
M412 Assignment 4 Solutions

Two errors in the Practice Problems for Exam 2 have been brought to my attention. In Problem 3, f(x)
should be given explicitly as x2. Also, in the solution to Problem 3, the value of γ should be 2.

1. [10 pts, 5 pts each] Haberman Problem 1.4.1, Parts (f) and (g).

Solutions. For Part (f), the equilibrium solution ū(x) satisfies

ūxx = − x2

ū(0) = T

ūx(L) = 0,

for which
ū(x) = − 1

12
x4 +

1
3
L3x + T.

For Part (g), we have

ūxx = 0
ū(0) = T

ūx(L) + ū(L) = 0,

for which
ū(x) = T − T

1 + L
x.

2. [10 pts] Haberman Problem 1.4.5.

Solution. In this case,

ūxx = 0
ū(0) = T1

ūx(0) = T2

ū(L) = T,

where T1 and T2 are known and T is to be determined. (The text does not suggestion a notation for the
constants labeled T1 and T2, so anything is acceptable.) Using only the initial conditions, we find

ū(x) = T2x + T1.

Setting ū(L) = T , this gives
T = T2L + T1.

3. [10 pts, 5 pts each] Haberman Problem 1.4.7, Parts (a) and (c).

Solution. For Part (a), the equilibrium solution satisfies

ūxx = − 1
ūx(0) =1
ūx(L) =β.
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Integrating ū(x) once, we have
ūx(x) = −x + C1,

for which our two conditions determine first C1 = 1 and second

β = 1 − L.

In order to find the solution, we must integrate a second time

ū(x) = −1
2
x2 + x + C2.

In order to determine the constant C2, we integrate the full equation,
∫ L

0

utdx =
∫ L

0

uxxdx +
∫ L

0

dx = ux(t, L) − ux(t, 0) + L = β − 1 + L = 0.

We have, then,
d

dt

∫ L

0

udx = 0 ⇒
∫ L

0

u(t, x)dx =
∫ L

0

u(0, x)dx =
∫ L

0

f(x)dx.

Since this remains true for all solutions, there must hold

∫ L

0

ū(x)dx =
∫ L

0

f(x)dx.

Finally, ∫ L

0

ū(x)dx =
∫ L

0

−1
2
x2 + x + C2dx = −1

6
L3 +

1
2
L2 + C2L,

so that

C2 =
1
L

∫ L

0

f(x)dx +
1
6
L2 − 1

2
L.

We conclude

ū(x) = −1
2
x2 + x +

1
L

∫ L

0

f(x)dx +
1
6
L2 − 1

2
L.

The physical interpretation is that the internal heat production must match the flow caused by a different
amount of heat flowing into the bar than out.

For (c), equilibrium solutions satisfy

ūxx = β − x

ūx(0) = 0
ūx(L) = 0,

from which we deduce
β =

1
2
L

and
ūx(x) =

1
2
Lx − 1

2
x2 ⇒ ū(x) =

1
4
Lx2 − 1

6
x3 + C2.
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Proceeding as in Part (a), we find
∫ L

0

f(x)dx =
∫ L

0

1
4
Lx2 − 1

6
x3 + C2dx ⇒ C2 =

1
L

∫ L

0

f(x)dx − 1
12

L3 +
1
24

L3,

and finally

ū(x) =
1
4
Lx2 − 1

6
x3 +

1
L

∫ L

0

f(x)dx − 1
24

L3.

4. [10 pts] Haberman Problem 1.4.10.

Solution. Assuming c = ρ = 1 (that is, that we have not arrived at this form of the problem through some
scaling of the independent variables), the total thermal energy is

total thermal energy =
∫ L

0

u(t, x)dx.

Integrating the full equation, we have
∫ L

0

ut(t, x)dx =
∫ L

0

uxx(t, x)dx +
∫ L

0

4dx = ux(t, L) − ux(t, 0) + 4L = 1 + 4L.

In this case,
d

dt

∫ L

0

u(t, x)dx = 1 + 4L ⇒
∫ L

0

u(t, x)dx = (1 + 4L)t + C.

Evaluating at t = 0, we conclude
∫ L

0

u(t, x)dx = (1 + 4L)t +
∫ L

0

f(x)dx.

5. [10 pts] Haberman Problem 1.4.12. (See Haberman’s equation (1.2.11) for precisely what he means by a
conservation law.)

Solution. For Part (a), integrate the full equation to obtain
∫ L

0

utdx = k

∫ L

0

uxxdx = kux(t, L) − kux(t, 0) = α − β.

By conservation law, Haberman means the expression

d

dt

∫ L

0

u(t, x)dx = α − β.

For Part (b), integrate as in Problem 1.4.10 to get
∫ L

0

u(t, x)dx = (α − β)t +
∫ L

0

f(x)dx.

For Part (c), we see from Part (b) that all solutions will continue to change in time unless

α = β.
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In this case, we have the equilibrium equation

ūxx =0
ūx(0) = − α/k

ūx(L) = − α/k,

from which
ūx(x) = −α/k.

Integrating again, we have
ū(x) = −α

k
x + C,

where by conservation
∫ L

0

−α

k
x + Cdx =

∫ L

0

f(x)dx ⇒ C =
1
L

∫ L

0

f(x)dx +
α

2k
L,

and finally

ū(x) = −α

k
x +

1
L

∫ L

0

f(x)dx +
α

2k
L.

6. [10 pts] For the PDE

ut = uxx + γx − 1
ux(t, 0) = 0
ux(t, 1) = 0

u(0, x) = x2,

determine the value of γ for which an equilibrium solution exists, and find the equilibrium solution.

Solution. Equilibrium solutions satisfy

ūxx = − γx + 1
ūx(0) = 0
ūx(1) = 0,

from which we find
ūx(x) = −1

2
γx2 + x + C1.

The condition ūx(0) = 0 sets C1 = 0, while the condition ūx(1) = 0 gives

0 = −1
2
γ + 1 ⇒ γ = 2.

Integrating again, we have

ū(x) = −1
3
x3 +

1
2
x2 + C2.

In order to determine C we observe similarly as in previous problems that
∫ 1

0 u(t, x)dx is constant for all t,
so that ∫ 1

0

−1
3
x3 +

1
2
x2 + C2dx =

∫ 1

0

x2dx =
1
3
⇒ C2 =

1
3

+
1
12

− 1
6

=
1
4
.
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We conclude
ū(x) = −1

3
x3 +

1
2
x2 +

1
4
.

7. [10 pts] Solve the PDE in Problem 6 for all time.

Solution. In order to solve this PDE for all time, we define the new variable v(t, x) = u(t, x)− ū(x), where
u(t, x) solves the original problem (stated in Problem 6), and ū(x) is the equilibrium solution from Problem
6. Upon substitution of u(t, x) = v(t, x) + ū(x) into the original problem, we find that v(t, x) solves

vt = vxx

vx(t, 0) =0
vx(t, 1) =0

v(0, x) =x2 − (−1
3
x3 +

1
2
x2 +

1
4
) =

1
3
x3 +

1
2
x2 − 1

4
.

This equation for v(t, x) can be solved by separation of variables, and we find

v(t, x) =A0 +
∞∑

n=1

Ane−n2π2t cosnπx,

A0 =
∫ 1

0

1
3
x3 +

1
2
x2 − 1

4
dx

An = 2
∫ 1

0

(
1
3
x3 +

1
2
x2 − 1

4
) cosnπx.

For A0,

A0 =
1
12

+
1
6
− 1

4
= 0.

For An, integrate by parts

An =
2

n2π2
(−1)n +

4
n4π4

(1 − (−1)n) +
2

n2π2
(−1)n.

Combining these observations, we conclude

u(t, x) =
∞∑

n=1

[ 4
n2π2

(−1)n +
4

n4π4
(1 − (−1)n)

]
e−n2π2t cosnπx

+ − 1
3
x3 +

1
2
x2 +

1
4
.
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