M412 Assignment 4 Solutions

Two errors in the Practice Problems for Exam 2 have been brought to my attention. In Problem $3, f(x)$ should be given explicitly as x^{2}. Also, in the solution to Problem 3, the value of γ should be 2 .

1. [10 pts, 5 pts each] Haberman Problem 1.4.1, Parts (f) and (g).

Solutions. For Part (f), the equilibrium solution $\bar{u}(x)$ satisfies

$$
\begin{aligned}
\bar{u}_{x x} & =-x^{2} \\
\bar{u}(0) & =T \\
\bar{u}_{x}(L) & =0,
\end{aligned}
$$

for which

$$
\bar{u}(x)=-\frac{1}{12} x^{4}+\frac{1}{3} L^{3} x+T .
$$

For Part (g), we have

$$
\begin{aligned}
\bar{u}_{x x} & =0 \\
\bar{u}(0) & =T \\
\bar{u}_{x}(L)+\bar{u}(L) & =0,
\end{aligned}
$$

for which

$$
\bar{u}(x)=T-\frac{T}{1+L} x .
$$

2. [10 pts] Haberman Problem 1.4.5.

Solution. In this case,

$$
\begin{aligned}
\bar{u}_{x x} & =0 \\
\bar{u}(0) & =T_{1} \\
\bar{u}_{x}(0) & =T_{2} \\
\bar{u}(L) & =T,
\end{aligned}
$$

where T_{1} and T_{2} are known and T is to be determined. (The text does not suggestion a notation for the constants labeled T_{1} and T_{2}, so anything is acceptable.) Using only the initial conditions, we find

$$
\bar{u}(x)=T_{2} x+T_{1} .
$$

Setting $\bar{u}(L)=T$, this gives

$$
T=T_{2} L+T_{1}
$$

3. [10 pts, 5 pts each] Haberman Problem 1.4.7, Parts (a) and (c).

Solution. For Part (a), the equilibrium solution satisfies

$$
\begin{aligned}
\bar{u}_{x x} & =-1 \\
\bar{u}_{x}(0) & =1 \\
\bar{u}_{x}(L) & =\beta .
\end{aligned}
$$

Integrating $\bar{u}(x)$ once, we have

$$
\bar{u}_{x}(x)=-x+C_{1},
$$

for which our two conditions determine first $C_{1}=1$ and second

$$
\beta=1-L
$$

In order to find the solution, we must integrate a second time

$$
\bar{u}(x)=-\frac{1}{2} x^{2}+x+C_{2} .
$$

In order to determine the constant C_{2}, we integrate the full equation,

$$
\int_{0}^{L} u_{t} d x=\int_{0}^{L} u_{x x} d x+\int_{0}^{L} d x=u_{x}(t, L)-u_{x}(t, 0)+L=\beta-1+L=0
$$

We have, then,

$$
\frac{d}{d t} \int_{0}^{L} u d x=0 \Rightarrow \int_{0}^{L} u(t, x) d x=\int_{0}^{L} u(0, x) d x=\int_{0}^{L} f(x) d x
$$

Since this remains true for all solutions, there must hold

$$
\int_{0}^{L} \bar{u}(x) d x=\int_{0}^{L} f(x) d x
$$

Finally,

$$
\int_{0}^{L} \bar{u}(x) d x=\int_{0}^{L}-\frac{1}{2} x^{2}+x+C_{2} d x=-\frac{1}{6} L^{3}+\frac{1}{2} L^{2}+C_{2} L
$$

so that

$$
C_{2}=\frac{1}{L} \int_{0}^{L} f(x) d x+\frac{1}{6} L^{2}-\frac{1}{2} L
$$

We conclude

$$
\bar{u}(x)=-\frac{1}{2} x^{2}+x+\frac{1}{L} \int_{0}^{L} f(x) d x+\frac{1}{6} L^{2}-\frac{1}{2} L .
$$

The physical interpretation is that the internal heat production must match the flow caused by a different amount of heat flowing into the bar than out.

For (c), equilibrium solutions satisfy

$$
\begin{aligned}
\bar{u}_{x x} & =\beta-x \\
\bar{u}_{x}(0) & =0 \\
\bar{u}_{x}(L) & =0,
\end{aligned}
$$

from which we deduce

$$
\beta=\frac{1}{2} L
$$

and

$$
\bar{u}_{x}(x)=\frac{1}{2} L x-\frac{1}{2} x^{2} \Rightarrow \bar{u}(x)=\frac{1}{4} L x^{2}-\frac{1}{6} x^{3}+C_{2} .
$$

Proceeding as in Part (a), we find

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L} \frac{1}{4} L x^{2}-\frac{1}{6} x^{3}+C_{2} d x \Rightarrow C_{2}=\frac{1}{L} \int_{0}^{L} f(x) d x-\frac{1}{12} L^{3}+\frac{1}{24} L^{3}
$$

and finally

$$
\bar{u}(x)=\frac{1}{4} L x^{2}-\frac{1}{6} x^{3}+\frac{1}{L} \int_{0}^{L} f(x) d x-\frac{1}{24} L^{3} .
$$

4. [10 pts] Haberman Problem 1.4.10.

Solution. Assuming $c=\rho=1$ (that is, that we have not arrived at this form of the problem through some scaling of the independent variables), the total thermal energy is

$$
\text { total thermal energy }=\int_{0}^{L} u(t, x) d x
$$

Integrating the full equation, we have

$$
\int_{0}^{L} u_{t}(t, x) d x=\int_{0}^{L} u_{x x}(t, x) d x+\int_{0}^{L} 4 d x=u_{x}(t, L)-u_{x}(t, 0)+4 L=1+4 L
$$

In this case,

$$
\frac{d}{d t} \int_{0}^{L} u(t, x) d x=1+4 L \Rightarrow \int_{0}^{L} u(t, x) d x=(1+4 L) t+C
$$

Evaluating at $t=0$, we conclude

$$
\int_{0}^{L} u(t, x) d x=(1+4 L) t+\int_{0}^{L} f(x) d x
$$

5. [10 pts] Haberman Problem 1.4.12. (See Haberman's equation (1.2.11) for precisely what he means by a conservation law.)
Solution. For Part (a), integrate the full equation to obtain

$$
\int_{0}^{L} u_{t} d x=k \int_{0}^{L} u_{x x} d x=k u_{x}(t, L)-k u_{x}(t, 0)=\alpha-\beta
$$

By conservation law, Haberman means the expression

$$
\frac{d}{d t} \int_{0}^{L} u(t, x) d x=\alpha-\beta
$$

For Part (b), integrate as in Problem 1.4.10 to get

$$
\int_{0}^{L} u(t, x) d x=(\alpha-\beta) t+\int_{0}^{L} f(x) d x
$$

For Part (c), we see from Part (b) that all solutions will continue to change in time unless

$$
\alpha=\beta
$$

In this case, we have the equilibrium equation

$$
\begin{aligned}
\bar{u}_{x x} & =0 \\
\bar{u}_{x}(0) & =-\alpha / k \\
\bar{u}_{x}(L) & =-\alpha / k
\end{aligned}
$$

from which

$$
\bar{u}_{x}(x)=-\alpha / k
$$

Integrating again, we have

$$
\bar{u}(x)=-\frac{\alpha}{k} x+C
$$

where by conservation

$$
\int_{0}^{L}-\frac{\alpha}{k} x+C d x=\int_{0}^{L} f(x) d x \Rightarrow C=\frac{1}{L} \int_{0}^{L} f(x) d x+\frac{\alpha}{2 k} L
$$

and finally

$$
\bar{u}(x)=-\frac{\alpha}{k} x+\frac{1}{L} \int_{0}^{L} f(x) d x+\frac{\alpha}{2 k} L
$$

6. [10 pts] For the PDE

$$
\begin{aligned}
u_{t} & =u_{x x}+\gamma x-1 \\
u_{x}(t, 0) & =0 \\
u_{x}(t, 1) & =0 \\
u(0, x) & =x^{2},
\end{aligned}
$$

determine the value of γ for which an equilibrium solution exists, and find the equilibrium solution.
Solution. Equilibrium solutions satisfy

$$
\begin{aligned}
\bar{u}_{x x} & =-\gamma x+1 \\
\bar{u}_{x}(0) & =0 \\
\bar{u}_{x}(1) & =0
\end{aligned}
$$

from which we find

$$
\bar{u}_{x}(x)=-\frac{1}{2} \gamma x^{2}+x+C_{1} .
$$

The condition $\bar{u}_{x}(0)=0$ sets $C_{1}=0$, while the condition $\bar{u}_{x}(1)=0$ gives

$$
0=-\frac{1}{2} \gamma+1 \Rightarrow \gamma=2
$$

Integrating again, we have

$$
\bar{u}(x)=-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C_{2} .
$$

In order to determine C we observe similarly as in previous problems that $\int_{0}^{1} u(t, x) d x$ is constant for all t, so that

$$
\int_{0}^{1}-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C_{2} d x=\int_{0}^{1} x^{2} d x=\frac{1}{3} \Rightarrow C_{2}=\frac{1}{3}+\frac{1}{12}-\frac{1}{6}=\frac{1}{4}
$$

We conclude

$$
\bar{u}(x)=-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{4} .
$$

7. $[10 \mathrm{pts}]$ Solve the PDE in Problem 6 for all time.

Solution. In order to solve this PDE for all time, we define the new variable $v(t, x)=u(t, x)-\bar{u}(x)$, where $u(t, x)$ solves the original problem (stated in Problem 6), and $\bar{u}(x)$ is the equilibrium solution from Problem 6. Upon substitution of $u(t, x)=v(t, x)+\bar{u}(x)$ into the original problem, we find that $v(t, x)$ solves

$$
\begin{aligned}
v_{t} & =v_{x x} \\
v_{x}(t, 0) & =0 \\
v_{x}(t, 1) & =0 \\
v(0, x) & =x^{2}-\left(-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{4}\right)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-\frac{1}{4}
\end{aligned}
$$

This equation for $v(t, x)$ can be solved by separation of variables, and we find

$$
\begin{aligned}
v(t, x) & =A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-n^{2} \pi^{2} t} \cos n \pi x \\
A_{0} & =\int_{0}^{1} \frac{1}{3} x^{3}+\frac{1}{2} x^{2}-\frac{1}{4} d x \\
A_{n} & =2 \int_{0}^{1}\left(\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-\frac{1}{4}\right) \cos n \pi x .
\end{aligned}
$$

For A_{0},

$$
A_{0}=\frac{1}{12}+\frac{1}{6}-\frac{1}{4}=0
$$

For A_{n}, integrate by parts

$$
A_{n}=\frac{2}{n^{2} \pi^{2}}(-1)^{n}+\frac{4}{n^{4} \pi^{4}}\left(1-(-1)^{n}\right)+\frac{2}{n^{2} \pi^{2}}(-1)^{n}
$$

Combining these observations, we conclude

$$
\begin{aligned}
u(t, x) & =\sum_{n=1}^{\infty}\left[\frac{4}{n^{2} \pi^{2}}(-1)^{n}+\frac{4}{n^{4} \pi^{4}}\left(1-(-1)^{n}\right)\right] e^{-n^{2} \pi^{2} t} \cos n \pi x \\
& +-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{4}
\end{aligned}
$$

