1a. [6 pts] Solve the quarter-plane problem

\[u_{tt} = c^2 u_{xx}; \quad (x, t) \in (0, \infty) \times (0, \infty) \]

\[u_x(0, t) = 0; \quad t \geq 0 \]

\[u(x, 0) = f(x); \quad x \geq 0 \]

\[u_t(x, 0) = g(x); \quad x \geq 0. \]

Notice that the difference between this problem and the quarter-plane problem we solved in class is the condition \(u_x(0, t) = 0 \) (replacing \(u(0, t) = 0 \)).

1b. [2 pts] Solve the equation from Part (a) with \(c = 2 \), \(g(x) = 0 \), and

\[f(x) = \begin{cases}
 x - 2 & 2 \leq x \leq 3 \\
 4 - x & 3 < x \leq 4 \\
 0 & \text{otherwise}
\end{cases} \]

Sketch graphs of \(u(x, 0) \), \(u(x, 1) \), and \(u(x, 2) \).

1c. [2 pts] Solve the equation from Part (a) with \(c = 2 \), \(f(x) = 0 \) and

\[g(x) = \frac{1}{x^2 + 1}. \]

Sketch a graph of \(u(x, 1) \).

2a. [5 pts] Suppose a chemical is to be combined with a homogeneous fluid such as water in a thin cylindrical tube (i.e., a test tube). For example, you might think of mixing food coloring with water. Let \(u(x, t) \) denote the concentration of chemical at time \(t \) and distance \(x \) along the tube. According to Fick’s law of diffusion, the flux associated with \(u \) is

\[f = -ku_x, \]

where \(k \) is referred to as the chemical diffusivity. Explain what Fick’s law of diffusion means physically, and use it to derive a PDE for the concentration \(u(x, t) \).

2b. [5 pts] Suppose \(u(x, t) \) denotes traffic density (number of cars per unit length of road) along a certain stretch of road. In class, we discussed models in which the traffic flux depends only on traffic density \(u \). One drawback of such models is that they do not capture a driver’s reaction to what he sees ahead. For example, a driver who sees a higher density of traffic ahead will often slow down, while a driver who sees a lower density of traffic ahead will often speed up. Incorporate this idea to revise our model from class.

3. For the PDE

\[u_t - V(x)u = ku_{xx} \]

\[u(0, t) = 0; \quad u(L, t) = 0 \]

\[u(x, 0) = f(x). \]
suppose $V(x) \geq 0$ for all $x \in [0, L]$.

3a. [3 pts] Write down equations for $X(x)$ and $T(t)$ under the separation assumption $u(x, t) = X(x)T(t)$.

3b. [3 pts] Show that the eigenvalue problem for $X(x)$ has no negative eigenvalues and that 0 is not an eigenvalue.

3c. [4 pts] Show that if λ_1 and λ_2 are two different eigenvalues for this problem, and $X_1(x)$ and $X_2(x)$ are the associated eigenfunctions, then $X_1(x)$ and $X_2(x)$ are orthogonal in the following sense:

$$\int_0^L X_1(x)X_2(x)dx = 0.$$

Hint. Write out the eigenvalue equation for X_1 and multiply it by X_2, then write out the eigenvalue problem for X_2 and multiply it by X_1. Now subtract and integrate.

4. Consider the fourth order eigenvalue problem

$$X''' - \lambda X = 0$$

$$X(0) = 0; \quad X(L) = 0$$

$$X''(0) = 0; \quad X''(L) = 0.$$

4a. [5 pts] Show that there are no negative eigenvalues for this problem, and that $\lambda = 0$ is not an eigenvalue.

4b. [5 pts] Find the eigenvalues and eigenfunctions for this problem.

5. Exercise 5.1 in Constanda, Parts (i) and (iii).