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Pointwise Semigroup Methods and
Stability of Viscous Shock Waves

Kevin Zumbrun and Peter Howard

Abstract. Considered as rest points of ODE on Lp, stationary vis-
cous shock waves present a critical case for which standard semigroup
methods do not suffice to determine stability. More precisely, there is
no spectral gap between stationary modes and essential spectrum of
the linearized operator about the wave, a fact that precludes the usual
analysis by decomposition into invariant subspaces. For this reason,
there have been until recently no results on shock stability from the
semigroup perspective except in the scalar or totally compressive case
([Sat], [K.2], resp.), each of which can be reduced to the standard semi-
group setting by Sattinger’s method of weighted norms. We overcome
this difficulty in the general case by the introduction of new, pointwise
semigroup techniques, generalizing earlier work of Howard [H.1], Kapit-
ula [K.1-2], and Zeng [Ze,LZe]. These techniques allow us to do “hard”
analysis in PDE within the dynamical systems/semigroup framework:
in particular, to obtain sharp, global pointwise bounds on the Green’s
function of the linearized operator around the wave, sufficient for the
analysis of linear and nonlinear stability. The method is general, and
should find applications also in other situations of sensitive stability.

Central to our analysis is a notion of “effective” point spectrum
that can be extended to regions of essential spectrum. This turns out
to be intimately related to the Evans function, a well-known tool for the
spectral analysis of traveling waves. Indeed, crucial to our whole analy-
sis is the “Gap Lemma” of [GZ,KS], a technical result developed origi-
nally in the context of Evans function theory. Using these new tools, we
can treat general over- and undercompressive, and even strong shock
waves for systems within the same framework used for standard weak
(i.e. slowly varying) Lax waves. In all cases, we show that stability is
determined by the simple and numerically computable condition that
the number of zeroes of the Evans function in the right complex half-
plane be equal to the dimension of the stationary manifold of nearby
traveling wave solutions. Interpreting this criterion in the conserva-
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742 Pointwise Semigroup Methods and Stability of Viscous Shock Waves

tion law setting, we quickly recover all known analytic stability results,
obtaining several new results as well.
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Glossary of Symbols

{ūδ}, `: Stationary manifold of traveling waves, and its dimension `.
σ(A): Spectrum of a matrix A.

∗: Operator or matrix adjoint, or scalar complex conjugate.
t: Matrix transpose.

Resλ0
f : Residue of f(λ) at λ0.

σ(L : X): Spectrum of operator L with respect to space X (L2 default).
σess(L : X): essential spectrum of L.
σp(L : X): point spectrum of L.

Σλ0
(L : X) : Eigenspace of L at λ0 with respect to space X.

Σλ0,k(L : X) : Eigenspace of ascent k at λ0.
Ker(L : X): Kernel of L with respect to X (L2 default).

σ′p(L): Effective point spectrum of an operator L.
Σ′λ0

(L): Effective eigenspace of L at λ0.
Σ′λ0,k

(L): Effective eigenspace of ascent k at λ0.
Λ: Region of consistent splitting for L.

DL(λ): The Evans function associated with L.
Gλ(x,y): Resolvent kernel, or elliptic Green’s function of (L−λI).

Ωθ: Sector on which Gλ is meromorphic, DL analytic.
Pλ0

(x,y): Projection kernel of L at λ0.
Qλ0,k(x,y): (L−λ0I)kPλ0

(x,y).
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Pλ0
: Spectral projection of L at λ0.

Qλ0,k(x,y): (L−λ0I)kPλ0
.

G(x,t;y): Parabolic Green’s function for (d/dt−L).
S(x,t;y): Scattering component of G.
E(x,t;y): Excited component of G.
T (x,t;y): Transient component of G.
R(x,t;y): Residual component of G.

χS : Logical indicator function, 1 if statement S is true, else zero.
O(·), o(·): Uniform bound or decay with respect to the argument.

Cj+α̃: Hölder continuous jth derivative, Hölder exponent α.

C(j,k)+(α̃,β̃): Functions f with Dj
xf , Dk

t f ∈ C
0+α̃(x)∩C0+β̃(t).

(D): The Evans function condition, p. 17.

1. Introduction.

The stability of viscous shock waves has been much studied, as an issue of
obvious physical importance (see, for example, [IO, Sat, MN, G.1, KMN, L.1,
SX, LZ.1-2, JGK, FreL, K.2, L.3]). Besides its intrinsic interest, this topic is
connected to such fundamental issues in conservation laws as convergence of nu-
merical schemes, validity of matched asymptotic expansion, and convergence in
the inviscid limit [SX, GX, Y, HL]. However, to date, stability results for sys-
tems are rather isolated, depending on special structure of the shock profile. In
particular, almost all existing results for systems rely on approximate decoupling
of the linearized equations about the wave, which requires among other things
the restrictive assumptions of weak shock strength, identity viscosity matrix, and
approximately linear profile. The only (partial) exception is in the “totally com-
pressive” case, for which all characteristics enter the shock as in the scalar case
[K.2].1 Thus, present day theory is weakly nonlinear, like other small varia-
tion theories such as the Glimm difference scheme or weakly nonlinear optics
[Gl,L.4,Hu,HuK]. Yet, perhaps the most interesting cases, of nonclassical and
strong shocks, are by nature strongly nonlinear, and highly coupled [AMPZ.2].

The purpose of the present paper is to present a unified, functional analytic
approach to shock wave stability, analogous to that carried out by Sattinger
[Sat] in the scalar case, making minimal use of the details of the equations or
the shock structure. In particular, we make no special assumptions on shock
strength, form of the viscosity matrix, or type of the equations. The usual
assumptions on shock structure are replaced, following the dynamical systems
approach of, e.g. [He,AGJ], by more primary conditions on the point spectrum
of the linearized operator around the wave. These conditions can then be verified
by separate techniques, for example by energy estimate in the weak shock case,

1 In fact, the theorem stated in [K.2] is limited to the scalar case by the hypothesis that
the viscous profile be unique up to translation. However, the totally compressive case can be
easily treated by either the methods of [Sat] or [K.2], by working with the integrated equations
as in [JGK]. This would recover for example the result of [FreL] on overcompressive shocks in
the cubic model, by the argument given in Section 1.2.4 below.
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or numerically in the case of strong shocks [Br]. Recall, in the wider context
of stability of general traveling waves, that point spectrum encodes dynamics of
the inner wave structure, and essential spectrum the far field behavior [He].

The well-known difficulty with this program is that for shock waves there
is no separation between the top eigenvalue λ = 0 and the essential spectrum
of the linearized operator about the wave. The lack of a spectral gap makes
this a critical case for which standard semigroup results do not yield stability
information. Indeed, stability analysis for systems in general appears to require
pointwise estimates on the Green’s function of the linearized solution operator
[SX, LZ.1-2, L.3]. Moreover, at points such as λ = 0 that are embedded in the
essential spectrum, the point spectrum of a non-normal operator is in general
not well-defined, leaving inner shock dynamics unclear.

These issues can be avoided in the scalar case by Sattinger’s technique of
(exponentially) weighted norms [Sat], which shifts the essential spectrum to the
left to recover a spectral gap and therefore exponential decay. Though Sattinger
did not carry it out, it is easily verified that his technique applies for systems,
also, precisely in the totally compressive case considered in [K.2], that is, to
shocks for which all characteristics enter the shock as in the scalar case. However,
physical shocks, in particular the most commonly occurring case identified by
Lax, in the system case typically have at least one characteristic leaving the shock
(see, e.g. [La,Sm]).

More recently, Kapitula [K.1-2] has introduced innovative techniques to deal
directly with the difficulties of the essential spectrum, using extension of the
resolvent and a graded family of algebraically weighted norms to obtain algebraic
rates of decay in the absence of a spectral gap. However, his techniques still
apply only to the same class of (totally compressive) shocks to which Sattinger’s
method applies (see discussion, sections 1.1.4 and 1.2.2).

We overcome these difficulties in the general case by the introduction of
new, pointwise semigroup methods, by which one can obtain “hard” PDE es-
timates within the dynamical systems framework: in particular, sharp global
parabolic estimates of the type required to prove nonlinear stability. Our analy-
sis uses many of the techniques pioneered by Kapitula, in particular the idea of
extending the resolvent; however, we depart completely from the weighted norm
approach of [Sat,K.1-2,JGK]. Indeed, philosophically, our approach bears more
resemblance to the Fourier Transform techniques introduced by Zeng [Ze, LZe]
in her study of decay to constant states.

Some distinctions at a technical level: (i) Kapitula’s resolvent estimates are
intimately intertwined with the normed spaces on which he defines the resolvent,
hence do not give pointwise information. Our estimates on the resolvent kernel
reveal new (scattering) structure that is crucial for the analysis. (ii) Though
Kapitula establishes an analytic extension of the resolvent onto an open neigh-
borhood of the resolvent set, he uses only C1 extension up to the boundary,
performing all his estimates on a single, fixed contour lying in the closure of
the resolvent set (indeed, for the algebraically weighted spaces he considers, the
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resolvent is only defined up to this boundary). We, rather, use the full power
of the analytic extension, performing estimates on moving contours as in the
work of Zeng. In particular, we move our contours into the essential spectrum
to obtain optimal bounds in certain spatio-temporal regimes.

These pointwise methods lead naturally to a notion of extended, or “effec-
tive” point spectrum inside regions of essential spectrum, obeying a modified
version of the usual Fredholm theory. The effective point spectrum turns out to
be the appropriate notion from the standpoint of asymptotic behavior of PDE.
Moreover, we show that it is intimately connected with the Evans function of,
e.g. [E, J, AGJ, PW]. This, on the one hand explains the meaning of the Evans
function in regions of essential spectrum, and on the other verifies continuity of
the effective point spectrum under perturbation. The latter observation allows
the application of powerful continuation arguments to the question of stability.

We expect these techniques to be of general use in situations of sensitive
stability. Applied to the problem of shock stability, they yield a simple, and
computable necessary and sufficient condition for stability in terms of the index
of the Evans function on the unstable complex half-plane. Moreover, in the case
of stability, they give at the same time sharp rates of decay in all spatio-temporal
regimes.

The dynamical systems approach to shock stability, for general systems, was
initiated by Gardner and Zumbrun in [GZ], and we make essential use of ideas
and results therein. In particular, the Gap Lemma of the title (discovered inde-
pendently by Kapitula and Sandstede [KS]) is what makes possible the crucial
extension of the resolvent (more precisely, the resolvent kernel) for other than
the totally compressive case. The pointwise bounds we obtain here generalize
an earlier, scalar analysis carried out by Howard [H.1]. These two results, in
turn, have their roots in the Evans function methods of [Sat, AGJ, K.1-2, JGK,
PW] and the Fourier Transform analyses of [Ka, Ze, LZe, HoZ.1-2]. Finally,
the passage from linearized to nonlinear stability rests on the pointwise Green’s
function method developed in [L.2, LZ.1-2, SZ, LZe, L.3, LX]. Our analysis thus
synthesizes (and depends on) three distinct lines of research.

1.1. Background.

1.1.1. Viscous shock waves. A viscous shock wave is a traveling wave solu-
tion

(1.1) u(x,t) = ū(x− st)

of a system of viscous conservation laws

(1.2) ut + f(u)x = (B(u)ux)x; u, f ∈ Rn,
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tending as x→ ±∞ to asymptotic states

(1.3) u± = ū(±∞).

Such solutions, and equations, occur in a variety of physical contexts. Here,
we make only the assumptions:

(H0) f , B ∈ C1+α̃, α̃ > 0.

(H1) Reσ(B) > 0.

(H2) σ(f ′(u±)) real, distinct, and nonzero.

(H3) Reσ(−ikf ′(u±)− k2B(u±)) < −θk2 for all real k, some θ > 0.

(H4) There exists a solution ū of (1.1)–(1.3), nearby which the set of all solutions
connecting the same values u± forms a smooth manifold {ūδ}, δ ∈ R`.

The zeroth hypothesis gives the minimal smoothness needed to carry out
our analysis. Of the remaining, the first corresponds to strict parabolicity of
(1.2), and the second to strict hyperbolicity of the endstates u± with regard
to the corresponding inviscid equation, ut + f(u)x = 0. The third condition is
the stable viscosity matrix criterion of Majda and Pego, [MP], which loosely
speaking corresponds to L2 linearized stability of the constant states u ≡ u± as
solutions of (1.2); indeed, it is the condition obtained by Kawashima, [Ka], in
his study of decay to constant solutions. The fourth, very weak condition is the
only assumption concerning the shock profile ū.

Assumptions (H0)–(H4) are sufficiently general as to encompass an open
dense subset of known physical examples. 2 Note in particular that we make no
assumptions of hyperbolicity or Majda–Pego stability at states ū(x) along the
profile ū, but only at the end states

u± = lim
x→±∞

ū(x).

This is important in applications to nonclassical shocks occurring in multiphase
flow or Van der Waals gas dynamics [AMPZ.2, Z.4].

Substituting (1.1) into (1.2) and integrating from −∞ gives the traveling
wave ODE

(1.4) ū′ = B(ū)−1(f(ū)− sū− f(u−) + su−),

a dynamical system parametrized by (u−,s). Solutions ū correspond to orbits
between rest states u±. The following lemma proved in [MP], a generalization of
Sylvester’s Law of Inertia, asserts that u± are hyperbolic also in the ODE sense
(for an alternative proof, see Remark 2.3 in section 2). This implies exponential

2 However, several important examples lie on the boundary, see Section 1.2.5.
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approach of ū to its asymptotic states at x = ±∞, a fact that will be crucial
in our subsequent analysis. However, the inner structure of the shock can be
essentially arbitrary.

Lemma 1.1. Given (H1)–(H3), the stable/unstable manifolds of f ′(u±)
and B(u±)−1f ′(u±) have equal dimensions. In particular, B(u±)−1f ′(u±) has
no center manifold.

Corollary 1.2. Given (H0)–(H4), solutions ū of (1.4) are in C2+α̃, sat-
isfying

(1.5) Dj
x(u(x)−u±) = O(e−α|x|), α > 0, 0 ≤ j ≤ 2.

1.1.2. Orbital stability. From now on, we specialize to the case most con-
venient for analysis, of a stationary shock, s = 0. We can always reduce to this
case by the normalization x → x− st, f(u) → f(u)− su. Given a particular
solution ū of (1.1)–(1.3), we define the stationary manifold

{ūδ}; δ ∈ R`

to be the set of all solutions connecting the same u±, with ū0 = ū. By (H4), {ūδ}
forms a smooth manifold near ū; we take δ → ūδ to be a smooth parametrization
of this manifold near δ = 0.

Note that the dimension ` of the stationary manifold is always at least one
since, by translation invariance of (1.2), it must contain at least all shifts ū(x− d)
of the reference solution ū. Besides this requirement, the types of the rest points
u±, and the value 1 ≤ ` ≤ n are, again, essentially arbitrary.

Example. We display below the phase diagram for (1.4) corresponding to
an overcompressive shock of the cubic model u ∈ R2, f(u) = |u|2u, B ≡ I,
a model equation related to magnetohydrodynamics (MHD) [Fr,BH]. (Figure
reproduced from [Br] by permission of the author). In this case, the stationary
manifold is two-dimensional and can be parametrized as ūδ = ūδ2(x− δ1), where
ūδ2(0) := (0,δ2)t.

The existence of arbitrarily nearby stationary solutions ūδ precludes asymp-
totic stability of ū. The appropriate notion of stability is, rather, orbital stability,
or approach to the stationary manifold {ūδ}.

Definition 1.3. Fix a norm, ‖ · ‖, and a set A of admissible perturbations.
Then ū is orbitally stable with respect to A if u(·, t)→ {ūδ} as t→∞ whenever
u(·,0)− ū ∈ A.
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Figure 1. Shocks for the cubic model

Remark 1.4. Note that the solution u is required only to approach the
stationary manifold as a whole, and not any particular profile ūδ0 . For Lax
and overcompressive shocks, this distinction is unimportant, since the invariants
given by conservation of mass are sufficient to fix the location of the solution
in {ūδ}. However, in the undercompressive case they are not, and the solution
in fact appears to drift indefinitely along the stationary manifold, with position
∼ log t [Z.2].

1.1.3. The linearized equations. Linearizing (1.2) about a stationary solu-
tion ū(x) gives the system of convection–diffusion equations

(1.6) vt = Lv := (−Av)x + (Bvx)x,

where

B(x) := B(ū(x)); A(x)v := f ′(ū(x))v−B′(ū(x))vūx.

Hypotheses (H0)–(H4) induce the following consequences at the linearized
level:

(C0) A, B ∈ C0+α̃, α̃ > 0, with (A−A±), (B−B±) = O(e−α|x|) as x → ±∞,
α > 0.

(C1) Reσ(B) > 0.

(C2) σ(A±) real, distinct, nonzero.

(C3) σess(L) ⊂ {Reλ ≤ −θ(Imλ)2}∪ {Reλ ≤ −θ Imλ}, for some θ > 0.

(Note: Unless otherwise specified, σ(L) refers to L2 spectrum.)
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All of our linear results will be proved at the level of generality of (C0)–(C3),
the assumptions (H0)–(H4) entering only at the nonlinear level. Conditions
(C0)–(C2) follow in straightforward fashion. Condition (C3) follows from the
fact that, given (C0), σess(L) lies on and to the left of the rightmost boundary
of σ(L+)∪σ(L−), where

L±v := −A±vx +B±vxx

denote the limiting, constant coefficient operators approached by L as x→ ±∞,
and (by Fourier Transform calculation)

σ(L±) ≡ σess(L±) = {λ ∈ σ(−ikA±− k
2B±) : k real}.

This standard result may be found in, e.g., [He,CH], or see the calculations later
in this paper. The final step is to observe that Reσ(−ikA±− k2B±) is less than
−θ1k

2 by (H3), while Imσ(−ikA±− k2B±) is at most of order k for k bounded,
k2 for k large.

Note that the tangent manifold, Span{∂ūδ/∂δj}, of {ūδ} at ū consists of
stationary solutions of (1.6), or equivalently

(1.7) Span{∂ūδ/∂δj} ⊂ Ker(L).

Just as for the nonlinear equations, this precludes asymptotic stability. Instead,
we study linearized orbital stability, defined analogously to Definition 1.3 as
approach to the tangent manifold.

Definition 1.5. Fix a norm, ‖ · ‖, and a set A of admissible perturbations.
Then ū is linearly orbitally stable with respect to A if v(·, t) → Span{∂ūδ/∂δj}
as t→∞ whenever v(·,0) ∈ A, where v is the solution of (1.6).

1.1.4. The pointwise Green’s function method. A fundamental difficulty
in the study of stability of viscous shock waves is the accumulation at the imag-
inary axis, (C3), of the essential spectrum of the linearized operator L, that is,
the lack of a spectral gap between stationary and time-decaying modes of (1.6).
From the dynamical systems viewpoint, considering (1.2) as an ODE on an ap-
propriate Banach space, this means that {ūδ} is a nonhyperbolic rest manifold for
which standard semigroup methods do not yield stability. Indeed, as is familiar
from finite-dimensional ODE, this is a critical case in which one can conclude
neither stability nor instability without further investigation. Moreover, stabil-
ity if it holds is at algebraic rather than exponential rate. Of course the type of
nonhyperbolicity considered here, being entirely connected with essential spec-
trum, has no counterpart in finite-dimensional ODE, and the resulting, purely
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PDE phenomena must be taken into account in the analysis as well. Recall that
essential spectrum is associated with far-field behavior.

In the scalar case, and more generally for “totally compressive” systems with
the property that all signals are convected inward toward the shock, stability can
be successfully treated by the weighted-norm semigroup methods of [Sat, K.1-2,
JGK]. This is easily understood at a heuristic level; indeed, the basic idea goes
back to the first scalar analysis by Il’in and Oleinik [IO]. Given an increasing
weight W (|x|), it is clear that signals convecting inward at rate not less than
a will decay in a W -weighted norm ‖f(·)‖W := ‖f(·)W (| · |)‖∞ at roughly rate
supxW (|x|)/W (|x|+ at). Thus, the exponentially weighted norms W ∼ eθ|x| of
[Sat] lead to exponential decay

‖v(t)‖W
‖v(0)‖W

∼ e−aθt.

Similarly, for the algebraically weighted norms ‖f‖k := ‖f(x)(1 + |x|)k‖∞ of
[K.1-2, JGK], one expects algebraic decay

‖v(t)‖k
‖v(0)‖k+2

∼ sup
x

(1 + |x|)k

(1 + |x|+ at)k+2
∼ (1 + t)−2,

as indeed is the case. (Note: the rate (1 + t)−1 found in [K.1-2, JGK] is suf-
ficient but not optimal [H.2]). However, the same reasoning shows that these
methods are unsuited for the treatment of standard systems possessing an out-
going mode. For, weights must be bounded from below for technical reasons,
specifically to close a nonlinear analysis. Thus, outgoing modes will appear to
grow in a weighted norm, or at best remain constant. The semigroup analyses
of [Sat, K.1-2, JGK] take into account only the dominant effect of convection in
the far-field behavior, whereas outgoing modes decay rather from the effects of
diffusion.

Analysis for general systems has proceeded instead by direct methods, by-
passing spectral information and obtaining estimates on the solution by other
means, for example, the characteristic–weighted-energy methods of [G.1, MN,
KMN, L.1, SX]. These take account of convection through the weighting, but
also diffusion through energy estimates. The most recent approach, and the one
that will be important for us here, is the pointwise Green’s function method de-
veloped in [L.2, LZ.1-2, SZ, LZe, L.3, LX], which in principle takes account of
all information about far-field behavior. We describe this method below:

Setting u = ū+ v, we obtain from (1.2)–(1.6) the perturbation equation

(1.8) vt−Lv = Q(v,vx)x,
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where Q is a quadratic order source term. By Duhamel’s principle,

v(·, t) = eLtv(·,0) +

∫ t

0

eL(t−s)Q(v,vx)x(·,s)ds(1.9)

=

∫
G(·, t;y)v(y,0)dy+

∫ t

0

∫
Gy(·, t− s;y)Q(v,vx)(y,s)dyds,

where G(x,t;y) is the Green’s function for (1.6). To simplify the discussion, let

B ≡ constant,

so that Q = Q(v).
The basic strategy of the pointwise Green’s function method is to convert

pointwise bounds on the (linear) Green’s function G into pointwise bounds on
the nonlinear solution v of (1.8). This is accomplished with the aid of a template
function (our terminology) h(x,t) with shape roughly proportional to that ex-
pected of |v|, recording rates of decay in all spatio-temporal regimes. The object
is to show that |v| maintains its proportion with h for all time, hence decays at
the predicted rates. That is, rather than show decay in a weighted norm, as in
the weighted norm and characteristic–weighted-energy methods, we try to show
boundedness with respect to a weight that enforces decay.

We illustrate the method in the simpler, model case that Ker(L) = Ø, cor-
responding to asymptotic stability. The heart of the matter lies in the following
straightforward observation.

Lemma 1.6. Let h(x,t) > 0 be such that∫
|G(x,t;y)|h(y,0)dy < Ch(x,t) and(1.10)

∫ t

0

∫
|Gy(x,t− s;y)|h(y,s)2dyds ≤ Ch(x,t),

for all x, t. If

|v(x,0)| ≤ ζh(x,0)

for ζ sufficiently small, then |v| ≤ C2ζh for all x, t, where v is the solution of
(1.8) and C2 is independent of ζ.

Proof. Let M be such that |Q(v)| ≤M |v|2, and define

ζ(t) := sup
y,s≤t

|v(y,s)|

h(y,s)
, ζ(0) = ζ.
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Then,

|v(x,t)| =

∣∣∣∣∫ G(x,t;y)v(y,0)dy+

∫ t

0

∫
Gy(x,t− s;y)Q(v)(y,s)dyds

∣∣∣∣
≤ ζ

∫
|G(x,t;y)|h(y,0)dy+Mζ(t)2

∫ t

0

∫
|Gy(x,t− s;y)|h(y,s)2dyds,

hence, using (1.10),

(1.11) ζ(t) ≤ C1(ζ + ζ(t)2),

with C1 = max{CM,C}. Taking 4C2
1ζ < 1, we have ζ(t) ≤ 2C1ζ by continuous

induction, and the claim follows for C2 = 2C1.

Lemma 1.6 reduces the problem of establishing pointwise bounds on |v| to
that of finding an appropriate template function h satisfying relations (1.10),
that is, a sort of weak “fixed point” of the integral operators on the left-hand
side. In principle, a “minimal” such template, given a desired initial restriction
h(·,0), could be obtained by iteration; in practice, a similar procedure is carried
out by trial and error.

Example. The convected Burgers equation

(1.12) vt + avx− vxx = (v2)x,

a > 0, v ∈ R1, loosely models behavior of a single outgoing mode in (1.8), moving
toward the right. Observing that the Green’s function

G(x,t;y) = (4πt)−1/2e(x−y−at)2/4t

of the operator on the left hand side satisfies: G ≥ 0;

|Gy(x,t;y)| ≤ Ct−1/2G(x,mt;y)

for any m > 1; and the semigroup property∫
G(x,t− s;z)G(z,s;y)dz = G(x,t;y)

(hence also
∫
G(x,m(t− s);z)G(z,ms;y)dz = CG(x,mt;y)), we easily find that

relations (1.10) are satisfied for the template function h(x,t) := G(x,m(t+ 1);0),
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for any m > 1. For example, the second relation in (1.10) follows from∫ t

0

∫
|Gy(x,t− s;y)|G2(y,m(s+ 1);0)dyds

≤ C

∫ t

0

(t− s)−1/2(s+ 1)−1/2

∫
G(y,m(t− s);y)G(x,m(s+ 1);0)dyds

≤ CG(x,m(t+ 1);0).

Thus, from Lemma 1.6, we recover the well-known fact that, for small, exponen-
tially decaying initial data, the solution of (1.12), or “nonlinear diffusion wave,”
in the terminology of [L.1], decays like a heat kernel. Templates for systems
become much more elaborate, see Section 11.

In more realistic applications, the argument outlined in Lemma 1.6 becomes
much more complicated. The variable v is augmented with derivatives (or even
integrals) in order to reveal cancellation using integration by parts, and the
(typically nonempty) kernel of L is projected out by various means, see [LZ.1-2,
L.3]. Moreover, when B 6≡ constant, then Q = Q(v,vx), and there is the problem
of “gaining a derivative.” However, the principle of the method remains the same.
These details will be discussed in section 11.

To verify (1.10) (or its equivalent, in more complicated situations) requires
rather sharp pointwise bounds on the Green’s function G and its derivatives.
An important aspect of the analysis that we have not touched on so far is the
means for generating such bounds. In the constant-coefficient scalar example
given above, the Green’s function could be found explicitly, but clearly this is
not possible in the general, nonconstant-coefficient, system case. The weakly
nonlinear approach developed in [SZ, L.3], rather, uses the approximate diago-

nalization of [G] to express L as L̄+ O(ε)L̃, where L̄ is a decoupled operator, and
ε is shock strength (i.e. variation of the shock profile ū). The Green’s function Ḡ
for L̄ can be constructed by fixed point argument [SZ] or solved approximately

to O(ε−α|x|) [L.3], and the L̃ and Green’s function errors treated as additional
source terms in (1.9), of linear order. This leads to a relation

(1.13) ζ(t) ≤ C1(ζ + ζ(t)2 + εζ(t))

in place of (1.11), and the argument closes as before, provided both ζ and ε
are sufficiently small, that is for weak shock strength as well as weak perturba-
tions. To treat strong shocks, we require, rather, estimates on the exact Green’s
function, G.

To summarize:

The pointwise Green’s function method gives a very general way to
convert Green’s function bounds into nonlinear decay estimates, as il-
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lustrated in Lemma 1.6. However, the essentially constructive, weakly
nonlinear methods that have been used to obtain these bounds are lim-
ited to the approximately decoupled case, in particular to weak shock
strength.

In order to treat strong, or strongly nonlinear shocks, there is
needed a new way of obtaining Green’s function bounds that does not
rely on weak nonlinearity of the underlying system. It is this lack in
the theory that we address in the present paper. Surprisingly, we find
that the required pointwise bounds after all depend only on the spec-
trum of the operator L. However, it is not the usual spectrum, but an
extended, “pointwise” version that plays the key role.

1.2. Present work.

1.2.1. Two classical problems. At this point, our investigation of shock
stability reduces to two linear problems of classical, Sturm–Liouville type:

For a second-order elliptic operator L satisfying (1.6), (C0)–(C3):

(i) Determine the point spectrum of L, and its relation to the time-asymptotic
behavior of eLt.

(ii) Obtain sharp global parabolic estimates on the Green’s function for (1.6),
sufficient for the application of the pointwise Green’s function method de-
scribed in the previous section.

However, to our knowledge, there exist no such classical results in the present
context. The asymptotic behavior of eLt for a non-normal operator L is in
general not determined by the top eigenvalue of L, nor is the point spectrum
well-defined at eigenvalues (such as λ = 0 in our case) that are embedded in the
essential spectrum. Any such result must therefore depend to some extent on
the specialized structure of (C0)–(C3).

Likewise, existing global parabolic bounds are restricted to the scalar, self-
adjoint case, in which the Green’s function bounds are precisely the small-time
bounds given by the heat equation, cf. [St]. Such bounds are clearly not valid in
the non-selfadjoint case A 6≡ 0, as the dominant large-time effect in the far field
is then convection at rates a±j equal to the eigenvalues of A±, rather than simple
diffusion. Indeed, the bounds we derive here are considerably more complicated,
and obtained by quite different methods. However, there is an interesting philo-
sophical similarity between the Nash–Moser technique of obtaining pointwise
bounds by variably weighted energy estimates (see, e.g., discussion in [St], p.
229, or [Mo, Na]) and our technique of variable contours. From the point of view
of [Sat], moving into the essential spectrum is roughly equivalent to choosing a
new weighted norm.

The resolution of problems (i)–(ii) is the primary focus of this paper. We
remark that all our analysis goes through also in the case of mixed and non–
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divergence-form operators of the forms

Lv := Cv− (Av)x + (Bvx)x,

Lv := Cv−Avx +Bvxx, or

Lv := CV −Avx + (Bvx)x,

with Hölder coefficients A, B, C, the only requirement being that the coefficient
C(x) of the zeroth order term go to zero as x→ ±∞. The general case C± 6≡ 0
can be treated similarly, but leads to slightly different results. In each case, we
obtain both optimal regularity (cf. short-time theory, Section 11.3) and optimal
bounds on the Green’s function.

1.2.2. Pointwise semigroup methods. In standard semigroup theory, and
indeed in the larger spectral theory of nonnormal operators, the principal object
of study is the resolvent, (L−λI)−1. In our search for pointwise information, we
are led naturally to study instead the resolvent kernel Gλ(x,y), defined formally
by

(1.14) Gλ(·,y) := (L−λI)−1δy,

or equivalently

(1.15) (L−λI)−1f(x) =

∫
Gλ(x,t;y)f(y)dy,

that is, the elliptic Green’s function associated with (L−λI). This seemingly
slight change in perspective pays surprising dividends in flexibility and power.
At the same time, it greatly simplifies the analysis. The reason in each case is
the same: the Green’s function is a universal object, whereas the resolvent is
restricted, with consequent loss of information, by the imposition of a function
space and norm.

The most fundamental property of the resolvent is that it is analytic on the
resolvent set, as can be seen by straightforward Neumann expansion [Kat]. This
brings to bear the full power of complex analysis. At an isolated eigenvalue λ0

of L, the spectral projection operator can be defined by

Pλ0
= Resλ0

(L−λI)−1.

Assuming that L is sectorial, as can be verified in the present case by standard
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energy estimates [He], we have the spectral resolution formula,

(1.16) eLt =
1

2πi

∫
Γ

eλt(L−λI)−1dλ,

for the solution operator eLt of

(1.17) vt = Lv; v(0) = v0,

where Γ = ∂{λ : Reλ > θ1− θ2|Imλ|} is the boundary of an appropriate sec-
tor containing the spectrum of L, θ2 > 0. (Indeed, (1.16) defines an analytic
semigroup, though this will not be important for us).

Let us recall for a moment the standard semigroup approach in the case
that L has an isolated simple eigenvalue at λ = 0, separated by positive spectral
gap η > 0 from the remainder of the spectrum,

σ(L) \ {0} ⊂ {λ : Reλ ≤ −η}, η > 0.

Defining

(1.18) Γ̃ = ∂{λ : Reλ > θ1− θ2 Imλ and Reλ ≤ −η/2},

(Figure 2), we have by (1.16), together with Cauchy’s theorem, that

eLt =
1

2πi

∫
Γ̃

eλt(L−λI)−1dλ+ Res0 e
λt(L−λI)−1

= O(e−ηt/2) +P0,

where the time-exponential decay follows from the uniform bound on the resol-

vent afforded by sectoriality, together with the decay given by |eλt| ≤ eReλt.
Thus, we see immediately that the solution eLtv0 of (1.17) converges time-
exponentially to the projection P0v0 of v0 onto Ker(L). That is, the projection
P0 captures the asymptotic behavior of the solution.

In the case of our interest, when L has no spectral gap, this method fails.
For, the resolvent by definition is undefined on the essential spectrum, hence Γ
cannot be moved past the value λ = 0. Neither is the projection P0 defined, nor
is it clear that the solution operator is even bounded. To further illustrate the
confusion at the spectral level, the dimensions of Ker(L) and Ker(L∗) typically
do not match: in the generic, Lax case, these are 1 and 0 respectively with
respect to Lp, p < ∞, and n+ 1 and n with respect to L∞ (see Chapter IV of
[LZ.2], or Section 10 of this paper).
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eigenvalue at λ=0

Γ

Γ

~

Figure 2. The contours Γ and Γ̃

All of these difficulties are easily resolved from the pointwise, Green’s func-
tion perspective, at least in principle. Here, we sketch the main ideas informally.
Precise statements will be given later on.

Extension of the resolvent kernel. The first, and crucial, observation
is that, unlike the resolvent (L−λI)−1,

Result 0. (Prop. 4.6) The resolvent kernel Gλ can be meromorphically
extended into the essential spectrum of L, in particular onto some sector

(1.19) Ωθ := {λ : Re(λ) ≥ −θ1− θ2 |Im(λ)|}; θ1, θ2 > 0.

This remarkable fact, a corollary of the Gap Lemma of [GZ, KS], gives quan-
titative sense to the statement that Gλ encodes more information than does
(L−λI)−1. Put another way, Result 0 expresses the fact that the essential spec-
trum is not an intrinsic barrier. This is related to Sattinger’s observation in the
scalar case that essential spectrum can be shifted to the left by the choice of
an appropriate weighted norm [Sat]. In fact, Result 0 follows from Sattinger’s
argument in the decoupled case B ≡ I, by the choice of appropriate weights in
each scalar field. But, in general, the extension of Gλ may not correspond to
the resolvent for any choice of norm. A closer analogy is the extension of the
resolvent carried out by Kapitula, [K.1-2], as an operator between two differently
normed spaces. However, this is not sufficiently explicit for our needs.

Extension of the spectrum. The spectral projection operator can in turn
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be extended by defining the projection kernel,

Pλ0
(x,y) := Resλ0

Gλ(x,y).

The operator Pλ0
is then defined by

Pλ0
f(x) :=

∫
Pλ0

(x,y)f(y)dy,

where f is any suitably rapidly decaying function. In particular, for λ = 0, P can
be shown to be defined on all f ∈ L1, provided that 0 is semisimple (Gλ has a
pole of order one at 0). This determines an extended, “effective point spectrum”
σ′p(L) consisting of the poles of Gλ, where the “effective eigenspace” Σ′λ0

(L) at
λ0 is defined to be the range of Pλ0

on test functions f ∈ C∞0 .

Pointwise bounds. In similar fashion, we can replace the spectral resolu-
tion formula (1.16) with its pointwise analog,

(1.20) G(x,t;y) =
1

2πi

∫
Γ

eλtGλ(x,y)dλ,

relating the parabolic Green’s function G to the elliptic Green’s function Gλ.
As usual, this is obtained formally by applying both sides of (1.16) to δy(x).
Rigorous justification requires only bounds on Gλ sufficient to exchange the or-
der of integration in (1.16), (1.15). These follow from the coercivity of (L−λI),
much as do the sectorial bounds on the resolvent (Section 7). Alternatively, the
same bounds on Gλ can be used to verify (1.20) directly, by showing that (dis-
tributional) x- and t-derivatives can be moved inside the integral (see Corollary
7.4).

Using (1.20), we can determine the asymptotic behavior of the Green’s func-
tion, and, more generally, the behavior for all x, y, t. For example, consider the
trivial case in which x and y are bounded and t → ∞. In this case, we can
proceed exactly as in the classical setting. Defining Γ̃ as in (1.18), with η so
small that the (necessarily isolated) pole λ = 0 is the only singularity of Gλ
between Γ and Γ̃, and observing by compactness (plus large |λ| bounds) that
|Gλ| is bounded, we obtain similarly as before that

(1.21) G(x,t;y) = O(e−ηt/2) +P0(x,y),

provided λ = 0 is a simple pole/semisimple eigenvalue. Thus, the Green’s func-
tion in this regime decays exponentially to the projection kernel at λ = 0. That
is, the effective projection P0 captures the asymptotic dynamics of the inner
shock layer.
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Bounds in other regimes are much more complicated. In general, Gλ does
not remain bounded as λ crosses the essential spectrum boundary, but grows
exponentially as |x|, |y| → ∞; this is precisely why the resolvent becomes un-
bounded, (1.15). On the other hand, the rate of exponential growth gives a
quantitative measure of how unbounded is the resolvent. This allows the possi-
bility of estimating G by balancing the spatial growth of Gλ against the temporal
decay of eλt as Γ is moved into the negative complex half-plane (and thus into
the essential spectrum). Our approach is, roughly speaking, to choose an opti-
mal contour for given x,y,t by the Riemann saddlepoint method, [R,CH,DeB],
selecting a minimax path for the modulus of the integrand in (1.20). However,
this optimal path is different for different modes of the solution; thus, we must
first effect a spectral decomposition into the various scalar modes. This cannot
be done globally in λ, but it can be done in the critical small |λ| region governing
large time behavior, via careful expansion of Gλ near λ = 0 (Section 7). A more
detailed discussion of our method for obtaining pointwise bounds is given in the
introductory material of Section 8.2 (highly recommended).

Our argument in the scalar case reduces to essentially that of [H.1], and in
the constant-coefficient case to that of [LZe]. Here, however, we find interest-
ing new scattering and excitation effects not present in either of these previous
contexts. These make the behavior difficult to guess a priori. The power of our
method is that it requires no such apriori information to apply, but rather gives
an algorithm by which one can deduce the behavior of solutions. This should
make it applicable in much more general circumstances (see Section 1.2.5).

1.2.3. Main Results. We now describe our main results, again in informal
fashion. The procedure of the previous section defines an effective point spec-
trum σ′p(L), and eigenspace Σ′(L) on any domain of meromorphicity of Gλ. By
definition, these agree with the standard versions, σp(L) and Σ(L), away from
σess(L).

Result 1. (Prop. 5.3) The effective point spectrum is well-behaved in the
sense that it obeys a modified Fredholm theory. In particular, dim Σ′λ0

(L) is
finite and equal to dim Σ′λ∗0

(L∗), and Pλ0
decomposes into a sum of right and

left eigenfunction pairs,

Pλ0
=
∑
j

ϕj(x)πj(y), ϕj ∈ Σ′λ0
(L), πj ∈ Σ′λ∗0 (L∗).

A tool that has proved quite useful in locating point spectrum is the Evans
function [E, J, AGJ, PW, GZ, KS] (defined rigorously in Section 4). This is an
analytic function DL(λ) that plays a role for unbounded operators analogous to
that played by the characteristic polynomial det (L−λI) for a finite-dimensional
operator L; indeed, D is almost, but not quite, equal to det G−1

λ (compare
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(4.9) with (4.30)). Its origins come, rather, from the study of the eigenvalue
equation and topological methods in classical Sturm–Liouville and scattering
theory [Ti,RS]. Away from the essential spectrum, the zeroes of DL correspond
to eigenvalues of L, counting algebraic multiplicity [AGJ]. Up to now, however,
there has been some mystery as to the meaning of zeroes of DL occurring inside
the essential spectrum [PW].

Result 2. (Prop. 6.2(ii)) Within Ωθ, zeroes of the Evans function DL(λ)
correspond, counting algebraic multiplicity, with effective eigenvalues of L.

Results 1-2 address the first half of problem (i): the determination of point
spectrum. Note that Result 2 has the important consequence that effective
point spectrum is continuous with respect to continuous perturbations of L.
The relation to asymptotic behavior is given by the Evans function criterion:

Result 3. (Prop. 9.2) Lp linear orbital stability of ū with respect to L1,
p > 1, is equivalent to:

(D) DL(λ) has precisely ` zeroes in {Reλ ≥ 0}, where ` is the dimension of the
stationary manifold. Alternatively, L has ` effective eigenvalues in {Reλ ≥
0}.

The proof of condition (D) is surprisingly involved, depending on the fol-
lowing detailed estimates on the linearized solution operator about the wave.
That is, it depends on the resolution of problem (ii), the determination of sharp
global bounds on the Green’s function G(x,t;y) of (1.6).

Before stating the result, we describe our possibly confusing shorthand no-
tation. To save space, the choice of sign ± or ∓ associated with an index j is
held consistent (i.e. top or bottom) throughout each summand, following the
choice made in the limits of the sum, along with the choice of inequality ≷ or
≶. Thus, for example, in the second sum appearing in the equation for S below,
the term corresponding to limits a+

k < 0, a−j < 0 would be

χ{t≥|y/a+
k
|}O(t−1/2e−(x−a−

j
(t−|y/a+

k
|))2/Mt)

× (r−j χ{x<0}+ O(e−η|x|))(l+k χ{y>0}+ O(e−η|y|)).

This convention is followed throughout the paper.

Result 4. (Thm. 8.3) Let (D) hold, as well as (C0)–(C3). Then, G =
S+E+R, where
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S(x,t;y) =
∑
k,±

O(t−1/2e−(x−y−a±
k
t)2/Mt)(1.22)

× (r±k χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

+
∑

a±
k
≶0,a±

j
≷0

χ{t≥|y/a±
k
|}O(t−1/2e−(x−a±

j
(t−|y/a±

k
|))2/Mt)

× (r±j χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

comprises the scattering modes,

E(x,t;y) =
∑
k,y≷0

χ{|x−y|≤|a±
k
t|}ϕ

±
k (x)π±k (y)(1.23)

+
∑
k,y≷0

O(e−(x−y−a±
k
t)2/Mt + e−(x−y+a±

k
t)2/Mt)e−η|x|π±k (y)

comprises the excited modes, and R is a faster decaying residual term.
Here, η > 0, M > 0 is a suitably large constant, a±j denote the eigenvalues of

A± and r±j and l±j the corresponding right and left eigenvectors, and ϕ±k ∈ Σ′0(L),

π± ∈ Σ′0(L∗). Similar bounds hold for spatial derivatives Gx and Gy.

Figure 3a, below, depicts typical scattering terms, consisting of Gaussian
signals originating at y and scattering from the shock layer. Note that signals
propagate with asymptotic characteristic speed a±k until they reach the shock

location x = 0, then travel with outgoing asymptotic characteristic speed a±j ≷ 0
thereafter. That is, they propagate at the speeds predicted by the linearized
equations about the corresponding inviscid shock. This schematic description
validates heuristic and numerical conclusions drawn in [ZPM].

Figure 3b depicts the excitation of a single stationary mode by a signal
originating from y. Note that the final time-asymptotic state, determined by
projection against the left eigenfunction π, appears gradually, within the cone
of influence χ{|a±

k
t|≥|y|} of y. The conglomerate time-asymptotic state P0v0 is

determined as the superposition of modes ϕk excited by the different signals
originating from y, k = 1, . . . ,n. This is an extremely detailed picture of be-
havior, that would be difficult either to see by numerics or guess from heuristic
considerations.

More detailed bounds, including derivative estimates, are given in Theorem
8.3. Comparison with exact solution (Example 8.6) verifies that these bounds
are sharp.
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Figure 3a. Scattering from the shock layer
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final stationary mode

Figure 3b. Excitation of a stationary mode

Interpretation of (D). The abstract Evans function condition can be
phrased more directly in conservation law terms, as the standard spectral re-
quirement σ(L)∩{Reλ ≥ 0} = {0}, augmented with a single transversality
condition equivalent to (d/dλ)`DL(0) 6= 0 (see Section 10). For Lax shocks, this
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transversality condition takes the form of the Liu–Majda condition,

(1.24) {r±j : a±j ≶ 0}∪ (u+−u−) is a basis for Rn,

an algebraic condition corresponding to linearized stability of the corresponding
inviscid shock, and also to the property that the asymptotic state of the per-
turbed (viscous) wave is determined by perturbation mass. Here, a±j , r±j are the

eigenvalues and eigenvectors of A± = f ′(u±). For Lax and undercompressive
shocks, the transversality condition is equivalent to linearized stability of the
inviscid shock; for Lax and overcompressive shocks, to mass-determination of
the viscous asymptotic state.

Pursuing this connection further in the case of Lax and overcompressive
shocks, we discover the useful alternative conditions:

Result 5. (Props. 10.5-10.6) For Lax and overcompressive shocks, lin-
earized orbital stability is equivalent to linearized asymptotic stability with respect
to zero mass perturbations plus independence of “outgoing” eigenvectors of A±.
Alternatively, the Evans function for the “integrated equations” has no zeroes in
the nonnegative complex half-plane {Reλ ≥ 0}.

Zero-mass stability can be treated by more standard, energy methods; in-
deed, zero-mass results exist for many cases in which the general problem re-
mains open [G.1, MN, KN, Fri]. Likewise, computation of the “integrated”
Evans function is numerically better conditioned than computation of the usual
Evans function [Br].

1.2.4. Applications to nonlinear stability. Using the Green’s function
bounds of Result 4/Proposition 8.3, one can establish the following theorem on
nonlinear stability:

Result 6∗. (Prop. 11.1, Thm. 11.7) Condition (D) implies nonlinear Lp

orbital stability, p > 1, of ū with respect to

(1.25) Aζ := L1 ∩C0+α ∩{f : |f(x)| ≤ ζ(1 + |x|)−r},

for r sufficiently large and ζ sufficiently small.

The converse should also be possible to prove, but involves more complicated
analysis of wave-splitting and convergence to Riemann patterns (see Section 12).
The technical condition (u0− ū) ∈ C0+α can be dropped when B ≡ constant.

The asterisk indicates that we do not prove Result 6 in full generality here.
That analysis involves separate issues outside the focus of this paper. We content
ourselves with the observation that, for Lax and overcompressive shocks, our
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Green’s function bounds are sufficient to apply the pointwise Green’s function
argument of [L.3] virtually without modification. Indeed, the analysis somewhat
simplifies, since we need not deal with diagonalization and other errors associated
with construction of approximate Green’s functions. This topic is discussed in
Section 11. From the conclusions of [L.3], we immediately obtain Result 6 with
r = 3/2, along with detailed pointwise bounds on the nonlinear solution, for
general Lax and overcompressive shocks. Likewise, the 2× 2 undercompressive
case can, with slight modifications, be treated by the argument of [LZ.2], though
we do not prove this here.

To treat the general (n×n) undercompressive case, or values of r < 3/2,
requires a refined analysis incorporating the wave-tracing technique described in
Section 9. These topics will be treated in detail in future work [Z.2]. The case
r = 1 is important for the study of stability of Riemann patterns, since the tail
of a rarefaction wave decays as 1/|x| [SZ].

Using the two observations above, and Result 5 of the previous section, we
easily recover the existing analytic results on stability, and several new results
as well.

Weak shocks. In the case of weak shocks, (D) can be confirmed by energy
estimates, either directly from the eigenvalue ODE, or using Result 5 to boot-
strap from existing zero mass results for the linearized PDE (1.6). We remark
that essentially the same calculations are involved in energy estimates for the
ODE as for the PDE.

For example, from the original, zero-mass result of Goodman, [G], we obtain
nonlinear stability of weak, genuinely nonlinear Lax shocks, with condition

(1.26) R(u)B(u)R(u)−1 > 0

on the viscosity matrix, a condition which implies (H1) and (H3). (Condition
(1.26) is equivalent to (H1) and (H3) in the symmetrizable case, but not always
[MP]). Thus, we extend the result of [L.3] to nearly arbitrary, variable viscosity
matrices.

Likewise, we can extend to the case of weak, non-genuinely nonlinear Lax
shocks using the very recent zero-mass result of Fries [Fri.1] (note: Fries has since
extended this result to the nonzero mass case, using arguments in the spirit of
[SX], [Fri.2]). Such shocks arise, for example in elasticity and coplanar MHD.
In fact, the argument also applies to a class of special overcompressive shocks
analogous to radial overcompressive shocks in the cubic model [Fre.3]. This gives
rise, by continuity of effective point spectrum with respect to perturbations in
L (result 2), to a result analogous to that of [FreL] for the cubic model, but for
the full equations of MHD: namely, orbital stability of a small band of nearby
overcompressive shocks.
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Finally, we mention that the zero-mass results of [MN,KMN] give nonlinear
stability of relatively strong shocks for gamma-law gas dynamics with artificial
(but quasilinear), strictly parabolic viscosity. However, the strength of the shock
depends on γ through appropriate rescaling.

Shocks of 2× 2 cubic and quadratic models. The results of [LZ.1-
2] and [FreL] for under- and overcompressive shocks concern perturbations of
linear profiles of the quadratic complex Burgers and cubic models, respectively.
We recover these results by the observation that in both cases the linearized
equations decouple, giving linearized stability from standard scalar results. The
general case then follows, again, by continuity of effective point spectrum.

Strong shocks and numerical verification. For strong (large ampli-
tude) shocks, and strongly nonlinear nonclassical shocks, stability does not hold
in general [FreZ, GZ]. Evidently, the structure and behavior of such shocks can be
rather arbitrary, making their analytic treatment problematic. Nonetheless, the
Evans function condition (D) gives a numerically computable criterion by which
we can assess their stability. For example, Brin has developed an efficient and
accurate code exploiting the analyticity of DL, which assesses (D) by calculating
the winding number of DL around the nonnegative complex half-plane [Br]. His
approach appears also to offer the possibility of numerical proof.

Direct continuation arguments. The hybrid analyses described so far
do not exploit the full power of the spectral machinery. In the future, it may be
possible to use direct arguments to replace standard methods altogether. For
example, there is outlined in [GZ] a program for studying stability of weak shocks
by continuation from the “zero shock strength” limit, or constant solution. This
would have the advantage of treating Lax, over- and undercompressive shocks
on the same footing. An equally intriguing possibility is the analytic treatment
of strong shocks in certain cases. For example, a standard Evans function
argument is:

Claim. Assuming (H0)–(H4), let
(i) ūs(x− st) be a family of viscous Lax shock solutions of (1.2) depending

smoothly on the shock speed s ≥ 0, with u− fixed, ū0 ≡ u−, for which
(ii) the Liu–Majda condition (1.24) holds for all s. Further, suppose that
(iii) Ls, the linearized operator about the wave, has no pure imaginary eigenval-

ues for any s.

Then, each one of the entire family of shocks ūs is nonlinearly stable.

Proof. By the result for weak Lax shocks, ūs is stable for s sufficiently
small, in particular σ(Ls)∩{Reλ ≥ 0} = {0}. The Liu–Majda condition, by
Result 5, implies that there is exactly ` = 1 effective eigenvalue at λ = 0 for
all s, corresponding to the eigenfunction ūx, while by assumption there are no
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effective eigenvalues on the imaginary axis. Thus, no effective eigenvalues can
cross the imaginary axis, and so σ(Ls)∩{Reλ ≥ 0} = {0} for all s, giving the
result.

For gamma-law gas dynamics, γ 6= 3, (i) and (ii) are always satisfied, as
pointed out in [Gi] and [Se.1], respectively. It might be hoped that structural
properties such as symmetrizability or existence of an entropy would imply (iii).
The question of existence or non-existence of imaginary eigenvalues, (iii), is a
fundamental one for vector-valued non-normal operators.
1.2.5. Extensions/open problems. There are many directions in which one
can generalize the basic theory outlined above.

Symmetrizable hyperbolic–parabolic systems. An important direc-
tion for extension of the theory is to relax the requirements of strict hyperbolicity
and parabolicity in hypotheses (H2) and (H1) to include the boundary case of
symmetrizable hyperbolic–parabolic systems [Ka]. This important class of sys-
tems includes such physical examples as gas dynamics and MHD, both of which
lie on the boundary of (H1)–(H2). In this setting, the assumption of strict hy-
perbolicity in (H2) is easily removed (see Remark 2.3). However, the inclusion
of “real”, semidefinite viscosity necessitates modification of our arguments for
pointwise Green’s function bounds. An approach that looks promising is to pro-
ceed by vanishing viscosity approximation, keeping careful track of constants.
A new feature in the argument is that we must perform a spectral decompo-
sition (i.e. expansion of Gλ) at |λ| = ∞ as well as λ = 0, in order to isolate
singular (i.e. exponentially decaying delta-function) components in the solution;
for related arguments, see [Ka, LZe, HoZ]. The passage from linear to nonlinear
stability likewise becomes problematic, due to incomplete parabolic smoothing;
however, this issue has already been addressed in the study of decay to constant
states, [LZe], by a combination of Green’s function and energy methods. It can
be hoped that these methods will carry over to the nonconstant coefficient case.

Sonic shocks. Another interesting boundary case is that of “sonic” shocks,
in which one or more of the a±j vanish. This violation of (H2) is less generic
than the previous one, in the sense that it occurs in any given system only
for certain shocks, whereas strict hyperbolicity can be violated for all shocks of
certain systems (e.g. MHD). In this case, the viscous profile decays algebraically
to its endstates u± [Ni], making the estimates more subtle. As above, we must
proceed by a limiting argument, letting a±j → 0, and taking advantage of certain
cancellations that occur. This seems quite interesting from the general point of
view of variable coefficient convection–diffusion equations with slowly decaying
coefficients. Examples such as the Kolmogorov equation, [Bra], show that the
effects of a slowly decaying tail can in general be quite subtle. We remark that the
zero-mass results required to verify (D) have already been obtained by Nishihara
[N.1].
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Unstable endstates. Interestingly, Majda–Pego stability of the endstates
u±, (H3), is not necessary for stability of a shock wave under sufficiently localized
(i.e. exponentially decaying) perturbations [Z.3]. That is, a connecting shock
wave can stabilize unstable constant states. This stabilizing effect is due to
compressivity.

We emphasize that our approach is not inherently limited to the present
setting of parabolic conservation laws with second order diffusion, or to a single
spatial dimension. Indeed, the main strength of the method is its general appli-
cability, without the foreknowledge of asymptotic behavior. We mention a few
wider applications below.

Dispersive undercompressive shocks. Recently, there has been consid-
erable interest in nonclassical shock waves arising through the combined effects
of diffusion and dispersion [W, JMS, HL.1-2]. However, their stability analysis
has been carried out so far only in the scalar case, [D], using the method of
weighted norms. Using pointwise semigroup methods, we can obtain pointwise
bounds on the Green’s function of the linearized equation about the wave [HZ].
The result is that signals propagate mainly in oscillatory Gaussian wave packets,

with an additional O(e−η(t+|x−z±
jk

(y,t)|)) correction, η > 0, where zjk denotes the
center of the packet (Note that this correction is significant only for short time,
reflecting the faster propagation of dispersive signals). We hope to use these
bounds in the future to carry out a complete nonlinear stability analysis.

Multi-dimensional planar shocks. Consider a planar shock solution
u(x,t) = ū(x1) of a conservation law in several space dimensions,

ut +
∑
j

f j(u)xj =
∑
j,k

(Bjk(u)uxj )xk , u ∈ Rn, x ∈ Rd.

Taking the Fourier transform in the transverse variable x̃ := (x2, . . . ,xd), the
linearized equation about the wave becomes

v̂t = Lξ v̂,

where Lξ := L0−
∑
j iA

j(x1)ξj −
∑
j,kB

jk(x1)ξjξk and L0 is the one-dimensional
linearized operator around the wave, i.e.

L0f = −(A1(x1)f)x1
+ (B11(x1)fx1

)x1

(cf. (1.6)). Combining the spectral resolution formula (1.20) and inverse Fourier
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Transform, we obtain the Green’s function representation

(1.27) G(x,t;y) =
1

(2πi)d

∫
ξ∈Rd−1

∫
Γ

eiξ·(x̃−ỹ)eλtGλ,ξ(x1,y1)dλdξ,

where Gλ,ξ is the resolvent kernel, or elliptic Green’s function, for the operator
(Lξ −λI). Using this representation, the behavior of the Green’s function can
be deduced by Taylor expansion/spectral decomposition of Gλ,ξ in the critical
neighborhood about (λ,ξ) = (0,0), and a combination of pointwise semigroup
methods and “Paley–Wiener” methods as in [HoZ.1-2], as prescribed by the
Riemann saddlepoint method in the combined variable (λ,ξ). However, the
behavior is much more complicated than in the constant coefficient case studied
in [HoZ.1-2], due to scattering from the shock layer. This will be the topic of
future investigation. Note that we have described a way to derive the scattering
coefficients of impinging signals, which in contrast to the one-dimensional case
are difficult to deduce from heuristic considerations (indeed, they can be quite
complicated, as evidenced in [S]).

The role of the effective spectrum is somewhat easier to describe. The
stability condition (D) in the multi-dimensional case becomes

(Dξ) Lξ has no effective eigenvalues in {Reλ ≥ 0} for real ξ 6= 0, and ` effective
eigenvalues for ξ = 0, 3

where ` as usual denotes the dimension of the stationary manifold {ūδ} for the
one-dimensional problem. Note, for small |ξ|, that Lξ has precisely ` effective
eigenvalues in a neighborhood of λ = 0, by continuity of effective spectrum.
Condition (Dξ) implies that these have real part bounded by −η|ξ|2m (even to
lowest order, because otherwise the real part would cross the imaginary axis for
small real ξ), for some η > 0, and integer m ≥ 1. Consider the simplest case that
the order of contact is 2m = 2 and all eigenvalues are distinct for 0 < |ξ| ≤ ρ
(generic for ` = 1 or spatial dimension d ≤ 2). Then, the eigenvalues are given
by analytic functions λh, h = 1, . . .`,

Reλh(ξ) = −
∑
j,k

djkh ξjξk + O(|ξ|3),

Imλh = −
∑
j

cjhξj ,

3 This is necessary not for convergence but for convergence at some uniform rate, see the
description of the front evolution, below.
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cjh, djkh real, djkh > 0, and the corresponding right and left eigenfunctions by

ϕh,ξ(x1) =
∂ūδ

∂δh
(x1) + O(|ξ|)

and

πh,ξ(y1) = πh(y1) + O(|ξ|).

By the same argument used to derive (1.21), the near-field contribution of excited
modes is the inverse Fourier transform of

∑
1≤h≤`

eλh(ξ)tPλ0,ξ v̂(·, ·,0) =
∑

1≤h≤`

eλh(ξ)t

∫ +∞

−∞
ϕh,ξ(x1)πh,ξ(y1)v̂(y1, ξ,0)dy1

plus a time-exponentially decaying error, where v0(x) = u(x,0)− ū(x1) denotes
the initial perturbation of the wave.

Combining with the above expansions of ϕh,ξ, πh,ξ, and λh, we find that,
to lowest order, the near-field contribution of excited modes is given by

(1.28)
∑

1≤h≤`

αh(x̃, t)
∂ūδ

∂δh
(x1),

where

α̂h(ξ, t) := e
t(−i

∑
j
c
j

h
ξj−
∑

j,k
d
jk

h
ξjξk)

α̂h(ξ,0)

and

α̂h(ξ,0) :=

∫ +∞

−∞
πh(y1)v̂0(y1, ξ)dy1.

Reinterpreting, the local deformation in position and shape of the shock front at
each point x̃ is given, (1.28), by a linear combination of the possible deformations
∂ūδ/∂δh in the one-dimensional profile, where the coefficients αh(x̃, t) satisfy the
linear, constant coefficient system of decoupled convection–diffusion equations

(1.29) (αh)t +
∑
j

cjh(αh)xj =
∑
j,k

djkh (αh)x̃j ,x̃k ,

with initial conditions

(1.30) αh(x̃,0) =

∫ +∞

−∞
πh(y1)v0(y1, x̃)dy1
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given by the time-asymptotic deformation for the one-dimensional problem ob-
tained by fixing x̃. (The description of behavior in the far field involves also
the cone of influence of y, similarly as in the one-dimensional case (1.23)). In
the general case that eigenvalues cross, the coefficients αh instead satisfy a cou-
pled, nonlocal convection–diffusion system, determined by appropriate Fourier
multipliers similarly as in [HoZ], definition on p. 648. The description of front
evolution given in equations (1.28)–(1.30) generalizes observations made in [G.2,
K.3, GM].

Note, as in standard perturbation theory, [Kat], that

cjh = 〈πh,A
jϕh〉(1.31)

=

∫ +∞

−∞
πh(x1)tAj(x1)

∂ūδ

∂δh
(x1)dx1.

In the special case of a Lax shock with constant viscosity coefficients, it holds (see
Section 10) that ` = 1, ∂ūδ/∂δ1 = ūx1

, π1 ≡ constant, and Aj = Df j(ū(x1)),
and we obtain simply

cjh = πt1(f j(u+)− f j(u−)),

where the vector πt1 is uniquely determined by the properties that πtr±j = 0

for a±j ≷ 0 and πt(u+−u−) = 1 (see condition (1.24)). This reduces in the

two-dimensional, scalar case to the result obtained in [G.2, GM].

Other waves. Further potential applications are to combustion waves, es-
pecially (undercompressive) weak detonation and deflagration waves, and to
shocks occurring in relaxation systems. In both cases, note that shock pro-
files have the property of exponential decay to their endstates u±, making these
natural applications of the theory. However, there are also interesting new issues
to resolve, connected with damping effects.

Also, Serre has recently pointed out that many discrete shock profiles also
fall naturally within the Evans function framework, in the case that shock speed
is rational [Se.2]. For such shocks, one can use the pointwise semigroup method
to estimate the discrete Green’s function of the linearized difference equation
about the wave. (Note: for irrational speeds, our techniques do not directly
apply, and indeed the behavior can be much more complicated [LY.1-2]).

Other directions. Above, we have described various directions in which to
push the analytic, PDE framework for stability of traveling waves. However, in
our view, the most exciting areas for future study are those that are now opened
up by the PDE theory at the phenomenological and ODE level. In particular,
we mention:

(i) Investigation of mechanisms for stability and instability of viscous shock
waves by careful study of the eigenvalue equations and their structure.
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(ii) Determination of existence or nonexistence of imaginary eigenvalues in phys-
ically interesting settings.

(iii) Development of efficient and general computational tools along the lines of
[Br], suitable for pushbutton stability analysis of a variety of waves.

(iv) Numerical proof on a practical time scale.
(v) Stability of strong shocks.

Plan of the paper. With the exception of the material on nonlinear sta-
bility in Section 11, this paper is intended to be self-contained. What semi-
group/spectral theory we need is developed within, in the very concrete point-
wise setting. Likewise, no prior knowledge of conservation laws is assumed or
needed, except in certain remarks. We have divided the paper into four parts,
which are expected to be of interest to different subsets of readers. These can
to some extent be read independently of each other. In particular, the spectral
and Evans function theory of Part II is carried out separately from the rest of
the paper, and in a quite general context. We hope that this material will be of
use to workers in areas other than conservation laws.

We begin in Section 2 with the study of the asymptotic systems at ±∞
of the eigenvalue equation Lw = λw. In particular, we develop an asymptotic
expansion near λ = 0 for the normal modes, analogous to that obtained by
Kawashima [Ka] in the Fourier setting. In Section 3, we give an exposition of the
Gap Lemma of [GZ, KS], taking care to determine minimal regularity hypotheses
for operators in divergence form. This sets the stage for the construction in
Section 4 of the elliptic Green’s function Gλ in terms of the asymptotic modes
at x = ±∞, and the meromorphic extension of Gλ into the essential spectrum.

In Section 5, we define the effective point spectrum, and show that it obeys
a modified Fredholm theory. In Section 6, we establish the key relation between
the effective eigenvalues and the Evans function. The results in these sections,
being of wider interest, are carried out for rather general operators L.

In Section 7, we derive pointwise bounds on Gλ in the three regimes of small,
medium and large |λ|. The critical small |λ|/large time estimate is obtained by
direct expansion of the description of Gλ developed in Section 4, giving the
decomposition into scattering modes. The intermediate |λ| estimate |Gλ| ≤ C,
reflecting but not implied by the fact that the resolvent is (by definition) bounded
on the resolvent set, is obtained by a straightforward compactness argument.
The large |λ|/short time estimate, corresponding to classical bounds for the
Laplacian, is closely related to coercivity; it is obtained by a rescaling argument
similar to those in [GZ, AGJ]. In Section 8, we carry out the main calculation
of the paper, obtaining sharp bounds on G by integrating the above bounds on
Gλ along appropriate saddlepoint contours.

In Section 9, we introduce a wave-tracing scheme to obtain sharp results on
linearized orbital stability. In particular, we verify the necessity and sufficiency
of condition (D). In Section 10, we investigate the meaning of the transversality
condition (d/dλ)`DL(0) 6= 0 in the context of conservation laws, deriving useful
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consequences for Lax and overcompressive shocks. These are used in Section 11
to verify the conditions needed for the nonlinear stability argument of Liu [L.3].
This argument was carried out in [L.3] for artificial viscosity B ≡ constant;
we extend to the full, variable-viscosity case using the “pointwise” smoothing
property of the parabolic solution operator. We conclude in Section 12 with an
examination of neutral instability, and the phenomenon of wave–splitting, carried
out within the context of the effective point spectrum.

Note. The results in this paper were announced in their entirety July 1997
in the Fifth Workshop on Partial Differential Equations at IMPA, Rio de Janeiro,
Brazil, and presented in detail November 1997 in the PDE Conference in honor of
Olga Oleinik at Ames, Iowa, USA, and December 4 and 18, 1997 in the hyperbolic
waves meetings at Mittag–Leffler Institute and KTH, Stockholm, Sweden. (An
exception is the discussion of open problems, Section 1.2.5, which in the talks
were only listed).

On the latter occasion, we learned of results in a similar direction obtained
independently by Kreiss and Kreiss [KK], and they of ours. We refer the reader
to their (subsequently appearing) paper for an interesting alternative approach to
stability of viscous shock waves, not involving pointwise bounds. Their approach,
however, is so far limited to the case of perturbations with zero mass, Lax, or
“Lax-like”4 shocks, and artificial viscosity B ≡ I. They identify a sufficient
condition for zero-mass stability, but do not discuss necessity or verification of
this condition.

Part I. Preliminaries.

2. The Asymptotic Eigenvalue Equations.

The eigenvalue equation Lw = λw associated with (1.6) is

(2.1) (Bw′)′− (Aw)′ = λw.

Written as a first-order system in the variable W = (w,w′)t, this becomes

(2.2) W ′ = A(λ,x)W,

where

(2.3) A :=

(
0 I

λB−1 +B−1A′ −B−1B′+B−1A

)
.

4 Undercompressive shocks of degree one, with the special property that asymptotic shock
location is determined by mass of the initial perturbation (Assumption 2, [KK]). See Section
10, or [LZ.1-2], for a discussion of undercompressive shock waves.
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We begin by studying the limiting, constant coefficient systems L±w = λw
of (2.1) at ±∞,

(2.4) B±w
′′−A±w

′ = λw,

or, written as a first-order system,

(2.5) W ′ = A±(λ)W,

where

A±(λ) :=

(
0 I

λB−1
± B−1

± A±

)
,(2.6)

B± := B(±∞), A± := A(±∞).

The normal modes of (2.5) are V ±j e
µ±
j
x, j = 1, . . . ,2n, where µ±j , V ±j are

the eigenvalues and eigenvectors of A±; these are easily seen to satisfy

Vj =

(
vj

µjvj

)
, vj ∈ Cn(2.7)

and

(λjB
−1
± +µjB

−1
± A±−µ

2
jI)vj = 0.(2.8)

Note that as roots of the algebraic equation det (λB−1 +µB−1A−µ2I) = 0, the
µj are holomorphic functions of λ. The Vj are holomorphic as well, except at
points where there are generalized eigenvectors V kj . These exceptional points are

isolated, as zeroes of the holomorphic function (∂/∂µ)det (λB−1 +µ(λ)B−1A−
µ(λ)2I). The location of these points is not particularly important in our analy-
sis. All we require is that λ = 0 is not among them: more precisely, that the µj
for which µj(0) = 0 are analytic near λ = 0, with corresponding analytic Vj(λ).
To simplify our discussion, we make an additional assumption ensuring that all
µj are analytic at the origin:

(A1) σ(B−1
± A±) is distinct.

This can be achieved by an arbitrarily small perturbation in the matrix function
B(u). As the estimates in this paper are insensitive to such perturbations, we
obtain the general case in the limit.
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The essential spectrum σess(L) is confined (see [He], or the results of Section
4) to the complement of the set

(2.9) Λ =
⋂

Λ±h ; h = 1, . . . ,n,

where Λ±h denote the open sets bounded on the left by the algebraic curves

λ±h (k) determined by the eigenvalues of (−kiA±− k2B±), k ∈ R1. Equivalently,

λ±h (k) represent the curves along which µ±j (λ) = ki for some j, that is, λ±h (k)

are the curves across which Re(µ±j ) change sign. It is not difficult to see by

the methods of Section 4 that ∂Λ is in fact contained in ∂σess(L). In the Evans
function literature (see, e.g., [AGJ, JGK, GZ]), Λ is called the region of consistent
splitting (see (ii), Proposition 2.1, below).

Note that (−kiA±− k2B±) is the symbol of L± under Fourier Transform.
Thus, σess(L) ⊂ {Reλ ≤ 0} is equivalent to

(2.10) Reσ(−kiA±− k
2B±) ≤ 0,

which is equivalent to L2 linearized stability of the constant state solutions u ≡
u±, i.e. L2 stability of vt = L±v.

Linearized stability of constant states was studied by Kawashima, [Ka],
who showed (H3) to be equivalent, for B± ≥ 0 and A±, B± simultaneously
symmetrizable, to the condition

(K3) diag [R±B±R
−1
± ] =

β
±
1 0

. . .

0 β±n

 > 0,

where R± is the matrix of right eigenvectors of A±, i.e.

R±A±R
−1
± =

a
±
1 0

. . .

0 a±n

 .
Indeed, it is easily checked, for any (not necessarily symmetrizable) A±, B±,
that λ±h has the spectral expansions

λ±h (k) = −ika±h −β
±
h k

2 + O(k3), |k| ≤ 1,(2.11)

λ±h (k) = −bhk
2 + O(k), |k| ≥ 1(2.12)
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for k near 0 and ∞, respectively, where bh are the eigenvalues of B. Thus,
(H3) in any case implies (K3), which was shown in [MP] to play a role also in
existence and structure of classical traveling wave solutions. For the role of (K3)
in non-classical shock structure, see [AMPZ.2].

For our analysis, we will require the following analog of Kawashima’s calcu-
lation, essentially inverting expansion (2.11).

Proposition 2.1. Let (C0)–(C3) hold, and let β±j be as in (K3). Then,

(i) β±j > 0; and

(ii) At all except possibly countably many isolated points {λj} of Λ, there locally
exist analytic choices µ±1 , · · · ,µ

±
n ≤ 0 ≤ µ±n+1, · · · ,µ

±
2n (here ordering is by

real parts) and V ±1 , · · · ,V ±2n for the eigenvalues and eigenvectors of A±(λ),
A± defined as in (2.6). Moreover, there exist analytic choices near λ = 0
satisfying the following asymptotic descriptions:

µ±j (λ),V ±j (λ)(2.13)

=


−λ/a±j +λ2β±j /a

±
j

3
+ O(λ3),

(
r±j + O(λ)

−λr±j /a
±
j + O(λ2)

)
if a±j > 0

γ±j + O(λ),

(
s±j

γ±j s
±
j

)
+ O(λ) if a±j < 0,

µ±n+j(λ),V ±n+j(λ)(2.14)

=


−λ/a±j +λ2β±j /a

±
j

3
+ O(λ3),

(
r±j + O(λ)

−λr±j /a
±
j + O(λ2)

)
if a±j < 0

γ±j + O(λ),

(
s±j

γ±j s
±
j

)
+ O(λ) if a±j > 0,

for j = 1, · · · ,n, where a±1 ≤ a±2 ≤ ·· · ≤ a±n and r±j are the eigenvalues and

eigenvectors of A±, and γ±1 ≤ γ
±
2 ≤ ·· · ≤ γ

±
n and s±j are those of B−1

± A±.

Proof. Because the µ±j are holomorphic, they are analytic and distinct at all
but countably many isolated points. Where they are distinct, the eigenvectors
V ±j are clearly (locally) analytic as well, by standard matrix perturbation theory.

Since Re (µ±j ) does not change sign on Λ by definition, it is sufficient to verify
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the splitting into n positive real part and n negative real part roots for real
λ→∞. Taking λ→ +∞, we find from (2.7) that the µ±j approximately satisfy

det (B−1
± − (µ2/λ)I) = 0,

which has roots µ = ±
√
λ/b±j , where b±j are the eigenvalues of B±. This confirms

the n–n splitting of roots on Λ.
The expansion about λ = 0 follows by standard bifurcation theory [GH].

Substituting λ = 0 into (2.8) to obtain

µj(B
−1
± A±−µjI)vj = 0,

we find that there is a root µ = 0 of multiplicity n, and n distinct roots µ = γ±j ,

v = s±j . Corresponding to each distinct root, there is an analytic µ±j (λ) which

trivially satisfies µ±j = γ±j + O(λ) and V ±j =

(
s±j
γ±j s

±
j

)
+ O(λ).

The remaining n roots bifurcate from (λ,µ) = (0,0). Writing (2.8) as

(2.15) (λ±j +µjA±−µ
2
jB±)vj = 0,

and linearizing about (λ,µ) = (0,0), we obtain (λ±+µA±)v = 0. Since by
assumption A± has a full set of eigenvalue–eigenvector pairs (a±j ,v

±
j ), this is a

bifurcation from a simple root, and we obtain n analytic solutions of form

µ±j = λ(−1/a±j + c±j λ+ O(λ2)), v±j = r±j + O(λ).

Substituting in (2.15) and matching coefficients, we find that c±j = β±j /a
±
j

3
,

where β±j are defined as in (K3). Substituting in (2.7), we obtain the expansion

for V ±j . Finally, setting µ = ki in the expansion about λ = 0 we obtain (2.11).

This shows that β±j > 0, or else (H3) and thus (C3) would be violated.

Remark 2.2. The expansions in the first lines of (2.13)–(2.14) can be de-
rived in a more illuminating way using the principle of effective artificial viscosity.
As described in [Ka, HoZ.1], the behavior of the constant coefficient version of
(1.6) agrees to first order with that of the system obtained by substituting for B

the unique “effective artificial viscosity matrix” B̃ commuting with A, given by

B̃ = R−1 diag [RBR−1]R = R−1

β1 0
. . .

0 βn

R.
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Making this substitution, we find that equation (2.15) decouples into n scalar
equations

det

λI +µ

a1 0
. . .

0 an

−µ2

β1 0
. . .

0 βn


 = 0,

or

(2.16) λ+µaj −µ
2βj = 0.

Solving (2.16) directly, we obtain the formula of

µ =
aj ±

√
a2
j + 4βjλ

2βj
,

where the root is to be taken as close to zero as possible. Note that this indeed
agrees with the first lines of (2.13)–(2.14) to second order in λ. We thus see
very directly the crucial fact that µj , Vj are effectively scalar near λ = 0. In
particular, the effective viscosity coefficient βj is always real, even though the
corresponding eigenvalue of B may have imaginary component. This will play a
crucial role in the estimates of section 8.

Remark 2.3. Proposition 2.1 holds also in the case that A is nonstrictly
hyperbolic, provided that the symmetrizability conditions of Kawashima are sat-
isfied. This follows by an argument similar to that of Lemmas 6.7–6.8 of [LZe].
Some such assumption is needed to ensure analyticity, since the roots µj bifur-
cating from zero no longer split at first order of the bifurcation (cf. [Kat], pp.
69-70). This is the only place in our analysis where we use the assumption of
strict hyperbolicity of u± in (H2). Likewise, assumption (H4) may be simplified
in the case that Kawashima’s symmetrizability conditions hold to the condition
that βj > 0 in (K3), since this implies (H4) [Ka,MP].

Remark 2.4. Note that the n–n splitting into nonpositive and nonnegative
roots uj , together with formulae (2.13)–(2.14), imply that

(2.17) sgn Re (γ±j ) = sgn (a±j )

for all j. Thus, A± and B−1
± A± have the same (complex) signature if (A±,B±)

is a stable pair in the sense that vt +A±vx−B±vxx has bounded solution op-
erator in L2, in particular if they are mutually symmetrizable and satisfy the
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Kawashima stability condition (K3). This gives an alternative proof of Lemma
1.1.

3. Asymptotic Behavior of ODE. In what follows, we shall have to
relate the behavior near x = ±∞ of solutions of (2.1) to that of solutions of the
asymptotic systems (2.4), in a manner that is analytic in λ. Consider a general
equation

(3.1) W ′ = A(λ,x)W.

It is well known (see [Co], Thm. 4, p. 94) that, provided that

(3.2)

∫ ±∞
0

|A−A±|dx < +∞,

there is a one-to-one correspondence between the normal modes V ±j e
µ±
j
x of the

asymptotic systems

(3.3) W ′ = A±(λ)W,

where V ±j , µ±j are eigenvector and eigenvalue of A− (alternatively, V ±j x
`eµ
±
j
x,

if V ±j is a generalized eigenvector of order `) and certain solutions W±j of (3.1)
having the same asymptotic behavior, i.e.

(3.4) W±j (λ,x) = V ±j e
µ±
j
x(1 + o(1)) as x→ ±∞

(alternatively, W±j (λ,x) = V ±j x
`eµ
±
j
x(1 + o(1))). That is, the flows near ±∞ of

(3.1) and (3.3) are homeomorphic.
Such a correspondence is of course highly nonunique, since (3.4) determines

W±j only up to faster decaying modes. However, provided that Re(µ±j ) is strictly

separated from all other Re(µ±k ), i.e. that there is a spectral gap, the choice
defined in [Co], Theorem 4 by fixed point iteration is in fact analytic in λ, as
the uniform limit of an analytic sequence of iterates. The argument breaks
down at points λ0 where Re (µj) = Re (µk) for some k 6= j, since in this case
(Re (µj)−Re (µk)) does not have a definite sign, and the definition of the fixed
point iteration is determined by the signs of all (Re (µj)−Re (µk)).

The purpose of the present section is to point out that analyticity can be
recovered in the absence of a spectral gap, by virtually the same argument as in
[Co] if we substitute for (3.2) the stronger hypothesis:

(3.5) |A−A±| = O(e−α|x|) as x→ ±∞.



Kevin Zumbrun and Peter Howard 779

This observation is a special case of the “Gap Lemma” of [GZ], also proved
independently in [KS]. The original version was phrased in terms of the projec-
tivized flow associated with (3.1). Here, we give an alternative statement and
derivation directly in terms of (3.1), a form more convenient for our needs. At the
same time, we determine optimal regularity hypotheses, which will later trans-
late into sharp information on the regularity of the parabolic Green’s function
G(x,t;y).

Proposition 3.1. In (3.1), let A be C0+α̃ in x and analytic in λ, with
|A−A−(λ)| = O(e−α|x|) as x → −∞ for α > 0, and ᾱ < α. If V −(λ) is an
eigenvector of A− with eigenvalue µ(λ), both analytic in λ, then there exists a
solution W (λ,x) of (3.1) of form

W (λ,x) = V (x,λ)eµx,

where V (hence W ) is C1+α̃ in x and locally analytic in λ, and for each j =
0,1, . . . satisfies

(3.6)

(
∂

∂λ

)j
V (x,λ) =

(
∂

∂λ

)j
V −(λ) + O

(
e−ᾱ|x|

∣∣∣∣∣
(
∂

∂λ

)j
V −(λ)

∣∣∣∣∣
)
, x < 0,

Moreover, if Re µ(λ) > Re µ̃(λ)−α for all eigenvalues µ̃ of A−, then W is
uniquely determined by (3.6), and (3.6) holds for ᾱ = α.

Proof. Setting W (x) = eµxV (x), we can rewrite W ′ = AW as

V ′ = (A−−µI)V + θV,(3.7)

θ := (A−A−) = O(e−α|x|),

and seek a solution V (x,λ)→ V −(x) as x→ −∞.
Set ᾱ < α1 < α2 < α. Fixing a base point λ0, we can define on some

neighborhood of λ0 the complementary A−-invariant projections P (λ) and Q(λ),
where P projects onto the direct sum of all eigenspaces of A− with eigenvalues
µ̃ satisfying

(3.8) Re (µ̃) < Re (µ) +α2,

and Q projects onto the direct sum of the remaining eigenspaces, with eigenvalues
satisfying

(3.9) Re (µ̃) ≥ Re (µ) +α2 > Re (µ) +α1.
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By basic matrix perturbation theory (eg. [Kat]) it follows that P and Q are
analytic in a neighborhood of λ0, with

∣∣∣e(A−−µI)xP
∣∣∣ = O(eα2x), x > 0,(3.10) ∣∣∣e(A−−µI)xQ
∣∣∣ = O(eα1x), x < 0.

For M > 0 sufficiently large, therefore, the map T defined by

T V (x) = V −+

∫ x

−∞
e(A−−µI)(x−y)P θ(y)V (y)dy(3.11)

−

∫ −M
x

e(A−−µI)(x−y)Qθ(y)V (y)dy,

is a contraction on L∞(−∞,−M ], by (3.10). For, defining x < x0 < −M by
the relation α1(x−x0) = ᾱ(x+M), we have

|T V1−T V2|(x) ≤ O(1)|V1−V2|∞

[∫ x

−∞
eα2(x−y)eαy dy(3.12)

+

∫ x0

x

eα1(x−y)eαy dy+

∫ −M
x0

eα1(x−y)eαy dy

]

= O(1)|V1−V2|∞(eαx + eα1x + eα1(x−x0))

= O(1)|V1−V2|∞ e
ᾱx

= O(1)|V1−V2|∞ e
−ᾱM <

1

2
.

By iteration, we thus obtain a solution V ∈ L∞(−∞,−M ] of V = T V with
V = O(|V −|); since T clearly preserves analyticity, V (λ,x) is analytic in λ as the
uniform limit of analytic iterates (starting with V0 = 0). Differentiation shows
that V is a bounded solution of V = T V iff it is a bounded solution of (3.7).
Further, taking V1 = V , V2 = 0 in (3.12), we obtain from the second to last
equality that

(3.13) |V −V −| = |T (V )−T (0)| = O(1)eᾱx|V | = O(eᾱx)|V −|,

giving (3.6) for j = 0. Derivative bounds, j > 0, follow by standard interior
estimates, or, alternatively, by differentiating (3.11) with respect to λ and re-
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peating the same argument. Analyticity, and the bounds (3.6), extend to x < 0
by standard analytic dependence for the initial value problem at x = −M .

Finally, if

Re(µ(λ)) > Re(µ̃(λ))−
α

2

for all other eigenvalues, then P = I, Q = 0, and V = T V must hold for any
V satisfying (3.6), by Duhamel’s principle. Further, the only term appearing in
(3.12) is the first integral, giving bound (3.13) for ᾱ = α.

Proposition 3.1 extends also to subspaces of solutions. This can be seen
most easily by associating to a k-plane of solutions, Span {W1(x), . . . ,Wk(x)},
the corresponding k-form η = W1 ∧ ·· · ∧Wk. The equations (3.1) induce a linear
flow

(3.14) η′ = A(k)(x,λ)η,

on the space of k-forms via the Leibnitz rule,

(3.15) A(k)(W1 ∧ ·· · ∧Wk) = (AW1 ∧ ·· · ∧Wk) + · · ·+ (W1 ∧ ·· · ∧AWk).

The evolution of the k-plane of solutions of (3.1) is clearly determined by that of
η(x,λ). It is easily seen that the for a given (constant) matrix A, the eigenvectors
of A(k) are of form V1 ∧ ·· · ∧Vk, where Span {V1, · · · ,Vk} is an invariant subspace
of A, and that the corresponding eigenvalue is the trace of A on that subspace.

Definition 3.2. Let C = Span {Vk+1, . . . ,VN} and E = Span {V1, . . . ,Vk}
be complementary A-invariant subspaces. We define their spectral gap to be the
difference β between the real part of the eigenvalue of minimal real part of A
restricted to C and the real part of the eigenvalue of maximal real part of A
restricted to E.

If η is a k-form associated with an A-invariant subspace E as in the definition
above, then the spectral gap β is the minimum difference between the real part
of the eigenvalue µ of A(k) associated with η and the real part of the eigenvalue
associated with any other eigenvector of A(k). Combining these observations with
the result of Proposition 3.1, we obtain a complete version of the Gap Lemma
of [GZ]:

Corollary 3.3 . Let A(x,λ) be C0+α̃ in x, analytic in λ, with A(x,λ)→
A±(λ) as x → ±∞ at exponential rate e−α|x|, α > 0, and let η−(λ) and ζ− be
analytic k and n− k-forms associated to complementary A−(λ)-invariant sub-
spaces C− and E− as in definition 3.2, with arbitrary spectral gap β, and let
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τC− be the trace of A(k) restricted to C−. Then, there exists a solution W(λ,x)
of (3.14) of form

W(λ,x) = η(λ,x)(λ,x)eτC−x

where η (hence W) is C1+α̃ in x and locally analytic in λ, and for each j =
0,1, . . . satisfies

(3.16)

(
∂

∂λ

)j
η(x,λ) =

(
∂

∂λ

)j
η−(λ) + O

(
e−ᾱ|x|

∣∣∣∣∣
(
∂

∂λ

)j
η−(λ)

∣∣∣∣∣
)
, x < 0,

for all ᾱ < α. Moreover, if β > −α, then η is uniquely determined by (3.16) and
(3.16) holds for ᾱ = α.

Divergence-form operators. In the case that A, B ∈ C1+α̃, the eigen-
value equation (2.1) can be expressed as a first order system (2.2) of form (3.1),
with C0+α̃(x) coefficient matrix (2.3). Hence, from the theory developed above,
we immediately obtain solutions W (λ,x) ∈ C2+α̃(x). Likewise, we can im-
mediately treat the non–divergence-form case L := Bw′′−Aw′−λw with the
minimal regularity A, B ∈ C0+α, and reach the same conclusions.

To obtain the same minimal regularity hypotheses also in the divergence-
and mixed-form cases, we observe that these cases also can be reduced to the
standard form (3.1) by appropriate choice of coordinates. For example, (2.1) can
be written as

(3.17)

(
w

Bw′−Aw

)′
=

(
B−1A B−1

λ 0

)(
w

Bw′−Aw

)
,

for A, B only C0+α̃(x), while (Bw)′′− (Aw)′−λw = 0 can be written as

(
Bw

(Bw)′−Aw

)′
=

(
AB−1 I

λB−1 0

)(
Bw

(Bw)′−Aw

)
.

We obtain in this way C1+α̃(x) solutions in the new variables, asymptotic to
appropriate limiting solutions. Undoing the C0+α̃ coordinate change, we obtain
a C1+α̃ solution in the first case, but only a C0+α̃ solution in the second (however,
note that both solutions make classical sense). Alternatively, one could carry out
directly a divergence-form theory analogous to that of (3.1) for equations W ′ =
A−+ (ΘW )′ such that A,Θ ∈ C0+α̃(x) and |Θ| = O(e−α|x|), using an integration
by parts to shift the derivative from (ΘW )′ to the parametrix e(A−−µI)(x−y) in
the contraction mapping T of (3.11). We record these observations as follows.
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Proposition 3.4. For a second order operator L with principal part (Bw′)′

satisfying (C0)–(C1), in particular for L as in (1.6), the results of Proposition

3.1 and Corollary 3.3 hold for W±j := (w±j ,w
±
j

′
)t, where w±j are solutions of the

eigenvalue equation Lw = λw, C1+α̃ in x and locally analytic in λ.

Note. In the rest of the paper, we will for convenience work with equations
(2.2), even though A and B are only C0+α̃. This can be interpreted rigorously
in the distributional sense (or, for simplicity, one can assume f ∈ C2, so that
A, B ∈ C1). Likewise, the calculation of Proposition 7.3 will for clarity be
carried out in the framework of (2.2), with the understanding that (3.17) can be
substituted in case A,B 6∈ C1+α̃ without affecting the computation.

Remark 3.5. The approach described above clearly extends to nondegen-
erate ODE of any order s with first term of form Ds−q(AsDqw) and remain-
ing terms Dr(ArDpw) with r ≤ s− q, p ≤ q, giving regularity w ∈ Cs−q+α̃.
This result can be obtained in the non–divergence-form case q = 0 by the more
straightforward analysis of (3.1) and (3.3).

4. Construction/Extension of the resolvent kernel. We now con-
struct an explicit representation for the Resolvent kernel, that is, the Green’s
function Gλ(x,y) associated with the elliptic operator (L−λI), defined by

(4.1) (L−λI)Gλ(·,y) = δyI,

where δy denotes the Dirac delta distribution centered at y. A subtle, but crucial
issue is the domain of analyticity of Gλ as a function of λ, since, according to
the usual duality, it is smoothness in the frequency variable λ that will later
translate to decay in the temporal variable t. Let Λ be as defined in (2.9). It is a
standard fact, see e.g. [He], that both the resolvent (L−λI)−1 and the Green’s
function Gλ(x,y) are meromorphic in λ on Λ, with isolated poles of finite order.
Using our explicit representation, we will show more, that Gλ in fact admits a
meromorphic extension to a sector

(4.2) Ωθ = {λ : Re(λ) ≥ −θ1− θ2|Im (λ)|}; θ1, θ2 > 0,

containing a neighborhood of the origin, and having only isolated poles of finite
order.

To avoid repetition, we assume throughout this section that (C0)–(C3)
hold unless otherwise stated. Combining Proposition 2.1, Corollary 3.3, and
Proposition 3.4, we have the following result:

Lemma 4.1. For λ ∈ B(0,r), r sufficiently small, and locally to all except
for countably many isolated points {λj} of Λ, there exist solutions W±j (x,λ) of
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(2.1), C1+α̃ in x and analytic in λ, satisfying

W±j (x,λ) = V ±j (x,λ)eµ
±
j
x(4.3)(

∂

∂λ

)k
V ±j (x,λ) =

(
∂

∂λ

)k
V ±j (λ) + O

(
e−α|x|/2

∣∣∣∣∣
(
∂

∂λ

)k
V ±j (λ)

∣∣∣∣∣
)
, x ≷ 0,

for all k ≥ 0, where α is the rate of decay given in (C0) and µ±j , V ±j are as in

Proposition 2.1. Moreover, W±1 ∧ ·· · ∧W
±
n and W±n+1 ∧ ·· · ∧W

±
2n can be chosen

to be locally analytic at any point of Λ∪B(0,r).

On Λ, the subspaces spanned by

Φ+ = (φ+
1 , · · · ,φ

+
n ) = (W+

1 , · · · ,W
+
n ), and(4.4)

Φ− = (φ−1 , · · · ,φ
−
n ) = (W−n+1, · · · ,W

−
2n)(4.5)

contain all solutions of (2.2) decaying at x = ±∞, respectively, by Proposition
2.1 and Lemma 4.1. Loosely following the notation of [Sat], we denote the
complementary subspaces of growing modes by

(4.6) Ψ+ = (ψ+
1 , · · · ,ψ

+
n ) = (W+

n+1, · · · ,W
+
2n)

and

(4.7) Ψ− = (ψ−1 , · · · ,ψ
−
n ) = (W−1 , · · · ,W

−
n ).

Defining ρ+
j = µ+

j , ρ−j = µ−n+j , ν
+
j = µ+

n+j , and ν−j = µ−j , we have

(4.8) φ±j ∼ e
ρ±
j
x; ψ±j ∼ e

ν±
j
x.

Eigenfunctions, decaying at both ±∞, occur precisely when the subspaces
Φ+ and Φ− intersect. This intersection can be detected by the vanishing of their
mutual determinant, or equivalently of the Evans function,

DL(λ) := det(Φ+,Φ−)
∣∣∣
x=0

(4.9)

= (φ+
1 ∧ ·· · ∧φ

+
n ∧φ

−
1 no∧ ·· · ∧φ

−
n )
∣∣∣
x=0

.

By Lemma 4.1 and (C3), we immediately have the following result:
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Lemma 4.2. For θ1, θ2 > 0 sufficiently small, DL is locally analytic on
the sector Ωθ defined in (4.2).

(In fact, DL can be defined in a globally analytic way, with further care
[GZ]. However, we need not do so here.)

We now turn to the representation of the Green’s function Gλ(x,y). We first
recall the classical symmetry principle as it applies to non–self-adjoint operators.

Lemma 4.3. Let Hλ(x,y) denote the Green’s function for the adjoint
operator (L−λI)∗. Then, Gλ(y,x) = Hλ(x,y)∗. In particular, for x 6= y, the
matrix z = Gλ(x, ·) satisfies

(4.10) (z′B)′ = −z′A+ zλ.

Proof. Letting 〈·, ·〉 denote complex inner product, we have

Gλ(x0,y0) =

∫ ∞
−∞
〈δx0

,Gλ(x,y0)〉 dx

=

∫ ∞
−∞
〈(L−λI)∗Hλ(x,x0),Gλ(x,y0)〉dx

=

∫ ∞
−∞
〈Hλ(x,x0),(L−λI)Gλ(x,y0)〉 dx

=

∫ ∞
−∞
〈Hλ(x,x0),δy0

〉dx

= Hλ(y0,x0)∗.

Consider (4.10) as an ODE for a general row vector z. Written as a first
order system, it becomes

(4.11) Z′ = ZÃ(λ,x),

where Z = (z,z′) and

(4.12) Ã =

(
0 λB−1−A′B−1

I −AB−1−B′B−1

)
.

The following duality relation, generalizing Lemma 2.1.2 of [LZ.2], will be used
repeatedly in our analysis.
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Lemma 4.4. Z is a solution of (4.11) iff ZSW ≡ constant for any solution

W of (2.2), where S =

(
−A B
−B 0

)
.

Proof. By direct calculation,

(ZSW )′ = (−zAw+ zBw′− z′Bw)′

= −z′Aw− z(Aw)′− z′′Bw− z′B′w+ zBw′′+ zB′w′

= z[(Bw′)′− (Aw)′−λw]− [(z′B)′+ z′A−λz]w

= −[(z′B)′+ z′A−λz]w,

where the final equality follows from (2.1). Comparing to (4.10), we are
done.

Remark 4.5. Note that (4.10) is not the adjoint, but the “transpose”
equation of (4.1). Likewise, ZSW above denotes matrix multiplication, not
complex inner product.

Using Lemma 4.4, we can immediately define dual bases W̃±j of solutions to

(4.12) by the relation

(4.13) W̃±j SW
±
k = δjk,

where

δjk =

{
1 if j = k

0 otherwise

denotes the Kronecker delta function. Note that we have defined the W̃±j as row

vectors . By (4.13) combined with (2.13), we find that

(4.14) W̃±j = Ṽ ±j e
µ̃±
j
x(1 + O(e−(α/2)|x|)),

where µ̃±j , Ṽ ±j are the left eigenvalues and eigenvectors of the asymptotic matri-
ces

(4.15) Ã± =

(
0 λB−1

±

I −A±B
−1
±

)
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associated with the adjoint eigenvalue equation (4.11). Note that, by (4.13), we
have {

µ̃±j = −µ±j

Ṽ ±j V
±
k = δjk

for all λ; in particular, by (2.13), we obtain the expansions

Ṽ ±j =

{
(rj ,0) + O(λ) if a±j > 0,

(s̃±j ,−γj s̃
±
j ) + O(λ) if a±j < 0,

Ṽn+j =

{
(r̃±j ,0) + O(λ) if a±j < 0,

(s̃±j ,−γj s̃
±
j ) + O(λ) if a±j > 0,

analogous to (2.13)–(2.14), for j = 1, · · · ,n around λ = 0, where r̃±j , s̃±j are the

left eigenvectors of A±, B−1
± A±, respectively.

In accordance with (4.4)–(4.7), we define the dual subspaces

(4.16)

Φ̃+ = (φ̃+
1 , · · · , φ̃

+
n ) = (W̃+

1 , · · · ,W̃
+
n ),

Φ̃− = (φ̃−1 , · · · , φ̃
−
n ) = (W̃−n+1, · · · ,W̃

−
2n),

Ψ̃+ = (ψ̃+
1 , · · · , ψ̃

+
n ) = (W̃+

n+1, · · · ,W̃
+
2n),

Ψ̃− = (ψ̃−1 , · · ·ψ̃
−
n ) = (W̃−1 , · · · ,W̃

−
n ),

so that, analogously to (4.8),

(4.17) φ̃±j ∼ e
−ρ±

j
x; ψ̃±j ∼ e

−ν±
j
x.

Note that, contrary to the case of (4.4)–(4.7), Ψ̃± denote the decaying modes of

(4.11), Φ̃± the growing modes.
By (4.13) and (4.16), we have

φ̃±j Sψ
±
k = 0; φ̃±j Sφ

±
k = δjk,(4.18)

ψ̃±j Sψ
±
k = δjk; ψ̃±j Sφ

±
k = 0.

From (4.1) and (4.10), we have that

(
Gλ(·,y)
Gλx(·,y)

)
satisfies (2.2) for x 6= y,

while (Gλ(x, ·),Gλy(x, ·)) satisfies (4.11). Further, note that both Gλ(x, ·) and
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Gλ(·,y) decay at ±∞ for λ on the resolvent set, since |(L−λI)−1| < ∞ ⇐⇒
|(L−λI)∗| < ∞ imply ‖Gλ(·,y)‖L1 < ∞ and ‖Gλ(x, ·)‖L1 < ∞ respectively.
Combining, we have the representation

(4.19)

(
Gλ Gλy
Gλx Gλxy

)
=

{
Φ+(λ,x)M+(λ)Ψ̃−(λ,y) for x > y

Φ−(λ,x)M−(λ)Ψ̃+(λ,y) for x < y,

where M±(λ) are to be determined.

Lemma 4.6.[
Gλ Gλy
Gλx Gλxy

]
(y)

=

(
0 −B−1

B−1 −B−1AB−1

)
= S−1,

where [f ](y) denotes the jump in f(x) at x = y, and S is as in Lemma 4.4.

Proof. Expanding δy = (L−λ)Gλ = (BGλx)x− (AGλ)x−λGλ, and com-
paring orders of singularity, we find that

(AGλ)x +λGλ = 0 and (BGλx)x = δy,

giving, respectively,

[Gλ](y) = 0 and [Gλx ](y) = B−1,

Note further that we can expand [Gλ](y) as

[Gλ](y) = Gx>yλ (y,y)−Gx<yλ (y,y),(4.20)

where Gx>yλ and Gx<yλ are the smooth functions denoting the value of Gλ on the
regions x > y and x < y, respectively. Differentiating (4.20) in y, we obtain

0 =
d

dy
[Gλ](y) = [Gλx ](y) + [Gλy ](y),

hence

[Gλy ](y) = −B−1.

Differentiating a second time, we find that

(4.21) [Gλxy ](y) = −
1

2
([Gλxx ](y) + [Gλyy ](y)).
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Finally, we can determine [Gλxx ](y) and [Gλyy ](y) by solving the ODE (2.1) and
(4.10) to express

Gλxx = B−1((A−B′)Gλx + (A′+λ)W ), and

Gλyy = (Gλy(−A−B′) +Gλ(−A′+λ)B−1).

With (4.21), this gives

[
Gλxy

]
(y)

= −
1

2
B−1(A−B′)[Gλx ](y)−

1

2
[Gλy ](y)(−A−B

′)B−1 = −B−1AB−1

as claimed. This verifies the first equality asserted; the second follows by direct
computation.

Combining Lemma 4.6 with (4.19), we have

(Φ+(y),Φ−(y))

(
M+(λ) 0

0 −M−(λ)

)(
Ψ̃−(y)

Ψ̃+(y)

)
= S−1, or

(
M+(λ) 0

0 −M−(λ)

)
= (Φ+,Φ−)−1S−1

(
Ψ̃−

Ψ̃+

)−1

(y)

=

((
Ψ̃−

Ψ̃+

)
S(Φ+,Φ−)

)−1

(y)

=

(
Ψ̃−SΦ+ 0

0 Ψ̃+SΦ−

)−1

(y)

(4.22)

Note that the right hand side of (4.22) is indeed independent of y, by Lemma
4.4.

From (4.22) together with (4.19), we have

(
Gλ Gλy
Gλx Gλxy

)
(4.23)

= (Φ+(x),0)(Φ+(z),Φ−(z))−1S(z)−1

(
Ψ̃−(z)

Ψ̃+(z)

)−1(
Ψ̃−(y)

0

)

for x > y, any z, and similarly for x < y. This gives the useful coordinate-free
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representation of

(4.24)

(
Gλ Gλy
Gλx Gλxy

)
= Fz→xΠ+(z)S−1(z)Π̃−(z)F̃z→y,

where

Π+(y) = (Φ+(y),0)(Φ+(y),Φ−(y))−1, and(4.25)

Π̃−(y) =

(
Ψ̃−(y)

Ψ̃+(y)

)−1(
Ψ̃−(y)

0

)
(4.26)

denote, respectively, the projection along Φ−(y) onto the stable manifold Φ+(y)

and the dual projection along Ψ̃+(y) onto the dual stable manifold Ψ̃−(y), and

Fz→x = (Φ+(x),Φ−(x))(Φ+(z),Φ−(z))−1, and

F̃z→y =

(
Ψ̃−(z)
Φ+(z)

)−1(
Ψ−(y)
Ψ+(y)

)
denote the solution operators of (2.1) and (4.11).

Using Lemma 4.4, it can be shown that

Π+(z)S−1(z) = Π+(z)S−1(z)Π̃−(z) = S−1(z)Π̃−(z).

Thus, taking z = y in (4.24), we obtain a formulation entirely in terms of (2.1),(
Gλ Gλy
Gλx Gλxy

)
= Fy→xΠ+(y)S−1(y)(4.27)

= (Φ+(x),0)(Φ+(y),Φ−(y))−1S(y)−1,

for x > y, and similarly for x < y. Equation (4.27) (and indeed (4.24) as well)
is more easily verified by setting(

Gλ Gλy
Gλx Gλxy

)
= Φ±(x)N±(y)

and solving directly for N± using the jump conditions. There is of course a
symmetric representation,

(4.28)

(
Gλ Gλy
Gλx Gλxy

)
= S−1(x)Π̃−(x) F̃x→y,
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entirely in terms of (4.11). The representations (4.23)–(4.24) and (4.27) are
useful in different circumstances.

Proposition 4.7. The function Gλ(x,y) defined by (4.23)–(4.24) (equival-
ently, by (4.27)) agrees with the Green’s function on Λ \σ(L) and, for θ1, θ2

sufficiently small, is meromorphic on the sector Ωθ defined in (4.2), with only
isolated poles of finite order, each corresponding to zeroes of the Evans function.

Proof. The first claim follows from our derivation, for any local represen-
tatives W±j . On any neighborhood where Φ± are analytic matrices, i.e. at all
except the countably many isolated points of Lemma 4.1, it is clear from the rep-
resentation (4.23) that Gλ as a rational matrix function is locally meromorphic,
with isolated poles of finite order. Moreover, these poles clearly occur where
(Φ+,Φ−) fails to be invertible, i.e. where DL(λ) := det(Φ+,Φ−) = 0.

At exceptional points, it is still the case that the subspaces Span Φ± can
be chosen analytically, by identification with the analytic n-forms φ±1 ∧ ·· · ∧φ

±
n

guaranteed by Lemma 4.1. Choosing any analytic bases for these spaces, we
again obtain local meromorphicity through representation (4.23).

Alternatively, this follows directly from the coordinate free representation
(4.24). We omit the details, since these exceptional points only occur on Λ,
where Gλ is known by standard theory to be meromorphic.

Finally, global meromorphicity on Ωθ ⊂ Λ∪B(0,r) follows from meromor-
phicity on B(0,r), local meromorphicity on Λ, and uniqueness of the Green’s
function on Λ.

Part II. Spectral Theory.

5. The effective spectrum. In this section, we extend the spectral ex-
pansion theory of [Kat, Y] to eigenvalues such as λ = 0 for the operator L
above that lie within or in the closure of the essential spectrum of a differential
operator: more generally, to “resonant poles” of the Resolvent kernel Gλ. For
the “effective eigenspace” induced by the residue of Gλ, we show that the usual
Fredholm Theory carries over, modulo certain obviously necessary modifications.

In this and the following section, we drop the usual assumptions (C0)–(C3).
In anticipation that these results will be of general use, we carry out the analysis
with minimal assumptions on the operator L. Let C∞exp denote the space of C∞

functions decaying exponentially in all derivatives at some sufficiently high rate.

Definition 5.1. Let L be a linear ordinary differential operator with
bounded, C∞ coefficients (so that L : C∞exp → C∞exp ), and let Gλ denote the
Green’s function of L−λI. Further, let Ω be an open, simply connected domain
intersecting the resolvent set of L, on which Gλ has a (necessarily unique) mero-
morphic extension. Then, for λ0 ∈ Ω, we define the effective eigenprojection



792 Pointwise Semigroup Methods and Stability of Viscous Shock Waves

Pλ0
: C∞exp → C∞ by

Pλ0
f(x) =

∫ +∞

−∞
Pλ0

(x,y)f(y)dy,

where

(5.1) Pλ0
(x,y) = Resλ0

Gλ(x,y)

and Resλ0
denotes residue at λ0. We will refer to Pλ0

(x,y) as the projection
kernel. Likewise, we define the effective eigenspace Σ′λ0

(L) by

Σ′λ0
(L) = Range (Pλ0

).

The definition above is the natural one from the point of view of the spectral
resolution of the identity, I =

∫
Γ
(L−λI)−1dλ, hence also from the point of view

of asymptotic behavior of solutions of PDE (see Section 8). Away from the
essential spectrum of L, it corresponds with the usual definition [Kat,Y].

It is perhaps not immediately obvious from the definition that P takes C∞exp

to C∞ as claimed, for λ0 in the essential spectrum. However, recall from the
explicit calculation of the Green’s function that Gλ(x,y) can be expressed as

G+
λ (x,y)h(x− y) +G−λ (x,y)h(y−x),

where each of G±λ are C∞ in both x and y, and h(·) is the standard Heaviside

function. Thus, (∂/∂x)k
∫ +∞
−∞ Gλ(x,y)f(y)dy may be split into the sum of terms

of form

∫ +∞

−∞

(
∂

∂x

)j
G±λ (x,y)

(
∂

∂x

)k−j
h(x− y)f(y)dy

= (−1)k−j
∫ +∞

−∞
h(x− y)

(
∂

∂y

)k−j [(
∂

∂x

)j
G±λ (x,y)f(y)

]
dy

= (−1)k−j
∫ ±∞
x

(
∂

∂y

)k−j [(
∂

∂x

)j
G±λ (x,y)f(y)

]
dy,

which are evidently continuous in x, uniformly in λ on any compact set. (Here,
we have assumed sufficiently rapid decay of C∞exp that boundary terms vanish in

the integration by parts). Evaluating the Residue by integrating in λ on a closed
contour about λ0, we thus find that Pλ0

f ∈ Ck for all k, as claimed.
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Definition 5.2. Let L, Ω, λ0 be as above, and K be the order of the pole of
(L−λI)−1 at λ0. For λ0 ∈ Ω, and k any integer, we define Qλ0,k : C∞exp → C∞

by

Qλ0,kf(x) =

∫ +∞

−∞
Qλ0,k(x,y)f(y)dy,

where

Qλ0,k(x,y) = Resλ0
(λ−λ0)kGλ(x,y).

For 0 ≤ k ≤ K, we define the effective eigenspace of ascent k by

Σ′λ0,k
(L) = Range (Qλ0,K−k)

With the definitions above, we obtain the following, modified Fredholm
Theory.

Proposition 5.3. Let L, λ0, Ω be as in Definition 5.1, and K be the order
of the pole of Gλ at λ0. Then,

(i) The operators Pλ0
, Qλ0,k : C∞exp → C∞ are L-invariant, with

(5.2) Qλ0,k+1 = (L−λ0I)Qλ0,k = Qλ0,k(L−λ0I)

for all k 6= −1, and

(5.3) Qλ0,k = (L−λ0I)kPλ0

for k ≥ 0.

(ii) The effective eigenspace of ascent k satisfies

(5.4) Σ′λ0,k
(L) = (L−λ0I)Σ′λ0,k+1(L).

for all 0 ≤ k ≤ K, with

(5.5) {0} = Σ′λ0,0
(L) ⊂ Σ′λ0,1

(L) ⊂ ·· · ⊂ Σ′λ0,K
(L) = Σ′λ0

(L).

Moreover, each containment in (5.5) is strict.
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(iii) On P−1
λ0

(C∞exp ), Pλ0
, Qλ0,k all commute (k ≥ 0), and Pλ0

is a projection.

More generally, Pλ0
f = f for any f ∈ Σλ0

(L : C∞exp), hence

Σλ0,k(L : C∞exp) ⊂ Σ′λ0,k
(L)

for all 0 ≤ k ≤ K.

(iv) The multiplicity of the eigenvalue λ0, defined as dim Σ′λ0
(L), is finite and

bounded by Kn. Moreover, for all 0 ≤ k ≤ K,

(5.6) dim Σ′λ0,k
(L) = dim Σ′λ∗0 ,k(L∗).

Further, the projection kernel can be expanded as

(5.7) Pλ0
=
∑
j

ϕj(x)πj(y),

where {ϕj}, {πj} are bases for Σ′λ0
(L), Σ′λ∗0

(L∗), respectively.

(v) (Restricted Fredholm alternative) For g ∈ C∞exp,

(L−λ0I)f = g

is soluble in C∞ if and only if Qλ0,K−1 g = 0, or equivalently

(5.8) g ∈ Σ′λ∗0 ,1(L∗)⊥.

Remarks. For λ0 in the resolvent set, Pλ0
agrees with the standard defi-

nition, hence Σ′λ0,k
(L) agrees with the usual Lp eigenspace of generalized eigen-

functions of ascent ≤ k, for all p < ∞, since C∞exp is dense in Lp, p > 1, and

Σ′λ0,k
(L) is closed. In the context of stability of traveling waves (more gener-

ally, whenever the coefficients of L exponentially approach constant values at
±∞), Σ′λ0,k

(L) lies between the Lp subspace Σλ0,k(L) and the corresponding

LpLoc subspace.
The modification from standard Fredholm Theory is only that here con-

clusions (iii) and (v) apply on restricted domains. This restriction is clearly
necessary, since the various expressions occurring in their statements would oth-
erwise not be defined.

In this regard, note that Pλ0
is, strictly speaking, not a projection in the

case that λ ∈ σess(L), since its domain does not then match its range. However,
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it maintains the projective structure (5.7), somewhat justifying our abuse of
notation.

Proof. The proof is similar in spirit to that of [Kat] for the standard case
λ0 ∈ ρ(L); for example, the proofs of (i)-(ii) and (iv) are essentially the same
arguments translated into Green’s function notation. However, we have the
handicap that compositions of the operators Pλ0

, Qλ0,k are no longer defined,
since the domain does not match the range. For this reason, the arguments and
also the statements of (iii) and (v) must be modified.

(i) That L commutes with the operators Pλ0
, Qλ0,k on the domain C∞exp follows

from

(Lx−λ0)Gλ(x,y) = (L∗y −λ
∗
0)Gλ(x,y) = δ(x− y),

a restatement of Lemma 4.3, and the facts that for f ∈ C∞exp the order of
integration in λ and y can be exchanged in evaluating Qλ0,kf , and (L−λ0I)
may be moved inside the integral, by Fubini’s Theorem and the Lebesgue
Dominated Convergence Theorem, respectively. Here, Lx and Ly denote the
operation of the differential operator L on x and y variables, respectively.
From now on, L will be understood to denote Lx.
Rearranging the definition of the Green’s function in (4.1), we obtain the
key identity,

(5.9) (λ−λ0)Gλ(x,y) + δ(x− y) = (L−λ0I)Gλ(x,y),

an analog of the basic Resolvent identities in [Kat]. This gives

(L−λ0I)Qλ0,k(x,y) = Res(L−λ0I)(λ−λ0)kGλ(x,y)

= Res(λ−λ0)k+1Gλ(x,y) + Res(λ−λ0)kδ(x− y)

= Qλ0,k+1(x,y),

where in the first equality we have used the fact that for f ∈ C∞exp the
operator (L−λ0I) can be moved inside the λ integral defining the Residue,
again by Lebesgue Dominated Convergence, and in the final equality that
Res(λ−λ0)k = 0 for k 6= −1. From this, and the previous observation that
(L−λ0I) can be moved inside the y-integral in evaluating (L−λ0I)Qλ0,kf ,
we obtain the first equality in (5.2); the second follows by L-invariance.
Observing that Qλ0,K = Pλ0

, we obtain (5.3) by induction.

(ii) From (i) and Definitions 5.1 and 5.2, we immediately obtain (5.4) and (5.5).
Strict inequality follows from the observation that

(Σ′λ0,k
\Σ′λ0,k−1) = (L−λ0I)K−k(Σ′λ0,K

\Σ′λ0,K−1)
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together with the fact that

(Σ′λ0,1 \Σ′λ0,0) 6= Ø

or else Resλ0
(λ−λ0)K−1(L−λI)−1 would be zero, and the order of the pole

of (L−λI)−1 at λ0 would be only K − 1, a contradiction.

(iii) Rewriting (5.9) as

(5.10) Gλ(x,y) = (L−λ0I)(λ−λ0)−1Gλ(x,y)− (λ−λ0)−1δ(x− y)

and iterating, we obtain

Gλ(x,y) = (L−λ0I)K(λ−λ0)−KGλ(x,y)

− (λ−λ0)−1
K−1∑
j=0

(L−λ0I)j(λ−λ0)−jδ(x− y).

Taking the residue at λ0 then gives the decomposition

Pλ0
(x,y) = Resλ0

(L−λ0I)K(λ−λ0)−KGλ(x,y) + δ(x− y),

hence

Pλ0
f = f + (L−λ0I)KQλ0,2Kf = f +Qλ0,2K(L−λ0I)Kf.

Applied to f ∈ Σλ0
(L), i.e. f ∈ C∞exp such that (L−λ0I)Kf = 0, this gives

the result.

(iv) All f ∈ Σ′λ0
(L) are C∞ solutions of (L−λ0I)Kf = 0, by (ii), of which there

are at most dimension Kn. The relations (5.6)-(5.7) then follow from the
observation that

(5.11) Pλ∗0 (L∗) = Pλ0
(L)∗,

together with the fact that Pλ0
(L) has finite rank. Observation (5.11) fol-

lows in turn from

P∗λ0
f =

∫ +∞

−∞
P ∗λ0

(y,x)f(y)dy

and the fact that G∗λ(y,x) is the Green’s function for (L−λ0I)∗ =
(L∗−λ∗0I), another application of Lemma 4.3.
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(v) Motivated by the formal resolvent expansion

(L−λ0I)−1 = −

∫
Γ

(λ−λ0)−1(L−λI)−1dλ,

we can expect −Qλ0,−1 to act as some sort of pseudo-inverse, since

Qλ0,−1 = Res(λ−λ0)−1Gλ(x,y).

Applying (5.10), we find that

(L−λ0I)(−Qλ0,−1)(x,y) = δ(x− y)−Pλ0
(L)(x,y),

hence, indeed,

(L−λ0I)(−Qλ0,−1) = I −Pλ0
(L).

Setting f = f̃ −Qλ0,−1g, we thus find that the equation (L−λ0I)f = g

can be solved if (L−λ0I)f̃ = Pλ0
g can be solved. This is clearly possible if

Pλ0
g ∈ Σ′λ0,1(L) = (L−λ0I)Σ′λ0

(L),

or equivalently

Qλ0,K−1(L)g = (L−λ0I)K−1Pλ0
(L)g = 0.

The relation

0 = 〈h,Qλ0,K−1(L)g〉 = 〈Qλ∗0,K−1(L∗)h,g〉

for all h shows this to be equivalent to g ∈ Σ′λ∗0 ,K−1(L∗)⊥. On the other

hand, (L−λ0I)f = g clearly implies that

Qλ0,K−1(L)g = Qλ0,K−1(L)(L−λ0I)f

= Qλ0,K(L)f,

hence Qλ0,K−1(L)g ∈ Σ′λ0,0
, and Qλ0,K−1(L)g = 0 by (5.5). This completes

the proof.
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6. The Evans function and effective spectrum. We next explore the
relation between the effective point spectrum and the Evans function, showing
that the effective eigenspace has dimension equal to the multiplicity of the Evans
function. This fact explains the meaning of the Evans function in regions of
essential spectrum [PW]. More importantly, it establishes continuity of spectral
dimension under perturbations of the underlying operator L.

We first make two further assumptions. These are relatively mild; in partic-
ular, they are satisfied for our application of main interest, the study of linearized
operators about traveling wave solutions. Writing (L−λI)w = 0 as usual as a
first order system

(6.1) W ′ = A(λ,x)W, W ∈ CN ,

we require that:

(h1) L is a nondegenerate operator of order s, i.e. the coefficient matrix of the
principal part is nonsingular for all x.

(h2) There are solutions Φ+ = (φ+
1 , . . . ,φ

+
k ) and Φ− = (φ−1 , . . . ,φ

−
N−k) of (6.1),

analytic in λ on the set Ω of Definition 5.1, which on the resolvent set span
the manifolds of solutions decaying at ±∞.

In this case, we can define an analytic Evans function

DL(λ) = det (Φ+,Φ−)|x=0,

which we assume does not vanish identically. It is easily verified that the order to
which DL vanishes at any λ0 is independent of the choice of analytic bases Φ±.
To reveal the relation between the effective eigenspace and the Evans function,
we will construct special, Jordan bases relative to the operator L, in which the
calculations considerably simplify. The advantage of such a basis was pointed
out by Gardner and Jones, [GJ.1-2], in their treatment of isolated eigenvalues.

Lemma 6.1. Let L, λ0 be as in Definition 5.1, and satisfying (h1)–(h2).
Then, at any zero λ0 ∈ Ω of DL, there exist analytic choices of bases Φ±, and
indices p1 ≥ ·· · ≥ pJ such that

(6.2)

(
∂

∂λ

)p
φ+
j =

(
∂

∂λ

)p
φ−j , j = 1, . . . ,J ; p = 0, . . . ,pj ,

and

(∂/∂λ)p1+1(φ+
1 −φ

−
1 )∧ ·· · ∧ (∂/∂λ)pJ+1(φ+

J −φ
−
J )(6.3)

∧φ+
1 ∧ ·· · ∧φ

+
k ∧φ

−
J+1 ∧ ·· · ∧φ

−
N−k 6= 0,
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where the multiplicity of the zero of DL at λ0 is d =
∑

1≤j≤J(pj + 1).

Proof. It is equivalent to show that

(6.4)

(
∂

∂λ

)p
φ+
j =

(
∂

∂λ

)p
φ−j , p = 0, . . . ,P ; j = 1, . . . , jp

and

(
∂

∂λ

)p
(φ+
jp+1−φ

−
jp+1)∧ ·· · ∧

(
∂

∂λ

)p
(φ+
jp−1
−φ−jp−1

)∧ ·· ·(6.5)

∧

(
∂

∂λ

)
(φ+
j1+1−φ

−
j1+1)∧ ·· · ∧

(
∂

∂λ

)
(φ+
j0
−φ−j0)

∧ φ+
1 ∧ ·· · ∧φ

+
k ∧φ

−
j0+1 ∧ ·· · ∧φ

−
N−k 6= 0,

for all 0 ≤ p ≤ P + 1, where jp := maxpj≥p j and P = p1. Note that j0 = J and
jP+1 = 0, hence (6.3) is achieved from (6.5) at level p = P + 1.

Without loss of generality, take λ0 = 0. Since DL vanishes at λ0, there is a
J = j0 ≥ 1 dimensional intersection between Span Φ− and Span Φ+. By a linear
change of coordinates, we can thus arrange that (6.4) hold for p = 0, 1 ≤ j ≤ j0.
We proceed by induction on p. At each stage, either (6.5) holds with jp+1 = 0,
or else there is a nontrivial m-dimensional intersection of

Span

{(
∂

∂λ

)p+1

(φ+
1 −φ

−
1 ), . . . ,

(
∂

∂λ

)p+1

(φ+
jp+1
−φ−jp+1

)

}

with the manifold spanned by the terms in the expression (6.5) with λ-derivatives
of order ≤ p. Set jp+1 = m. By making a coordinate change only within the
span of φ±1 , . . . ,φ

±
jp

, we can arrange, without affecting the relations for smaller p,

that

(6.6)

(
∂

∂λ

)p+1

φ−j +
∑
j,q≤p

c−jq

(
∂

∂λ

)q
φ+
j =

(
∂

∂λ

)p+1

φ+
j +

∑
j,q≤p

c+jq

(
∂

∂λ

)q
φ+
j

for 1 ≤ j ≤ jp+1, and (6.5) holds up to p+ 1. Redefining

φ̃±j = φ±j +
∑
j,q≤p

c±jq

(
p+ 1

q

)−1

λp+1−qφ±j
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for 1 ≤ j ≤ jp+1 does not affect the spans of Φ± for small λ, for, it clearly does
not add to the span, and is the identity transformation at λ = 0, hence full rank
for λ small. Thus, it is an allowable, analytic change of coordinates. With this
change of coordinates, (6.4) is then satisfied up to p+ 1, by (6.6) together with
the elementary fact that

(
∂

∂λ

)n
(λkf)|λ=0 =

(
n

n− k

)(
∂

∂λ

)n−k
f(0).

By induction, we can thus satisfy (6.4)–(6.5) up to any finite order p. It is
an easy calculation that DL must therefore vanish up order at least

∑
0≤s≤p js.

Since the multiplicity of DL is finite, by analyticity, the process must terminate
at some P such that jP+1 = 0, establishing the main assertions (6.4)–(6.5).

As remarked above, DL thus vanishes to order at least

d =
∑

1≤j≤J

(pj + 1) =
∑

0≤s≤P

js.

But a straightforward computation shows that the nonzero quantity in (6.3) is
the only term in the dth derivative of DL with respect to λ, hence d is ex-
actly the multiplicity of the zero of DL at λ0. This completes the proof of the
lemma.

Remark 6.2. Repeated differentiation of the eigenvalue equation with re-
spect to λ gives the variational equations

(6.7) φ±j = (L−λ0I)

(
∂

∂λ

)
φ±j = (L−λ0I)2

(
∂

∂λ

)2

φ±j = · · · .

Thus, the basis constructed above consists, formally, of Jordan chains with re-
spect to L.

Theorem 6.3. Let L, λ0 be as above. Then:

(i) The functions (∂/∂λ)pφ−j , 5 1 ≤ j ≤ J , 0 ≤ p ≤ pj described in the

previous lemma, projected onto their first n coordinates, are a basis for Σ′λ0
.

Moreover, the projection of (∂/∂λ)pφ−j is an eigenfunction of ascent p+ 1.

(ii) dim Σ′λ0
(L) is equal to the order d to which the Evans function DL vanishes

at λ0.
(iii) Pλ0

(L) =
∑
j ϕj(x)πj(y), where ϕj and πj are in Σ′λ0

(L) and Σ′λ0
(L∗),

respectively, with ascents summing to ≤ K + 1, where K is the order of the
pole of Gλ at λ0.

5 Alternatively, (∂/∂λ)pφ+
j , see (6.2).
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Proof. (i) Let Φ± be the Jordan bases described in Lemma 6.1. The Green’s
function Gλ(x,y) associated with L, by a calculation analogous to that used to
prove (4.27), satisfies

(6.8)


Gλ · · · (∂/∂y)sGλ

(∂/∂x)Gλ · · · (∂/∂y)s(∂/∂x)Gλ
...

...
...

(∂/∂x)sGλ · · · (∂/∂y)s(∂/∂x)sGλ


= (Φ+(x),0)(Φ+(y),Φ−(y))−1S(y)−1,

for x > y, where s is the order of the operator L and S−1(y) is an invertible,
block lower cross-triangular matrix, with cross-diagonal blocks given by ± the
coefficient matrix of the principal part of L (nonsingular, by (h1)).

Thus, the projection kernel Pλ0
(x,y) is given by


Pλ0

· · · (∂/∂y)sPλ0

(∂/∂x)Pλ0
· · · (∂/∂y)s(∂/∂x)Pλ0

...
...

...

(∂/∂x)sPλ0
· · · (∂/∂y)s(∂/∂x)sPλ0


= Resλ0

(Φ+(x),0)(Φ+(y),Φ−(y))−1S(y)−1,

or, by Kramer’s rule:

(6.9) Resλ0
DL(λ)−1(Φ+(x),0)(Φ+(y),Φ−(y))adjS(y)−1,

where adj denotes adjugate matrix, or transposed matrix of minors. Expression
(6.9) can be expanded as

(6.10)

(
d

dλ

)d
DL(λ0)−1

∑
j,p≤d−1

(
∂

∂λ

)p
φj(λ0,x)

(
∂

∂λ

)d−1−p

Θj(λ0,y)S(y)−1,

where Θj(λ, ·) denotes the jth row of (Φ+(y),Φ−(y))adj , or the jth column of
the matrix of minors.

It is clear from expansion (6.10) that the range of Pλ0
is the span of all

(∂/∂λ)pφ+
j (λ0, ·) for which (∂/∂λ)d−1−pΘj(λ, ·) 6≡ 0, projected onto their first n

coordinates (recall that φj is a phase vector, the physical vector augmented by its
first s− 1 derivatives). From property (6.2) of the bases Φ±, we easily find that
the minor (∂/∂λ)d−1−pΘj(λ, ·) vanishes whenever p > pj . For, with less than
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d− 1− pj λ-derivatives distributed among the columns r 6= j of (Φ+,Φ−), there
will always be a linear dependence. Indeed, this is the same calculation that
shows that the determinant DL(λ) of the whole matrix vanishes up to derivative
at least d− 1.

Likewise, we can show that (∂/∂λ)d−1−pjΘj(λ, ·) does not vanish by multi-

plying on the right by (∂/∂λ)jφ+
j . The result is the single nonvanishing term in

the Leibnitz expansion for (d/dλ)DL(λ0), hence (∂/∂λ)pjφ+
j (λ0, ·) ∈ Σ′λ0

for all
j ≤ J .

The factors (∂/∂λ)d−1−pΘj(λ, ·) for p < pj are more difficult to evaluate.
Fortunately, we do not have to. For, we already know from (6.7) and the L−λ0I
invariance of Σ′λ0

that, for p < pj ,(
∂

∂λ

)p
φ+
j = (L−λI)pj−p

(
∂

∂λ

)pj
φ+
j

are all contained in Σ′λ0
. Furthermore, no (∂/∂λ)pφ+

j is identically zero, since
each solves an inhomogeneous generalized eigenvalue equation, Remark 6.2. This
completes the verification of claim (i).

(ii) As observed in Lemma 6.1, d =
∑

j≤J(pj + 1), which is precisely the

number of basis elements for Σ′λ0
.

(iii) Immediate, from expansion (6.10) and duality (cf. Lemmas 4.3–
4.4).

Remark. Proposition 5.3 implies continuity of the spectral projection Pλ0

under perturbations of L preserving (h1)–(h2). From an abstract point of view,
the main import of Theorem 6.4 is perhaps that it implies continuity of the
dimension of the effective eigenspace, hence of the eigenspace itself. Thus, we
recover by direct calculation much of the standard spectral perturbation theory,
[Kat], for eigenvalues separated from the essential spectrum.

Note, in contrast to the standard (isolated eigenvalue) case, that continu-
ity of dimension does not follow immediately from continuity of the spectral
projection, for the reason that Pλ0

is not a true projection in the case of em-
bedded spectrum. The beautiful lemma, [Kat], that nearby projections have
ranges of equal dimension therefore does not apply. (However, we suspect that
a direct proof is possible using the structure Pλ0

=
∑
ϕjπk to reduce to a finite-

dimensional calculation, an approach suggested by H. Freistühler. This would
have the advantage of greater generality, since it does not rely on (h1)–(h2) or
the introduction of the Evans function.).
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Part III. Pointwise Bounds.

7. Pointwise Bounds on Gλ. Using the representation formulae of sec-
tion 4, we now derive pointwise bounds on the elliptic Green’s function Gλ, for
small, medium, and large values of |λ|. An immediate corollary is the spectral
resolution formula (1.20).

The critical estimate is near λ = 0. Here, we decompose Gλ into products
of different scalar modes, encoding interactions of the shock layer with the far
field.

Proposition 7.1 (Small λ ∼ large time). Assuming (C0)–(C3), let K
be the order of the pole of Gλ at λ = 0, and r be sufficiently small that there are
no other poles in B(0,r). Then, for λ ∈ Ωθ such that |λ| ≤ r, we have:

(i) For y < 0 < x,

(7.1)

(
Gλ Gλy
Gλx Gλxy

)
=
∑
j,k

φ+
j (x)djk(λ)ψ̃−k (y),

where djk(λ) = O(λ−K) is a meromorphic, scalar function;

(ii) For y < x < 0:

(7.2)

(
Gλ Gλy
Gλx Gλxy

)
=
∑
j,k

φ−j (x)djk(λ)ψ̃−k (y) +
∑
k

ψ−k (x)ek(λ)ψ̃−k (y)

where djk(λ) = O(λ−K) and ek(λ) = O(λ1−K) are scalar, meromorphic
functions;

(iii) For x < y < 0:

(7.3)

(
Gλ Gλy
Gλx Gλxy

)
=
∑
j,k

φ−j (x)djk(λ)ψ̃−k (y) +
∑
k

φ−k (x)ek(λ)φ̃−k (y)

where djk(λ) and ek(λ) are as above.

Symmetric representations hold in case y > 0.

Note that Proposition 7.1 includes detailed pointwise information on Gλ
through the bounds (4.3) and (4.14). The fact that no mixed, j, k summands
occur in the second terms of (ii)–(iii) is crucial for our later analysis in Section
7, and is the main point in this calculation.
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Proof. For y < x, the representation (7.1) follows by direct expansion of rep-
resentation (4.19); a symmetric expansion holds for x < y. Since
(Φ+(y),Ψ+(y)), (Φ−(y),Ψ−(y)), are by definition bases of solutions of (2.1),
we can further expand these representations to obtain

(7.4)

(
Gλ Gλy
Gλx Gλxy

)
=
∑
j,k

φ−j (x)djk(λ)ψ̃−k (y) +
∑
j,k

ψ−j (x)ejk(λ)ψ̃−k (y)

in case (ii) and

(7.5)

(
Gλ Gλy
Gλx Gλxy

)
=
∑
j,k

φ−j (x)djk(λ)ψ̃−k (y) +
∑
j,k

φ−j (x)ejk(λ)φ̃−k (y).

in case (iii).
To verify that (7.2) and (7.3) hold, i.e., ejk = 0 for j 6= k, requires a slight

further computation. We carry this out for x < y < 0; the case y < x < 0 is
symmetric (in fact, dual). Recall the alternate representation

(7.6)

(
Gλ Gλy
Gλx Gλxy

)
= (0,Φ−(x))(Φ+(y),Φ−(y))−1S(y)−1,

coming from (4.27). Expanding the right hand side of (7.6) gives∑
j

φ−j (x)Etn+j(Φ
+(y),Φ−(y))−1S(y)−1,

where En+j denotes the (n+ j)th standard basis element in C2n and t denotes
transpose. Comparing with (7.5), we find that∑

k

djk(λ)ψ̃−k (y) +
∑
k

ejkφ̃
−
k (y) = Etn+j(Φ

+(y),Φ−(y))−1S(y)−1.

From (4.18), it follows that

ejk =
(∑

k

ejkφ̃
−
k

)
Sφ−k

= Etn+j(Φ
+(y),Φ−(y))−1φ−k ,

which by Kramer’s rule is

det (Φ+(y),Φ−(y))−1det (Φ+, · · · ,φ−j−1,φ
−
k ,φ

−
j+1, · · ·),
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and clearly vanishes when j 6= k, det (Φ+(y),Φ−(y)) 6= 0. Since ejk is meromor-
phic, this implies that indeed ejk ≡ 0 for j 6= k.

That djk,ek = O(λ−K) follows by our assumption that the pole of Gλ at
λ = 0 is of order K. This in turn implies that

Res0λ
K−1φ−k (λ,x)ek(λ)φ̃−k (λ,y) = φ−k (0,x)(Res0λ

K−1ek(λ))φ̃−k (0,y).

It follows that

Σ′0,1(L∗) = Range 〈·,Res0λ
K−1Gλ〉

must contain all φ̃−k (0,x) for which Res0λ
K−1ek is nonzero. But, Σ′0,1(L∗) ⊂

Span Ψ̃± is transverse to Span Φ̃±, hence Res0λ
K−1ek ≡ 0 and ek = O(λ1−K)

as claimed.

For |λ| of medium range, we require only the rather weak result that Gλ is
bounded in the L∞ norm on compact subsets of the resolvent set. This reflects,
but does not immediately follow from the fact that the Resolvent by definition
is bounded on the resolvent set, in the operator norm.

Proposition 7.2 (Medium λ ∼ intermediate time). Assuming (C0)–
(C1), then on any compact subset of the resolvent set intersect Λ, in particular
on Ωθ ∩{λ : r ≤ |λ| ≤ R} minus any open neighborhood of σp(L), with r as in
Lemma 4.2, it holds that

(7.7) |Gλ|, |Gλx |, |Gλy |, |Gλxy | ≤ C

for all x,y, where C is independent of x, y.

Proof. On the resolvent set, we have that Φ−(x) and Φ+(x) are tangent as
x → +∞ to the stable and unstable invariant subspaces of A+(λ), respectively,
and thus the projection Π+(y) in (4.23) is bounded as y → +∞, for any fixed
λ. By symmetric argument, Π+(y) is bounded also as y → −∞. Similarly,

Π−(y), Π̃±(y) are bounded as y → ±∞, hence bounded everywhere. It follows
by continuity that all projections are uniformly bounded on compact subsets of
the resolvent set.

Likewise, we obtain from the basic bounds (4.3) and (4.14) (or the more
fundamental (3.4) and its adjoint analog, in the case that λ is at or near an
exceptional point λj) that the flow Fy→x+ has |Fy→x+ | < 1 for x,y ≥ 0 sufficiently
large (uniform in λ). By continuous dependence, it follows that

(7.8) |Fy→x+ | < C
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for x, y ≥ 0, uniformly on compact subsets of the resolvent set. Combining, and
appealing to (4.27), we have

(7.9) |Gλ|, |Gλx |, |Gλy |, |Gλxy | ≤ C

for x, y ≥ 0, and, by symmetric argument, for x, y ≤ 0.

For x, y of opposite signs, the result follows from the analogous decomposi-
tion (4.28).

For large |λ|, we require slightly sharper, but still rather crude bounds, on
any sector contained in the resolvent set.

Proposition 7.3 (Large λ ∼ short time). Assuming (C0)–(C1), it fol-
lows that for some C, β, R > 0, and θ1, θ2 > 0 sufficiently small.

|Gλ(x,y)| ≤ C|λ−1/2|e−β
−1/2|λ1/2||x−y|;(7.10)

|Gλx(x,y)|, |Gλx(x,y)| ≤ Ce−β
−1/2|λ1/2‖x−y|,

for all λ ∈ Ωθ \B(0,R).

(Here, we may choose any β−1/2 < minj,λ∈Ωθ∩{|λ|≥R}Re(
√
λ/|λ|bj) where

bj are the eigenvalues of B).

The crude bound (7.10) is roughly equivalent to the short–time estimates of
standard parabolic theory, and could probably be obtained by similar techniques,
e.g. the parametrix method of Levi [Fr,Le]. It is closely related to the fact that
−(L−λI) is coercive on Ωθ ∩B(0,R)c, with

(7.11)
1

2
((L−λI) + (L−λI)∗) ≥ β−1/2|λ1/2|I

with respect to the L2 inner product

〈〈f,g〉〉 :=

∫ ∞
−∞
〈f,g〉dx.

Indeed, we suspect that a shorter and more general proof, valid in any spatial
dimension, should be possible from this point of view. (see [Ag] for related
analysis on decay of eigenfunctions for the Schrödinger operator). Here, we will
give a proof by a rescaling argument in the spirit of Proposition 4.1 of [GZ] and
Proposition 2 of [AGJ].
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Proof. For simplicity, we carry out the argument for A, B ∈ C1+α, allowing
us to work in the original coordinates (w,w′). The case A, B ∈ C0+α can be
treated by first mollifying B, then using the coordinate change described above
Proposition 3.4. This yields

B =

(
0 B̄−1

λ̄ 0

)

in place of (7.14) below, and O(ε) + O(|λ−1/2|) in place of O(|λ−1/2|) wherever
it appears, where O(ε) is independent of λ, depending only on the degree of
mollification. With these changes, the argument then goes through as before.

Setting x̄ = |λ1/2|x, λ̄ = λ/|λ|, B̄(x̄) = B(x̄/|λ1/2|), w̄(x̄) = w(x/|λ1/2|),
in (2.1), we obtain

(7.12) w̄′′ = λ̄ · B̄−1w̄+ O(|λ−1/2|)(w̄+ w̄′),

or

(7.13) W
′

= B̄W + O(|λ−1/2|)W,

where W = (w̄, w̄′), and

(7.14) B̄ :=

(
0 I

λ̄B̄−1 0

)
, B̄′ = O(|λ−1/2|), |λ̄| = 1.

It is easily computed that the eigenvalues of B̄ are

(7.15) µ̄ = ∓
√
λ̄/bj ,

where bj are the eigenvalues of B. By (H1),

(7.16) min
j

Re
√
λ̄/bj > β−1/2

for all λ ∈ Ωθ, for some β > 0, hence the stable and unstable subspaces of
each B̄(x̄) are both of dimension n, and separated by a spectral gap of more
than 2β−1/2. Since B̄(λ, x̄) varies within a compact set, it follows that there
are continuous eigenprojections P±(B) taking W onto the stable and unstable
subspaces, respectively, of B̄, with |P ′±| = O(|λ−1/2|).
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Introducing new coordinates y± = P±w̄, we thus obtain a block diagonal
system

(7.17)

(
y+

y−

)′
=

(
A+ 0
0 A−

)(
y+

y−

)
+ O(|λ−1/2|)

(
y
y

)
,

where the eigenvalues of A± have strictly negative/positive real parts, respec-
tively (note: as usual, the ± indices are associated with decay at x = ±∞, hence
the apparently contrary sign convention). Equivalently, there exist continuous
invertible transformations Q± such that E± = Q±A±Q

−1
± are “real positive

definite” in the sense that

(7.18) Re(E) :=
1

2
(E±+E∗±) ≶ ∓β−1/2I.

By a third coordinate change z± = Q±y±, we obtain, finally,

(7.19)

(
z+

z−

)′
=

(
E+ 0
0 E−

)(
z+

z−

)
+ O(|λ−1/2|)

(
z
z

)
,

where (by good conditioning of P±, Q±, following from compactness),

(7.20) |w̄|/C ≤ |z| ≤ C|w̄|.

From (7.19), we obtain the “energy estimates”

〈z±,z±〉
′ = 〈z±,(E±+E∗±)z±〉+ O(|λ−1/2|)(〈z+,z+〉+ 〈z−,z−〉)(7.21)

≶ ∓2β−1/2〈z±,z±〉+ O(|λ−1/2|)(〈z+,z+〉+ 〈z−,z−〉)

In consequence, the ratios r+ := 〈z−,z−〉/〈z+,z+〉 and r− := 〈z+,z+〉/〈z−,z−〉
satisfy

(7.22) r′± ≶ ∓4β−1/2r±±C|λ
−1/2|(1 + r±+ r2

±)

for some C > 0.

From (7.22) it follows easily that the cones K∓ = {r∓ < C|λ−1/2|β1/2} are
invariant under forward and backward flow, respectively, of (7.19), provided that

C|λ−1/2|β1/2 < 4/3.
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Since the stable/unstable subspaces of E =

(
E+ 0
0 E−

)
at x = ±∞ are precisely

{z± = 0}, we have that the stable/unstable subspaces of E+ O(λ−1/2) at x =
±∞ lie within the respective cones K±, provided |λ| is sufficiently large. It
follows that the stable/unstable manifolds of solutions of (7.19) lie within K±
for all x.

Plugging this information back into (7.21), we find that

(7.23) (|z+|
2)′ ≶ ∓2β̃−1/2|z+|

2

for any solution (z+,z−)t decaying at x = ±∞, hence

|z+(x)|

|z+(y)|
≤ e−β̃

−1/2|(x−y)|,

β̃ < β, and thus

(7.24)
|z(x)|

|z(y)|
≤ C1e

−β̃−1/2|x−y|

for any x ≶ y, provided |λ| is sufficiently large. This gives

(7.25)
|W (x)|

|W (y)|
≤ C1C

2e−β̃
−1/2|x−y|,

where C is as in (7.20). Further, untangling intermediate coordinate changes,
we find that

(K) the stable/unstable manifolds of solutions of (7.13) lie within angle O(|λ−1/2|)
of the stable/unstable subspaces of B̄(x).

Now, recall the coordinate–free representation (4.27) of the Green’s function
as (

Gλ
Gλx

)
= Fy→xΠ+(y)

(
0

B−1(y)

)
.

Translating the bound (7.25) back to the original system (2.1), we obtain

(7.26) |Fy→x| ≤ C1C
2e−β̃|λ

1/2| |x−y|,

Likewise, the projection Π+ can be related to its counterparts Π̄+ for the rescaled
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system by the factorization

Π+ =

(
I 0
0 |λ1/2|I

)
Π̄+

(
I 0
0 |λ−1/2|I

)
,

and similarly for Π̃−. Since the stable and unstable manifolds stay separated, by

(K), and λ̄ varies within a compact set, the projections Π̄+ and ˜̄Π− are uniformly
bounded. Thus, we have

Π+(y)

(
0

B−1(y)

)
I =

(
I 0
0 |λ1/2|I

)
O(1)

(
I 0
0 |λ−1/2|I

)(
0

B−1(y)

)

=

(
O(λ−1/2)

O(1)

)
.

Combining with (7.26), and recalling that β > β̃ was arbitrary in (7.16), we
obtain the claimed bounds on |Gλ| and |Gλx |. The bound on |Gλy | follows by
symmetric argument applied to the adjoint operator L∗, or, equivalently, using
the symmetric representation

(Gλ Gλy ) = (0 B−1(x))Π̃−(x)F̃x→y,

where F̃x→y denotes the flow of the adjoint eigenvalue equation.

Remark. The result (K) is equivalent to Proposition 4.1 of [GZ], itself a
slight extension of Proposition 2.1 in [AGJ]. Indeed, our argument is equivalent
to those given in the references, though presented in different language. We
have chosen to present the analysis in a manner highlighting the connection
with coercivity.

Corollary 7.4. Given (C1), the parabolic operator ∂/∂t−L has a Green’s
function G(x,t;y) ∈ C(1,0)+(α̃,α̃/2)(x,t), α̃ > 0, for each fixed y and (x,t) 6= (y,0),
given by

(7.27) G(x,t;y) =
1

2πi

∫
∂(Ωθ\B(0,R))

eλtGλ(x,y)dλ,

for R > 0 sufficiently large and θ1, θ2 > 0 sufficiently small.

Proof. Using the spatial decay of Gλ given in the previous proposition to-
gether with the λ-decay of eλt, we have, for y fixed, that eλtGλ(x,y) is in
L1(λ,x,t), where λ is restricted to lie in ∂(Ωθ \B(0,R)). An application of
Fubini’s Theorem then gives that distributional x- and t-derivatives commute
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with the λ-integration in (7.27), since orders of x,t, and λ integration against a
test function can be exchanged. Thus,

(∂/∂t−L)G =
1

2πi

∫ (
λeλtGλ− (eλtλGλ + δy(x))

)
dλ

=
−1

2πi

∫
eλtδy(x)dλ

= δy(x)δ0(t),

the final step following by standard Laplace Transform facts.
Likewise, the stated regularity in x and t follows from the known bounds on

Gλ(x,y), Gλx(x,y), and eλt, and their Hölder quotients in x and t respectively,
through direct estimation of their integrals assuming (x,t) 6= (y,0). (Note: the
integral estimates involved are the same as for the heat equation, since we have
comparable bounds on the integrand). The Hölder bounds on Gλx are the only
new bounds required. These follow for x 6= y from the corresponding bounds
on φ±j (see Remark 3.5, representation (4.27)), and can be extended to all x,

y by subtracting out the known jump, B−1(y)h(x− y), where h(·) denotes the
Heaviside function. Observing that

1

2πi

∫
eλtB−1(y)h(x− y)dλ = B−1(y)h(x− y)δ0(t)

is zero for t 6= 0, we are done.

Remark 7.5. The observation of Remark 3.5 shows, more generally, that
our construction gives a Green’s function with optimal regularity C(s−q,0)+(α̃,α̃/s)

for an operator ∂/∂t−L with L a sectorial operator of the general form Lw =
Ds−q(AsDqw) + · · ·+A0w described there, Aj ∈ C0+α̃ (cf. Proposition 11.3).
In the non–divergence-form case, q = 0, we obtain the classical regularity result
G ∈ C(s,1)+(α̃,α̃/s).

8. Pointwise Bounds on G.

We are now ready to carry out the central calculation of this paper, the
estimation of the parabolic Green’s function G(x,t;y). We first carry out the
relatively simple calculation hinted at in the introduction, of behavior in the inner
shock layer, verifying necessity of the stability condition (D). Next, we motivate
our strategy for more general pointwise bounds through a brief discussion of the
scalar, constant-coefficient case. Finally, we determine bounds on G(x,t;y) in all
temporo-spatial regimes.
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8.1. Dynamics of the inner shock layer.

Proposition 8.1. Let (C0)–(C3) hold. Then, there exists η > 0 such
that, for x, y restricted to any bounded set, and t sufficiently large,

(8.1) G(x,y;t) =
∑

λ∈σ′p(L)∩{Re(λ)≥0}

eλt
∑
k≥0

tk(L−λI)kPλ(x,y) + O(e−ηt),

where Pλ(x,y) is the projection kernel described in Definition 5.1.

Proof. By Corollary 7.4, we have

(8.2) G(x,t;y) =
1

2πi

∫
∂(Ωθ\B(0,R))

eλtGλ(x,y)dλ,

for R sufficiently large, θ1, θ2 > 0 sufficiently small. By taking θ still smaller if
necessary, we can arrange further that

(8.3) σ′p(L)∩Ωθ ⊂ {Reλ ≥ 0},

since the effective point spectrum is isolated, and restricted to a bounded region
of Ωθ (Proposition 7.3).

Ωθ

B(0,R)

Figure 4. Moving the contour
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Recall that Gλ is meromorphic on Ωθ. Thus, expanding the right hand side
of (8.2) as ∫

∂(Ωθ\B(0,R))

=

∫
∂Ωθ

+

∫
∂(Ωθ∩B(0,R))

(see Figure 4) and using Cauchy’s Theorem, we find that

(8.4) G(x,t;y) =
1

2πi

∫
∂Ωθ

eλtGλ(x,y)dλ+ Resλ∈Ωθ∩B(0,R)e
λtGλ(x,y).

By Definition 5.1 and Proposition 5.3,

Resλ∈Ωθ∩B(0,R)e
λtGλ(x,y)(8.5)

=
∑

λ0∈σ′p(L)∩Ωθ

eλ0tResλ0
e(λ−λ0)tGλ(x,y)

=
∑

λ0∈σ′p(L)∩Ωθ

eλ0t
∑
k≥0

(tk/k!)Resλ0
(λ−λ0)kGλ(x,y)

=
∑

λ0∈σ′p(L)∩Ωθ

eλ0t
∑
k≥0

(tk/k!)Qλ0,k(x,y)

=
∑

λ0∈σ′p(L)∩Ωθ

eλ0t
∑
k≥0

(tk/k!)(L−λ0I)kPλ0
(x,y)).

On the other hand, for x, y bounded and t sufficiently large, t dominates
|x| and |y| and we obtain from Propositions 7.1–7.3 that

|eλtGλ(x,t;y)| ≤ CeγReλt

for all λ ∈ ∂Ωθ, for some γ > 0 (recall that we have chosen θ so that σ′p(L)∩
∂Ωθ = Ø), hence

1

2πi

∫
∂Ωθ

eλtGλ(x,y)dλ ≤ Ce−ηt
∫
∂Ωθ

e−η1|Imλ|tdλ(8.6)

≤ C2e
−ηt,

for some η, η1 > 0. Combining (8.4), (8.5), and (8.6), we obtain the result.
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Corollary 8.2. Let (C0)–(C3) hold. Then, (D) is necessary for linearized
orbital stability of (1.6) with respect to C∞exp perturbations (recall: perturbations

decaying exponentially rapidly in all derivatives).

Proof. From (8.1), we find that (1.6) is linearly orbitally stable only if

Pλ = 0 for all λ ∈ {Reλ ≥ 0} \ {0}, and

Range P0 = Span

{
∂ūδ

∂δj

}
.

By Theorems 5.3 and 6.4, this is equivalent to (D).

8.2. A motivating example. Before presenting our main analysis, we
indicate some of the general features of the argument in the simplest case of a
scalar, constant-coefficient equation,

(8.7) vt = Lv := −avx + bvxx.

This is most easily treated by Fourier analysis. Taking Fourier transforms, we
find that the Green’s function of (8.7) is given by

(8.8) G(x,t;y) =
1

2πi

∫ +∞

−∞
eik(x−y)eλ(k)tdk,

where

(8.9) λ(k) = −iak− bk2

is the dispersion relation for L.

Spatial decay as |x| → ∞ is a consequence of the cancellation induced by
the combination of rapid oscillation in eikx and smoothness in the term eλ(k)t.
This cancellation can be revealed by shifting the original contour of integration,

(8.10) Re(ik) ≡ 0,

using Cauchy’s Theorem, to

(8.11) Re(ik) ≡ ᾱ :=
−(x− y− at)

2bt
.
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Writing k = k̃+ iᾱ, we obtain after some rearrangement the sharp decay estimate

|G(x,t;y)| ≤
1

2π

∫ +∞

−∞
|eik(x−y)e(−ika−k2b)t|dk(8.12)

≤
e−bᾱ

2t

2π

∫ +∞

−∞
e−k̃

2tdk̃

≤Ct−1/2e(−|x−y−at|2)/(4bt).

In fact, (8.12) gives an exact inversion of the Fourier Transform in this case.
However, the point is that we have obtained this bound using only modulus
information; thus, the method applies in much greater generality. This type of
“Paley–Wiener” estimate has been used successfully in, e.g. [Jo, Z, LZ, HoZ.1-2];
for further description, we refer the reader to [HoZ.1].

If we take instead the Laplace Transform, we obtain in place of (8.8) the
spectral resolution formula

(8.13) G(x,t;y) =
1

2πi

∫
Γ

eλtGλ(x,y)dλ,

where Gλ(x,y) as usual is the elliptic Green’s function of the operator (L−λI).
This can be computed by the methods of Section 4 as

(8.14) Gλ(x,y) =
eµ(λ)(x−y)

∆µ
,

for x > y, where

(8.15) µ(λ) =
a−
√
a2 + 4bλ

2b
; ∆µ =

√
a2 + 4bλ.

Thus, we can write (8.13) equivalently as

(8.16) G(x,t) =
1

2πi

∫
Γ

eλteµ(λ)(x−y) dλ

∆µ(λ)
.

The relation to (8.8) is now clear. Taking Γ = {λ : µ(λ) = ik} in (8.13), or

(8.17) Re(µ) ≡ 0,



816 Pointwise Semigroup Methods and Stability of Viscous Shock Waves

and solving for µ(λ) = ik, we obtain the dispersion relation (8.9). Likewise, it is
easily checked that

1

∆µ(λ)
=
dk

dλ
.

To reveal the cancellation in (8.13), we can therefore mimic the Fourier case,
choosing the parabolic contour

(8.18) Re(µ(λ)) ≡ ᾱ

as in (8.11), to obtain exactly the same estimates.
Like the exact inversion in (8.12), however, this is somewhat accidental. A

more direct, and general approach to the problem of detecting cancellation in an
analytic integral

∫
Γ
ef(z)dz, using only modulus bounds, is given by the Riemann

saddlepoint method [R, CH, DeB]. This method prescribes the optimal path of
integration as a mountainpass, or minimax, contour minimizing maxz∈Γ |ef(z)|, or
equivalently maxz∈Γ Ref(z). In the present case, the argument λt+µ(λ)(x− y)
of the integrand in (8.16) respects conjugation, hence its real part is symmetric
about the real axis. Further, restricting to the real axis, we find that Re(λt+
µ(λ)(x− y)) has a global minimum of −ᾱ2t occurring at the point

(8.19) λmin = ᾱ(ᾱb− a),

where µ(λ) = ᾱ, ᾱ defined as in (8.11). It follows that λmin is a stationary point
of Re(λt+µ(λ)(x− y)), in fact a saddle. The choice of Γ = {λ : Re(µ(λ)) = ᾱ},
likewise, is a mountain pass , or minimax contour for the integral (8.13), justifying
our previous choice (8.18). This approach will guide us also in the general case.

It is worth noting the behavior of (8.19) for |ᾱ| near 0 and∞; this scaling will
serve as a useful guideline in the analyis to come. In the large-|ᾱ|, or equivalently
the large-|x− y|/t regime, (8.19) becomes

(8.20) λmin = bᾱ2 + O(ᾱ); ᾱ = −(x− y)/2bt+ O(1),

and the contour (8.18) becomes

(8.21) Reλ1/2 = b1/2ᾱ+ O(1).

That is, both representations correspond to the classical large λ/short time be-
havior predicted by the heat equation (a = 0). In the small-ᾱ regime, lying near
the characteristic path x = y+ at, we find instead

(8.22) λmin = −aᾱ+ O(ᾱ2) ∼ a(x− y− at)/2bt.
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This corresponds to critical small λ/large time behavior within a single scalar
mode (note: (8.22) must be modified to treat scattering, which necessarily in-
volves more than one scalar mode).

It is worth noting also that the optimal contours even for this simple scalar
example enter the left complex half-plane for small aᾱ > 0, that is, into the
essential spectrum. This shows the importance of the analytic extension of Gλ
into this region.

8.3. Main calculation. We now establish the following detailed descrip-
tion of the parabolic Green’s function and its derivatives.

Theorem 8.3. Let (D) hold, as well as (C0)–(C3). Then, the Green’s
function G(x,t,y) of (1.6) can be decomposed as

(8.23) G(x,t;y) = S(x,t;y) +E(x,t;y) +R(x,t;y),

where

S(x,t;y) =
∑
k,±

O(t−1/2e−(x−y−a±
k
t)2/Mt)(8.24)

× (r±k χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

+
∑

a±
k
≶0,a±

j
≷0

χ{t≥|y/a±
k
|}O(t−1/2e−(x−a±

j
(t−|y/a±

k
|))2/Mt)

× (r±j χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

comprises the scattering modes,

E(x,t;y) =
∑
k,y≷0

χ{|x−y|≤|ak±t|}ϕ
±
k (x)π±k (y)(8.25)

+ O(e−(x−y−ak±t)
2/Mt + e−(x−y+ak±t)

2/Mt)e−η|x|π±k (y)

comprises the excited modes, and R = RS +RE, with
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RS(x,t;y)(8.26)

=
∑
k,±

O(t+ 1)−1/2t−1/2e−(x−y−a±
k
t)2/Mte−ηx

±

e−ηy
±

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t+ 1)−1/2t−1/2e−(x−a±

j
(t−|y/a±

k
|))2/Mt

× e−ηx
±

e−ηy
±

,

RE =
∑
k,y≷0

O(t−1/2e−η|x|e−(x−y−a±
k
t)2/Mt).

Here, η > 0, M > 0 is a suitably large constant, x± denotes the posi-
tive/negative part of x, a±j denote the eigenvalues of A± and r±j and l±j the

corresponding right and left eigenvectors, and ϕ±k ∈ Σ′0(L), π± ∈ Σ′0(L∗). If
Σ′0(L) = Ø, then E ≡ RE ≡ 0.

Likewise, we have Gx = S1 +E1 +R1
S and Gy = S2 +E2 +R2

S, where

S1 =
∑
k,±

O(t−1e−(x−y−a±
k
t)2/Mt)

× (r±k χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

+
∑
k,±

O(t−1/2e−(x−y−a±
k
t)2/Mte−η|x|)e−ηy

∓

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t−1e−(x−a±

j
(t−|y/a±

k
|))2/Mt)

× (r±k χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t−1/2e−(x−a±

j
(t−|y/a±

k
|))2/Mte−η|x|)e−ηy

∓

,

E1 =
∑
k,y≷0

χ{|x−y|≤|a±
k
t|}ϕ

±
k

′
(x)π±k (y)

+
∑
k,y≷0

O(e−(x−y−a±
k
t)2/Mt + e−(x−y+a±

k
t)2/Mt)e−η|x|π±k (y)

+
∑
k,y≷0

O(t−1/2e−(x−y−a±
k
t)2/Mt + t−1/2e−(x−y+a±

k
t)2/Mt)e−η|x|π±k (y),
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R1
S =

∑
k,±

O(t+ 1)−1/2t−1e−(x−y−a±
k
t)2/Mt)e−ηx

±

e−ηy
±

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t+ 1)−1/2t−1e−(x−a±

j
(t−|y/a±

k
|))2/Mte−ηx

±

e−ηy
±

,

and

S2 =
∑
k,±

O(t−1e−(x−y−a±
k
t)2/Mt)

× (r±k χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

+
∑
k,±

O(t−1/2e−(x−y−a±
k
t)2/Mte−η|y|)e−ηx

∓

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t−1e−(x−a±

j
(t−|y/a±

k
|))2/Mt)

× (r±k χ{x≷0}+ O(e−η|x|))(l±k χ{y≷0}+ O(e−η|y|))

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t−1/2e−(x−a±

j
(t−|y/a±

k
|))2/Mte−η|y|)e−ηx

∓

,

E2 =
∑
k,y≷0

χ{|x−y|≤|a±
k
t|}ϕ

±
k (x)π±k

′
(y)

+
∑
k,y≷0

O(e−(x−y−a±
k
t)2/Mt + e−(x−y+a±

k
t)2/Mt)e−η|x|π±k

′
(y)

+
∑
k,y≷0

O(t−1/2e−(x−y−a±
k
t)2/Mt + t−1/2e−(x−y+a±

k
t)2/Mt)e−η|x|π±k (y),

R2
S =

∑
k,±

O(t+ 1)−1/2t−1e−(x−y−a±
k
t)2/Mt)e−ηx

±

e−ηy
±

+
∑

a±
k
≶0,a±

j
≷0

χ{|a±
k
t|≥|y|}O(t+ 1)−1/2t−1e−(x−a±

j
(t−|y/a±

k
|))2/Mte−ηx

±

e−ηy
±

.
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(Recall that ϕ′(ξ), π′(ξ) = O(e−η|ξ|) for any φ ∈ Σ′0(L), π ∈ Σ′0(L∗).)

Remark 8.4. For t sufficiently small, the O(1) term E is negligible com-
pared to the O(t−1/2) scattering terms. Moreover, it is easily checked that

2|x− y|2/t− 5 ≤ (x− y− at)2/t ≤ |x− y|2/2t+ 5

for any bounded a. Thus, combining all terms S, E, and R, we obtain for t
sufficiently small, that

(8.27) (1/C1)t−1/2e|x−y|
2/M1t ≤ |G(x,t;y)| ≤ t−1/2C2e

|x−y|2/M2t,

where the inequalities hold in each entry of G. Similarly,

(8.28) (1/C1)t−1e|x−y|
2/M1t ≤ |Gx(x,t;y)|, |Gy(x,t;y)| ≤ t−1C2e

|x−y|2/M2t,

That is, our bounds for short time reduce to the classical bounds given by the
heat kernel.

For bounded x, y, our large time bounds of necessity reduce to P0(x,y) +
O(e−ηt) as predicted by Proposition 8.1. The new information contained in
(8.23)–(8.26) is the detailed scattering picture of intermediate-time behavior. in
terms of distinct signals interacting with the shock.

Remark 8.5. The bounds above hold also for non–divergence-form and
mixed-type operators L := −Avx +Bvxx and L := −Avx + (Bvx)x; for non–
divergence-form operators, there hold also analogous bounds on second order
spatial derivatives of G. For fully divergence-form operators L := −(Av)x +
(Bv)xx, G satisfies the bounds above, but Gx and Gy may not exist.

Example 8.6. In the case of a Burgers Shock , u(x) = −tanh(x2 ), of the

scalar Burgers equation ut + (u2/2)x = uxx, the linearized equation (1.6) can be
solved exactly by linearized Hopf–Cole transformation, [Sat, Z.1, LZ.1, GSZ], to
give an explicit formula for the Green’s function of:

G(x,t;y) =

[(
e−x/2

ex/2 + e−x/2

)
(4πt)−1/2e−(x−y−t)2/(4t)(8.29)

+

(
ex/2

ex/2 + e−x/2

)
(4πt)−1/2e−(x−y+t)2/(4t)

]

+
1

2

∂u

∂x

[
errfn

(
x− y− t
√

4t

)
− errfn

(
x− y+ t
√

4t

)]
.
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For the various choices of x ≶ 0, y ≶ 0, formula (8.29) can be rearranged as in
(8.23)–(8.26); for example, in case x,y < 0, we have

S = (4πt)−1/2e−(x−y−t)2/(4t),

E =
1

2

∂u

∂x

[
errfn

(
x− y− t
√

4t

)
− errfn

(
x− y+ t
√

4t

)]
,

and

R =

(
ex/2

ex/2 + e−x/2

)
(4πt)−1/2e−(x−y+t)2/(4t)

+

(
e−x/2

ex/2 + e−x/2
− 1

)
(4πt)−1/2e−(x−y−t)2/(4t)

= O(e−|x|/2)
[
t−1/2e−(x−y+t)2/(4t) + t−1/2e−(x−y−t)2/(4t)

]
.

Here, φ1 = ūx ∈ Σ′0(L) and π1 = 1/2 ∈ Σ′0(L∗). This verifies that the bounds of
Theorem 8.3 are sharp, for all t ≥ 0.

Likewise,

Gy(x,t;y) =

(
e−x/2

ex/2 + e−x/2

)
O(t−1e−(x−y−t)2/(8t))(8.30)

+

(
ex/2

ex/2 + e−x/2

)
O(t−1e−(x−y+t)2/(8t))

+
1

2

∂u

∂x

[
(4πt)−1/2e−(x−y−t)2/(4t)− (4πt)−1/2e−(x−y+t)2/(4t)

]
is described sharply by (8.26), with π′ ≡ 0; this observation is quite relevant to
our treatment of Lax and overcompressive shocks in Section 11. Differentiation
with respect to x shows that our Gx bounds are sharp as well.

Proof of Theorem 8.3. Let θ1 > 0, θ2 > 0 be chosen sufficiently small,
in particular so small as to satisfy the hypotheses of all previous assertions.
It follows from assumption (D), the large |λ| bounds of Proposition 7.3, and
analyticity of the Evans function DL(λ) that the effective point spectrum of L in
Ωθ (corresponding to roots of DL) consists of the origin, λ = 0, plus a bounded
set of finitely many, isolated eigenvalues, each with strictly negative real part.
Choosing θ1,θ2 still smaller, if necessary, we can thus arrange that λ = 0 is the
unique effective eigenvalue of L contained in Ωθ.
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It follows from Corollary 7.4 and Cauchy’s Theorem that

(8.31) G(x,t;y) =

∫
Γ

eλtGλ(x,y)dλ,

for any contour Γ that can be expressed as

Γ = ∂(Ωθ \ S)

for some set S containing λ = 0.

Case I. |x− y|/t large. We first treat the trivial case that |x− y|/t ≥ S,
S sufficiently large, the regime in which standard short-time parabolic theory
applies. Loosely following (8.20)–(8.21), set

(8.32) ᾱ :=
|x− y|

2βt
, R := βᾱ2,

where β is as in Lemma 7.3, and consider again the representation (8.2) of G,
that is

(8.33) G(x,t;y) =

∫
Γ1∪Γ2

eλtGλ(x,y)dλ,

where Γ1 := ∂B(0,R)∩ Ω̄θ and Γ2 := ∂Ωθ \B(0,R) (see Figure 5). Note that
the intersection of Γ with the real axis is λmin = R = βᾱ2, in agreement with
(8.20).

By the large |λ| estimates of Proposition 7.3, we have for all λ ∈ Γ1 ∪Γ2

that

(8.34) |Gλ(x,y)| ≤ C|λ−1/2|e−β
−1/2|λ1/2| |x−y|

Further, we have

Reλ ≤ R(1− ηω2), λ ∈ Γ1,(8.35)

Reλ ≤ Reλ0− η(|Imλ| − |Imλ0|), λ ∈ Γ2

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗0 are the two
points of intersection of Γ1 and Γ2, for some η > 0 independent of ᾱ.
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Γ

Γ

Ω

Γ

1

2

2

λ

λ
0

0

*

δ

Figure 5. Contour for
|x−y|
t
≥ S.

Combining (8.34), (8.35), and (8.32), we obtain∣∣∣∣∫
Γ1

eλtGλ dλ

∣∣∣∣ ≤ ∫
Γ1

C|λ−1/2|eReλt−β−1/2|λ1/2| |x−y| dλ

≤ Ce−βᾱ
2t

∫ +L

−L
R−1/2e−βRηω

2tRdω

≤ Ct−1/2e−βᾱ
2t.

Likewise,∣∣∣∣∫
Γ2

eλtGλdλ

∣∣∣∣(8.36)

≤

∫
Γ2

C|λ−1/2|CeReλt−β−1/2|λ1/2| |x−y|dλ

≤ CeRe(λ0)t−|β−1/2|λ1/2
0 ||x−y|

∫
Γ2

|λ−1/2|e(Reλ)−Reλ0)t |dλ|

≤ Ce−βᾱ
2t

∫
Γ2

|Imλ|−1/2e−η|Imλ−Imλ0|t |dImλ|

≤ Ct−1/2e−βᾱ
2t.
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Combining these last two estimates, and recalling (8.32), we have

(8.37) |G(x,t;y)| ≤ Ct−1/2e−βᾱ
2t/2e−(x−y)2/8βt ≤ Ct−1/2e−ηte−(x−y)2/8βt,

for η > 0 independent of ᾱ. Observing that

|x− at|

2t
≤
|x− y|

t
≤

2|x− at|

t

for any bounded a, for |x− y|/t sufficiently large, we find that |G| can be absorbed
in the residual term RS for t ≥ ε, any ε > 0, by any summand

O(t−1/2(t+ 1)−1/2e−(x−y−a±
k
t)2/Mt)e−ηx±e−ηy±.

For t small, on the other hand, (8.37) is equivalent to the short-time bound
(8.27). Likewise, |Gx| and |Gy| can be absorbed in R1

S and R2
S for t ≥ ε, and

reduce to (8.28) for t ≤ ε.

Case II. |x− y|/t bounded. We now turn to the critical case that
|x− y|/t ≤ S. A few remarks are in order at the outset. Our goal is to

bound |G| by its excited modes plus terms of form Ct−1/2e−ᾱ
2t/M , where ᾱ :=

(x− a±j (t− |y/a±k |)/2t or ᾱ := (x− y− a±k t)/2t are now uniformly bounded, by

|x− y|/2t+ max
j
{|a±j |}/2 ≤ S/2 + max{|a±j |}/2.

Thus, in particular, contributions of order t−1/2e−ηt, η > 0, can be absorbed by
the residual term RS , in any summand

O(t−1/2(t+ 1)−1/2e−(x−y−a±
k
t)2/Mt)e−ηx±e−ηy±,

if we take M sufficiently large. Likewise, for Gx and Gy, contributions of order
t−1e−ηt can be absorbed in R1

S and R2
S . We will use this observation repeatedly.

In contrast to the previous case of large characteristic speed |x− y|/t ≥ S,
we are not trying to show rapid time-exponential decay. Rather, we are trying
to show that the rate of exponential decay of the solution does not degrade too
rapidly as ᾱ → 0: precisely, that it vanishes to order ᾱ2 and no more. Thus,
the crucial part of our analysis will be for small ᾱ. All other situations can be
estimated crudely as described just above.

Let r be sufficiently small that the small-|λ| bounds of Proposition 7.1 hold
on B(0,r). Next, choose θ1 and θ2 still smaller than before, if necessary, so that
Ωθ \B(0,r) ⊂ Λ and therefore the medium-|λ| bounds of Proposition 7.2 hold
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on ∂Ωθ \B(0,r). This implies that ∂Ωθ ∩B(0,r) 6= Ø, giving the configuration
pictured in Figure 6. Similarly as in the previous case, define Γ = Γ1 ∪Γ2, where
Γ1 is the portion of the circle ∂B(0,r) contained in Ω̄θ, and Γ2 is the portion of
∂Ωθ outside B(0,r). Writing

G(x,t;y) =

∫
Γ1

eλtGλ(x,y)dλ+

∫
Γ2

eλtGλ(x,y)dλ,

we separately estimate the terms
∫

Γ1
and

∫
Γ2

.

Large and medium λ estimates. The
∫

Γ2
term is straightforward. The

points λ0, λ∗0 where Γ1 meets Γ2 satisfy Re(λ0) = −η < 0. Moreover, combining
the results of Propositions 7.2 and 7.3, we have the crude bound

(8.38) |Gλ| ≤ C|λ|
−1/2 for λ ∈ Γ2.

Thus, similarly as in (8.36), we have∣∣∣∣∫
Γ2

eλtGλdλ

∣∣∣∣ ≤ Ce−Reλ0t

∫
Γ2

|Imλ|−1/2e−η|Imλ−Imλ0| |dImλ|(8.39)

≤ Ct−1/2e−ηt.

This contribution can be absorbed into the residual term R as described above.
An analogous computation using |Gλx |, |Gλx | ≤ C|λ|−1 shows that the Γ2 con-
tribution to Gx and Gy is O(t−1e−ηt), and can likewise be absorbed.

Γ

Ω

Γ

Ω

B(0,r)

Γ

1

2

2

λ

λ
0

*

0

δ

δ

Figure 6. Contour for |x− y|/t ≤ S.



826 Pointwise Semigroup Methods and Stability of Viscous Shock Waves

Small |λ| estimates. It remains to estimate the critical term
∫

Γ1
eλtGλdλ.

This we will estimate in different ways, depending on the size of t.

Bounded time. For t bounded, we can use the medium-λ bounds |Gλ|,
|Gλx |, |Gλy | ≤ C to obtain

∣∣∣∣∫
Γ1

eλtGλdλ

∣∣∣∣ ≤ C2|Γ1|.

This contribution is order Ce−ηt for bounded time, hence can be absorbed.

Large time. For t large, we must instead estimate
∫

Γ1
eλtGλdλ using the

small-|λ| expansions given in Proposition 7.1. First, observe that, by assumption
(D), all eigenfunctions in Σ′0 are of ascent one, i.e. Gλ has a simple pole at λ = 0.
Thus, K = 1 in Proposition 7.1, and the coefficient functions ek(λ) = O(λ1−K)
are analytic, while the coefficient functions djk(λ) = O(λ−K) have at most a
pole of order one at λ = 0.

Moreover, any singular term φ±j djkψ̃
±
k ,

(8.40) djk = djk,−1λ
−1 + djk,0 + djk,1λ+ · · · ,

contributes

Res0(djk)(I,0)φ±j (x,0)ψ̃±k (0,y)(I,0)t

= −2πidjk,−1(I,0)φ±j (x,0)ψ̃±k (0,y)(I,0)t

to P0(x,y) = Res0Gλ(x,y), from which it is easily seen that (I,0)φ±j (0,x) ∈

Σ′0(L), ψ̃±k (0,y)(I,0)t ∈ Σ′0(L∗). But assumption (D) implies that all eigenfunc-

tions in Σ′0(L) decay exponentially at ±∞, whereas φ±j ∼ eρ
±
j
x. It follows that

ρ±j ≶ 0, or, comparing with results of Proposition 2.1, that aj± ≶ 0. We record
this important fact as

Observation 8.7. The coefficient function djk is singular only if a±j ≶ 0

(i.e. j± is an incoming mode) and φ±j (0,x) ∈ Σ′0(L), ψ̃±k (0,y) ∈ Σ′0(L∗), in which

case φ±j ∼ e
ρ±
j
x is rapidly decaying , with

(8.41) ρ±j ≶ ∓η

on B(0,r), η > 0.
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Without loss of generality, take y ≤ 0. There are three cases to analyze,
corresponding to (i)–(iii) of Proposition 7.1. As the analysis of each case is very
similar. we will carry out one case in complete detail, only sketching the other
two.

Expanding (8.31) as

(8.42)

(
G Gx
Gy Gxy

)
=

∫
Γ

eλt
(
Gλ Gλx
Gλy Gλxy

)
dλ,

we estimate the
∫

Γ1
contributions to G, Gx and Gy simultaneously.

Definition 8.8. For y ≤ 0, set

(ϕ−k (x),ϕ−k
′
(x))t :=

∑
j

Res0(djk)φ±j (0,x)(8.43)

= −2πi
∑
j

djk,−1φ
±
j (0,x),

(π−k (y),π−k
′
(y)) :=

{
ψ̃−k (0,y) if ϕ−k 6= 0,

0 otherwise,

where the djk are taken from expansion (i) or (ii) of Proposition 7.1, according
as x ≷ 0. Note that ϕ−k ∈ Σ′0(L), π−k ∈ Σ′0(L∗), by the discussion preceding
Observation 8.7; indeed,

∑
k

ϕ−k (x)π−k (y) =

(
P0(x,y) P0y(x,y)
P0x(x,y) P0xy(x,y)

)
.

For y ≥ 0, define ϕ+
k (x) and π+

k (y) in symmetric fashion.

Case II(i). (y < 0 < x). By Proposition 7.1 (i), we have

(8.44)

∫
Γ

eλt
(
Gλ Gλx
Gλy Gλxy

)
dλ =

∫
Γ

∑
j,k

eλtφ+
j (x)djkψ̃

−
k (y)dλ,

where djk has a simple pole at λ = 0 if a+
j < 0, and otherwise is analytic. We

estimate separately each of the terms

(8.45)

∫
Γ1

eλtφ+
j (x)djkψ̃

−
k (y)dλ
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on the righthand side of (8.44).

Case II(ia). (a+
j < 0, a−k < 0). First consider the case a+

j < 0, a−k < 0.

By (8.41), ρ+
j < −η < 0 on B(0,r), and −ν−k > η > 0 as well. Recalling

that |djk| ≤ C|λ|−1, we thus have

(8.46) |φ+(x)djkψ̃
−
k (y)| ≤ C|λ|−1e−η(|x|+|y|).

Choose any 0 < ε < η|a−k |/2. For t < |x− y|/|a−k |, define Γ′1 to be the
contour from λ∗0 to ε to λ0, as pictured in Figure 7a. Since the integrand of
(8.45) is analytic on the region enclosed by Γ1Γ′1, we have by Cauchy’s Theorem,
that

(8.47)

∫
Γ1

eλtφ+
j (x)djkψ̃

−
k (y)dλ =

∫
Γ′1

eλtφ+
j (x)djkψ̃

−
k (y)dλ.

Noting that |λ| > ε/C, Re(λ) ≤ ε on Γ′1, we have∣∣∣∣∣
∫

Γ′1

eλtφ+
j (x)djkψ̃

−
k (y)dλ

∣∣∣∣∣ ≤
∫

Γ′1

C|λ|−1eRe(λ)t−η|x−y| dλ(8.48)

≤ C2e
εt−η|y|

≤ C3e
−εt/2.

This exponentially decaying term can be absorbed into the residual terms RS ,
R1
S , and R2

S , as noted previously.

Γ
Γ

λ=εΩ

analytic

λ

λ

0

0

*

1
1

’

δ

Figure 7a. a−k < 0, t < |y/a−k |.

Γ
Γ

pole at λ=0

λ

λ

Ω

1

0

0

1
’

*

δ

Figure 7b. a−k < 0, t ≥ |ya−k |.
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For t ≥ |x− y|/|a−k |, define Γ′1 instead to simply follow ∂Ωθ, as in Figure 7b.
Now the integrand has a single pole at λ = 0 contained in the region enclosed
by Γ1Γ′1. Thus, by Cauchy’s Theorem, we have

∫
Γ1

eλtφ+
j (x)djkψ̃

−
k (y)dλ =

∫
Γ′1

eλtφ+
j (x)djkψ̃

−
k (y)dλ(8.49)

+ χ{|a−
k
t|≥|x−y|}(Resλ=0djk)φ+

j (0,x)ψ̃−k (0,y).

The first term on the righthand side is bounded by

C

∫
e−θ1t−η|x−y| dλ ≤ Ce−θ1t,

and can be absorbed in RS terms as before. The second term contributes to the

excited modes χ{|a−
k
t|≥|x−y|}(ϕ

−
k ,ϕ

−
k

′
)t(π−k ,π

−
k

′
) appearing in

(
E E1

E2 ∗

)
, with

ϕ−k , π−k as in Definition 8.8.

Case II(ib). ( a+
j < 0, a−k > 0). Next, consider the critical case that

a+
j < 0 and a−k > 0. In this case,

(8.50) Re(ρ+
j ) ≤ Re(ν−k )− η

η > 0, and (8.46) becomes

(8.51)
∣∣∣ϕ+
j (x)djkψ̃

−
k (y)

∣∣∣ ≤ C|λ|−1e−η|x|eRe(ν−
k

)(x−y)

where, by Proposition 2.1, we have

(8.52) ν−k (λ) = −
λ

a−k
+
λ2β−k
(a−k )3

+ O(λ3).

Setting

(8.53) ᾱ :=
x− y− a−k t

2t
, p :=

β−k (x− y)

(a−k )2t
> 0,
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define Γ′1a to be the portion contained in Ωθ of the hyperbola

Re(v−k ) +O(λ3) = −(1/a−k )Re(λ−λ2β−k /(a
−
k )2)(8.54)

≡ constant

= (λmin/a
−
k −λ

2
minβ

−
k /(a

−
k )3),

or equivalently

(8.55) Re(λ)− (Re(λ)2− Im(λ)2)β−k /(a
−
k )2 = constant,

intersecting the real axis at

(8.56) λmin :=



ᾱ

p
if t−1/2 <

∣∣∣∣ ᾱp
∣∣∣∣ ≤ ε

−t−1/2 if −t−1/2 ≤
ᾱ

p
< 0,

t−1/2 if 0 ≤
ᾱ

p
≤ t−1/2,

±ε if
ᾱ

p
≷ ε,

where ε > 0 is chosen sufficiently small. Denoting by λ1, λ∗1 the intersections
of this hyperbola with ∂Ωθ, define Γ′1b to be the union of the two segments
λ1, λ0 and λ∗0λ

∗
1, and define Γ′1 = Γ′1a ∪Γ′1b . Choosing first θ1 and θ2, then ε

sufficiently small, we obtain that λ1, λ∗1 ∈ B(0,r), with Imλ1 ≥ η > 0. The
complete configuration is shown in Figure 8. Our choice of contour is motivated
by the Riemann saddlepoint method, as we will explain further in a moment.

Note that

λmin = ᾱ/p = −a−k (x− y− a−k t)/2β
−
k t+ O(ᾱ2),

in agreement with (8.22). Moreover, for ᾱ sufficiently small, p ∼ 2β−k /a
−
k is

bounded above and below:

(8.57) 1/C ≤ p ≤ C.

Finally, Taylor expansion of (8.55) about ᾱ gives

(8.58) Re(λ) = λmin− ηIm(λ)2 + O(Im(λ)3)
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for some η > 0, uniformly in ᾱ for ᾱ bounded, on Γ′1a. In particular, this implies

(8.59) (|λmin|+ |Im(λ)|)/C ≤ |λ| ≤ C(|λmin|+ |Im(λ)|).

Similarly as in the previous case, we have by Cauchy’s Theorem that

∫
Γ1

eλtϕ+
j (x)djkψ̃

−
k (y)dλ =

∫
Γ′1

eλtϕ+
j (x)djkψ̃

−
k (y)dλ(8.60)

+ χ{ᾱ<0}(Resλ=0djk)ϕ+
j (0,x)ψ̃−k (0,y).

Γ

Γ

Γ

λ

λ Γ

Ω

approximate

1

λ1

0

11a

1b

1b
’

’

’

0
λ*

*

saddle point λ

δ

min

Figure 8.

Observing that χ{ᾱ<0} = χ{|a−
k
t|>|x−y|}, we find as in the previous case that

the second term contributes to excited modes χ{|a−
k
t|≥|x−y|}(ϕ

−
k ,ϕ

−
k

′
)t(π−k ,π

−
k

′
)

in

(
E E2

E1 ∗

)
, with ϕ−k , π−k as in Definition 8.8.

It remains to estimate the first term,

(8.61)

∫
Γ′1

eλtϕ+
j (x)djkψ̃

−
k (y)dλ =

∫
Γ′1a

+

∫
Γ′1b

.
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Note that the modulus of the integrand is bounded by

C|λ|−1eRe(λ)t−Re(ν−
k

)y+Re(ρ+
k

)x(8.62)

≤ C2e
−η(x)|λ|−1etRe(λ+ν−

k
(x−y)/t)

≤ C2e
−η|x||λ|−1e(t/a−

k
)Re(−λ(2ᾱ−pλ+O(λ2)).

The significance of the point λ = ᾱ/p can now be seen. It is the unique saddle
point, or minimax, of the principle part

Re(−λ(2ᾱ− pλ))

of the argument of the exponential term. Likewise, the hyperbola Γ′1a through
the stationary point ᾱ/p is an approximate mountain pass for the function
Re(−λ(2ᾱ− pλ)). Thus, we have chosen our contour approximately in accor-
dance with the Riemann Saddlepoint Method . The lower cutoff of ±t−1/2 is in
order to avoid the singularity λ−1, the upper cutoff of ±ε to avoid leaving B(0,r).

From the development of Proposition 2.1, we have

(8.63) V +
j (λ) =

(
r+
j +O(λ) , −

λr+
j

a+
j

+O(λ2)

)t
,

and, by the same argument applied to the adjoint operator L∗,

(8.64) Ṽ −k (λ) =

(
`−k + O(λ) ,

−λ`−k
a−k

+O(λ2)

)
,

where Ṽ −k denote the asymptotic modes of the adjoint eigenvalue equation, and

r+
j and `−k are right and left eigenvectors of A+ and A−, respectively. Combining

with the basic estimates (4.3) and (4.14), we thus have

ϕ+
j (x) = (V +

j (λ) + O(e−α|x|))eρ
+
j
x(8.65)

= eρ
+
j
x

((
r+
j

−λr+
j /a

+
j

)
+ O(e−α|x|)

)
+ eρ

+
j
x

(
O(λ)
O(λ2)

)
,

and likewise

(8.66) ψ̃−k (y) = e−ν
−
k
y
(

(`−k ,−λ`
−
k /a

−
k ) + O(e−α|y|)

)
+ e−ν

−
k
y(O(λ),O(λ2)).
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Thus, we can separate the integrand of (8.45) into two parts,

eλtϕ+
j (x)djkψ̃

−
k (y)(8.67)

= djk,−1λ
−1eλt+ρ

+
j
x−ν−

k
y

×

((
r+
j

−λr+
j /a

+
j

)
+ O(e−α|x|)

)(
(lj ,−λ`

−
k /a

−
k ) + O(e−α|y|)

)
+ eλt+ρ

+
j
x−ν−

k
y

(
O(1) O(λ)
O(λ O(λ2)

)
= I + II.

The second term, II, lacking the factor λ−1, will lead to faster decay by
factor t−1/2 than will term I (recall that t−1/2 = minλ∈Γ′1

|λ|); we begin by

estimating this error term. By (8.50), (8.67), we have

(8.68) |II| ≤ e−η|x|
(
C Cλ
Cλ Cλ2

)
eRe(λt+ν−

k
(x−y)).

On Γ′1a , we have by (8.54), (8.58) that

Re(λt+ ν−k (x− y))(8.69)

= (Re(λ)−λmin) + Re(λmint+ ν−k (λmin)(x− y))

= (Re(λ)−λmin)− (t/a−k )(2ᾱλmin− pλ
2
min + O(λ3

min)).

In case t−1/2 < |ᾱ/p| < ε, we have λmin = ᾱ/p, and we obtain by direct
evaluation that

(8.70) 2ᾱλmin− pλ
2
min = ᾱ2/p,

hence

(8.71) Re(λt+ ν−k (x− y)) ≤ −ᾱ2t/M − ηIm(λ)2t,

for some η, M > 0, provided r and ε are chosen sufficiently small, for all λ ∈ Γ′1a .
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On Γ′1b, a similar analysis shows that

Re(λt+ ν−k (x− y)) ≤ Re(λ1t+ ν−k (λ1)(x− y))(8.72)

≤ ηIm(λ1)2t

≤ −η2t,

where η2 > 0. As in previous analyses, the contribution from the resulting time-
exponentially decaying term

∫
Γ′

1b
dλ can be absorbed in the error terms R, R1,

and R2 as usual.
On the other hand,

(8.73)

∫
Γ′1a

|II| ≤ Ce−η|x|
∫

Γ′1a

eRe(λt+ν−
k

(x−y))

(
1 |λ|
|λ| |λ|2

)
dλ,

From the bound (8.71), together with (8.59), we have for q ≥ 0 that∫
Γ′1a

|λ|qeRe(λt+ν−
k

(x−y))dλ(8.74)

≤ Ce−ᾱ
2t/M

∫
Γ′1a

(|λmin|
q + Im(λ)q)e−ηIm(λ)2tdλ

≤ C

(
ᾱqe−ᾱ

2t/M

∫
Γ′1a

e−ηIm(λ)2tdλ

)

+ e−ᾱ
2t/M

∫
Γ′1a

Im(λ)qe−ηIm(λ)2tdλ

≤ C(ᾱqe−ᾱ
2t/M

∫ ∞
−∞

e−ηk
2tdk+ e−ᾱ

2t/M

∫ ∞
−∞

kqe−ηk
2tdk)

≤ C2t
−1/2−q/2e−ᾱ

2t/2M .

Applying (8.74) in (8.73), we obtain∣∣∣∣∣
∫

Γ′1a

II

∣∣∣∣∣ ≤
(
t−1/2e−η|x|e−ᾱ

2t/C t−1e−η|x|e−ᾱ
2t/C

t−1e−η|x|e−ᾱ
2t/C t−3/2e−η|x|e−ᾱ

2t/C

)
.

Recalling that ᾱ = (x− y− a−k t)/2t, we find that this contribution absorbs in
terms S, S1, and S2.
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It remains to treat the cases for which |ᾱ/p| ≥ ε and |ᾱ/p| ≤ t−1/2. The
ᾱ/p ≥ ε case is trivial, since on the fixed curves Γ′1 corresponding to ᾱ/p = ±ε,
the quantity Re(λt+ ν−k (x− y)) clearly decreases as ᾱ (equivalently, (x− y))
decreases (resp. increases). Thus, we obtain the bound

∫
Γ′1

|II| ≤ O(e−ηε
2t)

in this case, which, as a time-exponentially decaying term, can be absorbed in
R, R1, and R2. In the case |ᾱ/p| ≤ t−1/2, relation (8.69) still holds; however,
instead of (8.70), we have by Taylor expansion about the critical point (minimax)
ᾱ/p that

2ᾱλmin− pλ
2
min = ᾱ2/p+ 2p(λmin− ᾱ/p)

2(8.75)

= ᾱ2/p+ O(t−1),

where in the last line we have used the fact that p is bounded above for ᾱ small.

Carrying through the remaining analysis (8.74) as before, we obtain the

same bounds multiplied by a factor etO(t−1) = O(1), giving the same results.

The analysis of the term I follows in exactly the same way. Note that the
bound (8.74) holds also when q < 0. For, since minλ∈Γ′1

|λ| ≥ t−1/2, we have

∫
|λ|qeRe(λt+ν−

k
(x−y))dλ ≤ t−q/2

∫
eRe(λt+ν−

k
(x−y))dλ

≤ t−q/2−1/2e−ᾱ
2t/2M

as before. In place of expansion (8.66), we use now

ψ̃−k (λ,y) = e−ν
−
k
y
(
Ṽ −k (0,y)+λ)O(1), O(e−η|y|))

)
= e−ν

−
k
y
(

(π−k (y), π−k
′
(y))+λ(O(1), O(e−η|y|))

)
,

where the final equality follows by Definition 8.8 and the fact that ν−k (0) = 0.
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The rest of the analysis carries through as before to give∫
Γ′1

|I|dλ ≤ e−η|x|e−((x−y)−a−
k
t)2/Mt(8.76)

×

(
O(1)π±k (y) O(t−1/2)π−k

′
(y)

O(t−1/2)π±k (y) O(t−1)π−k
′
(y)

)
+ O(e−η|x|e−((x−y)−a−

k
t)2/Mt)

×

(
t−1/2 (t+ 1)−1/2t−1/2e−η|y|

(t+ 1)−1/2t−1/2 (t+ 1)−1t−1/2e−η|y|

)
.

Comparing with the statement of Proposition 8.3, we find that the first term on
the righthand side can be absorbed in E, E1, and E2, and the second in RS ,
R1
S , and R2

S .

This completes our treatment of the case a+
j < 0, and thus of the pos-

sible singular terms djk ∼ λ−1. Note that the sum over j, k of all terms

χ{|a−
k
t|≥|x−y|}Res0djk(φ−j ,φ

−
j

′
)t(ψ̃−k , ψ̃

−′

k ) exactly gives

∑
k

χ{|a−
k
t|≥|x−y|}(ϕ

−
k ,ϕ

−
k

′
)t(π−k ,π

−
k

′
),

accounting for the first terms in E, E1, and E2.
We now turn to the case a+

j > 0, corresponding to scattering terms.

Case II(ic). (a+
j , a−k > 0). First, consider the critical case a+

j ,a
−
k > 0.

For this case,

(8.77) |ϕ+
j(x)djkψ̃

−
k (y)| ≤ CeRe(ρ+

j
x−ν−

k
y),

where, by Proposition 2.1,

(8.78)


ν−k (λ) = − λ

a−
k

+
λ2β−

k

(a−
k

)3
+ O(λ3)

ρ+
j (λ) = − λ

a+
j

+
λ2β+

j

(a+
j

)3
+ O(λ3).

Similarly as in (8.53) set

(8.79) ᾱ :=
a−k x/a

+
j − y− a

−
k t

2t
, p :=

β+
j a
−
k x/(a

+
j )3−β−k y/(a

−
k )2

t
> 0.
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Define Γ′1a to be the portion contained in Ωθ of the hyperbola

Re(ρ+
j x− ν

−
k y) +O(λ3)(|x|+ |y|)(8.80)

= (1/a−k )Re[λ(−a−k x/a
+
j + y) +λ2(xβ+

j a
−
k /(a

+
j )3− yβ−k /(a

−
k )2)]

≡ constant

= (1/a−k )[(λmin(−a−k x/a
+
j + y) +λ2

min(xβ+
j a
−
k /(a

+
j )3− yβ−k /(a

−
k )2)],

where

(8.81) λmin :=



ᾱ

p
if t−1/2 <

∣∣∣∣ ᾱp
∣∣∣∣ ≤ ε,

−t−1/2 if −t−1/2 ≤
ᾱ

p
< 0,

t−1/2 if 0 ≤
ᾱ

p
≤ t−1/2,

±ε if ᾱ
p
≷ ε,

Denoting by λ1, λ∗1, the intersections of this hyperbola with ∂Ωθ, define Γ′1b to be
the union of λ1λ0 and λ∗0λ

∗
1, and define Γ′1 = Γ′1a ∪Γ′1b , as in Figure 6. Note that

λ = ᾱ/p, similarly, as before, minimizes the left hand side of (8.80) for λ real.
Likewise, we again have the crucial property that p is bounded for ᾱ sufficiently
small, since ᾱ ≤ ε implies that

(8.82) (|a−k x/a
+
j |+ |y|)/t ≤ 2|a−k |+ 2ε,

i.e. (|x|+ |y|)/t is controlled by ᾱ.
With these definitions, the calculations of (8.69)–(8.71) carry through, mod-

ulo obvious modifications, to give the analogous result

Re(λt+ ρ+
j x− ν

+
k y) ≤ −(t/a−k )(ᾱ2/4p)− η Im(λ)2t(8.83)

≤ −ᾱ2t/M − η Im(λ)2t,

for λ ∈ Γ′1a (note: here, we have again used the crucial fact that ᾱ controls

(|x|+ |y|)/t, in bounding the error term O(λ3)(|x|+ |y|)/t arising from expansion
(8.80)). Likewise, analogously to (8.74), we obtain for any q that

(8.84)

∫
Γ′1a

|λ|qeRe(λt+ρ+
j
x−ν−

k
y) dλ ≤ Ct−1/2−q/2e−ᾱ

2t/M ,
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for suitably large C,M > 0 (depending on q). Observing that

(8.85) ᾱ = (a−k /a
+
j )(x− a+

j (t− |y/a−k |))/2t,

we find that the contribution of (8.84) can be absorbed in the scattering terms
S, S1, and S2 for t ≥ |y/a−k |. At the same time, we find that ᾱ ≥ x > 0 for

t ≤ |y/a−k |, whence

ᾱ ≥
x− y− a+

j t

Mt
+
|x|

M
,

for some ε > 0 sufficiently small and M > 0 sufficiently large. This gives

e−ᾱ
2/p ≤ e−(x−y−a−

k
t)2/Mte−η|x|

provided |x|/t > a+
j , a contribution which can again be absorbed in S, S1, and

S2. On the other hand, if t ≤ |x/a+
j |, we can use the dual estimate

ᾱ =
−y− a−k (t− |x/a+

j |)

2t

≥
x− y− a−k t

Mt
+
|y|

M
,

together with |y| ≥ |a−k t|, to obtain

e−ᾱ
2/p ≤ e−(x−y−a+

j
t)2/Mte−η|y|,

a contribution that can likewise be absorbed. Together with the (still valid)
expansion (8.67), these results comprise all the essential ingredients in the argu-
ment of the previous case, with the difference that, in place of the former e−η|x|

factor, we have an extra factor of λ. This difference results (see (8.74)) after
integration in the substitution of a factor t−1/2 for the factor e−η|x|, giving the
claimed bounds.

Case II(id). (a+
j > 0, a−k < 0). The final remaining possibility is the case

a+
j > 0, a−k < 0, for which

Re(λt+ ρ+
j x− ν

−
k y) ≤ Re(λt+ ρ+

j x− ρ
+
j y)− η|y|
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for all λ ∈ B(0,r). Applying expansion (8.63) as in previous cases, we obtain a

contribution to

(
G Gy
Gx Gxy

)
of

e−(x−y−a+
j
t)2/Mt ×(8.86)

×

(
t−1/2(r+

j + O(e−η|y|))tO(e−η|y|) t−1(r+
j + O(e−η|y|))tO(e−η|y|)

t−1(r+
j + O(e−η|y|))tO(e−η|y|) t−

3
2 (r+

j + O(e−η|y|))tO(e−η|y|)

)
,

which can be absorbed in the first terms of S, S1 and S2. This completes the
proof for Case II(i), (y < 0 < x).

Case II(ii) (y < x < 0). The case y < x < 0 can be treated very similarly
to the previous one. In place of (8.44), we now have the analogous expansion

∫
Γ1

eλt
(
Gλ Gλx
Gλy Gλxy

)
(8.87)

=

∫
Γ

(∑
j,k

ϕ−j (x)djkψ̃
−
k (y) +

∑
k

ψ−k (x)ekψ̃
−
k (y)

)
dλ.

The singular terms ϕ−j (x)djkψ̃
−
k (y), a−j > 0, can be treated exactly as in the

previous case. For example, consider the critical case a−j > 0, a+
k > 0. Just as

in (8.50), we have

(8.88) Re(ρ−j ) ≥ Re(ν−k ) + η,

since ϕ−j (x) is fast-decaying and ν−k is slow growing. Thus, (8.51)–(8.52) hold,

and we can carry out the entire analysis of (8.53)–(8.76) as before. Likewise, the
trivial case a−k < 0, a−j > 0 follows as in (8.46)–(8.49).

Also similarly as in the previous case, the critical nonsingular terms, in this
case ϕ−j djkψ̃

−
k (y) with a−j < 0, a−k > 0, represent scattering terms. Similarly as

in (8.77), we have

(8.89) |ϕ−j (x)djkψ̃
−
k (y)| ≤ CeRe(ρ

−
j
x−ν−

k
y),

where

(8.90)

{
ν−k (λ) = −λ/a−k +λ2β−k /(a

−
k )2 + O(λ3),

ρ−j (λ) = −λ/a−j +λ2β2
j /(a

−
j )2 + O(λ3).
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Setting

(8.91) ᾱ =
a−k x/a

−
j − y− a

−
k t

t
, p =

β−j a
−
k x/(a

−
j )3−β−k y/(a

−
k )2

t
> 0,

as in (8.79), define Γ′1a , Γ′1b and Γ′1 = Γ′1a ∪Γ′1b as in (8.80)–(8.81). Again,
λ = ᾱ/p is a global minimum of the left hand side of (8.80) for λ real. Likewise,
p is bounded for ᾱ small, since, as in (8.82), ᾱ again controls (|x|+ |y|)/t. Thus,
all the analyses of (8.53)–(8.76) goes through as before. The noncritical terms
a−j < 0, a−k < 0 introduce a factor of e−η|y| as before, and can be absorbed in

the residual terms R, R1, and R2.
It remains to estimate the new term ψ−k (x)ekψ̃

−
k (y), a−k > 0. Here, we have

(8.92) |ψ−k (x)ekψ̃
−
k (y)| ≤ Ce−ν

−
k

(x−y),

and we reduce to essentially the same calculations done in (8.52)– (8.76), but
with an extra factor of λ replacing the e−η|x| term. The resulting contribution
is

χ{x<0}e
−(x−y−a−

k
t)2/Ct

(
O(t−1/2) O(t−1)
O(t−1) O(t−3/2)

)
,

which can be absorbed in the scattering terms S, S1, and S2, similarly as in case
II(i). We omit the details.

Case II(iii). (x < y < 0). This case is entirely similar to the previous one.

This completes the proof of Case II, and the theorem.

Remark. The fact that there occur no mixed terms ψ−k (x)ejkψ̃
−
j (y) in the

decomposition of Gλ is critical in the calculations of cases (ii) and (iii). Com-
parison with the calculation using bounds (8.92) shows that such terms would
not obey our estimates.

Remark. In the case that (D) does not hold, it is straightforward but
tedious to derive similar pointwise bounds on the Green’s function incorporating
also the unstable excited modes identified in Proposition 8.1. The excitation of
these modes occurs with large but approximately finite speed of propagation.
Except for neutrally stable modes belonging to Σ′0(L) but not Σ0(L), this speed
of propagation is greater than the maximum characteristic speed.

Remark. In the stable case (D), the proof of Theorem 8.3 shows that

Σ′0(L∗) ⊂ SpanΨ̃−(0,y)∩ SpanΨ̃+(0,y), as can also be seen directly by the con-
struction of Σ′0(L∗) given in Section 6. By the bifurcation analysis analogous to
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that of Proposition 2.1, each ψ̃±k (0,y) is asymptotic as y → ±∞ either to zero or

to a left eigenvector l±k of A± for which the corresponding eigenvalue a±k is ≶ 0,
that is to an incoming characteristic mode. This confirms the intuitive observa-
tion made in [LZ.2] (Section IV, (4.3)) that only incoming signals contribute to
the asymptotic shift or deformation of a stable shock.

Part IV. Stability.

9. Linearized Stability. In this section, we establish that the Evans
function criterion (D) identified in Result 3 of the introduction is both necessary
and sufficient for linearized stability. We show this condition to be equivalent
to the standard spectral requirements σ(L) \ {0} ⊂ {Reλ < 0} and Ker(L) =
{∂ūδ/∂δj}, augmented with a single, computable transversality condition at λ =
0.

Using the Green’s function bounds developed in the previous section, the
study of linearized orbital stability is relatively straightforward. Indeed, we can
considerably refine past analyses (e.g. [LZ.2, L.3]) by tracking the instantaneous
location of the shock, and not only its time-asymptotic position. In the context of
the linearized problem, this amounts to calculating an instantaneous projection of
the solution v(x,t) onto Σ′0(L), refining the time-asymptotic projection P0v(0, ·).

Definition 9.1 . Assuming the hypotheses of Theorem 8.3, define the
instantaneous projection ϕ(·, t) ∈ Σ′0(L) of the solution at time t to be

ϕ(x,t) =
∑
k

ϕ+
k (x)

∫ |a+
k
|t

0

π+
k (y)v(y,0)dy(9.1)

+
∑
k

ϕ−k (x)

∫ 0

−|a−
k
|t
π−k (y)v(y,0)dy.

The instantaneous projection ϕ(·, t) has a simple interpretation as the su-
perposition of all time-asymptotic states that have been excited by the arrival at
x = 0 of a signal from the far field at y. Signals travel with finite characteristic
speed |a±k |, emanating in both directions. This reflects a certain symmetry in
the situation; the propagation of a shock adjustment in one direction can equally
well be thought of as the propagation of an inverse adjustment in the opposite
direction.

Proposition 9.2. Given (C0)–(C3), linearized Lp orbital stability, p > 1,
of (1.6) with respect to perturbations in A = L1 is equivalent to the stability
condition (D). In the case of stability,

(9.2) (v(·, t)−φ(·, t))→ 0
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and

(9.3) v(·, t), φ(·, t)→ P0(v(0,y)),

with no rate given. For A = L1 ∩{f : |f | ≤ (1 + |x|)−r}, we obtain the rates of
convergence

(9.4) ‖v(·, t)−φ(·, t))‖p ≤ Ct
max{1/2−r,1/2p−1/2}

for r > 1
2 , and

(9.5) ‖v(·, t)−P0(v(0,y))‖p, ‖φ(·, t)−P0(v(0,y))‖p ≤ Ct
max{1−r,1/2p−1/2}

for r > 1.

Proof. Necessity of (D) was established in Corollary 8.2, while sufficiency
will follow once we establish (9.2)–(9.3). The convergence of φ in (9.3) is clear
from comparison of (9.1) and (8.25) and the Lebesgue dominated convergence
Theorem, and the convergence of v will follow once we establish (9.2). Likewise,
(9.5) is immediate once we establish (9.4). Thus, it is only (9.2) and (9.4) we
must demonstrate.

Expanding, we have

|v(x,t)−φ(x,t)| ≤

∣∣∣∣∫ S(x,t;y)v(0,y)dy

∣∣∣∣+ ∣∣∣∣∫ R(x,t;y)v(0,y)dy

∣∣∣∣
+

∣∣∣∣∫ T (x,t;y)v(0,y)dy

∣∣∣∣+ ∣∣∣∣∫ N(x,t;y)v(0,y)dy

∣∣∣∣ ,
where

T (x,t;y) :=
∑
k,±

O(e−(x−y−a±
k
t)2/Mt + e−(x−y+a±

k
t)2/Mt)e−η|x|π±k (y)

is the transient part of E, and

N(x,t;y) := −
∑
k,±

(χ{|x−y|>|a±
k
t| and |y|≤|a±

k
t|}ϕ

±
k (x)π±k (y)

is a negligible tail term, correcting (9.1) in the far field.
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The bound (9.2) then follows from the observations that:

∥∥∥∥∫ R(x,y,t)v(0,y)dy

∥∥∥∥
p

,

∥∥∥∥∫ S(x,y,t)v(0,y)dy

∥∥∥∥
p

≤ C‖t−1/2e(x−y)2/Mt‖p‖v(0, ·)‖1

≤ t1/2p−1/2;

∥∥∥∥∫ N(x,y,t)v(0,y)dy

∥∥∥∥
p

≤ C
∥∥∥∑
k,±

∫ +|a±
k
t|

−|a±
k
t|
χ{|x|≥t−|y/a±

k
|} e
−η|x| v0(y)dy

∥∥∥
p

≤
∑
k,±

C

∫ +|a±
k
t|

−|a±
k
t|
e−η(t−|y/a±

k
|) v0(y)dy;

and∥∥∥∥∫ T (x,y,t)v(0,y)dy

∥∥∥∥
p

≤ C‖e−ηx‖p max
−C log t≤x≤C log t

∣∣∣∣∫ T (x,y,t)v(0,y)dy

∣∣∣∣
+Ct−N

≤ C
∑
k,±

∣∣∣∣∣
∫
||a±
k
t|∓y|≤C log t

v(0,y)dy

∣∣∣∣∣+Ct−N ,

where N is as large as desired. For v(·,0) ∈ {f : |f | ≤ (1 + |x|)−r}, this gives the
bound Ct1/2−r log t. By using the bound v(·,0) ∈ {f : |f | ≤ (1 + |x|)−r} from
the start, we can remove the log t factor, giving (9.4).

Remark. The bounds (9.5) and (9.3) correspond to those of [LZ.2,L.3].
The refined bounds (9.2) and (9.4) are of use in treating stability of wave patterns
(see [SZ]) and of undercompressive shocks [Z.2]. The transient adjustment of
the shock location associated with term T is analogous to the resonant wave
observed in [GSZ]. The error associated with scattering terms S corresponds to
the diffusion waves of [L.1]. These two dominant components in the solution
determine the rate of convergence to the stationary manifold given in (9.4).

Remark. So long as there is some outgoing mode a±j ≷ 0, the far field
behavior in that mode is dominated by the solution to a convected heat equation.
This justifies the discussion surrounding the example in Section 1.1.4 of the
introduction.
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Remark. In the case that there are L∞ stationary modes, essentially the
same description of the Green’s function holds. A difference is, however, that
the instantaneous projection no longer accurately describes behavior; indeed, the
description of the wave as tracking along Σ′0(L) is no longer appropriate, and
the tail term N becomes the dominant effect. See Section 12 for a discussion of
this case.

The Evans function criterion of Proposition 8.2 can be used directly to
study stability. Indeed, Brin has used this as the basis of a numerical algorithm
to check stability [Br], explicitly calculating the winding number of D around
the positive complex half-plane. This method can in principle be used to verify
stability of shocks of any type or strength.

Alternatively, condition (D) can be related to standard spectral stability
conditions, augmented by a single piece of extra information. From Theorem
6.4(ii) and the fact that Σ′λ0

(L) = Σλ0
(L) for Reλ0 ≥ 0,λ0 6= 0, together with

the fact that Ker(L) ⊂ Σ′0(L), we immediately obtain the following result:

Lemma 9.3. The Evans function criterion (D)is equivalent to σ(L) \ {0} ⊂
{Reλ < 0}, together with the transversality condition

(9.6)

(
d

dt

)`
DL(0) 6= 0.

The quantity (d/dt)`DL(0) has been explicitly evaluated in [GZ] for waves
of all types. There was observed a suggestive connection between (9.6) and
either linearized stability of the associated inviscid shock, or the property that
asymptotic state is determined by perturbation mass, depending on the type of
the wave. In the following section, we explore this connection further, showing
that it is in fact an equivalence. Our analysis depends, not on direct calculation,
but on the following abstract characterization.

Lemma 9.4. Let R± = Span {r±j : a±j ≶ 0}. Then, condition (9.6) is

equivalent to z ∈ Span {∂ūδ/∂δj} for all bounded solutions of

(9.7) (Bz′)′ = (Az)′+φ

such that φ ∈ Span {∂ūδ/∂δj} and z(±∞) ∈ R±.

Proof. The transversality condition (9.6) can be restated as

Σ′0,1(L) = Σ′0,2(L) = Span {∂ūδ/∂δj},

where, recall, Σ′0,1(L) denotes the space of effective eigenfunctions of ascent one
at λ = 0 (“genuine eigenfunctions”) and Σ′0,2(L) the space of effective eigenfunc-
tions of ascent two.
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Following the procedure described in Lemmas 6.1 and 6.4, these spaces can
be constructed from the sets of solutions Φ± of the eigenvalue equation. Solu-
tions Φ± in turn are determined by maximal rate of approach to the asymptotic
solutions eµjxVj described in Lemma 2.1. At λ = 0, this implies that Span Φ±

are exactly the sets of solutions of the zero eigenvalue equation

(9.8) (Bw′)′ = (Aw)′

such that w → r± as x→ ±∞, with r± ∈ Span {r±j : a±j ≶ 0}.
Thus, Σ′0,1(L) = Φ+ ∩ Span Φ− is exactly the set of bounded solutions of

(9.8) such that limx→±∞w ∈ R± and Σ′0,1(L) = Span {∂ūδ/∂δj} if and only if

all such w ∈ Span {∂ūδ/∂δj}. This is the special case of (9.7) with φ = 0.
Next, supposing that Σ′0,1(L) = Span {∂ūδ/∂δj}, we investigate conditions

for Σ′0,2(L) = Span {∂ūδ/∂δj}. In this case, the construction of Σ′0,2(L) is con-
siderably simplified. For, (d/dλ)φ → 0 as x → ±∞ whenever φ ∈ Σ′0,1(L), so
that Σ′0,2(L) \Σ′0,1(L) can be characterized simply as the set of bounded solu-
tions z of the generalized eigenvalue equation

(9.9) (Bz′)′ = (Az)′+φ,

where φ ∈ Span {∂ūδ/∂δj}, such that z → R± as x → ±∞. Comparing with
(9.7), we are done.

10. Alternative stability criteria. We now investigate the meaning of
the transversality condition (9.6) for each of the three major types of shock
wave, Lax, overcompressive, and undercompressive, showing in each case that
it reduces to a condition that is already familiar. For example, in the Lax
case, (9.6) reduces simply to the Liu–Majda condition, [L.1, MZPM, Fre.2],
an algebraic criterion equivalent to linearized stability of the associated inviscid
shock (equivalently, linearized well-posedness of the associated Riemann prob-
lem), or alternatively the property that asymptotic shock location is (formally)
determined by perturbation mass ([M], [L.1] respectively; see also [ZPM, Fre.2]).
More generally, for Lax and undercompressive shocks (9.6) is equivalent to lin-
earized well-posedness, while for Lax and overcompressive shocks it is equivalent
to determinability of the asymptotic state.

Pursuing the latter observation a bit further, we establish the alternative
criterion for Lax and overcompressive shocks that linearized orbital stability is
equivalent to linearized asymptotic stability with respect to zero mass perturba-
tions, plus the easily checked condition that the “outgoing” eigenvectors of A± be
independent. The latter condition is quite useful, since zero-mass results exist for
many cases in which the general problem remains open [G.1, MN, KMN, Fri.1-
2]. A second, equivalent condition is that the Evans function for the “integrated
equations” have no zeroes in the nonnegative complex half-plane, {Reλ ≥ 0}.
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This is useful in numerical calculation of stability, being less sensitive than the
ordinary Evans function criterion [Br].

10.1. Classification of shock waves. For a given wave ū(x), let i+

denote the number of negative a+
j and i− the number of positive a−j , a±j defined

as above to be the eigenvalues of A± = f ′(u±), and set i = i+ + i−. By Lemma
1.1, i± are the dimensions of the stable/unstable manifolds S+ and U+ of u± with
respect to the traveling wave ODE (1.4) (whose intersection gives the manifold
{ūδ} of viscous profiles), and likewise of their tangent manifolds along ū. Note
that the intersection of these tangent manifolds is precisely Ker(L), since they
necessarily satisfy the linearized equations about ū.

Definition 10.1. A viscous shock ū(x) is of “standard”, or “pure” type if
the intersection of S+ and U+ along ū is maximally transverse consistent with
the existence of a traveling wave, i.e.

(10.1) dim Ker(L) = ` = dim{ūδ} = dim Span{∂ūδ/∂δj}

and

(10.2) ` =

{
i−n i ≥ n+ 1,

1 i ≤ n,

Remark. Note that conditions (10.1)–(10.2) are satisfied automatically for
extreme shocks, i.e. for i− or i+ equal to n or 1. This includes many interesting
cases: all shocks for 2× 2 systems, all overcompressive shocks for 3× 3 systems,
and, notably, all shocks for the equations of gas dynamics. Under reasonable
hypotheses, (10.1)–(10.2) are generically satisfied for weak shocks of arbitrary
n×n systems, as shown by the bifurcation analyses of [MP,AMPZ.2]. Indeed,
we do not know of any physical example in which nonstandard shocks appear.

Definition 10.2. A standard viscous shock is of (pure) Lax type if i =
n+ 1, undercompressive type if i < n+ 1, and overcompressive type if i > n+ 1.

More generally, we define the degree of undercompressivity of a (possibly
nonstandard ) viscous shock to be n+ `− i. and the degree of overcompressivity
to be `− 1.

Recall, Theorem 8.3, that the a±j represent speeds of propagation in different
modes of perturbations relative to the shock, hence i is the number of incoming
modes, a measure of “compressivity” of the convection field induced by the shock.
Equivalently, i is the number of incoming characteristics of the corresponding
inviscid, or ideal shock, in the hyperbolic theory [Sm]. Thus, our classification
of standard shocks agrees with standard, hyperbolic convention.
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Shocks failing (10.1) are linearly unstable by Theorem 8.2. Any stable
nonstandard shock must therefore fail (10.2), giving n+ `− i, `− 1 > 0; that is,
it must be of mixed over- and undercompressive type. Examples of such “mixed
type” shocks are described in [LZ.2], section 4.4, and indeed exhibit behaviors
characteristic of both over- and undercompressive waves. The definition above
simplifies an equivalent classification given in [LZ.2]. From now on, we will refer
to pure, or standard Lax, over- and undercompressive shocks simply as Lax,
over- and undercompressive waves, and nonstandard waves as mixed type.

10.2. Lax and Overcompressive shocks.

Proposition 10.3. For (pure) Lax and overcompressive shocks, the trans-
versality condition (9.6) is equivalent to either of:

(i) {r±j : a±j ≶ 0}∪

{∫ +∞

−∞

∂ūδ

∂δj
dx : 1 ≤ j ≤ `

}
is a basis for Rn.

(ii) Σ′0(L∗) consists entirely of constant functions, and the vectors {r±j : a±j ≶ 0}
are independent.

Proof.
(i) This follows easily from Lemma 9.4. Given any φ that is contained in

Span {∂ūδ/∂δj}, there is a unique bounded solution of

(10.3) (Bz′)′ = (Az)′+φ,

modulo Span {∂ūδ/∂δj}, such that z approaches any desired value r− =
z(−∞) as x→ −∞. For, the intersection of the 1 + i− dimensional manifold
of solutions approaching Span {r−} with the n+ i+ dimensional manifold of
solutions bounded at +∞ is of dimension at least (1 + i−) + (n+ i+)− 2n =
1 + `; that is, there is at least one such solution modulo the `-dimensional
manifold of solutions decaying at both infinities.
Integrating (9.8) from −∞ to +∞, and recalling that z′ → 0 as e−α|x|

whenever w → constant, we find that

(10.4) A+z(+∞) = A−z(−∞) +

∫ +∞

−∞
φdx

for all such solutions, i.e. the value r+ = z(+∞) is determined. This implies
that in fact there is a unique solution modulo the `-dimensional manifold of
solutions decaying at both infinities.
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Noting that multiplication by A± preserves the invariant subspaces R± =
Span {r±j : a±j ≶ 0}, we thus find that (i) is satisfied if and only if, for all

solutions of (9.8) such that z(±∞) ∈ R±, z(±∞) = 0 and
∫
φdx = 0, so

that z ∈ Ker(L). The claim then follows by (10.1).
(ii) The adjoint eigenvalue equation at λ = 0, (B∗z′)′ = −A∗z′, has no zero-

order term, hence z ≡ `±j are solutions. Indeed, since {`±j : a±j ≶ 0} clearly

approach values (`±j ,0) at maximal rate as x→ ±∞, these are contained in

the sets of solutions Ψ̃± from which Σ′0,1(L∗) is constructed. In particular,

L := L− ∩L+ ⊂ Span Ψ̃− ∩ Span Ψ̃+ ⊂ Σ′0,1(L∗),

where L± := Span {`±j : a±j ≶ 0}. Indeed L is precisely the intersection of

Σ′0,1(L∗) with the set of constant solutions.

Next, observe that dimL± = i±, hence

dimL ≥ i−+ i+−n(10.5)

= i−n = `,

with equality if and only if L− ∪L+ = Rn, or equivalently

(10.6) Ø = (L−)⊥ ∩ (L+)⊥ = R− ∩R+.

Therefore, the set of constant solutions contained in Σ′0,1(L∗) has dimen-
sion ` = dimKer(L) if and only if (10.6) holds. Thus, (i) clearly implies
(ii), since then ` = dimΣ′0,1(L∗) = dimΣ′0,1(L). By the same reason-
ing, (ii) implies ` = dimΣ′0,1(L∗) = dimΣ′0,1(L). But, also, (ii) implies
Σ′0,2(L∗) \Σ′0,1(L∗) = Ø, since there can be no constant solution of the (in-
homogeneous) generalized eigenvalue equation

(B∗z′)′ = −A∗z′+ ψ̃.

It follows that dimΣ′0(L∗) = `, from which we obtain (9.6) and thus (i).

Remark 10.4. In the case that the linear equations under study in fact
arise from linearization about an underlying shock, the bounded solutions con-
structed in the proof have an alternative description in terms of the traveling
wave ODE. The nondegeneracy condition of Definition 10.1 implies, by the Im-
plicit Function Theorem, that the family of traveling wave solutions extends as
a smooth manifold of solutions ū(δ,u−,s), δ ∈ R` parametrized by (u−,s), con-
necting u− to u+(u−,s). The bounded solutions are then spanned by the partial
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derivatives of ūδ(u−,s) with respect to both δ and the parameters (u−,s). Like-
wise, (10.4) can be recognized as simply a linearized Rankine–Hugoniot relation.
The relation of asymptotic dynamics to the underlying traveling wave ODE is
an observation that goes back to [J].

Both conditions (i) and (ii) are closely related to conservation of mass. The
same argument as in the proof of Proposition 10.3 (ii) shows that a stable stan-
dard shock for which {r±j : a±j ≶ 0} are independent is of Lax or overcompressive

type if and only if Σ0(L∗) consists entirely of constant functions, or equivalently
the projection P0v0 of the initial perturbation onto Ker(L) is determined entirely
by the perturbation mass,

∫
v0(y )dy. For stable Lax and overcompressive shocks,

this means that the L∞ time-asymptotic state (corresponding to shift and defor-
mation of the shock profile) is determined by the mass of the initial perturbation.
The (L∞) time-asymptotic state of undercompressive shocks on the other hand
is generically not determined by the initial perturbation mass, perhaps the main
distinction of their behavior from that of Lax and overcompressive shocks (see
[LZ.2], Proposition 4.3.1 and just below, for a related, heuristic discussion). This
clarifies the meaning of condition (ii).

Condition (i) has a similar interpretation. Recall, for stable shocks, that the
L1 time-asymptotic state consists of stationary excited modes cj∂ū

δ/∂δj , plus
outgoing Gaussian signals θ±j r

±
j , a±j ≶ 0, the remainder of the solution decaying

in L1. Equating initial and time-asymptotic mass, we obtain

(10.7)

∫
v0 dy =

∑
1≤j≤`

cj

∫
∂ūδ

∂δj
dy+

∑
a±
j
≶0

(∫
θ±j dy

)
r±j

by conservation of mass. Condition (i) is thus necessary and sufficient that the
time-asymptotic state of a stable shock be determined by initial perturbation
mass. More, it is clearly necessary for stability, since otherwise (10.7) is insoluble
in general.

This observation, and a heuristic version of the above argument, was first
given by Liu [L.1]. Indeed, for Lax shocks, condition (i) reduces to the familiar
Liu–Majda condition,

{r±j : a±j ≶ 0}∪ (u+−u−) is a basis for Rn.

This has a second interpretation as the condition for hyperbolic stability of the
associated inviscid (ideal) shock [M].

Proposition 10.3 has the following, extremely useful consequences:

Proposition 10.5. For Lax and overcompressive shocks, linearized orbital
stability is equivalent to either of:
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(i) linearized asymptotic stability with respect to zero-mass perturbations v0 ∈
C∞0 ,

∫
v0 = 0, plus the condition that {r±j : a±j ≶ 0} are independent.

(ii) linearized orbital stability with respect to zero-mass perturbations, plus the
condition that

{r±j : a±j ≶ 0}∪

{∫ +∞

−∞

∂ūδ

∂δj
dx : 1 ≤ j ≤ `

}

is a basis for Rn.

Proof.
(i) Zero-mass stability is equivalent to the statement that Σ′λ∗(L

∗) consists
entirely of constant solutions whenever Reλ ≥ 0. It thus follows triv-
ially from orbital stability, by Proposition 10.3(ii) and the observation that
Σ′λ∗(L

∗) = Ø for Reλ ≥ 0 and λ 6= 0. The converse follows by Proposition
10.3(ii) and the trivial observation that the adjoint eigenvalue equation

(B∗z′)′ = −A∗z′+λ∗z

can have no nontrivial constant solutions except when λ = 0, since all terms
other than λz then vanish.

(ii) We need only show that (ii) implies stability, since the converse follows by
(i). By the argument of the previous case, (ii) gives Σ′λ∗(L

∗) = Ø and thus
Σλ∗(L) = Ø for Reλ ≥ 0 and λ 6= 0. Stability then follows from Lemma 9.3
together with Proposition 10.3.

10.3. The integrated equations. Zero-mass stability is often proved by
studying the integrated equations

(10.8) Vt = L̃V := −AVx +BVxx,

where

V (x,t) :=

∫ x

−∞
v(y,t)dy.

This point of view is profitable also within the Evans function framework. Let
D̃L(λ) denote the Evans function associated with the “integrated” operator L̃.

Proposition 10.6. For Lax and overcompressive shocks, linearized orbital
stability is equivalent to each of:
(i) linearized asymptotic stability of (10.8), plus independence of the vectors
{r±j : a±j ≶ 0}.



Kevin Zumbrun and Peter Howard 851

(ii) linearized orbital stability of (10.8), plus independence of the vectors

{∫ +∞

−∞
(∂ūδ/∂δj)dx : 1 ≤ j ≤ `

}
.

(iii) D̃L(λ) 6= 0 on {Reλ ≥ 0} plus independence of the vectors {r±j : a±j ≶ 0}.

Proof. (i) and (iii): First, observe that (10.8) is of the form treated by

our stability theory, hence asymptotic stability is equivalent to D̃L(λ) 6= 0 on

{Reλ ≥ 0}, or alternatively to Σ′λ(L̃) = Ø for Reλ ≥ 0.

Clearly, (∂/∂x)Σ′λ(L̃) ⊂ Σ′λ(L), with equality if and only if
∫

Σ′λ(L) = 0,

meaning
∫
φdx = 0 for all φ ∈ Σλ(L). It follows that dimΣ′λ(L̃) = dimΣ′λ(L)

whenever
∫

Σ′λ(L) = 0 and Σ′λ(L̃) contains no constant functions. For λ 6= 0,
the functions in Σ′λ(L) decay at ±∞. Thus, integrating the eigenvalue equation
0 = (Bw′)′− (Aw)′−λw over (−∞,+∞), we find that λ

∫
w = 0, verifying∫

Σ′λ(L) = 0. Similarly, for constant solutions W of the integrated eigenvalue

equation, the only nonzero term is λW , or W = 0, hence Σ′λ(L̃) contains no

constant functions. Thus, Σ′λ(L̃) = Ø is equivalent to Σ′λ(L) = Ø for λ 6= 0.

To complete the proof, it thus remains only to study λ = 0. It is easily seen,
similarly as in the proof of Proposition 10.3(ii), that the constant functions in

Σ′0(L̃) are exactly (using the notation of that Proposition) R+ ∩R− = Ø. Thus,

(∂/∂x)Σ′0(L̃) = Ker(L̃) consists of functions exponentially decaying at ±∞,
hence must be empty if zero-mass stability holds (for unintegrated equations).

For, otherwise (∂/∂x)Ker(L̃) ⊂ Ker(L) would consist of L1 stationary states
with zero mass, contradicting zero-mass stability. By Proposition 10.5, this
shows that (unintegrated) linearized orbital stability implies (i) and (iii).

On the other hand, the adjoint eigenvalue equation associated with L̃,

(B∗Z)′′ = −(A∗Z)′+λ∗Z,

is the “differentiated equation” for the adjoint eigenvalue equation for L, i.e. can
be obtained by setting Z = z′. Thus, (∂/∂x)Σ′0(L∗) ⊂ Σ′0(L̃∗), so that Σ′0(L̃∗) =
Ø only if Σ′0(L∗) consists of constant functions. By Proposition 10.3(ii), therefore,
(i) or (iii) implies linearized orbital stability.

(ii) This follows by the argument for (i), together with the observation that
independence of {∫ +∞

−∞

∂ūδ

∂δj
dx : 1 ≤ j ≤ `

}
alone is equivalent to (9.6).
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10.4. Lax and undercompressive shocks. For pure Lax and undercom-
pressive waves, the condition of Lemma 9.4 simplifies to z = c1ūx for all bounded
solutions of

(10.9) (Bz′)′ = (Az)′+ c2ūx

such that z(±∞) ∈ R±, since ` = 1.
This leads to another simple interpretation of (9.6). Recall the full traveling

wave ODE

(B(ū)ū′)′ = (f(ū)− sū)′; ū(−∞) = u−,

parametrized by α = (u−,s). Differentiating with respect to α, we obain the
variational equation

(Bz′)′ = (Az)′−α2ūx; z(−∞) = α1,

for z = ūα, exactly the form of (10.9). Thus, we can interpret the bounded
solutions of (10.9) as the tangent manifold about ū of the extended stationary
manifold of all viscous shock connections (ũ−, ũ+, s̃) nearby (u−,u+,s).

By a counting argument similar to that in Proposition 10.3, it can be seen
that the dimension of the manifold of parameters (ũ−, s̃) for which such connec-
tions exist is of codimension equal to the degree of undercompressivity `− 1; that
is, the requirement that a connection exist imposes an extra `− 1 constraints on
(ũ−, ũ+, s̃) beyond the n constraints of the Rankine–Hugoniot jump conditions.

As pointed out in [ZMP, Fre.2], this gives the right number of constraints
that the hyperbolic equation ut + f(u)x = 0 be linearly well-posed for C∞0 per-
turbations of the associated ideal (inviscid) shock, or, alternatively, that the Rie-
mann problem for this hyperbolic equation be linearly well-posed in the vicinity
of the shock. This can be seen by simply counting incoming and outgoing charac-
teristics: there are n+ `− 2 outgoing modes whose values must be determined at
the free boundary, along with the shock speed s. Indeed, it is not difficult to see
that the precise transversality condition determining linearized well-posedness,
as determinded by the Implicit Function Theorem, is none other than (10.9).
For details, we refer the reader to [ZMP, Fre.2].

We thus see that in the Lax and undercompressive case, (9.6) is equivalent
to linearized stability of the associated hyperbolic shock/well-posedness of the
associated Riemann solution. Condition (10.9) can be expressed compactly as the
nonvanishing of an appropriate Melnikov integral. However, it must in general
be checked numerically.

10.5. Mixed type waves. In the case of waves of mixed type, (9.6) is
again equivalent to nonvanishing of a certain Melnikov integral associated with
(9.7). However, we have no straightforward interpretation of this quantity.
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Remark. The conclusions of Sections 10.2–10.5 extend and explain ob-
servations made in [GZ] by explicit evaluation of (9.6). In the case of an ex-
treme overcompressive shock, for example, one obtains (by calculations described
in [GZ])

(d/dλ)`DL(0) = det
(
r−1 , · · · ,r

−
n−`,

∫
∂ūδ/∂δ1, · · · ,

∫
∂ūδ/∂δ`

)
× det

(
r−1 , · · · ,r

−
n−`,s

−
1 , · · · ,s

−
`

)
,

where as usual s±j denote eigenvectors of B−1
± A±. In the general case, one obtains

a similar formula, the first term always corresponding to condition (i). The
second term can be rather complicated; however, Proposition 10.3 guarantees
that this term never vanishes, hence can be ignored.

The latter observation can be quite nontrivial in some cases. For example,
in the case above, we find from Proposition 10.3 that

(10.10) det (r−1 , · · · ,r
−
n−`,s

−
1 , · · · ,s

−
` ) 6= 0,

whenever A±,B± are Majda–Pego stable pairs, with an appropriate shock con-
nection between u±. But, provided A−, B− are Majda–Pego stable, we can
always provide such a connection to a nearby Majda–Pego stable state u+, by
constructing an appropriate decoupled system and considering arbitrarily weak
shocks. This establishes (very indirectly!) the linear algebraic result that (10.10)
holds whenever A−, B− are Majda–Pego stable. This result is important in the
study of initial–boundary value problems, as described in [Se.1, Yo]. Indeed, the
conclusion for Majda–Pego stable pairs resolves a question left open in [Se.1];
for n > 2, (10.10) was previously established only for A and B symmetrizable.

11. Nonlinear stability.

Using the pointwise bounds developed in the previous sections, one can prove
the very general nonlinear stability result (Result 6) stated in the introduction.
That will be the topic of future work [Z.2]. For now, we only point out that,
in the Lax and overcompressive cases, we can immediately obtain nonlinear
stability in the case B ≡ constant by combining our pointwise bounds with a
modified version of the argument used by Liu to treat the weak Lax case with
artificial viscosity B ≡ I [L.3]. We then show how to extend this result to the
full, variable viscosity case, using the pointwise smoothing properties of strictly
parabolic systems.

11.1. The argument of Liu. There are three requirements that must be
satisfied in order to apply the stability argument of [L.3]:
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(i) First, the (nonlinear) L1-asymptotic state of the perturbed shock must
be formally determined by conservation of mass, in the sense that

(11.1)

∫ +∞

−∞
v0(y)dy =

∫
(uδ(y)−u(y))dy+

∑
a±
j
≷0

m±j r
±
j ,

must be soluble for m±j , δ, at least for small v0. Here, v0(y) is the initial pertur-

bation of u(x), ūδ is the asymptotic shift/deformation of ū, a±j and r±j are the

eigenvalues and eigenvectors of A± = f ′(u±), and m±j denotes the asymptotic
mass in the jth outgoing characteristic field at ±∞. By the Implicit Function
Theorem, this requirement is equivalent to the transversality condition (9.6),
which follows from linearized stability, (D).

(ii) Second, the Green’s functions both for the linearized equation vt = Lv

with zero-mass perturbation v = Vx and the integrated equation Vt = L̃V must
satisfy the approximate bounds derived by Liu, with an error of order εe−η|x|, ε
sufficiently small. Since we deal in this paper with the exact Green’s function,
we have no such error, i.e. ε = 0. The appropriate bounds on the Green’s
function for the integrated equation follow from the observation in Proposition
10.6 that linearized stability implies Σ′0(L̃) = Ø. Thus, the O(1) excited term E
does not appear in the bounds of Theorem 8.3, and the remaining terms satisfy
the required estimates: namely, they are bounded by Gaussian signals scattering
from the shock (cf. estimates in Sections 3–4 of [L.3]).

For the unintegrated equation with data v = Vx, Liu writes the solution as

(11.2)

∫
Gy(x,t;y)V (y,0)dy,

after integrating by parts. More precisely, therefore, the improved bounds we
require are on |Gy|. These follow, again, by the previously observed properties of
Lax and overcompressive shocks. By Proposition 10.3, Σ′0(L∗) consists entirely
of constant solutions. Thus, the dominant terms φ(x)π(y), π ∈ Σ′0(L∗) in the
excited mode E disappear under differentiation by y, and we again obtain the
improved estimate needed for the argument. Alternatively, (11.2) can be written
as ∫

G̃x(x,t;y)V (y,0)dy,

where G̃ is the Green’s function for the integrated equations, and the same
result obtained more transparently from the improved bounds for the integrated
equations. 5 We omit the details.

5 These considerations are well-illustrated in the case of the scalar Burgers equation,
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Note, again, that the weak shock assumption in [L.3] was necessary only
to control the error in the construction of an approximate Green’s function.
This error is mainly due to approximate diagonalization of the system. We do
not have any such errors, since we work with the exact Green’s function; in
particular, we do not perform any approximate diagonalization. Our estimates
are nonetheless asymptotically diagonal as a consequence of (H2), just as are
those of [L.3]. Beyond this requirement, the only smallness assumption needed
is on the perturbation. Thus, in our argument there is no limitation on the
strength of the shock.

(iii) The third, purely technical requirement of the argument in [L.3] is that
the viscosity matrix be constant. This has the consequence that the quadratic
source term Q appearing in the perturbation equation depends on v alone, and
not vx, eliminating the need to “gain a derivative” (see (11.5), below). We will
show in a moment how to remove this hypothesis.

11.2. Basic stability result. By the observations in the previous subsec-
tion, we can immediately apply the pointwise Green’s function argument of [L.3]
to obtain a stability result in the case B ≡ constant.

Following Liu, let the vectors r±j be normalized so that either ∇ua
±
j (u±) ·

r±j = 1, or ∇ua
±
j (u±) · r±j = 0, where aj(u) here refer to the eigenvalues of the

matrix A(u) := f ′(u), which are well-defined near u± by assumption (H2). In
the first case, we refer to the corresponding field j± as genuinely nonlinear, in
the second case linearly degenerate. Associated with the outgoing modes a±j ≷ 0,
define diffusion waves, governed accordingly by the Burgers or heat equation:

(θ±j )t + a±j (θ±j )x +

(
1

2
(θ±j )2

)
x

= β±j (θ±j )xx, j± genuinely nonlinear,(11.3)

(θ±j )t + a±j (θ±j )x = β±j (θ±j )xx, j± linearly degenerate,∫ +∞

−∞
θ±j (x,t)dx = m±j .

Here, m±j are as determined in (11.1) and the effective diffusion coefficients β±j
are as in (K3), Section 2, i.e. β±j := l±j B±r

±
j , where l±j are the left eigenvectors

of A± corresponding to the right eigenvectors r±j .

From [LZe], it is known that θ±j r
±
j well-approximates the L1-asymptotic

state of perturbations in the far field, in each outgoing mode j±. Define the

Example 8.6, where we have already seen that our bounds are sharp. Recall that Liu’s bounds
derive from scalar equations, and approximate the exact Burgers bounds.
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remainder v(x,t) by

(11.4) u(x,t) ≡ ūδ(x) +
∑
a±
j
≷0

θ±j r
±
j + v(x,t),

where δ and θ±j are as determined in (11.1) and (11.3). By subtracting off the

L1-asymptotic state in this way, we obtain the zero mass condition,

∫ +∞

−∞
v(x,t)dx = 0.

The remainder v satisfies a modified perturbation equation

(11.5) vt−Lv = Q(θ,v)x +M(θ)x,

where Q as usual denotes a quadratic order source term and

θ =
∑
a±
j
≷0

r±j θ
±
j .

The new, inhomogeneous term M is of linear order,

M(θ) = −(∂/∂t−L)θ(11.6)

=
∑
aj±≷0

(
(A(x)− a±j I)r±j θ

±
j

)
x
−
(
(B(x)−β±j I)r±j (θ±j )x

)
x

Proposition 11.1. Let (H0)–(H4) hold, with B ≡ constant, and let ū be
a pure Lax or overcompressive shock satisfying the stability condition (D). Then,
ū is Lp nonlinearly orbitally stable, p > 1, with respect to perturbations in

Aζ := {f : |f(x)| ≤ ζ(1 + |x|)−3/2},

for ζ sufficiently small. Moreover, for v(x,t) defined as in (11.4), it holds that

v(x,t) = O(ζ(|x|+ 1)−1(t+ |x|+ 1)−1/2)(11.7)

+
∑
a±
j
≷0

r±j O(ζ[ψ±j (x,t)3/2 +χ±j (x,t)]) + O(ζψ
±
j (x,t)3/2),
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where

ψ±j (x,t) := [(x− a±j (t+ 1))2 + t+ 1]−1/2,(11.8)

ψ
±
j (x,t) := [(x− a±j (t+ 1))3 + (t+ 1)2]−1/3,

χ±j (x,t) := min(χ̄±j (x,t),(|x|+ 1)−1/2(t+ 1)−1/2),

χ̄±j (x,t) := |x− a±j t|
−1(1 + |x− a±j t|)

−1/2χ{x∈[0,a±
j

(t+1)(1+(t+1)1/2)]}.

Proof. Following [L.3], the variable v is augmented with vx, w :=
∫ x
−∞ v

and z := wt, and to these variables there are associated corresponding template
functions hv(x,t), hvx , hw(x,t), and hz(x,t), given by

hv(x,t) := (|x|+ 1)−1(t+ |x|+ 1)−1/2 +
∑
a±
j
≷0

(ψ±j (x,t)3/2 +χ±j (x,t)),(11.9)

hvx(x,t) := (|x|+ 1)−1(t+ |x|+ 1)−1/2 +
∑
a±
j
≷0

ψ̄±j (x,t)2,

hw(x,t) := (|x|+ 1)−1(t+ |x|+ 1)−1/4 +
∑
a±
j
≷0

ψ±j (x,t)1/2,

hz(x,t) := (t+ |x|+ 1)−1 + (|x|+ 1)−1(t+ |x|+ 1)−1/2

+
∑
a±
j
≷0

(α±j (x,t) +ψ±j (x,t)3/2 + χ̄±j (x,t)),

where α±j (x,t) := (t+ 1)−1/2e(x−a±
j

(t+1))2/M(t+1), and χ±j , χ̄±j , ψ±j , and ψ̄±j are

as in (11.8) above. Note that the template function hv is roughly 1/ζ times the
modulus of the right hand side of (11.7). All four template functions are related
in this way to the right hand sides of equations (7.8)–(7.14) of [L.3], p. 56.

These Ansatze are then verified by the continuous induction argument de-
scribed in Lemma 1.6 of the introduction, with the minor modification that we
must add to (1.10) the hypothesis

(11.10)

∣∣∣∣∫ Gy(x,t− s;y)Mi(θ)(y,s)dyds

∣∣∣∣ ≤ Cmhi(x,t), i = v,vx,w,z,

where m :=
∑

a±
j
≷0 |mj | = O(ζ) denotes the total mass of diffusion waves. This

ensures that the contribution to (1.9) from the source terms Mi(θ)x can be
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absorbed in the first term on the right hand side of (1.11). For the (highly
nontrivial) details of the verification of (1.10) and (11.10), we refer to [L.3].

The application of Lemma 1.6 results in modulus bounds for v, vx, w, and
z. These bounds can then be filtered back through (1.9) to give the more precise
information in (11.7) of the magnitude of the perturbation in different charac-
teristic fields.

In [L.3], the magnitude in each characteristic field is controlled throughout
the iteration using a separate template function. Though this approach is conve-
nient in the approximately decoupled context of [L.3], it is not necessary for the
argument. Since the quadratic source terms couple all characteristic modes of v,
the only benefit of separate estimates is to give a decomposition of v into compo-
nent waves supported mainly along characteristic directions x = a±j t, which can
then be estimated separately using different techniques. This decomposition can
be accomplished equally well by a partition of unity with respect to x/(t+ 1).
Note that spatial derivatives falling on a cutoff function depending on x/(t+ 1)
give an extra factor of time-decay (t+ 1)−1, more than the difference between
decay rates of v and vx, or w and v. Thus, we recover all of the estimates of Liu
using our simplified modulus bounds.

Corollary 11.2. Under the hypotheses of Proposition 11.1,

‖v(·, t)‖Lp =

{
O(1)(t+ 1)(−3p−2)/(4p), 1 ≤ p ≤ 2,

O(1)(t+ 1)−1/2, 2 ≤ p ≤ ∞,

and

‖(u− ūδ)(·, t)‖Lp = O(1)(t+ 1)−1/2−1/2p, 1 ≤ p ≤ ∞.

As in [L.3], all decay rates given are optimal. From the stated Lp bounds, we
see that the dominant behavior of a perturbed shock is indeed shift/deformation
of the shock plus emission of diffusion waves, as described in (11.4). This vali-
dates the heuristic picture of behavior given in [L.1].

11.3. Short-time theory. Before treating the variable viscosity case
B 6≡ constant we provide the requisite short-time existence/regularity theory
for general quasilinear parabolic systems, using the parametrix method of Levi
[Fr, GM, LU, LSU, Le]. Though rather straightforward, these results do not
seem to be readily available in the literature, except for systems with special,
essentially scalar viscosity matrices [LSU].

Proposition 11.3. Let A(x,t), B(x,t), and C(x,t) be uniformly bounded
in L∞ and C(0,0)+(α,α/2)(x,t), 0 < α,β < 1, taking values on a compact set, with
Reσ(B) bounded strictly away from zero. Then, for 0 < t < T , T sufficiently
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small, there is a Green’s function G(x,t;y,s) ∈ C2,1(x,t) associated with the
Cauchy problem for

(11.11) vt = Cv+Avx +Bvxx, v ∈ Rn,

satisfying bounds

(11.12) |Dj
xG(x,t;y,s)| ≤ Ct−(j+1)/2e−(x−y)2/M(t−s), j = 0,1,2,

where C, M , T > 0 depend only on the bounds on the coefficients and on the
lower bound on Reσ(B).

Likewise, for an equation in divergence form,

(11.13) vt = Cv+ (Av)x + (Bvx)x, v ∈ Rn,

there is a Green’s function G(x,t;y,s) ∈ C1,0(x,t) in the distributional sense,
satisfying (11.12) for j = 0,1.

Proof. The first stated result is standard for scalar equations. The method
of proof depends only on the existence of corresponding bounds for arbitrary
x- and t-derivatives of the Green’s functions Γy0,s0 of the “frozen”, constant-
coefficient systems

vt−B(y0,s0)vxx

obtained from the principal part of (11.11), for all (y0,s0) in the domain of inter-
est, along with Hölder bounds on these derivatives with respect to (y0, s0) (see
[Fr], p. 16, or [GM], p. 173). For scalar equations, these bounds are usually
obtained by explicit reduction to the heat equation. They can be obtained for
systems by Fourier Transform arguments like those described in Section 7 of
[HoZ.1] (see especially estimate (7.26)), together with the observation that the
hypotheses imply strict parabolicity, B(y0,s0) ≥ ηI > 0, after an appropriate
linear change of (independent) variable, where, by compactness, η as well as
the condition number of the change of coordinates, is uniform in (y0,s0). Al-
ternatively, these bounds can be obtained by the methods of the present paper
(sections 2-8) applied to the constant-coefficient case. The bounds on Γy0,s0

are then used in the explicit iteration of a Volterra integral equation for G−Γ,
carried out up to two spatial derivatives, plus their Hölder quotients [Fr,GM].

The divergence-form result can be obtained by exactly the same iteration
procedure as for the non–divergence-form equation, but iterating only spatial
derivatives up to order one instead of two. The crucial step in either case
is to estimate the Hölder quotients of a convolution of Γxx (resp. Γx) with a
C(0,0)+(α,α/2) function exhibiting appropriate Gaussian decay in its Hölder quo-
tients: specifically, Gxx in the non–divergence-form case, Gx in the divergence-
form case. These convolutions arise in the Hölder estimates of second and first
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spatial derivatives, respectively. In both cases, G−Γ is simultaneously seen to
be less singular than Γ, verifying the Green’s function property.

Corollary 11.4. Let f,g,h ∈ C2+α(u,x). Then, for initial data u(·,0) in
L∞ ∩C0+α, the Cauchy problem

(11.14) ut + f(u,x)x + g(u,x)u = (h(u,x)ux)x, u ∈ Rn,

has a classical solution u ∈ C(2,1)+(α,α/2)(x,t) for 0 < t ≤ T , T > 0 depending
only on the L∞ and Hölder norms of u(·,0).

Proof. Equation (11.14) can be rewritten in form (11.13), where

B(x,t) := h(u(x,t),x),(11.15)

A(x,t) :=

∫ 1

0

fu(γu,x)dγ,

C(x,t) := fx(0,x) + g(u,x).

Writing

(11.16) u(x,t) = T (u) :=

∫ +∞

−∞
G̃(x,t;y,T0)u(y,T0)dy

where G̃ denotes the Green’s function for (11.13), and applying the G̃ bound of
(11.12), we find in the usual way that T is a contraction on a sufficiently large
ball in C(0,0)+(α,α/2)(R1× [0,T ]), for T > 0 sufficiently small. Thus, we obtain
a fixed point solution u ∈ C(0,0)+(α,α/2) of (11.16).

Differentiating,

(11.17) ux(x,t) =

∫ +∞

−∞
G̃x(x,t;y,T0)u(y,T0)dy,

and applying now the G̃x bounds of (11.12), we find that the solution u is in
fact in C(1,0)+(α,α/2). By the assumed regularity of f , g, and h, this gives that
coefficients A, B, C are in C(1,0)+(α,α/2), and thus (11.13) can be rewritten as a
non–divergence-form equation,

ut + (C+Ax)u+ (A−Bx)ux−Buxx,
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still with C(0,0)+(α,α/2) coefficients. Applying the stronger Green’s function
bounds for non–divergence-form operators (and the implied bound on G̃t), we
find that u is in fact in C(2,1)+(α,α/2)(x,t), as claimed.

Remark. For scalar equations, the result of Corollary 11.4 holds for data
merely in L∞, by the Nash–Moser bounds on the fundamental solution, together
with standard energy estimates and Sobolev embedding. However, it is not clear
whether such a result is true for systems.

11.4. The variable viscosity case. The requirement B ≡ constant can
now be removed using the short-time “pointwise” smoothing described in Propo-
sition 11.3. A straightforward calculation (see, e.g., Lemma 5.1 [SZ]) establishes

Lemma 11.5. For t ≥ T > 0, |a| ≤ a0, and any r,∣∣∣∣∫ t

t−T

∫ +∞

−∞
(t− s)−1e−(x−y)2/M(t−s)(1 + |y− as|)r dyds

∣∣∣∣
≤ C(t−T )−1/2(1 + |x− at|)r,

where C depends only on M , r, and a0.

More generally, we have the following result:

Lemma 11.6. Let hv, hvx , hw, and hz be the template functions described
in the proof of Proposition 11.1. Then, for t ≥ 2T > 0, T > 0 fixed,

∫ t

t−T

∫ +∞

−∞
(t− s)−1e−(x−y)2/M(t−s)hi(y,x)dyds ≤ Chi(x,t), i = v,vx,w,z,

where C depends only on T , M , and the values of a±j .

Proof. The template functions hi(x,t) are the sum of algebraic waves of
form

(1 +x− at)r(1 + t)q,

the characteristic cones

χ{x∈[0,a±
j

(t+1)(1+(t+1)1/2)]},

and simple combinations thereof. Bounding (1 + s)q ≤ C(1 + t)q for t−T ≤
s ≤ t and (t−T )−1/2 ≤ T−1/2 ≤ C, using the facts that t ≥ 2T and T is
bounded away from zero, we can therefore obtain the result by essentially the
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calculation of the previous Lemma. The only new feature is diffusion at the
edges of the characteristic cones χ, which can be absorbed by the algebraic
waves (1 + |x|)−1(t+ 1)−1/2 and ψ±j .

Corollary 11.7. The conclusions of Proposition 11.1 hold also for non-
constant B(u), provided the initial data u0 is required additionally to lie in C0+α,
α > 0.

Proof. As noted above, the new feature in this case is that the quadratic
source termsQi, i = v, vx, w, z appearing in the remainder equations for v, vx, w,
and z now depend on the derivatives of the remainders as well as the remainders
themselves. The issue is therefore to obtain bounds on the derivatives equivalent
to those on the undifferentiated variables. Noting that wx = v, zx = wtx = vt ∼
vxx, and (v)x = vx, we see that it is sufficient to control vxx by the template
hvx for vx. For expositional reasons, however (and because it is of use in more
general arguments), we will first show how to bound vx by hv.

Subtracting ūt + f(ū)x− (B(ū)ūx)x = 0 from ut + f(u)x− (B(u)ux)x = 0,
and recalling that u = ū+ θ+ v, we can regroup terms in (11.5) to obtain the
modified remainder equation

vt− L̃v = M̃(θ)x,(11.18)

L̃v := −(Ãv)x + (B̃vx)x,

where

B̃(x,t) := B(u(x,t))

Ãv := (f(u)− f(u− v)) + (B(u)−B(u− v))(ūx+ θx).

Q̃(v,θ) := f(u)− f(ū)− f ′(ū)(v+ θ), and

M̃(θ) := M(θ) + (f(ū+ θ)− f(ū)) + ((B(ū+ θ)−B(ū))θx)x,

M(θ) as in (11.5). (Here, again, Ã(x,t) is defined via the integral Mean Value

Theorem, e.g. B(u)−B(u− v) = (
∫ 1

0
B′(u− sv)ds)v).

By Corollary 11.4, the solution u(x,t), and thus the coefficients Ã and B̃

are bounded in L∞ ∩C(0,0)+(α,α/2) up to some time 2T > 0, hence the results of
Proposition 11.3 apply. Writing

vx(x,t) =

∫ +∞

−∞
G̃x(x,t;y,t−T )v(y,t−T )dy(11.19)

+

∫ t

t−T

∫ +∞

−∞
G̃x(x,t;y,s)M̃(θ)x(y,s)dyds.
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by Duhamel’s principle, where G̃ is the Green’s function for (∂/∂t− L̃), and

using the G̃x bounds of Lemma 11.3 for divergence-form operators, we find that

‖vx(·, t)‖∞ ≤ C(T )−1/2‖v(·, t−T )‖∞+C(T )1/2‖M̃(θ)x‖∞.

In particular, for t ≥ T , we obtain a uniform Hölder (indeed, Lipschitz) bound on
v(·, t) depending only on the L∞ norm of v(·, t−T ). By the (standard) method
of extension, we thus obtain uniform Hölder continuity of v so long as |v| remains
bounded, in particular so long as |v(x,t)| ≤ Cηh(x,t) remains valid. Thus, we
may assume throughout the induction that short-time Green’s function bounds
of (11.12) remain uniformly valid for j = 0,1. (Note: this step is not necessary
in the argument of [L.3], since vx is also controlled. However, we include it for
more general purposes).

Combining the G̃x bounds of (11.12), the ansatz |v| ≤ ζh, and Lemma 11.6

plus a straightforward calculation on the M̃(θ) term of the right hand side, 6 we
thus obtain that

|vx(x,t)| ≤ Cζhv(x,t)

provided t ≥ 2T and |v(x,s)| ≤ C1ζhv(x,s) for t−T ≤ s ≤ t.
To complete the argument for v, we need only observe that the induction

can be started at time t = 2T instead of t = 0. For, (11.19) together with the

G̃ bounds of Proposition 11.3 show, by a calculation similar to but less singular
than that of Lemma 11.6, that the bounds assumed on u− ū = θ+ v at time
t = 0 persist to time t = 2T . (Alternatively, one could perform an initial layer
analyis.) Similarly, one can verify that the induction hypotheses |v| ≤ Cζhv,
|vx| ≤ Cζhvx , |w| ≤ Cζhw, and |z| ≤ Cζhz, hi given by (11.9), hold at time
t = 2T , given only the assumed bounds on u− ū.7

Similar results hold for the critical variable vx and its derivative vxx. Dif-
ferentiating (11.18), we find that vx satisfies an equation

(vx)t−
˜̃
Lvx = M̃xx + (Ãxv)x

similar in form to (11.18), but with the new source term

Ãxv = O(|v| |ūx|+ |v| |θx|+ |vx|).

The O(|vx|) and O(|v| |θx|) terms can be handled in the same ways as were the
first and second terms of (11.19) in the previous case. The term

O(|v| |ūx|) = O(t−1/2e−α|x|)

6 Recall, h(x,t) is designed to accomodate the effects of M(θ) ∼ M̃(θ), Section 1.1.4.
7 This observation repairs an omission in [L.3]. In general, the hypothesis |vx| ≤ Cζhvx

does not hold at t = 0, since we have made no assumptions on vx(·,0).
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gives rise to a contribution of similar size, O(t−1/2e−α|x|), provided T is chosen
sufficiently small, by a computation similar to that of Lemma 11.5. Noting that
this can be bounded by the term (|x|+ 1)−1(t+ |x|+ 1)−1/2 appearing in each
of hv, . . . , hz, we are done.

In summary, the new derivative terms appearing in the quadratic source
terms Qi satisfy the same bounds as do the undifferentiated terms, hence the
induction argument can be carried out as before, for all times t ≥ 2T > 0.

Remark. For “physical”, nonstrictly parabolic matrices B(u), the treat-
ment of the extra derivative term vx is by contrast highly nontrivial. In this
case, stability depends in part on nonlinear structure as manifested by energy
estimates. We refer the reader to [Ka,LZe] for further discussion.

12. Neutral Stability: Wave Splitting.

The ideas of this paper are perhaps best illustrated by the boundary case
that σ(L)∩{Reλ ≥ 0} = {0} but Σ′0(L) 6⊂ Span{∂ū/∂uδj}, that is, the case
that Σ′0(L) contains eigenfunctions not decaying at x = ±∞. This typically
corresponds to the phenomenon of wave-splitting, an interesting variation on the
standard theme of bifurcation from instability. We conclude with two examples
of this type.

An undercompressive family. Consider Holden’s model,

(12.1)

(
u
v

)
t

+

(
1
2v

2− 1
2u

2 + v
uv

)
x

=

(
u
v

)
xx

,

a model equation for three-phase flow.
For speed s = 0, it is easily verified that the traveling wave ODE (1.4) is

Hamiltonian, withH(u,v) = 1
2 ( 1

3v
3−u2v+ v2)− ( 1

2v
2
−v−

1
2u

2
−v+ v−v−u−v−u)

preserved along orbits [GZ]. In particular, for (u−,v−) = (1,0), there is an orbit
Ū(x) = (ū(x), v̄(x)) lying along the hyperbola

1

3
v2 + v = u2− 1,

connecting (u−,v−) to (u+,v+) = (−1,0).
Straightforward calculation gives

A± =

(
±1 1
0 ∓1

)
,

a±j = (−1)j , j = 1,2. Thus, the wave is undercompressive, with one incoming

and one outgoing characteristic mode on each side x = ±∞, and ` = dim {Ūδ} =
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1. Indeed, {Ūδ} consists simply of the set of translates {(Ū(x− δ)}. Moreover,
the eigenvectors corresponding to the outgoing modes a±j ≷ 0 are clearly r−1 =

r+
2 = (1,0)t.

Observing that

∫ +∞

−∞
(Ū(x− δ)− Ū(x))dx = δ(U+−U−) = 2δ(1,0)t,

we find that the right hand side of (11.1) lies always parallel to (1,0)t, hence

(11.1) cannot be satisfied for arbitrary perturbation mass
∫ +∞
−∞ V0(x)dx. This

violates Liu’s formal picture of the asymptotic behavior of a stable shock, and in
fact under general perturbations the wave does not time-asymptotically approach
one of its translates. Rather, it approaches a member of the larger family of zero-
speed shocks, {Ūδ,α} := {Ūα(x− δ)}, connecting states (±α,0) along similar,
hyperbolic orbits, concatenated with preceding and following Lax 1 and 2 waves
lying in the outgoing directions r−1 = r+

2 = (1,0)t. These waves do not have
zero speed, but propagate toward x = ±∞ at linear rates. This kind of breakup
under perturbation, of a single shock into more than one distinct wave, is known
as wave-splitting. It is a very mild, neutral type of instability. Note that wave-
splitting corresponds with the usual picture of multiple solutions bifurcating from
neutral instability, but with the interesting twist that the new solutions jump to
a different functional class (i.e. time-varying vs. stationary).

At the linearized level, we find, correspondingly, that the function w =
∂Ūδ,α/∂α satisfies the zero-eigenvalue equation, with boundary values w(±∞)
lying parallel to r−1 = r+

2 = (1,0)t, hence is a nondecaying effective zero eigen-
function. And, according to the description of behavior in Theorem 8.3, the
solution indeed moves along the tangent manifold of {Ūδ,α}, with the change in
endstate propagating outward toward ±∞ at linear rates a+

2 > 0 and a−1 < 0, re-
spectively. To verify this picture of neutral stability at the nonlinear level would
require the stability of the time-varying, three wave pattern, which is more in-
volved; in fact, the treatment of shocks and rarefactions together has not yet
been carried out, though this certainly should be possible using the techniques
already available.

We remark that homoclinic shock profiles occurring in the same model are
strongly (exponentially) unstable, as demonstrated in [GZ].

Fake Lax shocks. A second example, remarked earlier by Freistühler,
[Fre.1], occurs in the cubic model,

(12.2) Ut + (|U |2U)x = Uxx, U = (u,v)t ∈ R2,

a model equation for phenomena in MHD. For U− = (1,0)t and any U+ =
(−α,0), 1/2 < α < 1, there is a pure Lax shock solution Ūα(x) of ODE (1.4),
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connecting repellor U− to saddle U+, for some speed s(α). As in the previ-
ous example, the stationary manifold is dimension ` = 1, consisting entirely of
translates Ū(x− δ). Moreover, calculation shows that, again, (U+−U−) and the
outgoing eigenvector r−1 at −∞ lie in the same direction (1,0)t. Thus, Ū violates
the Liu–Majda condition (1.24), indicating the existence of an additional zero
effective eigenfunction not lying in the direction of the stationary manifold.

Also as before, this zero eigenfunction is given by ∂Ūα/∂α, and this corre-
spondis to a splitting of the wave into a nearby Ūα plus a following, Lax 2-wave.
It behaves more like an overcompressive than a Lax shock, in the sense that it
moves under perturbation within a two-parameter family of waves, and for this
reason has sometimes been called a “fake Lax” shock (in this sense, the examples
above are also “fake undercompressive” shocks).

However, in this case, s(α) 6≡ constant, making the situation somewhat
more interesting. This has the consequence that ∂Ūα/∂α satisfies, not the zero
eigenvalue equation, but the generalized zero eigenvalue equation. That is, it be-
longs to a Jordan chain ascending from Ūx. Thus, Ū is not even neutrally stable;
rather, perturbations can grow at linear rate in the mode Ūx, corresponding to
linear, non-decaying, motion of the shock location.

This fact illustrates a second interesting point. For, the fake Lax shocks are
orbitally stable under zero mass perturbations (though they cannot be asymp-
totically stable, by Proposition 10.5(i)). This shows that stability and zero-mass
stability do not always agree, even in the classical, Lax case. Orbital zero-mass
stability can be seen from Theorem 6.4(iii) together with (8.1), which together
give the description of asymptotic behavior,∑

j

∑
k≥0

tkLkxϕ(x)jπj(y),

where ϕj , πj are right and left zero eigenfunctions of L with ascents summing
to less than 1 plus the maximum ascent, 2. It follows that the single, linearly
growing term is tŪx(x)πj(y), where Lφj = Ūx, hence φj is ascent two and thus
πj is ascent one, a bounded genuine eigenfunction. But, the only bounded zero-
eigenfunctions of the adjoint operator L∗ are constants (see Section 10), hence
π(y) ≡ constant and so this term is not excited by zero-mass perturbations.

These examples at once indicate the kinds of subtleties that can occur in
behavior of viscous shock waves, and demonstrate the utility of the effective
spectrum for their explanation and study.
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