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Abstract. We consider the spectrum associated with the linear operator ob-
tained when a Cahn–Hilliard system on R is linearized about a transition wave
solution. In many cases it’s possible to show that the only non-negative ei-
genvalue is λ = 0, and so stability depends entirely on the nature of this
neutral eigenvalue. In such cases, we identify a stability condition based on an
appropriate Evans function, and we verify this condition under strong struc-
tural conditions on our equations. More generally, we discuss and implement a
straightforward numerical check of our condition, valid under mild structural
conditions.

1. Introduction. We consider the spectrum associated with transition wave solu-
tions ū(x), ū(±∞) = u±, u− 6= u+, for Cahn–Hilliard systems on R,

ut =
(

M(u)(−Γuxx + f(u))x

)

x
, (1)

where u, f ∈ Rm, m is an integer greater than or equal to 2 (m + 1 phases are
possible) and M,Γ ∈ Rm×m. We will give a brief discussion of the history and
physicality of this equation below, and also review reasonable choices for f , M , and
Γ, but we first record here, for convenient reference, a group of technical assumptions
that will be made throughout the paper.

(H0) (Assumptions on Γ) Γ denotes a constant, symmetric, positive definite matrix.

(H1) (Assumptions on f) f ∈ C3(Rm), and f has at least two zeros on Rm. For
convenience we denote this set

M := {u ∈ R
m : f(u) = 0}. (2)

(H2) (Transition wave existence and structure) There exists a transition front so-
lution to (1) ū(x), so that

− Γūxx + f(ū) = 0, (3)
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with ū(±∞) = u±, u± ∈ M. When (3) is written as a first order autonomous ODE
system ū arises as a transverse connection either from the m-dimensional unstable
linearized subspace for u−, denoted U−, to the m-dimensional stable linearized
subspace for u+, denoted S+, or (by isotropy) vice versa. (We recall that since our
ambient manifold is R2m, the intersection of U− and S+ is referred to as transverse if
at each point of intersection the tangent spaces associated with U− and S+ generate
R

2m. In particular, in this setting a transverse connection is one in which the the
intersection of these two manifolds has dimension 1; i.e., our solution manifold will
comprise shifts of ū.)

(H3) (Assumptions on M and Γ) M ∈ C2(Rm); M is uniformly positive definite
along the wave; i.e., there exists θ > 0 so that for all ξ ∈ Rm and all x ∈ R we have

ξtrM(ū(x))ξ ≥ θ|ξ|2.

(H4) (Endstate Assumptions) Setting B± := f ′(u±) andM± := M(u±), we assume
B± and M± are both symmetric and positive definite. (Of course, M± is already
positive definite from (H3).) In addition, we assume that for each of the matrices
M±B± and Γ−1B±, the spectrum is distinct except possibly for repeated eigenvalues
that have an associated eigenspace with dimension equal to eigenvalue multiplicity.
In the case of repeated eigenvalues, we assume additionally that the solutions µ of

det
(

− µ4M±Γ + µ2M±B± − λI
)

= 0

can be strictly divided into two cases: if µ(0) 6= 0 then µ(λ) is analytic in λ for |λ|
sufficiently small, while if µ(0) = 0 µ(λ) can be written as µ(λ) =

√
λh(λ), where h

is analytic in λ for |λ| sufficiently small.

Regarding (H1) we observe that for Cahn-Hilliard systems we can often write f as
the gradient of an appropriate bulk free energy density F (i.e. f(u) = F ′(u)), where
F has m+ 1 local minima on Rm. In this way, it’s natural for f to have precisely
m+1 zeros. Since F would appear in (1) with both a u and an x derivative, we can
subtract from it any affine function without changing (1). It is often convenient to
subtract a supporting hyperplane from F so that F is also 0 on M.

Regarding (H4), we first observe that the symmetry condition on f ′(u±) is nat-
ural since F ′′(u) is a Hessian matrix. Also, we note that we can ensure that our
system satisfies the determinant condition by taking arbitrarily small perturbations
of the matrices M and Γ. Since we expect stability to be insensitive to such pertur-
bations, we view this assumption as purely for technical convenience. In particular,
our estimates of Lemma 4.1 would take a more complicated form if we removed
them.

When the Cahn–Hilliard system (1) is linearized about a standing wave solution
ū(x), as described in (H2), the resulting linear equation is

vt =
(

M(x)(−Γvxx +B(x)v)x

)

x
, (4)

where (with a slight abuse of notation) M(x) := M(ū(x)) and B(x) := f ′(ū(x)).
Assumptions (H0)–(H3) imply the following:

(C1) B ∈ C2(R); there exists a constant αB > 0 so that

∂j
x(B(x) −B±) = O(e−αB |x|), x→ ±∞,

for j = 0, 1, 2; B± are both symmetric and positive definite matrices.
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(C2) M ∈ C2(R); there exists a constant αM > 0 so that

∂j
x(M(x) −M±) = O(e−αM |x|), x→ ±∞,

for j = 0, 1, 2; M(x) is uniformly positive definite on R; and M± are symmetric.
We will set α = min{αB, αM}.

We note, in particular, that if (3) is written as a first order system
(

ū
ū′

)′
=

(

0 I
Γ−1f(ū) 0

)(

ū
ū′

)

,

then by (H1) the endstates u± correspond with hyperbolic equilibrium points
(

u±
0

)

This guarantees that ū(x) approaches its endstates at exponential rate, and (C1)-
(C2) follow by the continuity assumed on f and M .

The eigenvalue problem associated with (4) has the form

Lφ :=
(

M(x)(−Γφ′′ +B(x)φ)′
)′

= λφ. (5)

In many cases it’s possible to verify that the only non-negative eigenvalue for this
equation is λ = 0 (see, for example, [1, 2, 31] and our discussion in Section 3), and
so stability depends entirely on the nature of this neutral eigenvalue. Our main
goal in this paper is to develop and verify an appropriate stability condition for this
leading eigenvalue. We construct this condition in terms of an appropriate Evans
function, which can be defined in terms of the asymptotically growing/decaying
solutions of (5). As we show in Lemma 4.1, for |λ| > 0 sufficiently small, and
Argz 6= π (i.e., excluding negative real numbers), there are 2m linearly independent
solutions of (5) that decay as x → −∞ and 2m linearly independent solutions of
(5) that decay as x → +∞. Moreover, these functions can be constructed so that

they are analytic in ρ =
√
λ. If we denote these functions {φ±j (x; ρ)}2m

j=1 and set

Φ±
j = (φ±j , φ

±
j

′
, φ±j

′′
, φ±j

′′′
)tr, the Evans function can be expressed as

Da(ρ) = det(Φ+
1 , . . . ,Φ

+
2m,Φ

−
1 , . . . ,Φ

−
2m)
∣

∣

∣

x=0
. (6)

We will show in Section 5 that under our conditions (H0)-(H4) the firstm derivatives
of Da(ρ) all vanish at ρ = 0. In a companion paper, currently in preparation [23],
we establish that nonlinear asymptotic stability of ū(x) is implied by the following
condition on the order m+ 1 derivative of Da.

Condition 1. The set σ(L)\{0} lies entirely on the negative real axis, and

dm+1

dρm+1
Da(ρ)

∣

∣

∣

ρ=0
6= 0.

We will discuss particular cases in which Condition 1 holds at the end of this
introduction, after our discussion of physicality.

Our analysis is particularly motivated by the study of spinodal decomposition,
a phenomenon in which the rapid cooling of a homogeneously mixed alloy with
m+ 1 components causes separation to occur, resolving the mixture into regions of
different crystalline structure, separated by steep transition layers, in which one or
more component concentrations rise above their high-temperature concentrations
while one or more fall below their high-temperature concentrations. In this context,
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the vector u typically contains concentrations for m components of the alloy, and
the final component concentration is obtained from conservation of mass

m+1
∑

j=1

uj = 1. (7)

Each component of u is a conserved quantity, so if we denote by Jj the (vector) flux
associated with concentration uj we have

ujt + ∇ · Jj = 0; j = 1, . . . ,m. (8)

The molecular transfer during spinodal decomposition corresponds with motion
from configurations in which small fluctuations in concentration correspond with
large fluctuations in system internal energy to configurations in which small fluctu-
ations in concentration correspond with small fluctuations in system internal energy.
In order to capture this behavior the Jj are typically chosen to have the form (see
[8], p. 12)

Jj = −
m
∑

i=1

Mji(u)∇
δE

δui
, (9)

where Mji(u) denotes (scalar) molecular mobility, E denotes a total free energy

functional for the alloy, and δE
δui

denotes the kernel of the variational derivative of E
with respect to ui. The Cahn–Hilliard system arises from these considerations and
a form of the free energy functional suggested by Cahn and Hilliard in 1958 for the
case of binary alloys (m = 1) [7] and generalized by de Fontaine to multicomponent
alloys in 1967 [8]. For the case of a bounded domain U ⊂ Rn, de Fontaine’s
functional can be written as (see [8], p. 10)

E(u) =

∫

U

F (u) +
1

2
Du : (Γ(u)Du)dx, (10)

where F (u) denotes the bulk free energy density for the alloy with uniform compo-
sition u, Γ(u) is a gauge of interfacial energy (so, in particular, the term involving
Γ describes energy associated with a transition of composition), Du denotes the
m× n Jacobian of u, and the notation A : B refers to matrix inner product

A : B :=

n
∑

i=1

m
∑

j=1

aijbij . (11)

We note for comparison with our references that Eyre uses the same energy in [12],
though he replaces Du : (Γ(u)Du) with the equivalent expression tr(DutrΓ(u)Du).
If Γ is taken to be constant (which certainly need not be the case physically) then

δE

δui
= Fui

(u) − (Γ∆u)i, (12)

and we obtain the Cahn–Hilliard system on Rn

ujt = ∇ ·
{

m
∑

i=1

Mji(u)∇
(

(−Γ∆u)i + Fui
(u)
)}

, j = 1, 2, . . . ,m. (13)

This corresponds, for example, with equation (24) in [8] and equation (4) in [27],
except that the author in [8] adds an inhomogeneous term and the authors in [27]
take Γ as the identity. (Also, in contrast to the case here, the authors in [27] are
considering degenerate mobility, but that does not show up in the notation.) We
note that for n = 1 (13) is a special case of our equation (1), obtained by taking
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f to be the Jacobian (with respect to u) of F . (For the case of a binary alloy
(13) first appeared in Cahn’s 1961 paper [6], and de Fontaine suggests the Cahn–
Hilliard equation would more correctly be designated the Cahn equation. Hilliard,
de Fontaine’s advisor, apparently referred to this equation as “the last unnumbered
equation after Eq. (18) in Cahn’s 1961 paper” [11].)

Equation (13) has been the subject of considerable study [8, 9, 10, 12, 15, 27, 28],
though certainly the case m = 1 is much better understood than the case currently
under investigation.

Alternatively, we can derive a form of (1) by regarding the total internal energy as
a map on all m+1 component concentrations and introducing a Lagrange multiplier
to impose the total mass constraint (7). In this approach we will assume the flow is
governed by a functional L, equivalent with total internal energy along (1), which
includes a Lagrange multiplier as a constraint term. Following the analysis of Boyer
and Lapuerta in [5], we obtain, for j = 1, 2, . . . ,m, the system

ujt =
(M̃(u)

γj

(

− γjujxx + γ0

m+1
∑

i=1

1

γi
(Fuj

(u) − Fui
(u))

)

x

)

x
,

um+1 = 1 −
m
∑

j=1

uj ,

(14)

where in this case M̃ and F are regarded as functions of m + 1 variables, and we
note that Boyer and Lapuerta focused on the case m = 2 (ternary alloys). We
remark for clarity of comparison that system (14) is taken from equation (8) of [5],
given in the case m = 2, with

M̃ =
3ǫ

4
M0; γj = Σj; j = 1, 2, 3; γ0 =

16ΣT

3ǫ2
,

ΣT =
3

1
Σ1

+ 1
Σ2

+ 1
Σ3

,

where the expressions on the right hand sides are in the notation of [5]. This is

the special case of our (1) obtained by taking M(u) diagonal, with entries M̃/γj , Γ
diagonal with entries {γj}m

j=1, and

fj(u) = Γ0

m+1
∑

i=1

1

γi

(

Fuj
(u, 1 −

m
∑

k=1

uk) − Fui
(u, 1 −

m
∑

k=1

uk)
)

.

Remark 1. As the analysis of systems of form (14) differs somewhat from the
analysis of systems of form (13), we will find it convenient to have a terminological
distinction between the cases. While we certainly regard both cases as Cahn-Hilliard
systems, we will, for brevity, sub-categorize equations (14) as Boyer-Lapuerta sys-
tems and equations

ut =
(

M(u)(−Γuxx + F ′(u))x

)

x
, (15)

(slightly more general than (13)) as gradient systems.

Qualitatively, we expect that at high temperatures the bulk free energy density
F will decrease as entropy increases (according to the Helmholtz free energy relation
F = U − TS, where F denotes free energy, U denotes internal energy, T denotes
system temperature, and S denotes system energy), and so F will have a global
minimum in the configuration that maximizes entropy. For example, if our system
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has m+ 1 components, present in equal amounts, we expect (at high temperature)
F to have a global minimum at a concentration vector

u = (
1

m+ 1
,

1

m+ 1
, . . . ,

1

m+ 1
),

and to have global maxima at them+1 low-entropy single-component configurations
corresponding with concentration vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0) etc., with also
(0, 0, . . . , 0). (To be clear, this discussion is only intuitive, and we are not adding
any hypotheses on F .) As temperature decreases (and assuming internal energy
remains constant) we have the thermodynamic relation

∂F
∂T

= −S,

and so F increases (again, as temperature decreases) at a rate proportional to en-
tropy. In this way the free energy increases most rapidly where it was previously
minimized and increases most slowly where it was previously maximized. Heuristi-
cally, then, we expect that at low temperatures F will have a local maximum where
it was previously minimized and that it will have m + 1 local minima associated
(possibly by equivalence) with the m+ 1 global single-component maxima.

More precisely, in [8, 9] de Fontaine attributes the following form of the bulk free
energy density for a ternary alloy to Prigogine [29]:

F (u1, u2, u3) =
∑

i6=j

ωijuiuj + κT

3
∑

i=1

ui lnui,

where κ denotes Boltzmann’s constant, T denotes system temperature, and we
haven’t yet employed mass conservation to reduce the number of variables. For a
system with m+ 1 components it is natural to consider the generalized form

F (u) =
1

2
u · Au+ κT

m+1
∑

i=1

liui lnui, (16)

where A is an (m + 1) × (m + 1) matrix and the values {li}m+1
i=1 are constants

associated with the alloy. We recall that the reduction of F from a function of
m + 1 variables to a function of m variables is accomplished by the conservation
equation (7).

A form commonly examined due to its simplicity is

F (u) =
∑

i<j

αiju
2
iu

2
j . (17)

In the case m = 2 Alikakos et al. have carefully examined bulk free energy functions
of the form

F (u1, u2) = |h(u1 + iu2)|2, (18)

where h is analytic on C, and the third component has been eliminated by conser-
vation of mass [1].

Finally, we mention the class of algebraically consistent functions suggested by
Boyer and Lapuerta. (For the precise definition of algebraic consistency, as Boyer
and Lapuerta give it, see Definition 3.1 of [5].) Their functions are given for ternary
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alloys and have the form

F (u1, u2, u3) =
∑

j<k

σjku
2
ju

2
k + u1u2u3

3
∑

j=1

γjuj

+ u2
1u

2
2u

2
3G(u1, u2, u3) + (u1 + u2 + u3 − 1)H(u1, u2, u3),

(19)

for C1 functions G and H . Here, σjk denotes surface tension between components
j and k and for i = 1, 2, 3, i 6= j, k,

γi = σij + σik − σjk .

(Aside from a slight change in notation, form (19) is taken directly from [5]. We
note here, as the authors do in [5] that since u1 + u2 + u3 = 1 we can take H ≡ 0
without loss of generality.) In particular, these functions have the property that if
any particular component is absent then the resulting expression is the correct bulk
free energy for the two remaining components. For example,

F (u1, u2, 0) = σ12u
2
1u

2
2,

which with u2 = 1 − u1 corresponds with the standard double-well form

F̃ (u1) = σ12u
2
1(1 − u1)

2.

We conclude our introduction with a discussion of the primary results we cite
and establish in the paper. First, though it’s difficult to summarize briefly here,
we regard the framework we develop in Section 5 for analyzing Condition 1 as
the primary contribution of this paper. As we show in Section 6.3 this framework
provides a straightforward way in which to numerically check Condition 1.

In analyzing gradient systems, we use the following theorem due to Alikakos and
Fusco (see [2] and also our discussion in Section 2.1).

Theorem 1.1 (Existence for gradient systems). Let (H0) hold and suppose F ∈
C4(Rm) has precisely m + 1 local minima {ξj}m+1

j=1 such that F ′′(ξj) is positive
definite for each j = 1, 2, ...,m + 1. In addition, suppose u− and u+ are elements
of the set {ξj}m+1

j=1 , u− 6= u+, and

F (tu− + (1 − t)u+) > 0,

for all t ∈ (0, 1). Then there exists a transition front ū ∈ C5(R) so that (3) holds
and ū(±∞) = u±.

Moreover, ū(x) minimizes the energy functional

E(u) =

∫

R

F (u) +
1

2
(Γux, ux)dx,

where (·, ·) denotes inner product on Rn (i.e., dot product).

In Section 6.3 we use the framework of Section 5 to give numerical evidence for
Condition 1 in the following case.

Numerical Result 1 (Stability for gradient systems). For the gradient system
(15) with M and Γ both taken as identity, and the choice

F (u1, u2) = u2
1u

2
2 + u2

1(1 − u1 − u2)
2 + u2

2(1 − u1 − u2)
2,

we numerically compute D′′′
a (0) 6= 0 for the transition front ū(x) depicted in Figure

2.1.
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For Boyer-Lapuerta systems we will have a hierarchy of assumptions under which
different conclusions can be drawn, and for convenient reference we will summarize
here the assumptions and their implications. We also give references to the associ-
ated full statements of the conclusions. First, our theoretical framework of Section
5 is valid under our basic assumptions (H0)-(H4), which we assume to hold in all
cases. We will designate the assumptions under which we obtain existence of tran-
sition front solutions ū(x) as (BL1); we will designate the assumptions under which
we verify that the spectrum associated with ū(x) lies entirely on the negative real
axis (including λ = 0) as (BL2); and finally we will designate the assumptions
under which we establish a relatively straightfoward expression for Condition 1 as
(BL3). After stating these conditions we discuss a test case for which we verify that
(BL1)-(BL3) all hold, and for which we can analytically verify Condition 1.

(BL1) We assume that F satisfies the relations

F (u1, 1 − u1, 0) = F12(u1)

F (u1, 0, 1 − u1) = F13(u1)

F (0, u2, 1 − u2) = F23(u2),

(20)

where the Fij are double-well functions as described in (H̃) in Section 2.2, and
additionally we assume that F satisfies the symmetry property

F (u1, 1 − u1, 0) = F (1 − u1, u1, 0); u ∈ [0, 1]. (21)

See Lemma 2.1 for a precise statement.

(BL2) In addition to (BL1), we assume γ1 = γ2 and that the operator

Hb := −∂xx +
( ∂f1
∂u1

(ū1, 1 − ū1) +
∂f1
∂u2

(ū1, 1 − ū1)
)

(22)

is non-negative. We verify that for the case

F (u1, u2, u3) =
γ1

2
u2

1(u2 + u3)
2 +

γ2

2
u2

2(u1 + u3)
2 +

γ3

2
u2

3(u1 + u2)
2,

this condition is implied by the condition γ1 ≤ 4γ3. See Lemma 3.1 for a precise
statement.

(BL3) In addition to (BL1)-(BL2), we assume some technical endstate conditions
that will be more natural to state explicitly once we have developed more notation.
See Lemma 6.1 for a precise statement.

As a study case, consider the Boyer-Lapuerta system (14) with m = 2, γj = 1,

j = 0, 1, 2, 3, M̃ = 1, and

F (u1, u2, u3) =
1

2
u2

1(u2 + u3)
2 +

1

2
u2

2(u1 + u3)
2 +

1

2
u2

3(u1 + u2)
2.

We show that the operator L obtained by linearization of this system about the
transition front solution

(

ū1(x)
ū2(x)

)

=
1

1 + e
√

3x

(

1

e
√

3x

)

(or any translation of this wave) satisfies Condition 1.
Outline of the paper. In Section 2 we discuss the existence and structure of

transition front solutions in both gradient and Boyer-Lapuerta systems. In Section
3 we discuss the spectrum associated with our linearized operator L for λ 6= 0,
and in Section 4 we develop preliminary ODE results required for analyzing the
Evans function at λ = 0. In Section 5 we develop our stability condition (Condition
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1) generally, and in Section 6 we analyze this condition for the two study cases
mentioned above.

2. Existence and Structure of Transition Waves. We look for stationary so-
lutions ū(x) for (1) that satisfy ū(±∞) = u± ∈ M. (We recall that our notation
M is defined in (H1).) Upon substitution of ū(x) into (1), and after integrating
twice and using f(u±) = 0, we find

− Γūxx + f(ū) = 0. (23)

We set U = ū and V = ūx, and write this as a first order system

U ′ = V

V ′ = Γ−1f(U).
(24)

Upon linearization about the endstates (u±, 0) we obtain

(

Ũ

Ṽ

)′
=

(

0 I
Γ−1f ′(u±) 0

)(

Ũ

Ṽ

)

.

The associated eigenvalues are {−
√

ν±j }m
j=1 and {+

√

ν±j }m
j=1, where the values

{ν±j }m
j=1 are the (necessarily positive) eigenvalues of Γ−1f ′(u±). Clearly, the points

(u±, 0) both have an m-dimensional unstable manifold and an m-dimensional stable
manifold. In this way we see that ū(x) must correspond with a connection either
between the m-dimensional unstable manifold of (u−, 0) and the m-dimensional
stable manifold of (u+, 0) or vice versa.

2.1. Gradient Systems. In the standard case that f can be written as the gra-
dient of some function, f = F ′, system (24) has been the subject of considerable
study. In particular, existence of transition front solutions in this case has been
established by Alikakos and Fusco, whose result we stated in Theorem 1.1 of our
introduction. (See [2] and also the related analysis of Stefanopoulos [31]).

Notes on the proof of Theorem 1.1. Aside from the brief observations we make here,
this theorem was established in [2] Theorem 3.6.

While the analysis of [2] is carried out with Γ taken as the identity matrix, we
can reduce our equation to their case by setting v̄ := Γ1/2ū and

F0(v̄) := F ((Γ−1/2)v̄).

That is, we now have

−v̄xx + F ′
0(v̄) = 0.

Clearly, F0 has precisely m+ 1 local minima at {Γ1/2ξj}m+1
j=1 , and

F0(tΓ
1/2u− + (1 − t)Γ1/2u+) = F (u−t+ u+(1 − t)) > 0.

Under these conditions, Theorem 3.6 of [2], along with Extension Theorem 3.8

from the same paper, assert the existence of a weak W 1,2
loc (R) solution to (23).

According to Theorem 4.2 in [14] (also Theorem 4.4 on p. 277 of [13]), this solution
must have Holder continuous derivatives, and so consequently it must agree with
the Picard solution for system (24). Our claimed regularity is immediate.
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Here, we note for later reference,

E′(ū)(ϕ) =

∫

R

(F ′(ū) − Γūxx, ϕ)dx, (25)

and

E′′(ū)(ψ, φ) =

∫

R

(

(−Γ∂2
x + F ′′(ū))ψ, ϕ

)

dx. (26)

In particular, the assertion that ū is a minimizer of E ensures that the operator

H := −Γ∂2
x + F ′′(ū)

is non-negative.
We observe that the transition front guaranteed by Theorem 1.1 may not be a

unique minimizer of E, and so this does not guarantee that ū(x) correponds with a
transverse connection in system (24). On the other hand, the derivative statement
in our Condition 1 can be regarded as a transversality condition. For the case
m = 2, and for bulk free energy densities of form

F (u1, u2) = |h(u1 + iu2)|2, (27)

where h is analytic on C, Alikakos, Betelu, and Chen have shown that the transition
fronts guaranteed by Theorem 1.1 are unique: i.e., given a valid pair of endstates
u− and u+ there is precisely one transition wave ū(x) that solves (23) and satisfies
ū(±∞) = u±. (See [1].) Generically, these can be reversed, so that there will also
be a solution so that ū(±∞) = u∓. For example, if we would like to work with the
case of three minima located at the standard points (0, 0), (1, 0), and (0, 1), we can
take

h(z) = z(z − 1)(z − i),

and the theorem of Alikakos, Betelu, and Chen guarantees we have a unique so-
lution. (Of course, this corresponds with a sixth order bulk free energy density
polynomial rather than the more standard quartic.) This uniqueness guarantees
transversality, and also that the waves we investigate numerically by the methods
of Section 6 are the waves guaranteed by Theorem 1.1.

For the case (common for numerical simulations)

F (u1, u2) = u2
1u

2
2 + u2

1(1 − u1 − u2)
2 + u2

2(1 − u1 − u2)
2,

the three minima occur at (0, 0), (1, 0), and (0, 1). We can numerically approximate
a transition wave solution for (1) with f = F ′ by solving a boundary value problem
with values given close to these endpoints. A transition front computed in this way
(connecting (1, 0) to (0, 1)) is given in Figure 2.1.

2.2. Boyer–Lapuerta Systems. Following [5], we consider particularly the case
of (14) with m = 2, corresponding with a ternary alloy. In this case the transition
wave solves

−γj ūjxx
+ γ0

3
∑

i=1

1

γi

(

Fuj
(ū) − Fui

(ū)
)

= 0; j = 1, 2

ū3 +

2
∑

j=1

ūj − 1 = 0.

(28)

We assume that if one of the three components is absent then the resulting bulk
free energy density will be an appropriate bulk free energy density for the resulting
two-component system. More precisely, we assume (20), where Fjk denotes an
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Figure 1. Transition front solution for a ternary Cahn-Hilliard system.

appropriate bulk free energy density for a single Cahn–Hilliard equation describing
a binary alloy with components i and j. That is, we assume Fjk(u) satisfies the
assumptions of [22]:

(H̃) Fjk ∈ C4(R) has a double-well form: there exist real numbers α1 = 0 <
α2 < α3 < α4 < 1 = α5 so that Fjk is strictly decreasing on (−∞, 0) and (α3, 1)
and strictly increasing on (0, α3) and (1,+∞), and additionally Fjk is concave up
on (−∞, α2) ∪ (α4,+∞) and concave down on (α2, α4).

In addition we assume that if component j is absent in (28) (i.e., ūj ≡ 0), then
the equation for ūj will become simply ūjxx

= 0. This clearly imposes the conditions

3
∑

i=1

1

γi

(

Fu3
(u1, 1 − u1, 0) − Fui

(u1, 1 − u1, 0)
)

= 0

3
∑

i=1

1

γi

(

Fu2
(u1, 0, 1 − u1) − Fui

(u1, 0, 1 − u1)
)

= 0

3
∑

i=1

1

γi

(

Fu1
(0, u2, 1 − u2) − Fui

(0, u2, 1 − u2)
)

= 0.

(29)

Since the argument for existence is the same for each pair of coordinates, we
focus on the case in which component 3 is absent. First, from (20), we see that

F ′
12(u1) = Fu1

(u1, 1 − u1, 0) − Fu2
(u1, 1 − u1, 0).

Also, according to (29), we have

Fu3
(u1, 1 − u1, 0) =

γ2

γ1 + γ2
Fu1

(u1, 1 − u1, 0) +
γ1

γ1 + γ2
Fu2

(u1, 1 − u1, 0).
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Combining these observations, we find

3
∑

i=1

1

γi

(

Fu1
(u1, 1 − u1, 0) − Fui

(u1, 1 − u1, 0)
)

=
( 1

γ2
+

γ1/γ3

γ1 + γ2

)

F ′
12(u1),

and likewise
3
∑

i=1

1

γi

(

Fu2
(u1, 1 − u1, 0) − Fui

(u1, 1 − u1, 0)
)

= −
( 1

γ1
+

γ2/γ3

γ1 + γ2

)

F ′
12(u1).

In this way system (28) becomes a coupling of two equivalent equations

− ūjxx
+ γ0

( 1

γ1γ2
+

1/γ3

γ1 + γ2

)

F ′
12(ūj) = 0, (30)

for j = 1, 2. This equation is the standing wave equation for the Cahn–Hilliard
equation associated with the binary alloy with components 1 and 2, and it’s well-
known (see, for example, [22]) that such equations have precisely two transition
front solutions (up to a shift), ū1(x) and ū2(x) = ū1(−x). In the symmetric case
(21) we have F12(ū1) = F12(1− ū1), and so ū2(x) = 1− ū1(x). In this way, we find
that transition fronts for Boyer-Lapuerta systems with m = 2 have the form

ū(x) =

(

ū1(x)
1 − ū1(x)

)

, (31)

where ū1(x) is a transition front for a binary alloy. We note particularly that,
unlike the gradient case, the third component associated with these waves is always
identically 0.

We summarize these observations in the following lemma.

Lemma 2.1. For equation (28), suppose F satisfies (20) (with H̃), as well as (21).
Then (28) has a transition wave solution with form (31), unique up to a shift and
an exchange of coordinates.

3. Spectral Analysis for λ 6= 0. When the Cahn–Hilliard system (1) is linearized
about a standing wave solution ū(x) the resulting linear equation is

vt =
(

M(ū)(−Γvxx + f ′(ū)v)x

)

x
, (32)

with associated eigenvalue problem

Lφ =
(

M(ū)(−Γφxx + f ′(ū)φ)x

)

x
= λφ. (33)

It follows from Lemma 2 in the Appendix of Chapter 5 in [17] that the essential
spectrum of L is determined by the asymptotic operators

L±φ = −M±Γφ′′′′ +M±f
′(u±)φ′′.

In particular, the essential spectrum is determined by the existence of solutions of
the form φ = eikxv, for which we have

(

−M±Γk4 −M±f
′(u±)k2

)

v = λ(k)v,

where essential spectrum is restricted to the parametrized curve λ(k). Upon multi-
plication of this last relation by the symmetric, positive definite matrix M−1

± , and
after taking inner product with v, we obtain the relation

−〈v,Γv〉k4 − 〈v, f ′(u±)v〉k2 = λ(k)〈v,M−1
± v〉.
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Clearly, f ′(u±) is always symmetric for gradient systems (f ′(ū) = F ′′(ū), a Hessian
matrix), and we will see below that it is also symmetric for Boyer–Lapuerta systems
under symmetry condition (21). (Recall that we assume in (H4) that f ′(u±) is
symmetric.) Since Γ andM−1

± are also symmetric, we see that the essential spectrum

must be real-valued, and since these three matrices f ′(u±), Γ, and M−1
± are all

positive definite we find that essential spectrum is confined to the negative real
axis, including λ = 0.

For the point spectrum, we observe that for any λ 6= 0 and associated eigen-
function φ(·;λ) ∈ L2(R)∩C5(R) (the regularity following without loss of generality
from the regularity asserted in (H1)-(H3)) we must have

∫

R
φ(x;λ)dx = 0, which

justifies our setting

ϕ(x;λ) :=

∫ x

−∞
φ(y;λ)dy. (34)

Upon integration our eigenvalue problem becomes

M(ū)(−Γϕxxx + f ′(ū)ϕx)x = λϕ. (35)

We multiply both sides by M(ū)−1, then take an L2 inner product, denoted 〈·, ·〉,
with ϕ to obtain the relation (after one application of integration by parts)

〈−Hϕx, ϕx〉 = λ〈ϕ,M(ū)−1ϕ〉,
where

H := −Γ∂2
x + f ′(ū(x)). (36)

Since Γ is symmetric, the operator H is symmetric so long as the matrix f ′(ū)
is. As discussed above, f ′(ū) is always symmetric for gradient systems and is also
symmetric for Boyer–Lapuerta systems under symmetry condition (21). Moreover,
since M(ū(x)) is positive definite, M(ū(x))−1 is positive definite, and so if M(ū(x))
is symmetric (slightly more than we assume in general), then the point spectrum for
L will be real-valued, and it will be entirely non-positive so long as H is a positive
operator. We have already seen in Section 2 that if ū is a wave guaranteed by
Theorem 1.1 then H is non-negative for gradient Cahn–Hilliard systems, and so we
have no eigenvalues with positive real part.

We turn next to Boyer-Lapuerta systems for which we consider only m = 2 in
detail. In this case, we have

Γ =

(

γ1 0
0 γ2

)

.

and

f1(u1, u2) = γ0

{ 1

γ2

(

Fu1
(u1, u2, 1 − u1 − u2) − Fu2

(u1, u2, 1 − u1 − u2)
)

+
1

γ3

(

Fu1
(u1, u2, 1 − u1 − u2) − Fu3

(u1, u2, 1 − u1 − u2)
)}

f2(u1, u2) = γ0

{ 1

γ1

(

Fu2
(u1, u2, 1 − u1 − u2) − Fu1

(u1, u2, 1 − u1 − u2)
)

+
1

γ3

(

Fu2
(u1, u2, 1 − u1 − u2) − Fu3

(u1, u2, 1 − u1 − u2)
)}

.

According to (20) we have

F12(u1) = F (u1, 1 − u1, 0), (37)
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and so

F ′
12(u1) = Fu1

(u1, 1 − u1, 0) − Fu2
(u1, 1 − u1, 0)

F ′′
12(u1) = Fu1u1

(u1, 1 − u1, 0) − 2Fu1u2
(u1, 1 − u1, 0) + Fu2u2

(u1, 1 − u1, 0).

Under our assumption (21) we know that ū(x) has the form (31), and in our
general notation we have

bij(x) :=
∂fi

∂uj
(ū1, 1 − ū1),

Here, the eigenvalue problem for H can be written as

−γ1φ1xx + b11(x)φ1 + b12(x)φ2 = λφ1

−γ2φ2xx + b21(x)φ1 + b22(x)φ2 = λφ2.
(38)

A direct calculation gives

b12(x) = b21(x)

b11(x) = b12(x) + γ0
γ1γ2 + γ1γ3 + γ2γ3

(γ1 + γ2)γ2γ3
F ′′

12(ū1)

b22(x) = b21(x) + γ0
γ1γ2 + γ1γ3 + γ2γ3

(γ1 + γ2)γ1γ3
F ′′

12(ū1).

(39)

We will prove the following lemma.

Lemma 3.1. Suppose ū(x) denotes a transition front solution of system (14) with
m = 2, and the following conditions hold:

(i) F (u1, 1 − u1, 0) = F (1 − u1, u1, 0); u1 ∈ [0, 1];

(ii) γ1 = γ2;

(iii) The operator Hb := −γ1∂xx + b11(x) + b12(x) is non-negative.

Then the spectrum associated with (38) lies entirely on the non-negative real line.

Remark 2. Before proving this lemma, we note that the conditions will be checked
below for a standard case. Also, we observe that Condition (iii) clearly holds if
b11(x) + b12(x) ≥ 0 for all x ∈ R.

Proof. We specialize to the case γ1 = γ2, and for notational convenience set

γ := γ0
γ1 + 2γ3

2γ1γ3
.

Under this assumption, b11(x) = b22(x). Now, suppose the vector (φ1, φ2) corre-
sponds with an eigenvalue λ 6= 0 and set v := φ2 − φ1.

First, consider the case φ2 ≡ φ1, so that v ≡ 0. Here, (38) simply consists of two
copies of the same equation,

−γ1φ1xx + (b11(x) + b12(x))φ1 = λφ1.

If we multiply by φ1 and integrate over R we obtain

λ

∫ +∞

−∞
φ2dx =

∫ +∞

−∞
φ1Hbφ1dx = γ1

∫ +∞

−∞
φ2

2
xdx +

∫ +∞

−∞
(b11(x) + b12(x))φ

2
1dx.

Clearly, if Hb is a non-negative operator we must have λ ≥ 0.
Next, we consider the case in which φ1 and φ2 are not equivalent, so v is not

identically 0. If we subtract the first equation in (38) from the second we obtain

− γ1vxx + (b22(x) − b12(x))v = λv, (40)
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so v must be an eigenfunction associated with the operator

H1 := −γ1∂
2
xx + (b22(x) − b12(x)).

The potential for this operator is

b22(x) − b12(x) = γF ′′
12(ū1(x)).

Comparing (40) with (30), we see that v = ū′1(x) is an eigenfunction of (40) as-
sociated with eigenvalue λ = 0. Since ū′1(x) is monotonic we know from standard
ODE theory (see, for example, the discussion in [22]) that the operator H1 has no
eigenvalues below λ = 0. This completes the proof.

As an application, consider the fourth-order Boyer-Lapuerta bulk free energy
density (i.e., (19) with H ≡ 0, (taken without loss of generality; see the remark
following (19) and G ≡ 0),

F (u1, u2, u3) =
γ1

2
u2

1(u2 + u3)
2 +

γ2

2
u2

2(u1 + u3)
2 +

γ3

2
u2

3(u1 + u2)
2, (41)

which (as noted in [5]) is equivalent along the restriction u1 + u2 + u3 = 1 to the
simpler form

F (u1, u2, u3) =

3
∑

j=1

γj

2
u2

j(1 − uj)
2.

In this case,

F12(u1) = F (u1, 1 − u1, 0) = γ1u
2
1(1 − u1)

2,

and

b11(x) = γ0

(

(
1

γ2
+

1

γ3
)
1

2
F ′′

12(ū1) + 1
)

b12(x) = γ0

(

− 1

γ1

1

2
F ′′

12(ū1) + 1
)

.

(42)

In the case γ1 = γ2 we have

b11(x) + b12(x) = γ0

( 1

γ3

1

2
F ′′

12(ū1) + 2
)

.

Here,

F ′′
12(ū1) = 2γ1(ū

2
1 − 4ū1(1 − ū1) + (1 − ū1)

2),

so that

min
ū1∈[0,1]

F ′′
12(ū1) = −γ1.

In this way, we see that Condition (iii) of Lemma 3.1 holds in this case so long as

γ1 ≤ 4γ3.

4. ODE Estimates. The general eigenvalue problem is
(

M(x)(−Γφxx +B(x)φ)x

)

x
= λφ, (43)

where B(x) := f ′(ū(x)) and (with a slight abuse of notation) M(x) := M(ū(x)).
We set Wj = ∂j−1

x φ, j = 1, 2, 3, 4, and regard this equation as the first order system
W ′ = A(x;λ)W . As x→ ±∞, we can write this system as

W ′ = A±(λ)W +Q±(x;λ)W, (44)
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where

A±(λ) =









0 I 0 0
0 0 I 0
0 0 0 I

−λΓ−1M−1
± 0 Γ−1B± 0









, (45)

and there exists η > 0 so that

Q−(x;λ) = O(e−η|x|), x→ −∞; Q+(x;λ) = O(e−η|x|), x→ +∞,

uniformly for λ sufficiently small. We note that the 4m × 4m matrices Q± only
have non-zero entries in their last m rows.

While the eigenvalues of A±(λ) can be computed directly using, for example, the
determinant identity

det

(

A B
C D

)

= det(A) · det(D − CA−1B),

valid whenever A is a non-singular matrix, it is more straightforward (and is equiva-
lent) to simply look for solutions of the form φ = eµxr for the asymptotic equation,

−M±Γφ′′′′ +M±B±φ
′′ = λφ.

We find
(

− µ4M±Γ + µ2M±B± − λI
)

r = 0.

We will divide our discussion of the growth and decay modes µ(λ) into two cases:
(1) fast rates, for which µ(0) 6= 0; and (2) slow rates, for which µ(0) = 0.

Fast rates. For the fast rates, µ(0) = µ0 6= 0, and for λ = 0 we have

det(−µ4
0M±Γ + µ2

0M±B±) = µ2m
0 det(M±Γ) det(Γ−1B± − µ2

0I) = 0.

Since Γ and M± are positive definite, we find that the values for µ2
0 are the ei-

genvalues of Γ−1B±. If the eigenvalues of this matrix are distinct, it follows from
Theorem XII.1 of [30] that the associated fast µ(λ)2 are analytic. If the eigenva-
lues of Γ−1B± are not distinct, we have from (H4) that the fast eigenvalues are
nonetheless analytic in λ. In either case, it’s clear that since the matrices B± are
additionally symmetric and positive definite the eigenvalues of Γ−1B± are positive.
I.e.,

Γ−1B±v = µ2
0v ⇒ B±v = µ2

0Γv ⇒ 〈v,B±v〉 = µ2
0〈v,Γv〉 ⇒ µ2

0 =
〈v,B±v〉
〈v,Γv〉 > 0.

Our notation will be

σ(Γ−1B±) = {ν±j }m
j=1, (46)

ordered so that j < k ⇒ ν±j ≤ ν±k . We conclude that for j = 1, . . . ,m the fast rates

{µ±
j }m

j=1 and {µ±
j }4m

j=3m+1 are given by

µ±
j (λ) = −

√

ν±m+1−j + O(|λ|)

µ±
3m+j(λ) =

√

ν±j + O(|λ|),
(47)

where for consistency the indices are chosen so that j < k ⇒ µ±
j ≤ µ±

k . The eigen-

vectors {V ±
j (λ)}m

j=1 and {V ±
j (λ)}4m

j=3m+1 associated with these eigenvalues have the
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form

V ±
j =









r±j
µ±

j r
±
j

(µ±
j )2r±j

(µ±
j )3r±j









, (48)

where r±j (λ) satisfies
(

− (µ±
j )4M±Γ + (µ±

j )2M±B± − λI
)

r±j = 0. (49)

Since µ±
j = −µ±

4m+1−j we clearly have

r±j (λ) = r±4m+1−j(λ),

for j = 1, . . . ,m. Finally, the leading term r±j (0) is an eigenvector of Γ−1B±
associated with the eigenvalue (µ±

j (0))2.

Slow rates. For the slow rates, for which µ(0) = 0, we set ω = µ2 so that our
characteristic equation becomes

det
(

− ω2M±Γ + ωM±B± − λI
)

= 0. (50)

In this case, when λ = 0 we have that ω0 = 0 is repeated m times, and so Theorem
XII.1 of [30] does not apply directly. Instead, we work with the scaled variable ζ,
defined so that ω = λζ. In this way, (50) becomes

det
(

− λ2ζ2M±Γ + λζM±B± − λI
)

= 0.

Upon dividing by λm, we have

det
(

− λζ2M±Γ + ζM±B± − I
)

= 0,

where now setting λ = 0 we find the values of ζ(0) are precisely the eigenvalues of
B−1

± M−1
± . If the eigenvalues of B−1

± M−1
± are distinct, we can conclude, again from

Theorem XII.1 of [30], that the ζ(λ) are analytic in λ. We have, then,

ω(λ) =

∞
∑

j=1

ajλ
j ,

and so the slow modes µ±(λ) have the form
√
λh(λ), where h is an analytic function

in λ (for |λ| sufficiently small) with h(0) 6= 0. Calculating almost precisely as for the
case of Γ−1B± we find that the eigenvalues of B−1

± M−1
± are all real and positive.

(We recall from (H1) and (H3) that B−1
± and M−1

± are both symmetric positive
definite matrices.) Our notation will be

σ(M±B±) = {β±
j }m

j=1,

where again our choice of ordering is j < k ⇒ βj ≤ βk. We conclude that for each

j = 1, . . . ,m we have ωj(λ) = λ
β±

j

+ O(|λ|2), and so the slow rates are {µ±
j }3m

j=m+1

µ±
m+j(λ) = −

√

λ

β±
j

+ O(|λ|3/2), j = 1, . . . ,m

µ±
2m+j(λ) =

√

λ

β±
m+1−j

+ O(|λ|3/2), j = 1, . . . ,m.

(51)
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Similarly as with the case of fast modes, if the eigenvalues of B−1
± M−1

± are not
distinct, we have directly from (H4) that for |λ| sufficiently small we can write

µ(λ) =
√
λh(λ) for some function h(λ) that is analytic in λ.

The eigenvectors {V ±
j (λ)}3m

j=m+1 associated with these eigenvalues have the form

(48) where r±j (λ) satisfies (49). Since µ±
j = −µ±

4m+1−j for j = 1, . . . , 2m we clearly
have

r±j (λ) = r±4m+1−j(λ),

for j = m+ 1, . . . , 2m. Finally, the values {βj}m
j=1 and {r−j (0)}3m

j=2m+1, along with

{r+j (0)}2m
j=m+1 are sufficiently important to our later calculations that we summarize

their roles in the following remark.

Remark 3. We take

σ(M±B±) = {β±
j }m

j=1,

where our choice of ordering is j < k ⇒ βj ≤ βk. The eigenvectors {r−k (0)}3m
k=2m+1

and {r+k (0)}2m
k=m+1 associated with these eigenvalues have the following index cor-

respondences, for j = 1, . . . ,m:

M−B−r
−
2m+j(0) = β−

m+1−jr
−
2m+j(0)

M+B+r
+
m+j(0) = β+

j r
+
m+j(0).

In particular, for the case m = 2 (convenient for devising simple examples), we see
that r−5 (0) and r−6 (0) are respectively associated with β−

2 and β−
1 , while r+3 (0) and

r+4 (0) are respectively associated with β+
1 and β+

2 .

We are now prepared to state our basic ODE lemma.

Lemma 4.1. Under Conditions (C1)–(C2), along with (H4), there exist values
η > 0 and r0 > 0 so that for a choice of linearly independent solutions of the
eigenvalue problem (43), we have the following estimates, uniformly in the set {λ :
λ ∈ B(0, r0),Argλ 6= π}:

(I) For x ≤ 0 and k = 0, 1, 2, 3 we have:

(i) For j = 1, . . . , 2m

∂k
xφ

−
j (x;λ) = eµ−

2m+j(λ)x
(

µ−
2m+j(λ)

kr−2m+j(λ) + O(e−η|x|)
)

;

(ii) For j = 1, . . . ,m

∂k
xψ

−
j (x;λ) = eµ−

j (λ)x
(

µ−
j (λ)kr−j (λ) + O(e−η|x|)

)

;

(iii) For j = m+ 1, . . . , 2m

∂k
xψ

−
j (x;λ) =

1

µ−
j (λ)

(

µ−
j (λ)keµ−

j (λ)x − (−µ−
j (λ))ke−µ−

j (λ)x
)

r−j (λ) + O(e−η|x|);

(II) For x ≥ 0 and k = 0, 1, 2, 3 we have:

(i) For j = 1, . . . , 2m

∂k
xφ

+
j (x;λ) = eµ+

j (λ)x
(

µ+
j (λ)kr+j (λ) + O(e−η|x|)

)

;



SPECTRAL ANALYSIS FOR CAHN-HILLIARD SYSTEMS 19

(ii) For j = 1, . . . ,m

∂k
xψ

+
j (x;λ) =

1

µ+
2m+j

(

(µ+
2m+j)

keµ+

2m+jx − (−µ+
2m+j)

ke−µ+

2m+jx
)

r+2m+j

+ O(e−η|x|);

(iii) For j = m+ 1, . . . , 2m

∂k
xψ

+
j (x;λ) = eµ+

2m+j(λ)x
(

µ+
2m+j(λ)

kr+2m+j(λ) + O(e−η|x|)
)

.

Remark 4. Before proving Lemma 4.1, we make several remarks.
1. The dependence of µ+

2m+j and r+2m+j on λ has been suppressed in (IIii) for
notational brevity.

2. The fast decay modes are {φ−j }2m
j=m+1 and {φ+

j }m
j=1. Likewise, the slow decay

modes are {φ−j }m
j=1 and {φ+

j }2m
j=m+1.

3. The rates of growth and decay can be characterized for convenient reference
as follows: for j = 1, . . . ,m,

µ±
j (λ) = −

√

ν±m+1−j + O(|λ|)

µ±
m+j(λ) = −

√

λ

β±
j

+ O(|λ|3/2),

µ±
2m+j(λ) =

√

λ

β±
m+1−j

+ O(|λ|3/2),

µ±
3m+j(λ) =

√

ν±j + O(|λ|).

(52)

4. We recall that for j = 1, . . . , 2m

µ±
j (λ) = −µ±

4m+1−j(λ)

r±j (λ) = r±4m+1−j(λ).
(53)

5. For j = 1, . . . ,m and j = 3m + 1, . . . , 4m the leading terms r±j (0) are

eigenvectors of Γ−1B± associated with the eigenvalue (µ±
j (0))2. Likewise, for j =

m+ 1, . . . , 3m the leading terms r±j (0) are eigenvectors of B−1
± M−1

± with indices as
specified in Remark 3.

6. The choice we take for our slow growth modes (the difference modes) serves to
keep our slow growth linearly independent from our slow decay modes when λ = 0.
This idea was taken from [4]. See also [20], where the idea is used in the case of
single Cahn-Hilliard equations on R, and [21], where the idea is used in the case
of single Cahn-Hilliard equations on Rn. For an alternative approach in a similar
setting (degenerate viscous shock profiles), see [18, 19, 24].

Proof of Lemma 4.1. First, the cases (Ii), (Iii), (IIi), and (IIiii) can be established
by a standard calculation almost identical to the one carried out in the proof of
Proposition 3.1 of [32].

The cases (Iiii) and (IIii) are clearly similar, and so we work through the details
only for (Iiii). We begin by noting that the m slow modes {φ−j (x; 0)}2m

j=m+1 each

correspond with a solution that neither grows nor decays as x→ −∞. We let Φ0(x)
denote the m×m matrix constructed by taking each of these modes as a column.
Looking for solutions of the form

φ(x;λ) = Φ0(x)w(x;λ),
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and using the decay rates in (C1)-(C2), we find that w solves

−M(x)ΓΦ0(x)w
′′′′ +M(x)B(x)Φ0(x)w

′′ − λΦ0(x)w

= O(e−η|x|)w′ + O(e−η|x|)w′′ + O(e−η|x|)w′′′.
(54)

Since M(x) is uniformly positive definite and Γ is positive definite, and since Φ0(x)
is invertible by construction, we can multiply this equation by Φ0(x)

−1Γ−1M(x)−1

and consider asymptotic limits of the coefficient matrices to obtain the form

−w′′′′ + Φ−−1

0 Γ−1B−Φ−
0 w

′′ − λΦ−−1

0 Γ−1M−1
− Φ−

0 w

= O(e−η|x|)w′ + O(e−η|x|)w′′ + O(e−η|x|)w′′′,
(55)

where Φ−
0 := Φ0(−∞). We set vj = ∂j−1w, j = 1, . . . , 4, and obtain the first order

system

v′ = A
−
0 (λ)v + E0(x;λ)v,

where

A
−
0 (λ) =









0 I 0 0
0 0 I 0
0 0 0 I

−λΦ−−1

0 Γ−1M−1
± Φ−

0 0 Φ−−1

0 Γ−1B±Φ−
0 0









,

and

E0(x;λ) =









0 0 0 0
0 0 0 0
0 0 0 0

λO(e−α|x|) O(e−α|x|) O(e−α|x|) O(e−α|x|)









.

Here, we recall that α = min{αB, αM} (see (C1) and (C2)). The eigenvalues of
A

−
0 (λ) are precisely the same as for A−(λ) (i.e., the {µ−

j (λ)}4m
j=1), while the eigen-

vectors are

v−j =













Φ−−1

0 r±j
µ±

j Φ−−1

0 r±j
(µ±

j )2Φ−−1

0 r±j
(µ±

j )3Φ−−1

0 r±j













.

Let µ−
j (λ) denote any slow decay rate for x < 0 (i.e., j ∈ {2m+1, . . . , 3m}), and

set v = eµ−

j (λ)xz, so that

z′ = (A−
0 (λ) − µ−

j (λ)I)z + E0(x;λ)z. (56)

Let η̄ > 0 be any constant so that η̄ < α. Fix, in addition, constants η1 and η2
so that η̄ < η1 < η2 < α. Let P0 denote a projection operator projecting vectors
in R4m onto the eigenspace spanned by the eigenvectors of A

−
0 that are associated

with eigenvalues µ̃ so that

Re(µ̃) < Re(µ−
j ) + η2,

and let Q0 denote a projection operator projecting vectors in R4m onto the eigen-
space spanned by the eigenvectors of A

−
0 that are associated with eigenvalues µ̃ so

that

Re(µ̃) ≥ Re(µ−
j ) + η2 > Re(µ−

j ) + η1.
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Clearly, we have that for any v ∈ Rm, v = P0v +Q0v. Integrating, we find

z(x;λ) = T v := v−j (λ) +

∫ x

−∞
e(A

−

0
(λ)−µ−

j (λ)I)(x−y)P0E0(y;λ)z(y;λ)dy

−
∫ −M

x

e(A
−

0
(λ)−µ−

j (λ)I)(x−y)Q0E0(y;λ)z(y;λ)dy.

(57)

The operator T is easily shown to be a contraction on L∞(−∞,−M) (see p. 780 of
[32]), and so a standard iteration confirms that z ∈ L∞(−∞,−M). The important
point here is that

E0(y;λ)v
−
j (λ) =









0
0
0

O(|λ1/2|)O(e−α|y|)









.

In particular, the error is uniformly O(|λ1/2|). In this way, we find

z(x;λ) = v−j (λ) +
√
λO(e−η̄|x|),

and consequently

vj(x;λ) = eµ−

j (λ)x
(

v−j (λ) +
√
λO(e−η̄|x|

)

.

Finally,

φ−j (x;λ) = Φ−
0 (x)vj(x;λ) = Φ0(x)e

µ−

j (λ)x
(

Φ−−1

0 r−j +
√
λO(e−η̄|x|)

)

.

Proceeding in exactly the same way for the growth rate µ−
4m+1−j = −µ−

j , we can

construct a solution of the eigenvalue problem (43) that, for λ 6= 0, grows as x →
−∞,

ψ̄−
4m+1−j(x;λ) = Φ0(x)e

−µ−

j (λ)x
(

Φ−−1

0 r−j +
√
λO(e−η̄|x|)

)

.

For j = 2m+ 1, . . . , 3m (and so for 4m+ 1 − j ∈ {m+ 1, . . . , 2m}), set

ψ−
4m+1−j(x;λ) :=

1

−µ−
j (λ)

(

ψ̄−
4m+1−j(x;λ) − φ−j (x;λ)

)

=
Φ0(x)

−µ−
j (λ)

(

(e−µ−

j (λ)x − eµ−

j (λ)x)Φ−−1

0 r−j +
√
λOe−η̄|x|

)

.

(58)

We now obtain the claimed estimate on ψ−
4m+1−j(x, λ) by expanding Φ0(x) as

Φ0(x) = Φ−
0 + O(e−η̄|x|) and observing that

O(e−η̄|x|)
(

e−µ−

j (λ)x − eµ−

j (λ)x
)

=
√
λO(e−η|x|),

for any η > 0 so that η < η̄.
The derivative estimates are obtained in a similar manner from the definition of

ψ−
4m+j−1(x;λ) and the derivative estimates on φ−j and ψ̄−

4m+j−1.

Remark 5. Since ū′(x) is a solution of the eigenvalue problem (43) with λ = 0
there exist constants {e−j }2m

j=m+1 and {e+j }m
j=1 so that

2m
∑

j=m+1

e−j φ
−
j (x; 0) = ū′(x) =

m
∑

j=1

e+j φ
+
j (x; 0).
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By subtracting away slow-decaying modes, we can choose the φ±j , without changing

our stated estimates, so that there exist integers J− ∈ {m+ 1,m+ 2, . . . , 2m} and
J+ ∈ {1, 2, . . . ,m} so that

φ−J−(x; 0) = ū′(x) = φ+
J+(x; 0).

In some cases it’s convenient to take the convention J− = 2m and J+ = 1, but we
must keep in mind that this changes our labeling in Lemma 4.1.

It’s clear from our expressions for {µ±
j (λ)} and {r±j (λ)} that while the fast

eigenvalue-eigenvector pairs are analytic in λ the slow eigenvalue-eigenvector pairs
are not. We see from the discussion leading up to (51) that these slow rates are

analytic as functions of ρ :=
√
λ. This analyticity and its consequences will be

important in our analysis of the Evans function, and we summarize some useful
observations in the following two lemmas.

Lemma 4.2. Let Conditions (C1) and (C2) hold, along with (H4), and let the
functions {φ±j (x;λ)}2m

j=1 and {ψ±
j (x;λ)}2m

j=1 be as in Lemma 4.1. Let {φ̄±j (x; ρ)}2m
j=1

and {ψ̄±
j (x; ρ)}2m

j=1 denote functions obtained by formally replacing
√
λ with ρ in the

expressions for {φ±j (x;λ)}2m
j=1 and {ψ±

j (x;λ)}2m
j=1. Then the functions {φ̄±j (x; ρ)}2m

j=1

and {ψ̄±
j (x; ρ)}2m

j=1 are analytic in ρ in a neighborhood of ρ = 0, and for the operators

T1φ := M(x)(−Γφ′′ +B(x)φ)′

T2φ := −Γφ′′ +B(x)φ
(59)

we have the following relations:

(I) For all modes {φ±j }2m
j=1 we have

T1φ̄
±
j (x; 0) = 0.

(II) For x ≤ 0

(i) For j = 1, . . . ,m (slow modes),

T2φ̄
−
j (x; 0) = B−r

−
2m+j(0);

(ii) For j = m+ 1, . . . , 2m (fast modes),

T2φ̄
−
j (x; 0) = 0;

(III) For x ≥ 0

(i) For j = 1, . . . ,m (fast modes),

T2φ̄
+
j (x; 0) = 0;

(ii) For j = m+ 1, . . . , 2m (slow modes),

T2φ̄
+
j (x; 0) = B+r

+
j (0).

Proof of Lemma 4.2. If we write the eigenvalue problem (43) in terms of ρ and the
φ̄±j we have

(

M(x)(−Γ(φ̄±j )′′ +B(x)φ̄±j )′
)′

= ρ2φ̄±j . (60)

We set ρ = 0 and integrate once to obtain

T1φ̄
±
j (x; 0) = c±j ,
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for constants c±j . We observe from the estimates of Lemma 4.1 that ∂xφ̄
±
j (x; 0) goes

to 0 as x → ±∞, so we find in these limits that c±j = 0 for all j = 1, 2, . . . , 2m.

This establishes (I).
We now have T1φ̄

±
j (x; 0) = 0 for all modes, and since M(x) is invertible for all

values of x this implies

T2φ̄
±
j (x; 0) = d±j ,

for new constants d±j . If we now take limits as x→ ±∞ we find that for fast modes

d±j = 0, while for slow modes

d±j = lim
x→±∞

B(x)φ̄±j (x; 0).

Claims (II) and (III) are immediate now from the estimates of Lemma 4.1.

In the next lemma we gather useful relations regarding derivatives of the modes
with respect to ρ.

Lemma 4.3. Under the assumptions of Lemma 4.2 and using the notation of that
lemma, we have the following:

(I) For x ≤ 0

(i) For j = 1, . . . ,m (slow modes),

T1(∂ρφ̄
−
j )(x; 0) = M−B−

r−2m+j(0)
√

β−
m+1−j

=
√

β−
m+1−jr

−
2m+j(0);

(ii) For j = m+ 1, . . . , 2m (fast modes),

∂ρφ̄
−
j

∣

∣

∣

ρ=0
= 0

and for j = J− we also have

T1∂ρρφ̄J−(x; 0) = 2(ū(x) − u−),

where J− is as in Remark 5.
(II) For x ≥ 0

(i) For j = 1, . . . ,m (fast modes),

∂ρφ̄
+
j

∣

∣

∣

ρ=0
= 0

and for j = J+ we also have

T1∂ρρφ̄J+(x; 0) = −2(u+ − ū(x)),

where J+ is as in Remark 5.
(ii) For j = m+ 1, . . . , 2m (slow modes),

T1∂ρφ̄
+
j (x; 0) = −M+B+

r+j (0)
√

β+
j−m

= −
√

β+
j−mr

+
j (0).

Proof of Lemma 4.3. We begin with the fast modes, which are analytic in λ and
so are analytic as functions of ρ2. The first parts of claims (Iii) and (IIi) follow
immediately from this analyticity.
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We take two derivatives of the eigenvalue equation (60) with respect to ρ, and
set ρ = 0. For the particular modes φ̄±J± this gives

(

M(x)(−Γ((∂ρρφ̄
±
J±)′′(x; 0) +B(x)∂ρρφ̄

±
J±(x; 0))′

)′
= 2ū′(x).

The second part of Claim (Iii) follows from integration of the equation for φ−J−

on (−∞, x], while the second part of Claim (IIi) follows from integration of the
equation for φ+

J+ on [x,∞).
For the slow modes, we take a single ρ-derivative of the eigenvalue equation (60)

and set ρ = 0. This gives

T1∂ρφ̄
±
j (x; 0) = c±j , (61)

for constants c±j . We will evaluate c±j in each case by taking the limit as x→ ±∞.
In order to compute

lim
x→±∞

(∂ρφ̄
±
j )′(x; 0),

(here, prime denotes differentiation with respect to x) we first observe from Lemma
4.1 that

∂xφ̄
−
j (x; ρ) = e

( ρ√
β
−
m+1−j

+O(ρ3))x

×
(

(
ρ

√

β−
m+1−j

+ O(ρ3))(r−2m+j(0) + O(ρ2)) + O(e−η|x|)
)

,
(62)

where we have used analyticity to expand (analytic extensions of) µ−
2m+j and r−2m+j

in powers of ρ. We now take a derivative of (62) with respect to ρ and set ρ = 0.
This gives

∂xρφ̄
−
j (x; ρ)

∣

∣

∣

ρ=0
=

r−2m+j(0)
√

β−
m+1−j

+ O(e−η|x|),

from which we immediately see

lim
x→−∞

(∂ρφ̄
±
j )′(x; 0) =

r−2m+j(0)
√

β−
m+1−j

.

Likewise, if we start with ∂2
xφ̄

−
j (x; ρ), we find

lim
x→−∞

(∂ρφ̄
±
j )′′(x; 0) = 0,

and (Ii) now follows by taking x → −∞ in (61). Claim (IIii) can be established
similarly.

5. Analysis of the Evans Function. We note at the outset that, for notational
convenience, we will make two notational changes for this and the following section.
First, we will work with ODE modes depending on ρ, but we will drop the bar
notation from Section 4. Second, we will take the index convention

φ−2m(x; 0) = ūx(x) = φ+
1 (x; 0). (63)

To be clear, this generally will not be in agreement with the estimates of Lemma
4.1, and in principle requires an entirely new labeling scheme. We will see, however,
that the present analysis only needs to distinguish between fast and slow modes, and
the range of indices for this dichotomy will not be changed in the new convention.
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We will need to specify a variety of vectors and matrices in terms of the φ±j , and
we summarize our notation for these here. We will set:

w±
j =

(

φ±j
(φ±j )′

)

Φ±
j =









φ±j
(φ±j )′

(φ±j )′′

(φ±j )′′′









Φ± = (Φ±
1 ,Φ

±
2 , . . . ,Φ

±
2m). (64)

We note that Φ± thus denotes the 4m× 2m matrix in which Φ±
j comprises the jth

column.
With this notation in place, we can write the Evans function associated with (1)

and the wave ū(x) as

Da(ρ) = det(Φ+(0; ρ),Φ−(0; ρ)). (65)

(When the Evans function is regarded as a function of λ, we will designate it D(λ)
as in most standard literature.) In this context, the Evans function is simply a
Wronskian computed with all asymptotically decaying solutions of the eigenvalue
problem (60). Our designation ofD as an Evans function, as opposed to Wronskian,
is taken because the tools we will use to analyze Da(ρ) are taken in large part from
Evans function literature. For a brief overview of this literature, and references,
see, for example, p. 771 of [20].

Since an eigenfunction of (60) must, by definition, decay at both ±∞, we are
assured that any eigenfunction is a linear combination both of the 2m modes that
decay as x → −∞ and the 2m modes that decay as x → +∞. In this way, the
Evans function clearly vanishes at all eigenvalues, and so serves as a characteristic
function for the operator L. In addition, it can often be shown that, away from
essential spectrum, the degree to which the Evans function vanishes corresponds
with the geometric multiplicity of the eigenvalue (see particularly [3, 16]). In the
current setting λ = 0 belongs to the essential spectrum, and so we don’t necessarily
expect this property to hold, and in fact since

dj

dρj
Da(ρ)

∣

∣

∣

ρ=0
= 0, j = 0, 1, . . . ,m,

(as we will verify below) we know that it does not.
In the case of Cahn–Hilliard systems (1), we have seen in Section 3 that it’s

often possible to establish that the entire spectrum must lie on the negative real
axis, including a leading eigenvalue at λ = 0. In these cases stability is determined
by the nature of the eigenvalue at λ = 0. In the remainder of this paper we will
focus on the condition

dm+1

dρm+1
Da(ρ)

∣

∣

∣

ρ=0
6= 0.

(see Condition 1). We note that it has been shown in [20] that for m = 1 this
condition is sufficient to establish nonlinear stability. The generalization of this
result to systems will be published in a companion paper [23].

Our goal in evaluating the Evans function will be to work mainly with solutions
of the twice-integrated equation

− Γφ′′ +B(x)φ = 0. (66)

It’s clear from consideration of the associated asymptotic equation that all solutions
of this equation either grow or decay at exponential rate at −∞ and likewise at +∞.
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Also, it’s clear that we have m modes that decay at each end and m that grow. In
general, we have the following useful lemma.

Lemma 5.1. Let (H0)-(H4) hold. Then the fast decay modes {φ−j (x; 0)}2m−1
j=m+1,

{φ+
j (x; 0)}m

j=2, along with φ−2m(x; 0) = ūx(x) = φ+
1 (x; 0), and a single mode ψ(x)

that grows at both ±∞ form a complete basis of solutions for (66).

Proof. Since (by our transversality assumption (H2)) ūx is the only solution to (66)
that decays at both ±∞, and since all solutions either grow or decay at exponential
rate at −∞ and likewise at +∞, we know that the modes {φ−j (x; 0)}2m−1

j=m+1 must all

grow at +∞, while the modes {φ+
j (x; 0)}m

j=2 must all grow at −∞. This provides
us with m modes that decay at −∞, m modes that decay at +∞, m − 1 modes
that grow at −∞, and m − 1 modes that grow at +∞. We complete the basis by
taking any solution to (66) that grows at both ±∞ at the two rates that are not
accounted for in the decay modes.

Our next lemma describes the behavior of the slow modes {φ−j (x; 0)}m
j=1 and

{φ+
j (x; 0)}2m

j=m+1 in terms of the fast modes. For notational convenience, we aug-

ment the notation (64) with

w(x) =

(

ψ(x)
ψ′(x)

)

.

If we regard (66) as a first order system

w±
j

′
(x; 0) =

(

0 I
Γ−1B(x) 0

)

w±
j (x; 0),

we can choose a 2m× 2m fundamental matrix

Φ̄(x) := (w+
1 (x; 0), w+

2 (x; 0), . . . , w+
m(x; 0), w−

m+1(x; 0), w−
m+2(x; 0), . . . , w(x)).

Clearly (by Abel’s formula) det Φ̄(x) is constant, and it is non-zero by assump-
tion/construction (i.e., under the assumption that ū′(x) is the only solution of (66)
that decays at both ±∞). We’ll write

det Φ̄(x) = ∆0. (67)

Lemma 5.2. Let (H0)-(H4) hold. Then:

(I) For each slow mode φ−j (x; 0), j ∈ {1, 2, . . . ,m}, after possibly (and without loss

of generality) subtracting off modes that decay at −∞ we have

w−
j (0; 0) = c−(2m)jw(0) +

m
∑

k=2

c−kjw
+
k (0; 0),

where for k = 2, . . . ,m and k = 2m

c−kj =
1

∆0

∫ 0

−∞
det Φ̄−

kj(x; 0)dx,

and Φ̄−
kj(x; 0) denotes the matrix obtained by replacing the k-th column of Φ̄(x) with

(0,−Γ−1B−r
−
2m+j(0))tr.
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(II) For each slow mode φ+
j (x; 0), j ∈ {m + 1,m + 2, . . . , 2m}, after possibly (and

without loss of generality) subtracting off modes that decay at ∞ we have

w+
j (0; 0) = c+(2m)jw(0) +

2m−1
∑

k=m+1

c+kjw
−
k (0; 0),

where for k = m+ 1, . . . , 2m− 1

c+kj = − 1

∆0

∫ ∞

0

det Φ̄+
kj(x; 0)dx,

and Φ̄+
kj(x; 0) denotes the matrix obtained by replacing the k-th column of Φ̄(x) with

(0,−Γ−1B+r
+
j (0))tr.

Remark 6. The only coefficients that will be critical for our later analysis will be
c±(2m)j, and for brevity in the expressions we will write these as simply c±j .

Proof. Let φ−j (x; 0) be any slow mode at −∞, and recall from Lemma 4.2 that

−Γφ−j
′′
(x; 0) +B(x)φ−j (x; 0) = B−r

−
2m+j(0).

If we write this as a system for w−
j (x; 0) we have the standard representation in

terms of the homogeneous basis,

w−
j (x; 0) = c−j w(x) +

m
∑

k=1

c−jkw
+
k (x; 0) +

2m−1
∑

k=m+1

c−jkw
−
k (x; 0)

+ Φ̄(x)

∫ x

0

Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

dy.

(68)

The {w−
k (x; 0)}2m−1

k=m+1 and w+
1 (x; 0) = ūx(x) decay at exponential rate as x→ −∞,

and so we can eliminate these without loss of generality, and without changing the
estimates of Lemma 4.1. (We recall that the slow modes have not been redefined.)
Setting, for j = 1, 2, . . . , 2m,

Jj(x) =

∫ x

0

Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

dy, Jj =











J1j

J2j

...
J(2m)j











,

we have

Φ̄(x)

∫ x

0

Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

dy

=

m
∑

k=1

Jkjw
+
k (x; 0) +

2m−1
∑

k=m+1

Jkjw
−
k (x; 0) + J(2m)jw(x).

(69)

According to Cramer’s Rule, ∆0Jkj is an integral from 0 to x of the determinant of
the matrix obtained by replacing the k-th column in Φ̄(x) with

(

0
−Γ−1B−r

−
2m+j(0)

)

.
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In particular, for k = 2, . . . ,m, and k = 2m,

Jkj(x) =

∫ x

0

{Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

}kdy

=

∫ −∞

0

{Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

}kdy

−
∫ −∞

x

{Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

}kdy

=

∫ −∞

0

{Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

}kdy + O(e−η|x|),

where we have observed that if w(x) or any of the w+
k (x; 0) is replaced in Φ̄(x)

with a constant vector then the determinant of the resulting matrix will decay at
exponential rate as x → −∞, since all modes that decay at −∞ will be present,
while one mode that grows at −∞ will be omitted (and the 2m modes sum to
zero). It is important to observe here that since the vector (−Γ−1B−r

−
2m+j(0))tr is

replacing the k-th column of Φ̄, and since Φ̄ comprises a full basis of solutions to
(66), so that, in particular, the sum of rates associated with the columns in Φ̄(x) is
0 for all x, we must have that the O(e−η|x|) term in our expression for Jkj decays

at precisely the rate at which the replaced mode w+
k (x; 0) grows at −∞. In this

way, the remainder terms

O(e−η|x|)w+
k (x; 0)

in (69) do not grow as x→ −∞, and we have

Φ̄(x)

∫ x

0

Φ̄(y)−1

(

0
−Γ−1B−r

−
2m+j(0)

)

dy

=

m
∑

k=1

J−
kjw

+
k (x; 0) + J−

(2m)jw(x) +Rj(x),

(70)

where
J−

kj := lim
x→−∞

Jkj(x).

and Rj(x) does not grow as x → −∞. Comparing now (68) and (70) we see that
for each k = 2, 3, . . . ,m, and for k = 2m,

cjk = −J−
kj .

Claim (I) now follows by setting x = 0. Claim (II) is proved similarly.

5.1. The Case m = 2. In order to clarify our approach, we first analyze the specific
case m = 2. We will adopt the notation

Da(ρ) = W (φ+
1 , φ

+
2 , φ

+
3 , φ

+
4 , φ

−
1 , φ

−
2 , φ

−
3 , φ

−
4 ), (71)

where according to (63)

φ−4 (x; 0) = ūx(x) = φ+
1 (x; 0),

and we recall that the fast modes are φ+
1 , φ+

2 , φ−3 and φ−4 . Clearly, Da(0) = 0.
In computing D′

a(0), we sum eight Wronskian determinants, each of the form (71)
with a ρ derivative on a single term. If this derivative falls on a slow mode then
φ−4 (x; 0) and φ+

1 (x; 0) are both still present and the determinant is zero, while if
the ρ derivative falls on a fast mode that entire column becomes zero by analyticity
(see Lemma 4.3). In this way it’s clear that D′

a(0) = 0.
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We now consider D′′
a(0). In this case, we can either have two ρ derivatives on any

individual term, or we can have one ρ derivative on each of two terms. In the former
case, if the ρ derivatives are not on either φ−4 or φ+

1 then the term is zero. In the
latter case, if the ρ derivatives don’t fall on either φ−4 or φ+

1 then the determinant is
likewise zero, while if it falls on one of these the determinant is zero by analyticity.
This leaves only the case where two ρ derivatives fall on either φ−4 or φ+

1 , and in
either of these cases ūx will replace whichever of these modes is undifferentiated. If
we combine the two terms obtained this way, we find

D′′
a(0) = W (∂ρρ(φ+

1 − φ−4 ), φ+
2 , φ

+
3 , φ

+
4 , φ

−
1 , φ

−
2 , φ

−
3 , ūx). (72)

The right-hand side of (72) is the determinant of an 8×8 matrix for which the final
two rows consist of third order x derivatives of the specified function. In the case of
undifferentiated terms, these third order derivatives can be replaced, using Lemma
4.2, with a linear combination of lower order derivatives. More precisely, we have,
in all cases,

φ±j
′′′

= Γ−1B′(x)φ±j + Γ−1B(x)φ±j
′
. (73)

In addition, if we set z = ∂ρρ(φ
+
1 − φ−4 ) and use Parts (Iii) and (IIi) from Lemma

4.3, we have

z′′′ = Γ−1B′(x)z + Γ−1B(x)z′ + 2Γ−1M(x)−1[u], (74)

where we recall [u] = u+ − u−. Using row operations, we can reduce the matrix in
(72) to one for which the last two rows in the first column are 2Γ−1M(x)−1[u], while
the last two rows in each of the remaining columns are both zero. The determinant
of such a matrix is clearly zero, and so we have D′′

a(0) = 0.
We turn now to the critical term, form = 2, D′′′

a (0). In this case we have a sum of
determinants, where the summands can be categorized into three general cases: (1)
three derivatives on a single term; (2) two derivatives on one term and one derivative
on another; and (3) one derivative on each of three different terms. In the first case,
if the three derivatives do not fall on either φ−4 or φ+

1 then the determinant is clearly
zero, while if the three derivatives do fall on φ−4 or φ+

1 then the determinant is zero
by analyticity. Likewise, in the third case if no single derivative falls on either φ−4
or φ+

1 then the determinant is clearly zero, while if a single derivative falls on either
φ−4 or φ+

1 then the determinant is zero by analyticity. For the second case, if no
derivative falls on either φ−4 or φ+

1 then the determinant is clearly zero, and if the
single derivative falls on either φ−4 or φ+

1 then the determinant is zero by analyticity.
This leaves only cases in which two derivatives fall on either φ−4 or φ+

1 . In addition,
if the single derivative falls on any fast mode the determinant is zero, leaving only
cases in which we have two ρ derivatives on either φ−4 or φ+

1 and a single ρ derivative
on one of the four slow modes. Finally, there are three ways to obtain each of these
last terms, and so we have

1

3
D′′′

a (0) = W (∂ρρ(φ
+
1 − φ−4 ), φ+

2 , ∂ρφ
+
3 , φ

+
4 , φ

−
1 , φ

−
2 , φ

−
3 , ūx)

∣

∣

∣

(x,ρ)=(0,0)

+W (∂ρρ(φ
+
1 − φ−4 ), φ+

2 , φ
+
3 , ∂ρφ

+
4 , φ

−
1 , φ

−
2 , φ

−
3 , ūx)

∣

∣

∣

(x,ρ)=(0,0)

+W (∂ρρ(φ
+
1 − φ−4 ), φ+

2 , φ
+
3 , φ

+
4 , ∂ρφ

−
1 , φ

−
2 , φ

−
3 , ūx)

∣

∣

∣

(x,ρ)=(0,0)

+W (∂ρρ(φ
+
1 − φ−4 ), φ+

2 , φ
+
3 , φ

+
4 , φ

−
1 , ∂ρφ

−
2 , φ

−
3 , ūx)

∣

∣

∣

(x,ρ)=(0,0)

(75)
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Since the analysis of each summand in (75) is almost identical to that of the
others, we will work through details only for the first. For this calculation, we will
use the notation z = ∂ρρ(φ

+
1 −φ−4 ), and in addition to (73) and (74), we recall from

Lemma 4.3 the relation

(∂ρφ
+
3 )′′′ = Γ−1B′(x)∂ρφ

+
3 + Γ−1B(x)∂ρ(φ+

3 )′ + Γ−1M(x)−1
√

β+
1 r

+
3 (0). (76)

More precisely, the assertion of (IIii) of Lemma 4.3 for φ+
3 is

T1(∂ρφ
+
3 )(x; 0) = −

√

β+
1 r

+
3 (0),

which is equivalent to (76). We use these relations along with appropriate row
reduction to simplify the final two rows in our determinant matrix. In addition, for
the fifth and sixth rows, which involve two derivatives, we use the observations that
for all fast modes, including ūx, we have

φ±j
′′
(x; 0) = Γ−1B(x)φ±j (x; 0),

while for slow modes

φ−j
′′
(x; 0) = Γ−1B(x)φ−j (x; 0) − Γ−1B−r

−
4+j(0), j = 1, 2

φ+
j

′′
(x; 0) = Γ−1B(x)φ+

j (x; 0) − Γ−1B+r
+
j (0), j = 3, 4.

After appropriate row operations, we find that the first summand on the right-hand
side of (75) is

W3 = det









∗ φ+
2 ∗ φ+

4 φ−1 φ−2 φ−3 ū′

∗ φ+
2

′ ∗ φ+
4

′
φ−1

′
φ−2

′
φ−3

′
ū′′

∗ 0 ∗ w34 w35 w36 0 0
w41 0 w43 0 0 0 0 0









, (77)

where

w41 = 2Γ−1M(0)−1[u]

w43 = Γ−1M(0)−1
√

β+
1 r

+
3 (0)

w34 = −Γ−1B+r
+
4 (0)

w35 = −Γ−1B−r
−
5 (0)

w36 = −Γ−1B−r
−
6 (0),

(78)

and the terms indicated with ∗ do not contribute to the value of the determinant.
(Our notation W3 corresponds with the summand in (75) that has a derivative on
φ+

3 ; see our discussion below of the general case for a full account of our labeling
convention.) We now exchange the second and third columns and compute a block
determinant to find

W3 = − det





φ+
2 φ+

4 φ−1 φ−2 φ−3 ū′

φ+
2

′
φ+

4

′
φ−1

′
φ−2

′
φ−3

′
ū′′

0 w34 w35 w36 0 0





× det
(

2Γ−1M(0)−1[u],Γ−1M(0)−1
√

β+
1 r

+
3 (0)

)

.

(79)
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Lemma 5.2 asserts that

w+
4 (0; 0) = c+4 w(0) + c+43w

−
3 (0; 0)

w−
1 (0; 0) = c−1 w(0) + c−12w

+
2 (0; 0)

w−
2 (0; 0) = c−2 w(0) + c−22w

+
2 (0; 0).

We substitute these expressions into (79) and note that the expressions c+43w
−
3 (0; 0),

c−12w
+
2 (0; 0), and c−22w

+
2 (0; 0) can all be removed with column operations. In this

way, (79) becomes

W3 = − det





φ+
2 c+4 ψ(0) c−1 ψ(0) c−2 ψ(0) φ−3 ū′

φ+
2

′
c+4 ψ

′(0) c−1 ψ
′(0) c−2 ψ

′(0) φ−3
′
ū′′

0 w34 w35 w36 0 0





× det
(

2Γ−1M(0)−1[u],Γ−1M(0)−1
√

β+
1 r

+
3 (0)

)

.

(80)

Assuming now that c+4 6= 0, we use appropriate column operations to eliminate
c−1 w(0) and c−2 w(0). In this way, after an even number of column exchanges (after
6), we find

W3 = − det





φ+
2 φ−3 ū′ c+4 ψ 0 0

φ+
2

′
φ−3

′
ū′′ c+4 ψ

′ 0 0
0 0 0 −Γ−1B+r

+
4 (0) w̄35 w̄36





× 2 det(Γ−1M(0)−1) det
(

[u],

√

β+
1 r

+
3 (0)

)

,

where

w̄35 =
c−1
c+4

Γ−1B+r
+
4 (0) − Γ−1B−r

−
5 (0)

w̄36 =
c−2
c+4

Γ−1B+r
+
4 (0) − Γ−1B−r

−
6 (0).

Finally, we have, upon computing another block determinant,

W3 = −2c+4 ∆0 det(Γ−1)2 det(M(0)−1) det([u],

√

β+
1 r

+
3 (0))

× det(
c−1
c+4
B+r

+
4 (0) −B−r

−
5 (0),

c−2
c+4
B+r

+
4 (0) −B−r

−
6 (0)).

(81)

Proceeding similarly, we find

W4 = 2c+3 ∆0 det(Γ−1)2 det(M(0)−1) det([u],

√

β+
2 r

+
4 (0))

× det(
c−1
c+3
B+r

+
3 (0) −B−r

−
5 (0),

c−2
c+3
B+r

+
3 (0) −B−r

−
6 (0))

W1 = 2c+3 ∆0 det(Γ−1)2 det(M(0)−1) det([u],

√

β−
2 r

−
5 (0))

× det(
c+4
c+3
B+r

+
3 (0) −B+r

+
4 (0),

c−2
c+3
B+r

+
3 (0) −B−r

−
6 (0))

W2 = −2c+3 ∆0 det(Γ−1)2 det(M(0)−1) det([u],
√

β−
1 r

−
6 (0))

× det(
c+4
c+3
B+r

+
3 (0) −B+r

+
4 (0),

c−1
c+3
B+r

+
3 (0) −B−r

−
5 (0)).
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Combining these, we have

D′′′
a (0) = 6∆0(det Γ−1)2 detM(0)−1

×
{

− c+4 det(
c−1
c+4
B+r

+
4 −B−r

−
5 ,
c−2
c+4
B+r

+
4 −B−r

−
6 ) det([u],

√

β+
1 r

+
3 )

+ c+3 det(
c−1
c+3
B+r

+
3 −B−r

−
5 ,
c−2
c+3
B+r

+
3 −B−r

−
6 ) det([u],

√

β+
2 r

+
4 )

+ c+3 det(
c+4
c+3
B+r

+
3 −B+r

+
4 ,
c−2
c+3
B+r

+
3 −B−r

−
6 ) det([u],

√

β−
2 r

−
5 )

− c+3 det(
c+4
c+3
B+r

+
3 −B+r

+
4 ,
c−1
c+3
B+r

+
3 −B−r

−
5 ) det([u],

√

β−
1 r

−
6 )
}

,

(82)

where for notational brevity we have suppressed the evaluation of the r±j at λ = 0.

We know by construction that ∆0 6= 0 (again, under our assumption that ū′(x)
is the only solution of (66) that decays at both ±∞), and so its value doesn’t need
to be computed explicitly. In particular, if we set

I−j :=

∫ 0

−∞
det

(

ū′(x) φ+
2 (x; 0) φ−3 (x; 0) 0

ū′′(x) φ+
2

′
(x; 0) φ−3

′
(x; 0) −Γ−1B−r

−
4+j(0)

)

dx,

for j = 1, 2, and

I+
j := −

∫ ∞

0

det

(

ū′(x) φ+
2 (x; 0) φ−3 (x; 0) 0

ū′′(x) φ+
2

′
(x; 0) φ−3

′
(x; 0) −Γ−1B+r

+
j (0)

)

dx,

for j = 3, 4, so that ∆0c
−
j = I−j , j = 1, 2 and ∆0c

+
j = I+

j , j = 3, 4, we have

D′′′
a (0) = 6(det Γ−1)2 detM(0)−1

×
{

− I+
4 det(

I−1
I+
4

B+r
+
4 −B−r

−
5 ,
I−2
I+
4

B+r
+
4 −B−r

−
6 ) det([u],

√

β+
1 r

+
3 )

+ I+
3 det(

I−1
I+
3

B+r
+
3 −B−r

−
5 ,
I−2
I+
3

B+r
+
3 −B−r

−
6 ) det([u],

√

β+
2 r

+
4 )

+ I+
3 det(

I+
4

I+
3

B+r
+
3 −B+r

+
4 ,
I−2
I+
3

B+r
+
3 −B−r

−
6 ) det([u],

√

β−
2 r

−
5 )

− I+
3 det(

I+
4

I+
3

B+r
+
3 −B+r

+
4 ,
I−1
I+
3

B+r
+
3 −B−r

−
5 ) det([u],

√

β−
1 r

−
6 )
}

,

(83)

and we only need to check that the expression in brackets is non-zero.

5.2. The General Case. For m = 3, 4, . . . , the full expression for ∂m+1Da(0) has
(

2m
m−1

)

terms, and so we won’t give a complete form such as (82).
In this case, we have

φ−2m(x; 0) = ū′(x) = φ+
1 (x; 0), (84)

and we recall from Lemma 5.1 that we can construct a basis of solutions for

−Γφ′′ +B(x)φ = 0

by taking the set of solutions ū′(x), {φ−j (x; 0)}2m−1
j=m+1, and {φ+

j (x; 0)}m
j=2, (2m − 1

total) and augmenting it with a (choice of) mode ψ(x) that grows at both ±∞.
Proceeding as in our discussion of the case m = 2 we find that Da(0) = D′

a(0) =
D′′

a(0) = 0. For D′′′
a (0), we can only have a non-zero determinant if two derivatives
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fall on either φ−2m or φ+
1 , leaving only one derivative for the remaining terms. If this

remaining derivative falls on a fast mode the determinant is 0 by analyticity, while
if it falls on a slow mode we have the determinant of a 4m× 4m matrix with zeros
in the last m rows of all except possibly two columns (the differentiated columns).
For m = 3, 4, . . . , the determinant of such a matrix is clearly 0. In fact, it’s clear
that we can only possibly obtain a matrix with non-zero determinant if we have at
least one derivative on each of m different columns. Since we must have at least
two derivatives on either φ−2m or φ+

1 this means that ∂kDa(0) will certainly be 0 for
all k = 0, 1, . . . ,m. For k = m + 1 we require two derivatives on either φ−2m or φ+

1

and one derivative on each of m− 1 different slow modes. Clearly, there are
(

2m
m−1

)

different sets of m − 1 slow modes (i.e., this will be the number of summands in

D
(m+1)
a (0)), and (using multinomial coefficients) (m+1)!

2 ways to obtain each term.
We will use the notation

Wj1,j2,...,jm−1
(85)

to denote the term in D
(m+1)
a (0) for which single derivatives fall on the slow modes

φj1 , φj2 , . . . , φjm−1
. We note particularly, that since the slow modes are {φ−j }m

j=1

and {φ+
j }2m

j=m+1 these indices uniquely determine the summand under consideration
without a specification of sign. In this way, we have the summation formula

2

(m+ 1)!
D(m+1)

a (0) =

(2m)
∑

j1,j2,...,jm−1=1

Wj1,j2,...,jm−1
, (86)

where our notation
∑(2m)

j1,j2,...,jm−1=1 indicates the sum in which j1 goes from 1 to

2m, j2 goes from j1 + 1 to 2m, j3 goes from j2 + 1 to 2m, etc., and no two indices
ever agree.

As an example, we compute W45 for the case m = 3. With our notation, this is

W45 = W (∂ρρ(φ
+
1 − φ−6 ), φ+

2 , φ
+
3 , ∂ρφ

+
4 , ∂ρφ

+
5 , φ

+
6 , φ

−
1 , φ

−
2 , φ

−
3 , φ

−
4 , φ

−
5 , ū

′), (87)

evaluated at (x; ρ) = (0; 0), which we rearrange, after an odd number of column
exchanges, as

W45 = −W (ū′, φ+
2 , φ

+
3 , φ

−
4 , φ

−
5 , φ

+
6 , φ

−
1 , φ

−
2 , φ

−
3 , ∂ρφ

+
4 , ∂ρφ

+
5 , ∂ρρ(φ

+
1 − φ−6 )), (88)

again evaluated at (x; ρ) = (0; 0).
Proceeding as in the case m = 2, we find

W45 = −2c+6 det Φ̄(0) det(Γ−1)2 det(M(0)−1)

× det
(c−1
c+6
B+r

+
6 −B−r

−
7 ,
c−2
c+6
B+r

+
6 −B−r

−
8 ,
c−3
c+6
B+r

+
6 −B−r

−
9

)

× det(

√

β+
1 r

+
4 ,

√

β+
2 r

+
5 , [u]).

(89)

In principle we must likewise compute 14 more terms, but since our examples

will be taken only from the case m = 2 we omit a full expression for D
(4)
a (0) in this

case.

6. Examples. In this section we verify Condition 1 for two example cases.
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6.1. Boyer-Lapuerta Systems. We consider the Boyer-Lapuerta model (14) un-
der the conditions of Lemma 3.1, for which we have already established the ab-
sence of any positive eigenvalues. We recall, in particular, that this is the case for
m = 2, with additionally γ1 = γ2, and with F12(u1) symmetric about u1 = 1

2 (i.e.,
F12(u1) = F12(1 − u1) for u1 ∈ [0, 1]), and note that by a choice of shift (setting
ū1(0) = 1

2 ) this ensures ū′(x) is even in x.
In order to verify that ū′(x) is the only solution of (66) that decays at both

±∞, and also to compute the integrals I−1 , I−2 , I+
3 , and I+

4 we must understand, in
addition to ū′(x), the fast modes φ−3 (x; 0) and φ+

2 (x; 0), and also the growth-growth
mode ψ(x). Each of these four vector functions solves the ODE system

−γ1φ1
′′ + b11(x)φ1 + b12(x)φ2 = 0

−γ1φ2
′′ + b21(x)φ1 + b22(x)φ2 = 0,

(90)

where, according to (39), b11(x) = b22(x) and b12(x) = b21(x). We already know, by
construction, that ū′(x) is a solution of (90) with form φ2 = −φ1. By substituting
this relation into (90) we have

−γ1φ
′′
1 + (b11(x) − b12(x))φ1 = 0.

By reduction of order we have a second solution of the form

ψ1(x) = ū′1(x)

∫ x

0

1

ū′1(y)
2
dy,

which grows at ±∞.
In order to find two more linearly independent solutions of (90) we look for

solutions of the form φ1 = φ2, for which we have

− γ1φ
′′
1 + (b11(x) + b12(x))φ1 = 0. (91)

We have already seen in Lemma 3.1 that that there can be no solutions of (91) that
decay at both ±∞, so we must have one solution that decays at −∞ and grows at
+∞ and one solution that decays at +∞ and grows at −∞. We now take the first
of these to be φ−13(x; 0) and the second to be φ+

12(x; 0). In this way, we have

w−
3 (x; 0) =









φ−13(x; 0)
φ−13(x; 0)

φ−13
′
(x; 0)

φ−13
′
(x; 0)









; w+
2 (x; 0) =









φ+
12(x; 0)
φ+

12(x; 0)

φ+
12

′
(x; 0)

φ+
12

′
(x; 0)









. (92)

(To be clear, it is correct that the first two components of each of these vectors is
the same, and similarly for the final two; in what follows, we take advantage of this
structure.) In this way we have established a full basis of solutions for (90), and
so ∆0 6= 0. (Of course, it also follows that ū′(x) is the only solution of (90) that
decays at both ±∞.)

We next observe that ū1(x) = 1 − ū1(−x) (by our symmetry assumptions), and
using our relations

F12(ū1) = F (ū1, 1 − ū1, 0) = F (1 − ū1, ū1, 0),

we find that the potential

V+(x) := b11(x) + b12(x) =
1

2
F ′′

12(ū1(x)) + 2, (93)
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is even as a function of x. If φ−13(x; 0) solves (91), then we can take as a second
solution

φ+
12(x; 0) = φ−13(−x; 0). (94)

Now consider the integral

I−1 =

∫ 0

−∞
det

(

ū′(x) φ+
2 (x; 0) φ−3 (x; 0) 0

ū′′(x) φ+
2

′
(x; 0) φ−3

′
(x; 0) −Γ−1B−r

−
5 (0)

)

dx. (95)

Since det(w+
1 (x; 0), w+

2 (x, 0), w−
3 (x; 0), w(x)) 6= 0 by construction, we know that the

four vectors in the integrand for I−1 can only be linearly dependent at a value x0 if
there exist constants α1, α2, and α3, depending on x0, so that

(

0
−Γ−1B−r

−
5 (0)

)

= α1w
+
1 (x0; 0) + α2w

+
2 (x0; 0) + α3w

−
3 (x0; 0). (96)

The first two equations in this relation are

0 = α1ū
′
1(x0) + α2φ

+
12(x0; 0) + α3φ

−
13(x0; 0)

0 = −α1ū
′
1(x0) + α2φ

+
12(x0; 0) + α3φ

−
13(x0; 0),

(97)

and since ū′1(x0) 6= 0 by monotonicity, we must have α1 = 0. The third and fourth
equations are now

{−Γ−1B−r
−
5 (0)}1 = α2φ

+
12

′
(x0; 0) + α3φ

+
13

′
(x0; 0)

{−Γ−1B−r
−
5 (0)}2 = α2φ

+
12

′
(x0; 0) + α3φ

+
13

′
(x0; 0),

(98)

which can only hold if

{−Γ−1B−r
−
5 (0)}1 = {−Γ−1B−r

−
5 (0)}2. (99)

This last condition is independent of x0, so we can conclude that if (99) does not
hold then the integrand defining I−1 is never zero, and so I−1 6= 0. On the other
hand, if (99) holds then equations (97) and (98) give the system

0 = α2φ
+
12(x0; 0) + α3φ

−
13(x0; 0)

{−Γ−1B−r
−
5 (0)}1 = α2φ

+
12

′
(x0; 0) + α3φ

−
13

′
(x0; 0),

and if {−Γ−1B−r
−
5 (0)}1 6= 0 this system is uniquely solvable for α2 and α3, not

both zero, since φ+
12(x; 0) and φ−13(x; 0) are linearly independent solutions of (91).

In this way, we see that (96) holds for α1, α2, and α3, not all zero, and so I−1 = 0.
Proceeding similarly for I−2 , I+

3 , and I+
4 , we have the conditions

{Γ−1B−r
−
2m+j(0)}1 = {Γ−1B−r

−
2m+j(0)}2 ⇔ I−j = 0, j = 1, 2

{Γ−1B+r
+
j (0)}1 = {Γ−1B−r

+
j (0)}2 ⇔ I+

j = 0, j = 3, 4.
(100)

We next observe, by linearity, that

I−1 + I−2 =

∫ 0

−∞
det

(

ū′(x) φ+
2 (x; 0) φ−3 (x; 0) 0

ū′′(x) φ+
2

′
(x; 0) φ−3

′
(x; 0) −Γ−1B−(r−5 (0) + r−6 (0))

)

dx.

We can conclude immediately from the discussion leading up to (100) that if

{Γ−1B−(r−5 (0) + r−6 (0))}1 = {Γ−1B−(r−5 (0) + r−6 (0))}2, (101)

then I−1 + I−2 = 0.
Likewise, if

{Γ−1B+(r+3 (0) + r+4 (0))}1 = {Γ−1B+(r+3 (0) + r+4 (0))}2, (102)
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the I+
3 + I+

4 = 0.
Finally, in order to relate I−1 to I+

3 and I−2 to I+
4 we use (94), and our assumption

of endstate symmetry,

B+r
+
3 (0) = B−r

−
5 (0)

B+r
+
4 (0) = B−r

−
6 (0).

(103)

We compute

I+
3 = −

∫ ∞

o

det

(

ū′(x) φ+
2 (x; 0) φ−3 (x; 0) 0

ū′′(x) φ+
2

′
(x; 0) φ−3

′
(x; 0) −Γ−1B+r

+
3 (0)

)

dx

= −
∫ ∞

0

det

(

ū′(−x) φ−3 (−x; 0) φ+
2 (−x; 0) 0

−ū′′(−x) −φ−3
′
(−x; 0) −φ+

2

′
(−x; 0) −Γ−1B+r

+
3 (0)

)

dx.

(104)

We now perform a single column exchange, and make the substitution y = −x to
find

I+
3 = −

∫ 0

−∞
det

(

ū′(x) φ+
2 (x; 0) φ−3 (x; 0) 0

ū′′(x) φ+
2

′
(x; 0) φ−3

′
(x; 0) −Γ−1B+r

+
3 (0)

)

dx.

In the event of endstate symmetry (103), we have, by comparison with (95),

I+
3 = −I−1 and I+

4 = −I−2 .

We summarize our observations regarding this special case in Lemma 6.1.

Lemma 6.1. For the Boyer-Lapuerta system (14) with m = 2, suppose:

1. Equation assumptions

F (u1, 1 − u1, 0) = F (1 − u1, u1, 0)

γ1 = γ2

2. Endstate assumptions

{Γ−1B+r
+
j (0)}1 6= {Γ−1B+r

+
j (0)}2, j = 3, 4

{Γ−1B+(r+3 (0) + r+4 (0))}1 = {Γ−1B+(r+3 (0) + r+4 (0)}2

B+r
+
3 (0) = B−r

−
5 (0) and B+r

+
4 (0) = B−r

−
6 (0).

Then

D′′′
a (0) = −12(detΓ−1)2 det(M(0)−1)I+

4 det(B+) det(r+3 (0), r+4 (0))

× det([u],

√

β+
1 r

+
3 (0) +

√

β+
2 r

+
4 (0) +

√

β−
2 r

−
5 (0) +

√

β−
1 r

−
6 (0)).

Moreover, the top line in this expression for D′′′
a (0) is non-zero, so spectral stability

is entirely determined by the determinant on the second line.

Proof. The proof of Lemma 6.1 has mostly been carried out in the discussion leading
up to it. The last step consists simply in substituting the relations I−1 = −I−2 ,
I+
3 = −I+

3 , I+
3 = −I−1 , and I+

4 = −I−2 into (83).
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6.2. Example case. As an example case, let’s take, for simplicity, the Boyer-
Lapuerta model (14) with m = 2, γ0 = γ1 = γ2 = γ3 = 1, and M̃(u) ≡ 1. That is,
our equations are

ujt =
(

− ujxx +

3
∑

i=1

(Fuj
(u) − Fui

(u))
)

xx
, j = 1, 2,

u3 = 1 − u1 − u2.

(105)

We take the bulk free energy function

F (u1, u2, u3) =
1

2
u2

1(u2 + u3)
2 +

1

2
u2

2(u1 + u3)
2 +

1

2
u2

3(u1 + u2)
2. (106)

In this case, we know from (30) that each component of ū(x) solves

−ūjxx
+

3

2
F ′

12(ūj) = 0,

where

F12(ū1) = F (ū1, 1 − ū2, 0) = ū2
1(1 − ū1)

2.

Clearly, ū1(x) solves

−ū1xx
+ 3ū1(1 − ū1)(1 − 2ū1) = 0,

and we find by direct calculation that if we fix a shift by setting ū1(0) = 1
2 then

ū1(x) =
1

1 + e
√

3x
. (107)

By construction, we take ū2(x) = 1 − ū1(x), and

[u] = u+ − u− =

(

−1
1

)

. (108)

If we linearize about ū(x) and write the resulting eigenvalue equation in our
standard form

(

M(ū)(−Γφxx +B(x)φ)x

)

x
= λφ,

we have Γ = I, M(u) ≡ I, and according to (42)

B(x) =

(

F ′′
12(ū1) + 1 − 1

2F
′′
12(ū1) + 1

− 1
2F

′′
12(ū1) + 1 F ′′

12(ū1) + 1

)

. (109)

Here, F ′′
12(ū1) = 2 − 12ū1 + 12ū2

1, so

B± =

(

3 0
0 3

)

. (110)

Clearly, this is a case in which the eigenvalues of Γ−1B± andM±B± are not distinct,
and so we must verify the structure of our eigenvalues µ(λ) directly. A very brief
calculation shows that

(µ4 − 3µ2 − λ)2 = 0,

and so the fast modes are

µ(λ) = ±
√

3

2
(1 +

√

1 − 4λ/9),

while the slow modes are

µ(λ) = ±
√

3

2
(1 −

√

1 − 4λ/9).
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We can conclude from these expressions that the fast modes are analytic in λ and
that the slow modes can be written in the form

√
λh(λ), where h is analytic in λ.

We have β±
1 = β±

2 = 3, and by convenient choice

r+3 (0) = r−5 (0) =

(

1
0

)

; r+4 (0) = r−6 (0) =

(

0
1

)

.

(See Remark 3 for clarification on the indices.)
We now have all the information we require in order to verify stability. We need

only compute

det([u],

√

β+
1 r

+
3 (0) +

√

β+
2 r

+
4 (0) +

√

β−
2 r

−
5 (0) +

√

β−
1 r

−
6 (0))

= det

(

−1 2
√

3

1 2
√

3

)

= −4
√

3 6= 0.

Combining this with Lemma 3.1, we conclude that the wave ū(x) is spectrally
stable.

6.3. Gradient Systems. In this section we combine our analysis with numerical
calculations to provide evidence for the stability of the stationary solution given in
Figure 2.1. In the general case, we will generate transition front solutions numeri-
cally, so we begin by briefly outlining this calculation.

Beginning with

− Γū′′ + f(ū) = 0, (111)

we observe that the linearization of f about the endstates is simply

f(ū) ≈ f ′(u±)(ū− u±).

We set

w̄±(x) :=

(

ū− u±
ū′(x)

)

⇒ dw̄±

dx
≈ Ā±w̄

±, (112)

where

Ā± =

(

0 I
Γ−1B± 0

)

; x→ ±∞, (113)

and as usual B± := f ′(u±). Recalling our notation for the eigenvalues of Γ−1B±,
σ(Γ−1B±) = {ν±j }m

j=1, we can express the eigenvalues {µ̄±
j }2m

j=1 of Ā± as

µ̄±
j = −

√

ν±m+1−j ; j = 1, . . . ,m,

µ̄±
m+j =

√

ν±j ; j = 1, . . . ,m,
(114)

the indices specified so that j < k ⇒ µ̄±
j ≤ µ̄±

k .

We let r̄±j denote the eigenvector of Γ−1B± associated with (µ̄±
j )2, so that for

j = 1, 2, . . . ,m

Γ−1B±r̄
±
j = ν±m+1−j r̄

±
j

Γ−1B±r̄
±
m+j = ν±j r̄

±
m+j .

(115)

Clearly, r̄±j = r̄±2m+1−j , j = 1, . . . , 2m. The eigenvectors of Ā±
j are

v̄±j =

(

r̄±j
µ̄±

j r̄
±
j

)

, j = 1, . . . , 2m. (116)
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Asymptotically, we can express w̄− as a linear combination of the decay modes

{e
q

ν−

j x
v̄−m+j}m

j=1, while we can express w̄+ as a linear combination of the decay

modes {e−
q

ν+

m+1−jx
v̄+

j }m
j=1. In this way we expect

(

ū− u−
ū′(x)

)

=

m
∑

j=1

s−j e

q

ν−

j x

(

r̄−m+j
√

ν−j r̄
−
m+j

)

(

ū− u+

ū′(x)

)

=

m
∑

j=1

s+j e
−

q

ν+

m+1−jx

(

r̄+j

−
√

ν−m+1−j r̄
+
j

)

.

(117)

In order to construct ū(x) approximately, we solve the boundary value problem
(

ū
ū′

)′
=

(

ū′

Γ−1f(ū)

)

,

subject to the boundary conditions
(

ū(−R)
ū′(−R)

)

=

(

u−
0

)

+
m
∑

j=1

s−j e

q

ν−

j (−R)

(

r̄−m+j
√

ν−j r̄
−
m+j

)

(

ū(R)
ū′(R)

)

=

(

u+

0

)

+
m
∑

j=1

s+j e
−

q

ν+

m+1−jx

(

r̄+j

−
√

ν−m+1−j r̄
+
j

)

,

(118)

for some suitably large constant R. In particular, we have a system of 2m first
order equations with 4m boundary conditions, but with additionally 2m parameters
{s±j }m

j=1. Of course the {s±j }m
j=1 are not uniquely determined, and correspond with

a particular choice of shift. For the sake of expediency, we solve this system with
MATLAB’s built-in solver bvp4c.

As an example, we consider (1) with M ≡ I, Γ = I, and f(u) = F ′(u), where

F (u1, u2) = u2
1u

2
2 + u2

1(1 − u1 − u2)
2 + u2

2(1 − u1 − u2)
2.

In this case

Fu1
(u1, u2) = 2u1u

2
2 + 2u1(1 − u1 − u2)

2 − 2(u2
1 + u2

2)(1 − u1 − u2)

Fu2
(u1, u2) = 2u2

1u2 + 2u2(1 − u1 − u2)
2 − 2(u2

1 + u2
2)(1 − u1 − u2),

and so the system for ū(x) is

ū′′1(x) = 2ū1ū
2
2 + 2ū1(1 − ū1 − ū2)

2 − 2(ū2
1 + ū2

2)(1 − ū1 − ū2)

ū′′2(x) = 2ū2
1ū2 + 2ū2(1 − ū1 − ū2)

2 − 2(ū2
1 + ū2

2)(1 − ū1 − ū2).

Writing this as a first order system, we find

B− =

(

2 2
2 4

)

; B+ =

(

4 2
2 2

)

, (119)

with eigenvalues

ν±1 = 3 −
√

5; ν±2 = 3 +
√

5.

The relevant eigenvectors are

r̄−3 =

(

1
1−

√
5

2

)

; r̄−4 =

(

1
1+

√
5

2

)

r̄+1 =

(

1
−1+

√
5

2

)

; r̄+2 =

(

1

− 1+
√

5
2

)

.
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With these specifications, we carry out the program outlined above and compute
the wave ū(x) depicted in Figure 2.1.

We find the scaling coefficients to be c−1 = −.2014, c−2 = −1.0567, c+1 = 6.7719,
c+2 = −4.9098× 103, though in this case the values c−2 and c+2 are irrelevant (due to
integration tolerances) because of the exponentially small multipliers. The impor-
tant point is the suggestion that the wave is principally a connection between the
slowest decaying fast modes.

In order to verify our spectral condition D′′′
a (0) 6= 0, we must compute I−1 , I−2 ,

I+
3 , and I+

4 . In this case, we will make the computations by numerically evaluating
the two fast modes φ−3 (x; 0) and φ+

2 (x; 0). These modes both solve the ODE system

− φ′′ +B(x)φ = 0, (120)

and its first-order form

w′ = A(x)w; A(x) =

(

0 I
B(x) 0

)

, (121)

where B(x) = F ′′(ū(x)), and

∂2F

∂u2
1

(ū) = 2ū2
2 + 2(1 − ū1 − ū2)

2 − 8ū1(1 − ū1 − ū2) + 2(ū2
1 + ū2

2)

∂2F

∂u1u2
(ū) = 4ū1ū2 − 4(ū1 + ū2)(1 − ū1 − ū2) + 2(ū2

1 + ū2
2)

∂2F

∂u2
2

(ū) = 2ū1
2 + 2(1 − ū1 − ū2)

2 − 8ū2(1 − ū1 − ū2) + 2(ū2
1 + ū2

2).

Since the derivative ū′(x) decays at the slower rate at both ±∞, we construct
w−

3 (x) and w+
2 (x) as the solutions of (120) that decay at the faster rate respectively

at −∞ and +∞. Precisely, we approximate w−
3 (x) and w+

2 (x) by solving (121) with
initial conditions

w−
3 (−R) = e

√
3+

√
5(−R)

(

1,
1

2
+

√
5

2
,

√

3 +
√

5,

√

3 +
√

5(
1

2
+

√
5

2
)
)tr

;

w+
2 (R) = e−

√
3+

√
5R
(

1,−1

2
+

√
5

2
,−
√

3 +
√

5,−
√

3 +
√

5(−1

2
+

√
5

2
)
)tr

,

where R is a suitably large constant (we took R = 10). With ū′(x), w−
3 (x), and

w+
2 (x) approximated in this way, we integrate appropriate determinants to compute

I−1 = −.0024, I−2 = −.0128, I+
3 = .1264, and I+

4 = .1044.
In order to evaluate the remaining expressions in D′′′

a (0) we recall σ(M±B±) =
{β±

j }m
j=1, and that for j = 1, 2, . . . ,m the slow mode correspondences are

(M−B− − β−
m+1−jI)r

−
2m+j(0) = 0

(M+B+ − β+
j I)r

+
m+j(0) = 0.

(122)

(See Remark 3 ) In this case, M± = I, and the B± are given in (119), giving

β±
1 = 3 −

√
5, β±

2 = 3 +
√

5, and

r−5 (0) =

(

1
1+

√
5

2

)

; r−6 (0) =

(

1
1−

√
5

2

)

; r+3 (0) =

(

1

− 1+
√

5
2

)

; r+4 (0) =

(

1
−1+

√
5

2

)

.

(123)
Finally, we use (83) to directly compute

D′′′
a (0) = 6(.7004 + 4.7941 + 4.7948 + .6986) = 65.9273,
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where the numerical terms are given respectively with the expressions in (83), and
we note both the symmetry and the rough indication of consistency.
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