
Numerical Methods for ODE in MATLAB

MATLAB has a number of tools for numerically solving ordinary differential equations. We
will focus on one of its most rudimentary solvers, ode45, which implements a version of the
Runge–Kutta 4th order algorithm. (This is essentially the Taylor method of order 4, though
implemented in an extremely clever way that avoids partial derivatives.) For a complete list
of MATLAB’s solvers, type helpdesk and then search for nonlinear numerical methods.

First Order Equations

Example 1. Numerically approximate the solution of the first order differential equation

dy

dx
= xy2 + y; y(0) = 1,

on the interval x ∈ [0, .5].
For any differential equation in the form y′ = f(x, y), we begin by defining the function

f(x, y). For single equations, we can define f(x, y) as an inline function. Here,

>>f=inline(’x*yˆ2+y’)
f =
Inline function:
f(x,y) = x*yˆ2+y

The basic usage for MATLAB’s solver ode45 is

ode45(function,domain,initial condition).

That is, we use

>>[x,y]=ode45(f,[0 .5],1)

and MATLAB returns two column vectors, the first with values of x and the second with
values of y. (The MATLAB output is fairly long, so I’ve omitted it here.) Since x and y are
vectors with corresponding components, we can plot the values with

>>plot(x,y)

which creates Figure 1.
Choosing the partition. In approximating this solution, the algorithm ode45 has

selected a certain partition of the interval [0, .5], and MATLAB has returned a value of y at
each point in this partition. It is often the case in practice that we would like to specify the
partition of values on which MATLAB returns an approximation. For example, we might
only want to approximate y(.1), y(.2), ..., y(.5). We can specify this by entering the vector
of values [0, .1, .2, .3, .4, .5] as the domain in ode45. That is, we use
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Figure 1: Plot of the solution to y′ = xy2 + y, with y(0) = 1.

>>xvalues=0:.1:.5
xvalues =
0 0.1000 0.2000 0.3000 0.4000 0.5000
>>[x,y]=ode45(f,xvalues,1)
x =
0
0.1000
0.2000
0.3000
0.4000
0.5000
y =
1.0000
1.1111
1.2500
1.4286
1.6667
2.0000

It is important to point out here that MATLAB continues to use roughly the same partition
of values that it originally chose; the only thing that has changed is the values at which it is
printing a solution. In this way, no accuracy is lost.

Options. Several options are available for MATLAB’s ode45 solver, giving the user lim-
ited control over the algorithm. Two important options are relative and absolute tolerance,
respecively RelTol and AbsTol in MATLAB. At each step of the ode45 algorithm, an error

2



is approximated for that step. If yk is the approximation of y(xk) at step k, and ek is the
approximate error at this step, then MATLAB chooses its partition to insure

ek ≤ max(RelTol ∗ yk, AbsTol),

where the default values are RelTol = .001 and AbsTol = .000001. As an example for when
we might want to change these values, observe that if yk becomes large, then the error ek

will be allowed to grow quite large. In this case, we increase the value of RelTol. For the
equation y′ = xy2 + y, with y(0) = 1, the values of y get quite large as x nears 1. In fact,
with the default error tolerances, we find that the command

>>[x,y]=ode45(f,[0,1],1);

leads to an error message, caused by the fact that the values of y are getting too large as x

nears 1. (Note at the top of the column vector for y that it is multipled by 1014.) In order
to fix this problem, we choose a smaller value for RelTol.

>>options=odeset(’RelTol’,1e-10);
>>[x,y]=ode45(f,[0,1],1,options);
>>max(y)
ans =
2.425060345544448e+07

In addition to employing the option command, I’ve computed the maximum value of y(x)
to show that it is indeed quite large, though not as large as suggested by the previous
calculation. △

Systems of ODE

Solving a system of ODE in MATLAB is quite similar to solving a single equation, though
since a system of equations cannot be defined as an inline function, we must define it as an
M-file.

Example 2. Solve the Lotka–Volterra predator–prey system

dy1

dt
= ay1 − by1y2; y1(0) = y0

1

dy2

dt
= − ry2 + cy1y2; y2(0) = y0

2
,

with a = .5471, b = .0281, r = .8439, c = .0266, and y0

1
= 30, y0

2
= 4. (These values

correspond with data collected by the Hudson Bay Company between 1900 and 1920.)
In this case, we begin by writing the right hand side of this equation as the MATLAB

M-file lv.m:

function yprime = lv(t,y)
%LV: Contains Lotka-Volterra equations
a = .5471;b = .0281;c = .0266;r = .8439;
yprime = [a*y(1)-b*y(1)*y(2);-r*y(2)+c*y(1)*y(2)];
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We can now solve the equations over a 20 year period as follows:

>>[t,y]=ode45(@lv,[0 20],[30;4])

The output from this command consists of a column of times and a matrix of populations.
The first column of the matrix corresponds with y1 (prey in this case) and the second
corresponds with y2 (predators). Suppose we would like to plot the prey population as a
function of time. In general, y(n, m) corresponds with the entry of y at the intersection of
row n and column m, so we can refer to the entire first column of y with y(:, 1), where the
colon means all entries. In this way, Figure 2 can be created with the command

>>plot(t,y(:,1))
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Figure 2: Prey populations as a function of time.

Similarly, we can plot the predator population along with the prey population with

>>plot(t,y(:,1),t,y(:,2),’–’)

where the predator population has been dashed (see Figure 3).
Finally, we can plot an integral curve in the phase plane with

>>plot(y(:,1),y(:,2))

which creates Figure 4. In this case, the integral curve is closed, and we see that the
populations are cyclic. (Such an integral curve is called a cycle.)

Passing parameters. In analyzing systems of differential equations, we often want to
experiment with parameter values. For example, we might want to solve the Lotka–Volterra
system with different values of a, b, c, and r. In fact, we would often like a computer program
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Figure 3: Plot of predator and prey populations for the Lotka–Volterra model.

to try different values of these parameters (typically while searching for a set that correspond
with certain behavior), and so we require a method that doesn’t involve manually altering
our file ODE file every time we want to change parameter values. We can accomplish this
by passing the parameters through the function statement. In order to see how this works,
we will alter lv.m so that the values a, b, c, and r are taken as input. We have

function yprime = lvparams(t,y,params)
%LVPARAMS: Contains Lotka-Volterra equations
a=params(1); b=params(2); c=params(3); r=params(4);
yprime = [a*y(1)-b*y(1)*y(2);-r*y(2)+c*y(1)*y(2)];

We can now send the parameters with ode45.

>>params = [.5471 .0281 .0266 .8439];
>>[t,y]=ode45(@lvparams,[0 20],[30;4],[],params);

MATLAB requires a statement in the position for options, so I have simply placed an empty
set here, designated by two square brackets pushed together. △

Higher Order Equations

In order to solve a higher order equation numerically in MATLAB we proceed by first writing
the equation as a first order system and then proceeding as in the previous section.

Example 3. Solve the second order equation

y′′ + x2y′ − y = sin x; y(0) = 1, y′(0) = 3
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Figure 4: Integral curve for the Lotka–Volterra equation.

on the interval x ∈ [0, 5].
In order to write this equation as a first order system, we set y1(x) = y(x) and y2(x) =

y′(x). In this way,

y′

1
= y2; y1(0) = 1

y′

2
= y1 − x2y2 + sin x; y2(0) = 3,

which is stored in the MATLAB M-file secondode.m.

function yprime = secondode(x,y);
%SECONDODE: Computes the derivatives of y 1 and y 2,
%as a colum vector
yprime = [y(2); y(1)-xˆ2*y(2)+sin(x)];

We can now proceed with the following MATLAB code, which produces Figure ...

>>[x,y]=ode45(@secondode,[0,5],[1;3]);
>>plot(x,y(:,1))

Assignments

1. Numerically approximate the solution of the first order differential equation

dy

dx
=

x

y
+ y; y(0) = 1,

on the interval x ∈ [0, 1]. Turn in a plot of your approximation.
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Figure 5: Plot of the solution to y′′ + x2y′ − y = sin x; y(0) = 1, y′(0) = 3.

2. Repeat Problem 1, proceeding so that MATLAB only returns values for x0 = 0, x1 = .1,
x2 = .2, ..., x10 = 1. Turn in a list of values y(x1), y(x2) etc.

3. The logistic equation
dp

dt
= rp(1 −

p

K
); p(0) = p0,

is solved by

pexact(t) =
p0K

p0 + (K − p0)e−rt
.

For parameter values r = .0215, K = 446.1825, and for initial value p0 = 7.7498 (consistent
with the U. S. population in millions), solve the logistic equation numerically for t ∈ [0, 200],
and compute the error

E =

200∑

t=1

(p(t) − pexact(t))
2.

4. Repeat Problem 3 with RelTol = 10−10.

5. Numerically approximate the solution of the SIR epidemic model

dy1

dt
= − by1y2; y1(0) = y0

1

dy2

dt
= by1y2 − ay2; y2(0) = y0

2
,

with parameter values a = .4362 and b = .0022 and initial values y0

1
= 762 and y0

2
= 1. Turn

in a plot of susceptibles and infectives as a function of time for t ∈ [0, 20]. Also, plot y2 as
a function of y1, and discuss how this plot corresponds with our stability analysis for this
equation. Check that the maximum of this last plot is at a

b
, and give values for Sf and SR

as defined in class.
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