M412 Assignment 2, due Friday September 9

1. [10 pts] Use the method of diagonalization to determine a general solution for the ODE system

$$
\begin{aligned}
y_{1}^{\prime} & =-y_{1}+\frac{3}{4} y_{2} \\
y_{2}^{\prime} & =-5 y_{1}+3 y_{2}
\end{aligned}
$$

Solution. In matrix form, this equation has the form

$$
\binom{y_{1}}{y_{2}}^{\prime}=\left(\begin{array}{ll}
-1 & \frac{3}{4} \\
-5 & 3
\end{array}\right)\binom{y_{1}}{y_{2}}
$$

or $y^{\prime}=A y$, with

$$
A=\left(\begin{array}{cc}
-1 & \frac{3}{4} \\
-5 & 3
\end{array}\right)
$$

The eigenvalues of A can be computed from the relation

$$
\operatorname{det}\left(\begin{array}{cc}
-1-\mu & \frac{3}{4} \\
-5 & 3-\mu
\end{array}\right)=0 \Rightarrow \mu_{1}=\frac{1}{2}, \mu_{2}=\frac{3}{2}
$$

For the eigenvalue μ_{1}, we find the associated eigenvector $V_{1}=\binom{a}{b}$ by solving

$$
\left(\begin{array}{ll}
-1 & \frac{3}{4} \\
-5 & 3
\end{array}\right)\binom{a}{b}=\frac{1}{2}\binom{a}{b} \Rightarrow-a+\frac{3}{4} b=\frac{1}{2} a .
$$

Setting $a=1$, we have $b=2$. Proceeding similarly for the eigenvalue $\mu_{2}=3 / 2$, we conclude

$$
V_{1}=\binom{1}{2} ; \quad V_{2}=\binom{1}{\frac{10}{3}}
$$

Setting

$$
P=\left(\begin{array}{cc}
1 & 1 \\
2 & \frac{10}{3}
\end{array}\right)
$$

we make the change of variables $y=P z$, for which

$$
P z^{\prime}=A P z \Rightarrow z^{\prime}=P^{-1} A P z=D z
$$

where

$$
D=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{3}{2}
\end{array}\right)
$$

This diagonal system for z is trivial to solve, and we find

$$
\begin{aligned}
& z_{1}(t)=C_{1} e^{\frac{1}{2} t} \\
& z_{2}(t)=C_{2} e^{\frac{3}{2} t}
\end{aligned}
$$

Finally, computing $y=P z$, we determine

$$
\begin{aligned}
& y_{1}(t)=C_{1} e^{\frac{1}{2} t}+C_{2} e^{\frac{3}{2} t} \\
& y_{2}(t)=2 C_{1} e^{\frac{1}{2} t}+\frac{10}{3} e^{\frac{3}{2} t}
\end{aligned}
$$

2. [10 pts] Use the method of characteristics to solve the PDE

$$
\begin{aligned}
u_{t}+t^{2} u_{x} & =0 \\
u(0, x) & =e^{-x^{2}} .
\end{aligned}
$$

Solution. Taking $U(t)=u(t, x(t))$ with $x^{\prime}(t)=t^{2}$ and initial condition $x(0)=x_{0}$, we have

$$
\frac{d}{d t} U(t)=0 ; \quad U(0)=u\left(0, x_{0}\right)=e^{-x_{0}^{2}} \Rightarrow u(t, x(t))=e^{-x_{0}^{2}}
$$

Solving for $x(t)$, we have $x(t)=\frac{1}{3} t^{3}+x_{0}$, so that $x_{0}=x-\frac{1}{3} t^{3}$. We conclude

$$
u(t, x)=e^{-\left(x-\frac{1}{3} t^{3}\right)^{2}}
$$

3. [10 pts] Use the method of characteristics to solve the PDE

$$
\begin{aligned}
u_{t}+2 u_{x} & =t \\
u(0, x) & =1-x .
\end{aligned}
$$

Solution. Taking $x^{\prime}(t)=2$, we have

$$
\frac{d}{d t} U(t)=t \Rightarrow U(t)=\frac{t^{2}}{2}+u\left(0, x_{0}\right)
$$

Solving $x^{\prime}=2 ; x(0)=x_{0}$, we have, $x(t)=2 t+x_{0}$, so that $x_{0}=x-2 t$, and consequently

$$
u(t, x)=\frac{t^{2}}{2}+1-(x-2 t)
$$

4. [10 pts] Use the method of characterstics to solve the PDE

$$
\begin{aligned}
u_{t}+u_{x}+2 t u^{2} & =0 \\
u(0, x) & =e^{-x} .
\end{aligned}
$$

Solution. Taking $x^{\prime}(t)=1$, we have

$$
\frac{d}{d t} U(t)=-2 t U^{2} \Rightarrow \int \frac{d U}{U^{2}}=-\int 2 t d t \Rightarrow-\frac{1}{U}=-t^{2}+C \Rightarrow U(t)=\frac{1}{t^{2}+u\left(0, x_{0}\right)^{-1}}
$$

Solving $x^{\prime}=1, x(0)=x_{0}$, we have $x(t)=t+x_{0}$, so that $x_{0}=x-t$, and we conclude

$$
u(t, x)=\frac{1}{t^{2}+e^{x-t}}
$$

5. [10 pts] Use the method of characteristics to solve the PDE

$$
\begin{aligned}
u_{t}+2 u_{x} & =x^{2} \\
u(t, 0) & =t^{2}, \quad t>0 \\
u(0, x) & =x, \quad x>0
\end{aligned}
$$

Solution. Taking $x^{\prime}(t)=2$, we see that the analysis divides in the two cases: (1) $x \geq 2 t$ (which uses $u(0, x)$) and (2) $x \leq 2 t$ (which uses $u(t, 0)$). For $x \geq 2 t$, we have

$$
\begin{aligned}
x^{\prime}(t) & =2 ; \quad x(0)=x_{0} \Rightarrow x(t)=2 t+x_{0} \\
U^{\prime}(t) & =x(t)^{2}=\left(2 t+x_{0}\right)^{2} ; \quad U(0)=x_{0} \Rightarrow U(t)=\frac{1}{6}\left(2 t+x_{0}\right)^{3}-\frac{1}{6}\left(x_{0}^{3}-6 x_{0}\right) .
\end{aligned}
$$

Substituting $x_{0}=x-2 t$, we conclude

$$
u(t, x)=\frac{1}{6} x^{3}-\frac{1}{6}(x-2 t)^{3}+(x-2 t), \quad x \geq 2 t
$$

On the other hand, for $x \leq 2 t$, we have

$$
\begin{aligned}
& x^{\prime}(t)=2 ; \quad x\left(t_{0}\right)=0 \Rightarrow x(t)=2 t-2 t_{0} \\
& U^{\prime}(t)=x(t)^{2}=4\left(t-t_{0}\right)^{2} ; \quad U\left(t_{0}\right)=t_{0}^{2} \Rightarrow U(t)=\frac{4}{3}\left(t-t_{0}\right)^{3}+t_{0}^{2}
\end{aligned}
$$

Substituting $t_{0}=t-x / 2$, we conclude

$$
u(t, x)=\frac{4}{3}\left(\frac{x}{2}\right)^{3}+\left(t-\frac{x}{2}\right)^{2} .
$$

Altogether,

$$
u(t, x)= \begin{cases}\frac{1}{6} x^{3}+\left(t-\frac{x}{2}\right)^{2}, & x \leq 2 t \\ \frac{1}{6} x^{3}-\frac{1}{6}(x-2 t)^{3}+(x-2 t), & x \geq 2 t\end{cases}
$$

