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1 PDE in One Space Dimension

For initial–boundary value partial differential equations with time t and a single spatial
variable x, MATLAB has a built-in solver pdepe.
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1.1 Single equations

Example 1.1. Suppose, for example, that we would like to solve the heat equation

ut =uxx

u(t, 0) = 0, u(t, 1) = 1

u(0, x) =
2x

1 + x2
. (1.1)

MATLAB specifies such parabolic PDE in the form

c(x, t, u, ux)ut = x−m ∂

∂x

(

xmb(x, t, u, ux)
)

+ s(x, t, u, ux),

with boundary conditions

p(xl, t, u) + q(xl, t) · b(xl, t, u, ux) = 0

p(xr, t, u) + q(xr, t) · b(xr, t, u, ux) = 0,

where xl represents the left endpoint of the boundary and xr represents the right endpoint
of the boundary, and initial condition

u(0, x) = f(x).

(Observe that the same function b appears in both the equation and the boundary condi-
tions.) Typically, for clarity, each set of functions will be specified in a separate M-file. That
is, the functions c, b, and s associated with the equation should be specified in one M-file, the
functions p and q associated with the boundary conditions in a second M-file (again, keep in
mind that b is the same and only needs to be specified once), and finally the initial function
f(x) in a third. The command pdepe will combine these M-files and return a solution to the
problem. In our example, we have

c(x, t, u, ux) =1

b(x, t, u, ux) =ux

s(x, t, u, ux) =0,

which we specify in the function M-file eqn1.m. (The specification m = 0 will be made later.)

function [c,b,s] = eqn1(x,t,u,DuDx)
%EQN1: MATLAB function M-file that specifies
%a PDE in time and one space dimension.
c = 1;
b = DuDx;
s = 0;

For our boundary conditions, we have

p(0, t, u) = u; q(0, t) = 0

p(1, t, u) = u − 1; q(1, t) = 0,

which we specify in the function M-file bc1.m.
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function [pl,ql,pr,qr] = bc1(xl,ul,xr,ur,t)
%BC1: MATLAB function M-file that specifies boundary conditions
%for a PDE in time and one space dimension.
pl = ul;
ql = 0;
pr = ur-1;
qr = 0;

For our initial condition, we have

f(x) =
2x

1 + x2
,

which we specify in the function M-file initial1.m.

function value = initial1(x)
%INITIAL1: MATLAB function M-file that specifies the initial condition
%for a PDE in time and one space dimension.
value = 2*x/(1+xˆ2);

We are finally ready to solve the PDE with pdepe. In the following script M-file, we choose
a grid of x and t values, solve the PDE and create a surface plot of its solution (given in
Figure 1.1).

%PDE1: MATLAB script M-file that solves and plots
%solutions to the PDE stored in eqn1.m
m = 0;
%NOTE: m=0 specifies no symmetry in the problem. Taking
%m=1 specifies cylindrical symmetry, while m=2 specifies
%spherical symmetry.
%
%Define the solution mesh
x = linspace(0,1,20);
t = linspace(0,2,10);
%Solve the PDE
u = pdepe(m,@eqn1,@initial1,@bc1,x,t);
%Plot solution
surf(x,t,u);
title(’Surface plot of solution.’);
xlabel(’Distance x’);
ylabel(’Time t’);

Often, we find it useful to plot solution profiles, for which t is fixed, and u is plotted
against x. The solution u(t, x) is stored as a matrix indexed by the vector indices of t and x.
For example, u(1, 5) returns the value of u at the point (t(1), x(5)). We can plot u initially
(at t = 0) with the command plot(x,u(1,:)) (see Figure 1.2).

Finally, a quick way to create a movie of the profile’s evolution in time is with the
following MATLAB sequence.
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fig = plot(x,u(1,:),’erase’,’xor’)
for k=2:length(t)
set(fig,’xdata’,x,’ydata’,u(k,:))
pause(.5)
end

If you try this out, observe how quickly solutions to the heat equation approach their equi-
librium configuration. (The equilibrium configuration is the one that ceases to change in
time.) △

1.2 Single Equations with Variable Coefficients

The following example arises in a roundabout way from the theory of detonation waves.

Example 1.2. Consider the linear convection–diffusion equation

ut + (a(x)u)x = uxx

u(t,−∞) = u(t, +∞) = 0

u(0, x) =
1

1 + (x − 5)2
,

where a(x) is defined by

a(x) = 3ū(x)2 − 2ū(x),

with ū(x) defined implicitly through the relation

1

ū
+ log |

1 − ū

ū
| = x.

(The function ū(x) is an equilibrium solution to the conservation law

ut + (u3 − u2)x = uxx,

with ū(−∞) = 1 and ū(+∞) = 0. In particular, ū(x) is a solution typically referred to as a
degenerate viscous shock wave.)

Since the equilibrium solution ū(x) is defined implicitly in this case, we first write a
MATLAB M-file that takes values of x and returns values ū(x). Observe in this M-file that
the guess for fzero() depends on the value of x.

function value = degwave(x)
%DEGWAVE: MATLAB function M-file that takes a value x
%and returns values for a standing wave solution to
%u t + (uˆ3 - uˆ2) x = u xx
guess = .5;
if x < -35
value = 1;
else
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if x > 2
guess = 1/x;
elseif x>-2.5
guess = .6;
else
guess = 1-exp(-2)*exp(x);
end
value = fzero(@f,guess,[],x);
end
function value1 = f(u,x)
value1 = (1/u)+log((1-u)/u)-x;

The equation is now stored in deglin.m.

function [c,b,s] = deglin(x,t,u,DuDx)
%EQN1: MATLAB function M-file that specifies
%a PDE in time and one space dimension.
c = 1;
b = DuDx - (3*degwave(x)ˆ2 - 2*degwave(x))*u;
s = 0;

In this case, the boundary conditions are at ±∞. Since MATLAB only understands finite
domains, we will approximate these conditions by setting u(t,−50) = u(t, 50) = 0. Observe
that at least initially this is a good approximation since u0(−50) = 3.2e − 4 and u0(+50) =
4.7e − 4. The boundary conditions are stored in the MATLAB M-file degbc.m.

function [pl,ql,pr,qr] = degbc(xl,ul,xr,ur,t)
%BC1: MATLAB function M-file that specifies boundary conditions
%for a PDE in time and one space dimension.
pl = ul;
ql = 0;
pr = ur;
qr = 0;

The initial condition is specified in deginit.m.

function value = deginit(x)
%DEGINIT: MATLAB function M-file that specifies the initial condition
%for a PDE in time and one space dimension.
value = 1/(1+(x-5)ˆ2);

Finally, we solve and plot this equation with degsolve.m.

%DEGSOLVE: MATLAB script M-file that solves and plots
%solutions to the PDE stored in deglin.m
%Suppress a superfluous warning:
clear h;
warning off MATLAB:fzero:UndeterminedSyntax
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m = 0;
%
%Define the solution mesh
x = linspace(-50,50,200);
t = linspace(0,10,100);
%
u = pdepe(m,@deglin,@deginit,@degbc,x,t);
%Create profile movie
flag = 1;
while flag==1
answer = input(’Finished iteration. View plot (y/n)’,’s’)
if isequal(answer,’y’)
figure(2)
fig = plot(x,u(1,:),’erase’,’xor’)
for k=2:length(t)
set(fig,’xdata’,x,’ydata’,u(k,:))
pause(.4)
end
else
flag = 0;
end
end

The line warning off MATLAB:fzero:UndeterminedSyntax simply turns off an error message
MATLAB issued every time it called fzero(). Observe that the option to view a movie of
the solution’s time evolution is given inside a for-loop so that it can be watched repeatedly
without re-running the file. The initial and final configurations of the solution to this example
are given in Figures 1.3 and 1.4.

1.3 Systems

We next consider a system of two partial differential equations, though still in time and one
space dimension.

Example 1.3. Consider the nonlinear system of partial differential equations

u1t
=u1xx

+ u1(1 − u1 − u2)

u2t
=u2xx

+ u2(1 − u1 − u2),

u1x
(t, 0) =0; u1(t, 1) = 1

u2(t, 0) =0; u2x
(t, 1) = 0,

u1(0, x) =x2

u2(0, x) =x(x − 2). (1.2)

(This is a non-dimensionalized form of a PDE model for two competing populations.) As
with solving ODE in MATLAB, the basic syntax for solving systems is the same as for
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Figure 1.3: Initial Condition for Example 1.2.
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Figure 1.4: Final profile for Example 1.2 solution.
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solving single equations, where each scalar is simply replaced by an analogous vector. In
particular, MATLAB specifies a system of n PDE as

c1(x, t, u, ux)u1t
=x−m ∂

∂x

(

xmb1(x, t, u, ux)
)

+ s1(x, t, u, ux)

c2(x, t, u, ux)u2t
=x−m ∂

∂x

(

xmb2(x, t, u, ux)
)

+ s2(x, t, u, ux)

...

cn(x, t, u, ux)unt
=x−m ∂

∂x

(

xmbn(x, t, u, ux)
)

+ sn(x, t, u, ux),

(observe that the functions ck, bk, and sk can depend on all components of u and ux) with
boundary conditions

p1(xl, t, u) + q1(xl, t) · b1(xl, t, u, ux) =0

p1(xr, t, u) + q1(xr, t) · b1(xr, t, u, ux) =0

p2(xl, t, u) + q2(xl, t) · b2(xl, t, u, ux) =0

p2(xr, t, u) + q2(xr, t) · b2(xr, t, u, ux) =0

...

pn(xl, t, u) + qn(xl, t) · bn(xl, t, u, ux) =0

pn(xr, t, u) + qn(xr, t) · bn(xr, t, u, ux) =0,

and initial conditions

u1(0, x) =f1(x)

u2(0, x) =f2(x)

...

un(0, x) =fn(x).

In our example equation, we have

c =

(

c1

c2

)

=

(

1
1

)

; b =

(

b1

b2

)

=

(

u1x

u2x

)

; s =

(

s1

s2

)

=

(

u1(1 − u1 − u2)
u2(1 − u1 − u2)

)

,

which we specify with the MATLAB M-file eqn2.m.

function [c,b,s] = eqn2(x,t,u,DuDx)
%EQN2: MATLAB M-file that contains the coefficents for
%a system of two PDE in time and one space dimension.
c = [1; 1];
b = [1; 1] .* DuDx;
s = [u(1)*(1-u(1)-u(2)); u(2)*(1-u(1)-u(2))];
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For our boundary conditions, we have

p(0, t, u) =

(

p1

p2

)

=

(

0
u2

)

; q(0, t) =

(

q1

q2

)

=

(

1
0

)

p(1, t, u) =

(

p1

p2

)

=

(

u1 − 1
0

)

; q(1, t) =

(

q1

q2

)

=

(

0
1

)

which we specify in the function M-file bc2.m.

function [pl,ql,pr,qr] = bc2(xl,ul,xr,ur,t)
%BC2: MATLAB function M-file that defines boundary conditions
%for a system of two PDE in time and one space dimension.
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

For our initial conditions, we have

u1(0, x) =x2

u2(0, x) =x(x − 2),

which we specify in the function M-file initial2.m.

function value = initial2(x);
%INITIAL2: MATLAB function M-file that defines initial conditions
%for a system of two PDE in time and one space variable.
value = [xˆ2; x*(x-2)];

We solve equation (1.2) and plot its solutions with pde2.m (see Figure 1.5).

%PDE2: MATLAB script M-file that solves the PDE
%stored in eqn2.m, bc2.m, and initial2.m
m = 0;
x = linspace(0,1,10);
t = linspace(0,1,10);
sol = pdepe(m,@eqn2,@initial2,@bc2,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
subplot(2,1,1)
surf(x,t,u1);
title(’u1(x,t)’);
xlabel(’Distance x’);
ylabel(’Time t’);
subplot(2,1,2)
surf(x,t,u2);
title(’u2(x,t)’);
xlabel(’Distance x’);
ylabel(’Time t’);
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Figure 1.5: Mesh plot of solutions for Example 1.3.

1.4 Systems of Equations with Variable Coefficients

We next consider a system analogue to Example 1.2.

Example 1.4. Consider the system of convection–diffusion equations

u1t
− 2u1x

− u2x
= u1xx

u2t
− u1x

− 2u2x
− (3ū1(x)2u1) = u2xx

u1(t,−∞) = u1(t, +∞) = 0

u2(t,−∞) = u2(t, +∞) = 0

u1(0, x) = e−(x−5)2

u2(0, x) = e−(x+5)2 ,

where ū1(x) is the first component in the solution of the boundary value ODE system

ū1x
= − 2(ū1 + 2) − ū2

ū2x
= − (ū1 + 2) − 2ū2 − (ū3

1 + 8)

ū1(−∞) = −2; ū1(+∞) = 1

ū2(−∞) = 0; ū2(+∞) = −6.

In this case, the vector function ū(x) = (ū1(x), ū2(x))tr is a degenerate viscous shock solution
to the conservation law

u1t
− 2u1x

− u2x
= u1xx

u2t
− u1x

− 2u2x
− (u3

1)x = u2xx
.
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One of the main obstacles of this example is that it is prohibitively difficult to develop even
an implicit representation for ū(x). We will proceed by solving the ODE for ū(x) at each
step in our PDE solution process. First, the ODE for ū(x) is stored in degode.m.

function xprime = degode(t,x);
%DEGODE: Stores an ode for a standing wave
%solution to the p-system.
xprime=[-2*(x(1)+2)-x(2); -(x(1)+2)-2*x(2)-(x(1)ˆ3+8)];

We next compute ū1(x) in pdegwave.m by solving this ODE with appropriate approximate
boundary conditions.

function u1bar=pdegwave(x)
%PDEGWAVE: Function M-file that takes input x and returns
%the vector value of a degenerate wave.
%in degode.m
small = .000001;
if x <= -20
u1bar = -2;
u2bar = 0;
else
tspan = [-20 x];
%Introduce small perturbation from initial point
x0 = [-2+small,-small];
[t,x]=ode45(’degode’,tspan,x0);
u1bar = x(end,1);
u2bar = x(end,2);
end

In this case, we solve the ODE by giving it boundary conditions extremely close to the
asymptotic boundary conditions. The critical issue here is that the asymptotic boundary
conditions are equilibrium points for the ODE, so if we started right at the boundary con-
dition we would never leave it. We define our boundary conditions and initial conditions in
psysbc.m and degsysinit.m respectively.

function [pl,ql,pr,qr]=psysbc(xl,ul,xr,ur,t)
%PSYSBC: Boundary conditions for the linearized
%p-system.
pl=[ul(1);ul(2)];
ql=[0;0];
pr=[ur(1);ur(2)];
qr=[0;0];

and

function value = degsysinit(x);
%DEGSYSINIT: Contains initial condition for linearized
%p-system.
value = [exp(-(x-5)ˆ2);exp(-(x+5)ˆ2)];
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The PDE is stored in deglinsys.m.

function [c,b,s] = deglinsys(x,t,u,DuDx)
%DEGLINSYS: MATLAB M-file that contains the coefficents for
%a system of two PDE in time and one space dimension.
c = [1; 1];
b = [1; 1] .* DuDx + [2*u(1)+u(2);u(1)+2*u(2)+3*pdegwave(x)ˆ2*u(1)];
s = [0;0];

Finally, we solve the PDE and plot its solutions with degsolve.m.

%DEGSOLVE: MATLAB script M-file that solves the PDE
%stored in deglinsys.m, psysbc.m, and degsysinit.m
clf;
m = 0;
x = linspace(-25,25,100);
t = linspace(0,2,20);
sol = pdepe(m,@deglinsys,@degsysinit,@psysbc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
flag = 1;
while flag==1
answer = input(’Finished iteration. View plot (y/n)’,’s’)
if isequal(answer,’y’)
figure;
hold on;
fig1=plot(x,u1(1,:),’erase’,’xor’)
axis([min(x) max(x) -1 1]);
fig2=plot(x,u2(2,:),’r’,’erase’,’xor’)
for k=2:length(t)
set(fig1,’ydata’,u1(k,:));
set(fig2,’ydata’,u2(k,:));
pause(.5)
end
else
flag=0
end
end

The initial condition for this problem is given in Figure 1.6, while the final configuration is
given in Figure 1.7. Ideally, this would have been run for a longer time period, but since an
ODE was solved at each step of the PDE solution process, the compuation was extremely
time-consuming. Evolving the system for two seconds took roughly ten minutes.
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2 Single PDE in Two Space Dimensions

For partial differential equations in two space dimensions, MATLAB has a GUI (graphical
user interface) called PDE Toolbox, which allows four types of equations (the d in this
equations is a parameter, not a differential):

1. Elliptic
−∇ · (c∇u) + au = f.

2. Parabolic
dut −∇ · (c∇u) + au = f.

3. Hyperbolic
dutt −∇ · (c∇u) + au = f.

4. Eigenvalue
−∇ · (c∇u) + au = λdu

In order to get an idea of how this works, we will consider a number of examples.

2.1 Elliptic PDE

Example 2.1. Consider Poisson’s equation on a rectangle (x, y) ∈ [0, 2] × [0, 1],

uxx + uyy =x2 + y2

u(x, 0) = x; u(x, 1) = 1

u(0, y) = y; u(2, y) = 1.

In order to solve this equation in MATLAB, we start the MATLAB PDE Toolbox by typing
pdetool at the MATLAB Command Window prompt. A GUI screen should appear, with a
window in which we can draw our domain, in this case a rectangle. We turn the grid on by
selecting Options, Grid. MATLAB’s default domain window is (x, y) ∈ [−1.5, 1.5]×[−1, 1],
which does not contain the rectangle we would like to define. We can increase the size of
MATLAB’s domain window by choosing Options, Axes Limits. In this case, change the
limits on the x axis from the default [−1.5, 1.5] to [−.5, 2.5] and the limits on the y axis from
the default [−1, 1] to [−.5, 1.5]. Apply and Close. Next, in order to specify that we would
like to draw a rectangle, we click on the rectangle icon at the top left of our menu options.
Now, we left-click on the point (0, 0), and keeping the left mouse button pressed, drag the
rectangle up to the point (2, 1), where we release it. Observe that the exact coordinates of our
cursor appear in the top right of the window, and they may not be exactly (0, 0) and (2, 1).
We can correct this by double-clicking on our rectangle and entering exact coordinates for
the lower left corner, the rectangle width and the rectangle height. (Notice that MATLAB
automatically gives our domain a name, in this case R1 for rectangle 1.)

Next, we will specify our boundary conditions. We enter MATLAB’s boundary mode
by clicking on the symbol ∂Ω (or by selecting Boundary, Boundary mode, or by typing
Control-b.) Once boundary mode has been selected, each boundary will appear as a red
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arrow pointing in the direction of orientation. The color of the boundary indicates the
type of condition imposed: red for Dirichlet (MATLAB’s default), blue for Neumann, and
green for mixed. We set the boundary condition for u(x, 0) by double-clicking on the bottom
horizontal line. A pop-up menu will appear, in which we see that MATLAB specifies Dirichlet
conditions through the formula hu = r. Leaving h specified as 1, we choose r to be x by
typing x into the box next to r. Next, we continue around the boundary similarly specifying
the remaining conditions.

Before going on to specifying the PDE we want to solve, this is probably a good time to
save our work. In order to save these domain specifications for later use, choose Save As
(or type Control-s) and save them as a MATLAB M-file, say domain1.m.

Once the geometry and boundary conditions for the problem have been specified, we
select the type of PDE we would like to solve by clicking on the PDE icon (or by choosing
PDE, PDE Specification). MATLAB divides the PDE it can solve into four categories,
elliptic, parabolic, hyperbolic, and eigenmodes. Poisson’s equation is classified as an elliptic
PDE. MATLAB’s general elliptic PDE specification takes the form

−∇ · (c∇u) + au = f,

where the operator ∇, typically referred to as nabla, is defined through

∇ · v =
∂v1

∂x
+

∂v2

∂y
; (divergence)

∇f =(
∂f

∂x
,
∂f

∂y
); (gradient).

In our case, c = −1, a = 0, and f(x, y) = x2 + y2, which we can type directly into the
appropriate boxes, with f taking the form x.ˆ2+y.ˆ2 (that is, array operations are required).

Next, we create a triangular finite element mesh by selecting the △ icon (or alternatively
choosing Mesh, Initialize Mesh). Observe that the initial mesh is fairly coarse (i.e., the
grid points are not close together). If this fails to return a suitably accurate solutions, we
can refine it by choosing the icon of a triangle inside a triangle. Finally, we are prepared
to solve the PDE. For this, we select the = icon (or alternatively choose Solve, Solve
PDE). MATLAB’s default solution mode is a color-scale contour plot. For further options,
choose Plot, Parameters. For example, by selecting the two options Height (3-D plot)
and Plot in x-y grid (and un-selecting the option Color) we get a surface mesh plot (see
Figure 2.1). The appearance of the mesh in this plot can be edited in the MATLAB graphics
window by first selecting the mesh (by choosing the pointer arrow and clicking on it) and
then selecting Edit, current object properties. In order to create Figure 2.1, I chose the
color tab associated with Edges and selected black.

MATLAB’s graphics editor has too many options for us to consider exhaustively here,
but one more that is certainly worth oberving is the choice Tools, Rotate 3D, which allows
the plot to be rotated so that it can be viewed from different perspectives.

2.2 Parabolic PDE

We next consider an example from the class of PDE referred to as parabolic.
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Figure 2.1: Mesh plot for solution to Poission’s equation from Example 2.1.

Example 2.2. Consider the heat equation

ut =uxx + uyy + sin t

u(t, 0, y) = 0; ux(t, π, y) = 1

uy(t, x, 0) = 0; u(t, x, 2π) = x

u(0, x, y) =0.

Again, our domain is a simple rectangle, in this case with (x, y) ∈ [0, π] × [0, 2π]. We select
this in the domain window by setting the lower left corner point to be (0, 0) and specifying
the width and height of the domain as pi and 2*pi respectively. We have already seen
in the previous example how we specify the Dirichlet boundary conditions u(t, 0, y) = 0
and u(t, x, 2π) = x, so we will focus here on the Neumann conditions ux(t, π, y) = 1 and
uy(t, x, 0) = 0. In order to specify the latter of these, begin by selecting boundary mode
and then double-clicking on the bottom horizontal boundary. MATLAB specifies Neumann
conditions in the form

n ∗ c ∗ grad(u) + qu = g,

which we view as

~n ·
(

c(x, y)∇u
)

+ q(x, y)u = g(x, y); (x, y) ∈ ∂Ω,

where ~n represents a unit vector normal to the domain. (That is, ~n points in the normal
direction from the domain (directly outward, perpendicular to the tangent vector) and has
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unit length.) For the case uy(t, x, 0) = 0, we have

~n =(0,−1) (keep in mind: ~n · ∇u = (n1, n2) · (ux, uy) = n1ux + n2uy)

c(x, 0) =1

q(x, 0) =0

g(x, 0) =0,

of which we specify q and g. (The value of c must correspond with the value of c that arises
when we specify our PDE, so we will define it there, keeping in mind that it must be 1.)
Similarly, we specify the boundary condition ux(t, π, y) = 1 by setting q = 0 and g = 1.
(Observe that our segments of boundary with Dirichlet conditions are shaded red while our
segments of boundary with Neumann conditions are shaded blue.)

We now specify our PDE as in Example 2.1, except this time we choose the option
Parabolic. MATLAB specifies parabolic PDE in the form

d ∗ u′ − div(c ∗ grad(u)) + a ∗ u = f,

which we view as

d(t, x, y)ut −∇ · (c(t, x, y)∇u) + a(t, x, y)u = f(t, x, y).

In our case d(t, x, y) = 1, c(t, x, y) = 1, and f(t, x, y) = sin t, which we can type directly into
the pop-up menu. (Write sin t as sin(t).)

Next, we set our initial condition and our times for solution by choosing Solve, Pa-
rameters. A vector of times for which we want solution values is specified under Time:
and the initial condition is specified under u(t0). A good way to specify time is with the
linspace command, so we type linspace(0,5,10), which runs time from 0 to five seconds, with
ten points. In this case, we can leave the initial condition specified as 0.

Finally, we introduce a mesh by clicking the △ icon and then solve with =. (If we select
= prior to specifying a mesh, MATLAB will automatically specify a mesh for us.) As before,
MATLAB returns a color scale solution, this time at the final time of solution, t = 5. In
order to get an idea of the time evolution of the solutions, we select Plot, Parameters and
choose Animation. For example, we can set Height (3-D plot), Animation, and Plot
in x-y grid, which will produce an evolving mesh plot.

Final remark. In this example, we have specified c as a constant scalar. It can also be
specified as a non-constant scalar or, more generally, as a 2 × 2 non-constant matrix.

3 Linear systems in two space dimensions

We next consider the case of solving linear systems of PDE in time and two space variables.

3.1 Two Equations

Linear systems consisting of two equations can still be solved directly in PDE Toolbox.
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Example 3.1. Consider the following system of two linear parabolic equations defined on
a circle centered at the origin with radius 1 (denoted Ω).

u1t
+ (1/(1 + x2))u1 + u2 = u1xx

+ u1yy

u2t
+ u1 + u2 = u1xx

+ u2yy

u1(t, x, y) = e−(x2+y2), x < 0, (x, y) ∈ ∂Ω

u2(t, x, y) = sin(x + y), x < 0, (x, y) ∈ ∂Ω

~n · ∇~u = 0, x > 0

u1(0, x, y) = e−(x2+y2)

u2(0, x, y) = sin(x + y).

We begin solving these equations by typing pdecirc(0,0,1) in the MATLAB command win-
dow. (The usage of pdecirc is pdecirc(xcenter,ycenter,radius,label), where the label can be
omitted.) This will open the MATLAB Toolbox GUI and create a circle centered at the
orgin with radius 1. The first thing we need to choose in this case is Options, Applica-
tion, Generic System. Next, enter boundary mode and observe that MATLAB expects
boundary conditions for a system of two equations. (That’s what it considers a generic sys-
tem. For systems of higher order, we will have to work a little harder.) MATLAB specifies
Dirichlet boundary conditions in such systems in the form

(

h11 h12

h21 h22

) (

u1

u2

)

=

(

r1

r2

)

.

Define the two Dirichlet boundary conditions by choosing h11 = h22 = 1 and h12 = h21 = 0
(which should be MATLAB’s default values), and by choosing r1 to be exp(-x.ˆ2-y.ˆ2) (don’t
omit the array operations) and r2 to be sin(x+y). MATLAB specifies Neumann boundary
conditions in such systems in the form

~n · (c ⊗∇~u) + q~u = g,

where

~n =

(

n1

n2

)

, c =

(

c11 c12

c21 c22

)

, q =

(

q11 q12

q21 q22

)

, and g =

(

g1

g2

)

,

and the kth component of c ⊗∇~u is defined by

{c ⊗∇~u}k =

(

c11ukx
+ c12uky

c21ukx
+ c22uky

)

,

so that

~n · (c ⊗∇~u) =

(

n1c11u1x
+ n1c12u1y

+ n2c21u1x
+ n2c22u1y

n1c11u2x
+ n1c12u2y

+ n2c21u2x
+ n2c22u2y

)

.

(More generally, if the diffusion isn’t the same for each variable, c can be defined as a tensor,
see below.) In this case, taking q and g both zero suffices. (The matrix c will be defined in
the problem as constant, identity.)
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Next, specify the PDE as parabolic. For parabolic systems, MATLAB’s specification
takes the form

dut −∇ · (c ⊗∇u) + au = f,

where

u =

(

u1

u2

)

, f =

(

f1

f2

)

, a =

(

a11 a12

a21 a22

)

, d =

(

d11 d12

d21 d22

)

,

and

∇ · (c ⊗∇u) =

(

c11u1xx
+ c12u1yx

+ c21u1xy
+ c22u1yy

c11u2xx
+ c12u1yx

+ c21u1xy
+ c22u1yy

)

.

In this case, we take c11 = c22 = 1 and c12 = c21 = 0. Also, we have

(

a11 a12

a21 a22

)

=

(

1
1+x2 1

1 1

)

,

(

d11 d12

d21 d22

)

=

(

1 0
0 1

)

, and

(

f1

f2

)

=

(

0
0

)

,

which can all be specified by typing valid MATLAB expressions into the appropriate text
boxes. (For the expression 1

1+x2 , we must use array operations, 1./(1+x.ˆ2).)
We specify the initial conditions by selecting Solve, Parameters. In this case, we set

the time increments to be linspace(0,10,25), and we specify the vector initial values in u(t0)
as [exp(-x.ˆ2-y.ˆ2);sin(x+y)]. Finally, solve the problem by selecting the = icon. (MATLAB
will create a mesh automatically.)

The first solution MATLAB will plot is a color plot of u1(x, y), which MATLAB refers
to as u. In order to view a similar plot of u2, choose Plot, Parameters and select the
Property v.

4 Nonlinear elliptic PDE in two space dimensions

Though PDE Toolbox is not generally equipped for solving nonlinear problems directly, in
the case of elliptic equations certain nonlinearities can be accomodated.

4.1 Single nonlinear elliptic equations

Example 4.1. Consider the nonlinear elliptic PDE in two space dimensions, defined on the
ball of radius 1,

△u + u(1 − ux − uy) =2u2

u(x, y) = 1;∀(x, y) ∈ ∂B(0, 1).

We begin solving this equation in MATLAB by typing pdecirc(0,0,1) at the MATLAB
prompt. Proceeding as in the previous examples, we set the boundary condition to be
Dirichlet and identically 1, and then choose PDE Specification and specify the PDE as
Elliptic. In this case, we must specify c as 1.0, a as -(1-ux-uy) and f as -2u.ˆ2. The key
point to observe here is that nonlinear terms can be expressed in terms of u, ux, and uy,
for which MATLAB uses respectively u, ux, and uy. Also, we observe that array operations
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must be used in the expressions. Next, in order to solve the nonlinear problem, we must
choose Solve, Parameters and specify that we want to use MATLAB’s nonlinear solver. In
this case, the default nonlinear tolerance of 1e-4 and the designation of Jacobian as Fixed
are sufficient, and we are ready to solve the PDE by selecting the icon =.

5 General nonlinear systems in two space dimensions

5.1 Parabolic Problems

While MATLAB’s PDE Toolbox does not have an option for solving nonlinear parabolic
PDE, we can make use of its tools to develop short M-files that will solve such equations.

Example 5.1. Consider the Lotka–Volterra predator–prey model in two space dimensions,

u1t
= c11u1xx

+ c12u1yy
+ a1u1 − r1u1u2

u2t
= c21u2xx

+ c22u2xx
− a2u2 + r2u1u2,

where u1(t, x, y) represents prey population density at time t and position (x, y) and u2(t, x, y)
represents predator population density at time t and position (x, y). For a1, r1, a2, and r2,
we will take values obtained from an ODE model for the Hudson Bay Company Hare–Lynx
example: a1 = .47, r1 = .024, a2 = .76, and r2 = .023. For the values ckj, we take
c11 = c12 = .1 and c21 = c22 = .01, which signifies that the prey diffuse through the domain
faster than the predators. MATLAB’s PDE Toolbox does not have an option for solving an
equation of this type, so we will proceed through an iteration of the form

un+1
1t

− c11u
n+1
1xx

− c12u
n+1
1yy

− a1u
n+1
1 = − r1u

n
1u

n
2

un+1
2t

− c21u
n+1
2xx

− c22u
n+1
2yy

+ a2u
n+1
2 =r2u

n
1u

n
2 . (5.1)

That is, given u1 and u2 at some time t0 (beginning with the initial conditions), we solve
the linear parabolic equation over a short period of time to determine values of u1 and u2 at
time t1.

In general, initial and boundary conditions can be difficult to pin down for problems like
this, but for this example we will assume that the domain is square of length 1 (denoted S),
that neither predator nor prey enters or exits the domain, and that initially the predator
density is concentrated at the edges of the domain and the prey density is concentrated at
the center. In particular, we will assume the following:

~n · ∇u1 =0, ∀x ∈ ∂S

~n · ∇u2 =0, ∀x ∈ ∂S

u1(0, x, y) =

{

10, (x − 1
2
)2 + (y − 1

2
)2 ≤ 1

16

0, otherwise

u2(0, x, y) =

{

10, (x − 1
2
)2 + (y − 1

2
)2 ≥ 1

4

0, otherwise.
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Though we will have to carry out the actual calculation with an M-file, we will first create
the domain and define our boundary conditions using PDE Toolbox. To begin, at the
MATLAB command line prompt, type pderect([0 1 0 1]), which will initiate a session with
PDE Toolbox and define a square of length one with lower left corner at the origin. (The
exact usage of pderect is pderect([xmin xmax ymin ymax])). Since the upper edge of this
square is on the edge of our window, choose Options, Axes Equal, which will expand the
y axis to the interval [−1.5, 1.5]. Next, choose boundary mode, and then hold the Shift key
down while clicking one after the other on each of the borders. When they are all selected,
click on any one of them and set the boundary condition to be Neumann with g and q both
0. Once the boundary conditions are set, export them by selecting Boundary, Export
Decomposed Boundary. The default boundary value assignments are g (for geometry)
and b (for boundary). For clarity, rename these g1 and b1 to indicate that these are the
boundary conditions for u1. (Though for this problem the boundary conditions for u1 and
u2 are the same, for generality’s sake, we will treat them as if they were different.) For u2,
export the boundary again and this time label as g2 and b2. The last thing we can do in the
GUI window is create and export our triangulation, so select the icon △ to create a mesh
and select Mesh, Export Mesh to export it. The three variables associated with the mesh
are p, e, and t, vectors containing respectively the points if the triangulation, the edges of
the triangulation, and an index of the triangulation.

At this point it’s a good idea to save these variables as a MATLAB workspace (.mat
file). To do this, choose File, Save Workspace As. Finally, we store the initial conditions
u1(0, x, y) and u2(0, x, y) in the function M-file lvinitial.m.

function [u1initial,u2initial] = lvinitial(x,y)
%LVINITIAL: MATLAB function M-file that contains the
%initial population distributions for the Lotka-Volterra model.
if (x-1/2)ˆ2+(y-1/2)ˆ2<=1/16
u1initial=10;
else
u1initial=0;
end
if (x-1/2)ˆ2+(y-1/2)ˆ2<=1/4
u2initial=0;
else
u2initial=10;
end

Now, we can solve the PDE with the MATLAB M-file lvpde.m. While this file might look
prohibitively lengthy, it’s actually fairly simple. For example, the long sections in bold type
simply plot the solution and can be ignored with regard to understanding how the M-file
works.

%LVPDE: MATLAB script M-file for solving the PDE
%Lotka-Volterra system.
%
%Parameter definitions
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a1=.47; r1=.024; a2=.76; r2=.023;
m=size(p,2); %Number of endpoints
n=size(t,2); %Number of triangles
t final=1.0; %Stop time
M=30; %Take 30 time steps
dt=t final/M; %Time-stepping increment (M-file time-stepping)
tlist=linspace(0,dt,2); %Time vector for MATLAB’s time-stepping
%Rectangular coordinates for plotting
x=linspace(0,1,25);
y=linspace(0,1,25);
%Set diffusion
c1=.1; %Prey diffusion
c2=.01; %Predator diffusion
%Initial conditions
for i=1:m %For each point of the triangular grid
[u1old(i),u2old(i)]=lvinitial(p(1,i),p(2,i));
end
%
for k=1:M
%Nonlinear interaction
for i=1:m
f1(i)=-r1*u1old(i)*u2old(i);
f2(i)=r2*u1old(i)*u2old(i);
end
%NOTE: The nonlinear interaction terms must be defined at the centerpoints
%of the triangles. We can accomplish this with the function
%pdeintrp (pde interpolate).
f1center=pdeintrp(p,t,f1’);
f2center=pdeintrp(p,t,f2’);
%Solve the PDE
u1new=parabolic(u1old,tlist,b1,p,e,t,c1,-a1,f1center,1);
u2new=parabolic(u2old,tlist,b2,p,e,t,c2,a2,f2center,1);
%Update u1old, u2old
u1old=u1new(:,2);
u2old=u2new(:,2);
%Plot each iteration
u1=tri2grid(p,t,u1old,x,y);
u2=tri2grid(p,t,u2old,x,y);
subplot(2,1,1)
%imagesc(x,y,u1,[0 10])
%colorbar
mesh(x,y,u1)
axis([0 1 0 1 0 10])
subplot(2,1,2)
%imagesc(x,y,u2, [0 10])
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%colorbar
mesh(x,y,u2)
axis([0 1 0 1 0 10])
pause(.1)
%
end

In general, the function

parabolic(u0,tlist,b,p,e,t,c,a,f,d)

solves the the single PDE
dut −∇ · (c∇u) + au = f.

or the system of PDEs
dut −∇ · (c ⊗∇u) + au = f.

In this case, according to (5.1), we take the nonlinearity as a driving term from the previous
time step, and the remaining linear equations are decoupled, so that we solve two single
equations rather than a system.

A critical parameter in the development above is M , which determines how refined our
time-stepping will be (the larger M is, the more refined our analysis is). We can heuristically
check our numerical solution by increasing the value of M and checking if the solution remains
constant.

The plotting code creates a window in which mesh plots of both the predator and prey
population densities are plotted. These are updated at each iteration, so running this code,
we see a slow movie of the progression. Example plots of the initial and final population
densities are given in Figures 5.1 and 5.2. Another good way to view the solution is through
a color pixel plot, created by the command imagesc. If we comment out the mesh and axis
commands above and add the imagesc and colorbar commands instead, we can take a bird’s
eye view of a color-coded depiction of the dynamics.

In lvpde.m the diffusion is taken to have the simple form

.1u1xx
+ .1u1yy

.01u2xx
+ .01u2yy

.

In order to understand how this can be generalized, we observe that the generic MATLAB
form

dut −∇ · (c∇u) + au = f,

expands as
dut − c11uxx − c12uxy − c21uyx − c22uyy + au = f.

Note carefully that the matrix

c =

(

c11 c12

c21 c22

)
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Figure 5.1: Initial population densities for predator–prey example.
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Figure 5.2: Final population densities for predator–prey example.
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does not contain the values cij in our Lotka–Volterra example. In particular, MATLAB uses
this full matrix to specify a single equation. If c is specifed as a single constant (as c1 and
c2 are in lvpde.m), then MATLAB takes

c =

(

c 0
0 c

)

,

giving the form for our example. On the other hand, if c is specified as a column vector with
two components c = [c1; c2] then MATLAB takes

c =

(

c1 0
0 c2

)

.

Finally—and this is perhaps a bit peculiar—if c is specified as a column vector with four
components c = [c11; c21; c12; c22] (not as a matrix; note the order) then MATLAB takes

c =

(

c11 c12

c21 c22

)

.

As an example, suppose that in our Lotka-Volterra example we would like to specify the
diffusion as

.1u1xx
+ .4u + .3u1yy

.01u2xx
+ .04u2xy

+ .03u2yy
.

We would specify

c1 = [.1; .2; .2; .3]

c2 = [.01; .02; .02; .03].

6 Defining more complicated geometries

One of the biggest advantages in using the GUI interface of MATLAB’s PDE toolbox is the
ease with which fairly complicated geometries can be defined and triangularized.

7 FEMLAB

7.1 About FEMLAB

FEMLAB is a program developed by COMSOL Ltd. for solving PDE numerically based on
the finite element method. COMSOL Ltd. is the same group who developed MATLAB’s
PDE Toolbox, and consequently the GUI for FEMLAB is conveniently similar to the GUI
for PDE Toolbox. The difference between the two programs is that FEMLAB is considerably
more general. Some fundamental features that FEMLAB offers and PDE Toolbox does not
are:
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1. The ability to solve PDE in three space dimensions

2. The ability to solve several additional predefined equations, including

(a) Navier–Stokes

(b) Reaction–convection–diffusion equations

(c) Maxwell’s equations for electrodynamics

3. The ability to solve nonlinear systems of equations directly from the GUI interface.

7.2 Getting Started with FEMLAB

FEMLAB is such a broad program that it’s easy on first glance to get lost in the options.
Though our eventual goal in using FEMLAB is to solve fairly complicated equations that
PDE Toolbox is not equipped for, we will begin, as we did with PDE Toolbox, with a simple
example.

Example 7.1. Consider Poisson’s equation on the ball of radius 1,

△u =u(1 − u), (x, y) ∈ B(0, 1)

u(x, y) =x3 + y3, (x, y) ∈ ∂B(0, 1).

We open FEMLAB at the MATLAB Command Window prompt by typing femlab. A ge-
ometry window should open with a pop-up menu labeled Model Navigator. We observe
immediately that FEMLAB offers the choice of one, two, or three dimensions. We choose
2D (which should be the default) and then double-click on Classical PDEs. FEMLAB’s
options under Classical PDEs are:

• Laplace’s equation

• Poisson’s equation

• Helmholtz’s equation

• Heat equation

• Wave equation

• Schrodinger equation

• Convection–diffusion equation

We can select the option Poisson’s equation by double-clicking on it, after which we
observe that Poisson’s Equation appears in the upper left corner of the FEMLAB geometry
window. In this case, the default grid in the geometry window is too small, so we increase
it by selecting Options, Axes/Grid Settings and specifying a y range between -1.5 and
1.5. We can now draw a circle of radius 1 by selecting the ellipse icon from the left panel of
the window, clicking on the point (0, 0) and dragging the radius to 1. By default, FEMLAB
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labels this region E1 for ellipse 1. As in PDE Toolbox, we can double-click anywhere in
the region to alter or refine its definition. Next, we choose Boundary, Boundary mode
and specify our boundary condition by selecting each part of the curve and choosing the
Dirichlet boundary conditions with h as 1 and r as x.ˆ3+y.ˆ3. (For the moment, we will
do well to ignore the options for more complicated boundary value selections.) Next, we
need to specify our governing equation. FEMLAB is set up so that different equations can
be specified in different regions of the domain, so equation specification is made under the
option Subdomain, Subdomain Settings. FEMLAB specifies Poisson’s equation in the
form

−∇ · (c∇u) = f,

so in this case we choose c to be 1 and f to be -u.*(1-u). Finally, we solve the PDE by
selecting Solve, Solve Problem. We observe that FEMLAB offers a number of options for
viewing the solutions, listed as icons on the left corner of the geometry window.
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