all contained here. For the first we take the heat-equation-like contour defined
through

√
	�k� = �x − y�

Lt
+ ik�

for which

	�k� = �x − y�2
L2t2

+ 2ik
�x − y�
Lt

− k2� d	 =
(
2i
�x − y�
Lt

− 2k
)
dk�
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Figure 2. Contours in the case of a branch along Re 	 < 0.

where L is chosen large enough so that for k sufficiently small, this contour remains
in a small neighborhood of the origin. We follow this contour until it strikes �d, and
then follow �d out to the point at � (see Figure 2).

Observe in particular that though our contour of choice in this case always
crosses the real axis to the right of the imaginary axis, it moves rapidly into essential
spectrum. Letting ±k∗ represent the values of k for which we strike �d, we have∣∣∣∣ ∫

�∗
e	tS	�x� y�d	

∣∣∣∣ = O��x�−1�O��y��
∫ +k∗

−k∗
e	�k�tO��	�k��−1/2�e−

√
	�k��x−y�d	

= O��x�−1�O��y��
∫ +k∗

−k∗
e

�x−y�2
L2 t2

t−k2t− �x−y�2
Lt

∣∣∣∣∣2i
�x−y�
Lt

− 2k
�x−y�
Lt

+ ik

∣∣∣∣∣dk
= O�t−1/2�O��x�−1�O��y��e− �x−y�2

Mt �

Finally, along �d, we observe that Re
√
	 ≥ 0 and O��	�k�−1/2�� = O�1�, so that

our integral decays at exponential rate in time, e−�t, � > 0. Since �x − y� ≤ Kt, we
have

e−�t ≤ e
−�t

�x−y�2
K2 t2 = e

− �

K2
�x−y�2

t �

which leads to our final estimate on this term

O�t−1/2�O��x�−1�O��y��e− �x−y�2

Mt �
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For E	�x� y�, we again begin along the contour defined through√
	�k�= �x−y�

Lt
+ ik, along which we have∣∣∣∣ūx�x�

∫
�∗
Oa��	−1��e	t−

√
	�x−y�d	

∣∣∣∣ = ūx�x�
∫ +k∗

−k∗
e−

�x−y�2

Mt −k2t
�2i �x−y�

Lt
− 2k�

� �x−y�2
L2t2

+ ik �x−y�
t

− k2� �dk�

= O��x�−2�O
(

t

�x − y�
)
O�t−1/2�e−

�x−y�2

Mt �

In the event that �x − y� ≥ �0
√
t, we observe that t1/2

�x−y� ≤ 1
�0
, so that we have an

estimate by (recalling that we are considering the case 0 ≤ x ≤ y)

O�t−1/2�O��x�−2�O��x − y��e− �x−y�2

Mt = O�t−1/2�O��x�−2�O��y��e− �x−y�2

Mt �

In the event that �x − y� ≤ �0
√
t, we proceed as in Howard (2002a,b) and divide the

integrand into an analytic term and an error, as

1
2�i

∫
�∗

P+ūx�x�e
	t−√

	�x−y�

	
d	

= 1
2�i

∫
�∗

P+ūx�x�e
	t

	
d	+ 1

2�i

∫
�∗

P+ūx�x�e
	t�e−

√
	�x−y� − 1�

	
d	� (4.1)

Here, we have observed that for Oa��	−1�� meromorphic in 	 in a neighborhood of
the origin, we have

Oa��	−1�� = P+
	

+Oa�1��

whence

E	�x� y� = ūx�x�Oa��	−1��e−
√
	�x−y� = P+ūx�x�

	
e−

√
	�x−y� +O��x�−2�e−

√
	�x−y��

the second of which can be subsumed into S	�x� y�. For the first integral on the right-
hand side of Equation (4.1), we employ analyticity of numerator and denominator
to proceed similarly as in the nondegenerate analysis of Zumbrun and Howard
(1998/2002) and shift our contour to the left of the imaginary axis, using Cauchy’s
integral formula to compute the residue. Our estimate on this term becomes

P+ūx�x�I��x−y�≤�0
√
t��

For the second integral, we first consider the strip of �∗ over which �√	�x − y�� ≤ 1,
for which we have∣∣∣∣ ∫

�∗

ūx�x�e
	t�e−

√
	�x−y� − 1�

	
d	

∣∣∣∣ = O��x�−2�

∣∣∣∣ ∫
�∗

e	tO��√	�x − y���
	

d	

∣∣∣∣
= O��x�−2�O��y��

∫
�∗
O��	−1/2��e	td	

= O��x�−2�O��y��O�t−1/2�e−
�x−y�2

Lt �
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where we have made use of the observation that for �x − y� ≤ �0
√
t, 1 ≤

Ce−
�x−y�2

Lt . On the other hand, for �√	�x − y�� > 1, we have �	−1/2� = O��x − y�� and
consequently the estimate∣∣∣∣ ∫

�∗

ūx�x�e
	t�e−

√
	�x−y� − 1�

	
d	

∣∣∣∣ = O��x�−2�

∣∣∣∣ ∫
�∗
e	tO��	−1/2��O��x − y��d	

∣∣∣∣�
as above. Our final estimate becomes

O�t−1/2�O��x�−2�O��y��e− �x−y�2

Mt + P+ūx�x�I��x−y�≤�0
√
t��

Note in particular that in this analysis we have determined critical tracking
information regarding how rapidly mass in the far field contributes to a shift of the
shock wave. According to our choice of shift 
�t� in Equation (1.4), we will have a
linear term of the form


�t� ∼ P+
∫ �0

√
t

0
v0�y�dy�

for which we observe that the window of mass that has accumulated in the shock
layer at time t is 0� �0

√
t�.

Proof of Theorem 1�1. In the small time case �x − y� ≥ Kt, some K sufficiently large,
we can proceed via the large �	� estimates of Lemma 3.2, which are exactly the same
estimates as in Zumbrun and Howard (1998/2002). In this case, we take the contour
defined through

√
	�k� = �x − y�

2
√
�t

+ ik�

from which an analysis precisely as that of the heat kernel yields estimates of
the form

�G�t� x� y�� ≤ Ct−1/2e−
�x−y�2

4�t �

which can be subsumed into the estimates of Theorem 1.1.
For the case �x − y� ≤ Kt, we proceed in a number of subcases.

Case (i) y ≤ x ≤ 0. According to Lemma 3.1, we have five integrals to
evaluate in the case y ≤ x ≤ 0, beginning with the integrands Oa�1�e

�−2 �	��x−y�,
Oa�1�e

�−3 �	�x−�−2 �	�y, and ūx�x�Oa��	−1��e−�−2 �	�y� Each of these arises in the case of
nondegenerate waves and can be analyzed as in Zumbrun and Howard (1998/2002).
Summarizing, we have∫

�
Oa�1�e

	t+�−2 �	��x−y�d	 = O�t−1/2�e−
�x−y−a−2 t�2

Mt �

∫
�
Oa�1�e

	t+�−3 �	�x−�−2 �	�yd	 = O�t−1/2�e−

(
x− a−1

a−2
y−a−1 t

)2
Mt �

ūx�x�
∫
�
Oa��	−1��e	t−�−2 �	�yd	 = ūx�x�

(
O�1�e−

�y+a−2 t�2

Mt +O�1�I��y�≤�a−2 �t�
)
� (4.2)
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For the term O��	1/2 ln 	��e�−3 �	�x−�−2 �	�y, we must alter the analysis employed above so
as to avoid 	 ∈ �−, where we lose analyticity. Expanding �−

2 �	� and �−
3 �	�, we have

�−
2 �	� =

a−
2 −√�a−

2 �
2 + 4	

2
= − 1

a−
2

	+ 1
�a−

2 �
3
	2 +O�	3�� �Recall � a−

2 > 0�

�−
3 �	� =

a−
1 +√�a−

1 �
2 + 4	

2
= − 1

a−
1

	+ 1
�a−

1 �
3
	2 +O�	3�� �Recall � a−

1 < 0��

Our principal contour will be chosen as in Zumbrun and Howard (1998/2002) by
the relation(

− x

a−
1

+ y

a−
2

)
	�k�+

(
x

�a−
1 �

3
− y

�a−
2 �

3

)
	�k�2

=
(
− x

a−
1

+ y

a−
2

)
	R +

(
x

�a−
1 �

3
− y

�a−
2 �

3

)
	2R + i

(
− x

a−
1

+ y

a−
2

)
k�

where 	R is the critical point where the contour crosses the real axis. Expanding
	�k� = 	R + 	1k+ 	2k

2 + · · · , we immediately find 	1 = i�1+O�	R�� and

	2 =
x

�a−1 �3
− y

�a−2 �3

− x
a−1

+ y

a−2

�1+O�	R���

for which 	2 ≤ −� < 0, some fixed �. We choose 	R optimally by minimizing the
exponent function

g�	R� = 	Rt +
(
− x

a−
1

+ y

a−
2

)
	R +

(
x

�a−
1 �

3
− y

�a−
2 �

3

)
	2R�

for

	R = �̄−
p̄−

� �̄− �=
x − a−1

a−2
y − a−

1 t

2t
� p̄− �=

(
x

�a−
1 �

2t
− a−

1 y

�a−
2 �

3t

)
≤ 0�

Note in particular that our contour of choice is entirely determined by our choice
of 	R. Following Zumbrun and Howard (1998/2002) in the case �̄−

p̄−
≥ 0 (that is, for∣∣x − a−1

a−2
y
∣∣ ≥ �a−

1 �t), we take

	R =



+�� � ≤ �̄−
p̄−

≤ M�

�̄−
p̄−

� t−1/2 ≤ �̄−
p̄−

≤ ��

t−1/2� 0 ≤ �̄−
p̄−

≤ t−1/2�

to obtain an estimate by

O�t−3/4 ln t�e−

(
x− a−1

a−2
y−a−1 t

)2
Mt �
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which can be subsumed into estimates (4.2). The difficulty arises in the case �̄−
p̄−

< 0

(that is,
∣∣x − a−1

a−2
y
∣∣ ≤ �a−

1 �t), when the nondegenerate analysis would select 	R < 0,
according to

	R =



−�� −� ≥ �̄−
p̄−

�

�̄−
p̄−

� −t−1/2 ≥ �̄−
p̄−

≥ −�

−t−1/2� 0 ≥ �̄−
p̄−

≥ −t−1/2�

which is precluded by our branch along 	 ∈ �−. At this point, we arrive at the
primary new feature of the degenerate-wave contour analysis. The idea in the
nondegenerate case was, for t � �x − y�, to take contours that remain entirely in the
negative real half-plane and thus take advantage of exponential time decay, which
dominates the exponential growth in �x� and �y�. In the degenerate case, we cannot
avoid passing our contours through the positive real axis, and our new approach
will be to move our contours quickly into the negative real half-plane.

We first observe that we can integrate along essential spectrum

�ess = �	 � Either Re �−
2 �	� = 0 or Re �−

3 �	� = 0�

to obtain an estimate

O�t−3/4 ln t�I{�x− a−1
a−2

y�≤�a−1 �t
}�

Alternatively, we can move more rapidly into essential spectrum by taking the
heat-equation-like contour √

	�k� = t−1 + ik�

which we denote �D, until it strikes the non-degenerate contour described above.
Along �D we have

	�k� = t−2 + 2ikt−1 − k2� d	 = �2it−1 − 2k�dk� and

Re 	�k�2 = t−4 + k4 − 6k2t−2�

so that∣∣∣∣ ∫
�∗
D

O��	1/2 ln 	��e	t+�−3 �	�x−�−2 �	�yd	

∣∣∣∣ ≤ C
∫ +k∗

−k∗
�2it−1 − 2k���t−1 + ik�ln�t−1 + ik���

× e
−k2
(
t− x

a−1
+ y

a−2

)
+k4
(

x

�a−1 �3
− y

�a−2 �3

)
dk�

We observe here that for �k� sufficiently large, we cannot get a good estimate along
this contour. The index k∗, then, where we cross the nondegenerate contour, is
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critical. Indexing our nondegenerate contour by l, we have

	�l� = 	R + il�1+O�	R��+
(

x
�a−1 �3

− y

�a−2 �3
)(− x

a−1
+ y

a−2

) l2�1+O�	R��+O�l3��

for which the intersection with �D occurs for

k2 = t−2 − 	R
1+O�t−2�

�

for which we recall that in this case 	R < 0. In the first case, t−1/2 ≤ �̄−
p̄−

≤ 0, we
choose 	R = −t−1/2, for which (for t ≥ 1) we have �k� ≤ Ct−1/4. In this case, since∣∣x − a−1

a−2
y
∣∣ ≤ �a−

1 �t, the exponent k4
(

x
�a−1 �3

− y

�a−2 �3
)
is bounded, and we can integrate

over �k� ≤ Ct−1/4 to obtain an estimate by

O
(∣∣∣∣x − a−

1

a−
2

y − a−
1 t

∣∣∣∣−3/2

ln t
)
I{�x− a−1

a−2
y�≤�a−1 �t

}�
In the case −� ≤ �̄−

p̄−
≤ −t−1/2, we choose

	R = �̄−
p̄−

= −1
2

(
t − x

a−1
+ y

a−2

)
x

�a−1 �3
− y

�a−2 �3
�

for which our degenerate contour intersects with our nondegenerate contour for

k2 ≤ 1
2

(
t − x

a−1
+ y

a−2

)
x

�a−1 �3
− y

�a−2 �3
+O�t−2��

For this range of k, we have

−k2
(
t − x

a−
1

+ y

a−
2

)
+ k4

(
x

�a−
1 �

3
− y

�a−
2 �

3

)
= − k2

x
�a−1 �3

− y

�a−2 �3

(
t − x

a−1
+ y

a−2
x

�a−1 �3
− y

�a−2 �3
− k2

)

≤ −1
2
k2
(
t − x

a−
1

+ y

a−
2

)
+O�t−1��

for which we can integrate over k as above. In the final case, �̄−
p̄−

≤ −�, we observe
that

Re
(
− k2

(
t − x

a−
1

+ y

a−
2

)
+ k4

(
x

�a−
1 �

3
− y

�a−
2 �

3

))
= − k2

x
�a−1 �3

− y

�a−2 �3

(
−2

�̄−
p̄−

− k2
)
�

for which we have decay as in the previous cases for k2 ≤ �. We can choose d0 (for
the contour �d defined in (1.8)) sufficiently small so that we strike �d for k2 ≤ �. The
nondegenerate analysis of Zumbrun and Howard (1998/2002) applies along �d, and
we obtain an estimate that can be subsumed into those above.
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The remaining term in this case, O��	−1/2 ln 	��e−�−2 �	�y, can be analyzed as in the
case

O�	1/2 ln 	�e�
−
3 �	�x−�−2 �	�y�

with x set to zero. The estimates on Gy�t� x� y� follow similarly.

Case (ii) x ≤ y ≤ 0. According to Lemma 3.1, we have five integrands to
evaluate in the case x ≤ y ≤ 0, though the only integrand not examined in the
analysis of Case (i) is Oa�1�e

�−3 �	��x−y�, which arises in the nondegenerate case and
has been analyzed in Zumbrun and Howard (1998/2002), with an estimate by

O�t−1/2�e−
�x−y−a−1 t�2

Mt �

Estimates on Gy�t� x� y� in this case follow similarly.

Case (iii) x ≤ 0 < K ≤ y. According to Lemma 3.1, we have seven
integrals to evaluate in the case x ≤ 0 < K ≤ y, beginning with the integrand
Oa�1�e

�−3 �	�x−
∫ y
K �3�s�	�ds. Since �3�x� 	� is analytic in 	 in a neighborhood of 	 = 0, this

integral can be analyzed similarly as in the nondegenerate case. We must, however,
keep track of the y-dependence in �3 through the Taylor expansion∫ y

K
�3�s� 	�ds = −	

∫ y

K

ds

a1�s�
+ 	2

∫ y

K

ds

a1�s�
3
+O�	3��

for which we take y ≥ K. (In the event y ≤ K, we can subsume y behavior into
Oa�1� and proceed with an estimate for the case y = 0.) Consequently, we choose
our contour 	�k� through(

− x

a−
1

+
∫ y

K

ds

a1�s�

)
	�k�+

(
x

�a−
1 �

3
−
∫ y

K

ds

a1�s�
3

)
	�k�2

=
(
− x

a−
1

+
∫ y

K

ds

a1�s�

)
	R +

(
x

�a−
1 �

3
−
∫ y

K

ds

a1�s�
3

)
	2R + ik

(
− x

a−
1

+
∫ y

K

ds

a1�s�

)
�

for which

	�k� = 	R + ik�1+O�	R��+ ��x� y�k2�1+O�	R��+O�k3��

where

��x� y� =
(

x
�a−1 �3

− ∫ y

K
ds

a1�s�
3

)(− x
a−1

+ ∫ y

K
ds

a1�s�

) ≤ �0 < 0�

Similarly as in the analysis of Case (i), we choose our principal value of 	R to
minimize

g�	R� = 	Rt +
(
− x

a−
1

+
∫ y

K

ds

a1�s�

)
	R +

(
x

�a−
1 �

3
−
∫ y

K

ds

a1�s�
3

)
	2R�
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so that

	R = �̃

p̃
� �̃ �= x − a−

1

∫ y

K
ds

a1�s�
− a−

1 t

2t
� p̃ �=

(
x

�a−1 �2
− a−

1

∫ y

K
ds

a1�s�
3

)
t

�

We can now proceed as in Case (i) with

	R =



±�� ±� �
�̃

p̃
� ±M

�̃

p̃
� t−1/2 ≤ � �̃

p̃
� ≤ �

±t−1/2� 0 �
�̃

p̃
� ±t−1/2

�

The final estimate becomes

O�t−1/2�e−
�x−a−1

∫ y
K

ds
a1�s�

−a−1 t�2

Mt �

For the integrand ūx�x�Oa��	−1��e− ∫ yK �3�s�	�ds, we can proceed again as in the case
of nondegenerate waves, with �3�x� 	� treated as above. We find

∫
�
Oa��	−1��ūx�x�e

	t−∫ yK �3�s�	�dsd	 = ūx�x�

(
O�1�e−

(∫ y
K

ds
a1�s�

+a−1 t

)2
Mt +O�1�I�� ∫ yK ds

a1�s�
�≤t�

)
�

For the integrands O��	1/2 ln 	��e�−3 �	�x−∫ yK �3�s�	�ds and ūx�x�O��	−1/2 ln 	��
e−

∫ y
K �3�s�	�ds, we proceed as in the analysis of O��	1/2 ln 	��e�−3 �	�x−�−2 �	�y in Case (i). We

obtain estimates that can be subsumed into those above, as well as the additional
estimate[

O�t−3/4 ln t� ∧O
(
�x − a−

1

∫ y

K

ds

a1�s�
− a−

1 t�−3/2 ln t
)]

I{�x−a−1
∫ y
K

ds
a1�s�

�≤�a−1 �t
}�

which we observe for t bounded away from zero can be alternatively recorded in
the useful form,

O
((

1+
∣∣∣∣x − a−

1

∫ y

K

ds

a1�s�
− a−

1 t

∣∣∣∣+ t1/2
)−3/2

ln�e+ t�

)
I{�x−a−1

∫ y
K

ds
a1�s�

�≤�a−1 �t
}�

The fundamentally new terms in this case are O�1�e�
−
3 �	�x−

√
	y and

ūx�x�
(
Oa��	−1��+O��	−1/2 ln 	��)e−√

	y�

In both cases, we first observe that for �̃
p̃
≥ 0, we may take advantage of the

observation that along the contour chosen for the integrand Oa�1�e
�−3 �	�x−

∫ y
K �3�s�	�,

and for �	� sufficiently small, we have Re
√
	y ≥ Re

∫ y

K
�3�s� 	�ds, so that the

estimates obtained can be subsumed into those above. For �̃
p̃
< 0, we begin with the

integrand O�1�e�
−
3 �	�x−

√
	y, for which we proceed similarly as in the Case (i) analysis

of O��	1/2 ln 	��e�−3 �	�x−�−2 �	�y, by taking the degenerate contour defined through
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√
	�k� = y

Lt
+ ik (denoted, again, �D), until it strikes the nondegenerate contour

defined above for the term Oa�1�e
�−3 �	�x−

∫ y
K �3�s�	�ds (denote here �ND). Along �D, we

have

	�k� = y2

L2t2
+ 2ik

y

Lt
− k2� Re 	�k�2 = y4

L4t4
− 6

y2

L2t2
k2 + k4�

and consequently

Re�	t + �−
3 �	�x −

√
	y� ≤ − y2

Mt
− k2

(
t − x

a−
1

)
+ x

�a−
1 �

3
k4�

In this case, our contours �D and �ND intersect for

k2 =
y2

L2t2
− 	R

1+O
(

y2

L2t2

) �
In the case −t−1/2 ≤ �̃

p̃
≤ 0, we have 	R = −t−1/2, and the growth term x

�a−1 �3
k4

remains bounded. For the second case −� ≤ �̃
p̃
≤ −t−1/2, we choose

	R = �̃

p̃
= 1

2

x
a−1

− ∫ y

K
ds

a1�s�
− t

x
�a−1 �3

− ∫ y

K
ds

a1�s�
3

�

for which �D and �ND intersect for

k2 = −1
2

x
a−1

− ∫ y

K
ds

a1�s�
− t

x
�a−1 �3

− ∫ y

K
ds

a1�s�
3

+O
(

y2

L2t2

)
�

We have, then,

− y2

Mt
− k2

(
t − x

a−
1

)
+ x

�a−
1 �

3
k4 ≤ − y2

Mt
− k2

x

�a−
1 �

3

(
t − x

a−1
x

�a−1 �3
− k2

)

≤ − y2

Mt
− 1

2
k2
(
t − x

a−
1

)
�

Our estimate becomes

O�t−1/2� ∧
[
O��x − a−

1 t�−1�e−
y2

Mt

]
I{�x−∫ yK ds

a1�s�
�≤�a−1 �t

}�
where the time decay O�t−1/2� can be obtained in the usual way by integrating along
essential spectrum. Finally, we observe that for y > 0

e−
√
	y = 1+O

(�√	y�)�
for which we have

Oa�1�e
�−3 �	�x−

√
	y = Oa�1�e

�−3 �	�x +O
(�√	y�)e�−3 �	�x�
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Proceeding through the nondegenerate analysis with Oa�1�e
�−3 �	�x, and proceeding as

above for the estimates O��√	y��e�−3 �	�x, we obtain an alternative estimate of

O�t−1/2�e−
�x−a−1 t�2

Mt + [O�t−3/4� ∧ (O��y��O��x − a−
1 t�−3/2�

)]
�

We next consider the term ūx�x�Oa��	�−1�e−
√
	y in the case �̃

p̃
< 0, for which we

take the contour defined through
√
	�k� = y

Lt
+ ik. Following Howard (2002b), we

divide the integrand into an analytic piece plus a non-analytic error,

∫
�∗

e	t−
√
	y

	
d	 =

∫
�∗

e	t

	
d	+

∫
�∗

e	t�e−
√
	y − 1�
	

d	�

For the first we proceed as in the nondegnerate case by taking a contour that passes
to the left of the imaginary axis (and to the right of �d). By Cauchy’s integral
formula, we obtain an estimate by

ūx�x�I
{
�x−∫ yL ds

a1�s�
�≤�a−1 �t

} + ūx�x�O�e−�t��

For the second, we observe that in the case �√	y� < 1, we have∣∣∣∣ ∫
�∗

e	t�e−
√
	y − 1�
	

d	

∣∣∣∣ =
∣∣∣∣ ∫

�∗

e	tO��√	y��
	

d	

∣∣∣∣ = O�t−1/2�O��y���

while for �√	y� ≥ 1, we have � 1√
	
� ≤ �y�, so that

∣∣∣∣ ∫
�∗

e	t�e−
√
	y − 1�
	

d	

∣∣∣∣ =
∣∣∣∣ ∫

�∗

e	t�e−
√
	y − 1�O��y��√

	
d	

∣∣∣∣ = O�t−1/2�O��y���

The final term in this case is ūx�x�O��	−1/2 ln 	��e−√
	y, for which we again take

the contour defined through
√
	 = y

Lt
+ ik to determine an estimate by

ūx�x�O�t−1/2 ln t�e−
y2

Lt �

Derivative estimates follow similarly.

Case (iv) y ≤ 0 ≤ x. According to Lemma 3.1, we have three integrands to
evaluate in the case y ≤ 0 ≤ x, beginning with O��	−1/2��O��x�−1�e−

√
	x−�−2 �	�y, where

we recall

�−
2 �	� =

a−
2 −√�a−

2 �
2 + 4	

2
= − 1

a−
2

	+ 1
�a−

2 �
3
	2 +O�	3��

For �y� ≥ a−
2 t, we expect the kernel to propagate to the right with speed a−

2 ,
remaining to the right of the shock layer. Observing that along the contours
employed in Case (i), we have Re�−√

	� ≤ Re�−
2 �	�, we conclude that by making

this estimate we can obtain the initial bound

O�t−1/4�O��x�−1�e−
�x−y−a−2 t�2

Mt I��y�≥a−2 t��
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For �y� < a−
2 t, we expect the kernel to cross the shock layer and begin decaying in

x according to the degenerate rate e−
x2
Mt . In this case, we take the contour defined

through
√
	 = x

Lt
+ ik (where 	�k� = x2

L2t2
+ 2ik x

Lt
− k2, Re 	�k�2 = x4

L4t4
− 6x2

L2t2
k2 + k4),

where L is assumed sufficiently large so that �	�k�� ≤ r prior to striking the
nondegenerate contour. Along the degenerate contour, we have∣∣∣∣O��x�−1�

∫
�∗
O��	−1/2��e	t−

√
	x−�−2 �	�yd	

∣∣∣∣
= O��x�−1�

∫ +k∗

−k∗
e

x2

L2 t
−k2t− x2

Lt + y
a−2

(
x2

L2 t2
−k2
)
− y

�a−2 �3

(
x4

L4 t4
− 6x2

L2 t2
k2+k4

)
dk

= O��x�−1�O��y + a−
2 t�−1/2�e−

x2
Lt I��y�≤a−2 t��

where as in the analysis of Case (i), our contours �D and �ND intersect for k
sufficiently small so that the growth terms are subsumed. Finally, we observe that
for �y� ≥ a−

2 t, we have

t−1/4e−
�x−y−a−2 t�2

Mt = �x − y − a−
2 t�1/2

t1/4
�x − y − a−

2 t�−1/2e−
�x−y−a−2 t�2

Mt

≤ C�x − y − a−
2 t�−1/2e−

�x−y−a−2 t�2

2Mt ≤ C�y + a−
2 t�−1/2e−

�x−y−a−2 t�2

Mt �

The analysis of our second term from Lemma 3.1,

O��	−1/2 ln 	��O��x�−2�e−
√
	x−�−2 �	�y�

is almost identical and can be estimated by

O�t−1/4 ln t�O��x�−2�e−
�x−y−a−2 t�2

Mt I��y�≤a−2 t� +O��y + a−
2 t�−1/2 ln t�e−

x2
Mt I��y�≤a−2 t��

The excited term, ūx�x�Oa��	−1��e−�−2 �	�y, can be analyzed as is its counterpart from
Case (ii). Derivative estimates follow similarly.

Case (v) 0 < K ≤ y ≤ x. According to Lemma 3.1, we have seven integrands to
evaluate in the case 0 < K ≤ y ≤ x, beginning with O��	−1/2��O��x�−1�O��y��e−√

	�x−y�

and Oa��	−1��O��x�−2�e−
√
	�x−y�, which were both analyzed in the beginning of this

section, with combined estimate

O�t−1/2�O��x�−1�O��y��e− �x−y�2

Mt + P+ūx�x�I��x−y�≤�0
√
t��

The third integrand, O��	−1/2�ln 	�2��O��x�−2�O��y��e−√
	�x−y�, can be analyzed

similarly to obtain an estimate by O�t−1/2�ln t�2�O��x�−2�O��y��e− �x−y�2

Mt .
We next consider the integrand

O��	−1/2��O��x�−1�e−
√
	x−∫ yK �3�s�	�ds�

We observe that for � ∫ y

K
ds

a1�s�
� ≥ t, we may use the observation that Re�−√

	x� ≤
Re�− ∫ x

K
�3�s� 	�ds� and take a contour as in the nondegenerate analysis. In this way
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we obtain an estimate of the form

O�t−1/4�O��x�−1�e−
(∫ x

K
ds

a1�s�
+∫ yK ds

a1�s�
+t

)2
Mt I{� ∫ yK ds

a1�s�
�≥t

}�
In the case � ∫ y

K
ds

a1�s�
� < t, we take the contour defined through

√
	�k� = x

Lt
+ ik, with

	�k� = x2

L2t2
+ 2ik

x

Lt
− k2� Re 	�k�2 = x4

L4t4
− 6x2

L2t2
k2 + k4

until it intersects the nondegenerate contour. We have, along �D,∣∣∣∣O��x�−1�
∫
�∗
O��	−1/2��e	t−

√
	x−∫ yK �3�s�	�dsd	

∣∣∣∣
=
∣∣∣∣O��x�−1�

∫
�∗
O��	−1/2��e	t−

√
	x+	

∫ y
K

ds
a1�s�

−	2
∫ y
K

ds

a1�s�
2 +O��	�3�

d	

∣∣∣∣
= O��x�−1�

∫ +k∗

−k∗
e

x2

L2 t
−k2t− x2

Lt +
(

x2

L2 t2
−k2
) ∫ y

K
ds

a1�s�
−
(

x4

L4 t4
− 6x2

L2 t2
k2+k4

) ∫ y
K

ds

a1�s�
3 ds+O��	�k��3�

dk

= O
(∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣−1/2)
O��x�−1�e−

x2
Mt I{∣∣∣∫ yK ds

a1�s�

∣∣∣≤t
}�

which we observe can be subsumed (in the case x ≥ y ≥ 0) into previous estimates.
Similarly, the summand O��	−1/2 ln 	��O��x�−2�e−

√
	x−∫ yK �3�s�	�ds leads to an

estimate by

O�t−1/4 ln t�O��x�−2�e−
(∫ x

K
ds

a1�s�
+∫ yK ds

a1�s�
+t

)2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≥t

}
+O

(∣∣∣∣ ∫ y

K

ds

a1�s�
+ t

∣∣∣∣ ln t)O��x�−2�e−
x2
Mt I{∣∣ ∫ y

K
ds

a1�s�

∣∣≤t

}�
the latter of which can be subsumed into previous estimates.

The summand ūx�x�Oa��	−1��e− ∫ yK �3�s�	�ds, has been evaluated in Case (iii), and
the summand

ūx�x�Oa��	−1��e−
∫ y
K �3�s�	�ds

can be analyzed by nondegenerate methods to obtain an exponentially decaying
excited term plus further estimates, that due to their exponential rate of decay in
x can be subsumed. The integrand Oa�1�e

∫ x
y �1�s�	�ds can also be treated by non-

degenerate methods, which lead to an estimate that can be subsumed.

Case (vi) 0 < K ≤ x ≤ y. According to Lemma 3.1, we have eight integrals to
evaluate in the case 0 < K ≤ x ≤ y, beginning with the summands

O��	−1/2��O��x�−1�O��y��e−
√
	�x−y� and Oa��	−1��O��x�−2�e−

√
	�x−y��
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which were analyzed in the introduction of this section. Following the arguments
introduced there, we also find that the summand O��	−1/2�ln 	�2��O��x�−1�e−

√
	�x−y�

leads to an estimate by

O�t−1/2�ln t�2�O��x�−1�e−
�x−y�2

Mt �

For the summand Oa�1�e
− ∫ yx �3�s�	�ds, x ≥ K, we can proceed by taking contours

from the non-degenerate case to obtain an estimate by

O�t−1/2�e−
�
∫ y
x

ds
a1�s�

+t�2

Mt �

For the summand e−
∫ y
x �3�s�	�dsO��	1/2 ln 	��, we first consider the case � ∫ x

y
ds

a1�s�
� ≥ t,

for which the nondegenerate contours do not cross the negative real axis, and taking

them, we conclude an estimate of O�t−3/4 ln t�e−
�
∫ x
y

ds
a1�s�

+t�2

Mt . For the case � ∫ y

x
ds

a1�s�
� < t,

we proceed as in the analysis of the summand O��	1/2 ln 	��e�−3 �	�x−�−2 �	�y in Case (i),
and take the contour defined through

√
	 = t−1 + ik until it strikes the non-

degenerate contour defined through

−	
∫ y

x

ds

a1�s�
+ 	2

∫ y

x

ds

a1�s�
3
= −	R

∫ y

x

ds

a1�s�
+ 	2R

∫ y

x

ds

a1�s�
3
+ il

∫ y

x

ds

a1�s�
�

with 	R chosen according to

	R =


−�� −� ≥ �̄+

p̄+
�

�̄+
p̄+

� −t−1/2 ≥ �̄+
p̄+

≥ −�

−t−1/2� 0 ≥ �̄+
p̄+

≥ −t−1/2�

where

	R = �̄+
p̄+

� �̄+ �=
∫ y

x
ds

a1�s�
+ t

2t
� p̄+ �=

∫ y

x

ds

a1�s�
3
≤ 0�

We determine an estimate by

O�t−3/4 ln t� ∧O
(∣∣∣∣t + ∫ y

x

ds

a1�s�

∣∣∣∣−3/2

ln t
)
�

which for t bounded away from zero can alternatively be written in the form

O
((

1+
∣∣∣∣t + ∫ y

x

ds

a1�s�

∣∣∣∣+ t1/2
)
ln�e+ t�

)
�

The remaining cases were analyzed in Case (v). �
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