
M412 Assignment 5 Solutions

1. [10 pts] Haberman 2.5.1 (a).

Solution. Setting u(x, y) = X(x)Y (y), we find that X and Y satisfy

X ′′ + λX =0
Y ′′ − λY =0,

with boundary conditions

X ′(0) =0
X ′(L) =0
Y (0) =0.

In this case, we find from the X equation that the eigenvalues are λ = 0 and λ = n2π2

L2 , n = 1, 2, .... For
λ = 0, we have

Y0(y) = y,

while for λ = n2π2

L2 ,

Yn(y) = sinh
nπ

L
y.

We conclude that the most general form of the solution is

u(x, y) = A0y +
∞∑

n=1

An sinh
nπ

L
y cos

nπ

L
x.

Setting u(x, H) = f(x), we have

f(x) = A0H +
∞∑

n=1

An sinh
nπ

L
H cos

nπ

L
x.

This is a Fourier cosine series, and we have

A0 =
1

LH

∫ L

0

f(x)dx

An =
2

L sinh nπ
L H

∫ L

0

f(x) cos
nπ

L
xdx.

This entirely determines the solution.

2. [10 pts] Haberman 2.5.1 (c).

Solution. In this case, separation and a clever choice for the sign of λ give

X ′′ − λX =0
Y ′′ + λY =0,

with boundary conditions

Y (0) =0
Y (H) =0
X ′(0) =0.

1



In this case, the eigenvalues are determined by the Y equation as λ = n2π2

H2 , n = 1, 2, .... We find that

X(x) = cosh
nπ

H
x,

and consequently the most general form of the solution is

u(x, y) =
∞∑

n=1

An cosh
nπ

H
x sin

nπ

H
y.

Setting u(L, y) = g(y), we have

g(y) =
∞∑

n=1

An cosh
nπ

H
L sin

nπ

H
y.

This is a Fourier sine series, and we have

An =
2

H cosh nπ
H L

∫ H

0

g(y) sin
nπy

H
dy,

which entirely determines the solution.

3. [15 pts] Haberman 2.5.2.

Solution.

(a) Since the solution to this equation can be regarded as an equilibrium solution to the heat equation in two
dimensions, and since there is no source for heat inside the plate (no Q), the total heat flowing in must be
equal to the total heat flowing out. In this case, the heat flow is zero at each boundary except along (x, H),
0 ≤ x ≤ L, and so the total flow through this boundary must be zero. This says

∫ L

0

uy(x, H)dx = 0 ⇒
∫ L

0

f(x)dx = 0.

(b) Proceeding similarly as in Problem 1 (Haberman Problem 2.5.1(a)), we observe that the X equation
gives our eigenvalues again as λ = 0 and λ = n2π2

L2 , n = 1, 2, ..., with associated solutions to the Y equation

λ = 0 : Y0(y) = 1

λ =
n2π2

L2
: Yn(y) = cosh

nπ

L
y.

The most general form of the solution is consequently

u(x, y) = A0 +
∞∑

n=1

An cosh
nπ

L
y cos

nπ

L
x.

Setting uy(x, H) = f(x), we have

f(x) =
∞∑

n=1

An
nπ

L
sinh

nπ

L
H cos

nπ

L
x. (1)

This is a Fourier cosine series and we have

An =
2

nπ sinh nπ
L

∫ L

0

f(x) cos
nπ

L
xdx.
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Upon integration of (1) from 0 to L, and observing that
∫ L

0
cos nπ

L xdx = 0, we see that

∫ L

0

f(x)dx = 0,

as expected from Part (a).

(c) In order to determine a value for A0, we integrate the original heat equation over the entire plate. That
is,

∫ L

0

∫ H

0

ut(t, x, y)dxdy =
∫ L

0

∫ H

0

uxx(t, x, y)dxdy +
∫ L

0

∫ H

0

uyy(t, x, y)dxdy

=
∫ H

0

ux(t, L, y) − ux(t, 0, y)dy +
∫ L

0

uy(t, x, H) − uy(t, x, 0)dx

=
∫ H

0

(0 − 0)dy +
∫ L

0

(f(x) − 0)dx = 0,

where we have changed order of integration when necessary (without proving we can do it) and where we
have assumed that the boundary conditions arose from similar expressions for the full heat equation valid
for all t. In this way,

d

dt

∫ L

0

∫ H

0

u(t, x, y)dxdy = 0 ⇒
∫ L

0

∫ H

0

u(t, x, y)dxdy =
∫ L

0

∫ H

0

u(0, x, y)dxdy =
∫ L

0

∫ H

0

g(x, y)dxdy.

Finally, upon integration of u(x, y) from Part (b), and keeping in mind that u(x, y) from Part (b) is still a
solution to the full heat equation (the limit of it as t → ∞), we have

∫ L

0

∫ H

0

u(x, y)dxdy =
∫ L

0

∫ H

0

g(x, y)dxdy ⇒ A0 =
1

LH

∫ L

0

∫ H

0

g(x, y)dxdy.

4. [10 pts] Show that in polar dimensions (r, θ) the Laplace equation in two space dimensions takes the form

r2urr + rur + uθθ = 0.

Hint: Recall that the relationship between cartesian and polar coordinates is x = r cos θ and y = r sin θ. Set

u(r, θ) := v(x(r, θ), y(r, θ)),

where v(x, y) satisfies Laplace’s equation in cartesian coordinates,

vxx + vyy = 0.

Solution. (For an alternative approach see Haberman Problem 1.5.3.) According to the chain rule,

ur = vx
∂x

∂r
+ vy

∂y

∂r

urr = vxx(
∂x

∂r
)2 + vxy

∂x

∂r

∂y

∂r
+ vx

∂2x

∂r2
+ vyx

∂x

∂r

∂y

∂r
+ vyy(

∂y

∂r
)2 + vy

∂2y

∂r2
.

Keeping in mind the relations
∂x

∂r
= cos θ,

∂y

∂r
= sin θ,
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we have
urr = vxx cos2 θ + vyy sin2 θ + 2vxy sin θ cos θ.

Similarly,
uθθ = vxxr2 sin2 θ − 2vxyr

2 sin θ cos θ − vxr cos θ + vyyr2 cos2 θ − vyr sin θ.

Combining these,

urr +
1
r2

uθθ = vxx + vyy − 1
r
ur = −1

r
ur,

which is precisely the claimed relationship.

5. [10 pts] Haberman 2.5.3 (a).

Solution. Taking the separation assumption u(r, θ) = R(r)T (θ), we have

r2R′′ + rR′

R
= −T ′′

T
= λ,

from which we obtain

r2R′′ + rR′ − λR = 0
T ′′ + λT = 0,

with boundary conditions

lim
r→∞R(r) <∞

T (−π) = T (π)
T ′(−π) = T ′(π).

In this case, it is the T equation that determines the eigenvalues, and we find λ = 0 and λ = n2, n = 1, 2, 3...,
with associated eigenfunctions

λ = 0 : T0(θ) = 1

λ = n2 : T1n(θ) = cosnθ, and T2n(θ) = sin nθ.

For the R(r) equation, we have

λ = 0 : R0(r) = 1

λ = n2 : Rn(θ) = r−n.

The most general solution is

u(r, θ) = A0 +
∞∑

n=1

r−n(An cosnθ + Bn sin nθ).

Setting u(a, θ) = ln 2 + 4 cos 3θ, we have

ln 2 + 4 cos 3θ = A0 +
∞∑

n=1

a−n(An cosnθ + Bn sin nθ),
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for which we can match terms to find

A0 = ln 2

A3 = 4a3,

with every other coefficient 0.

6. [10 pts] Haberman 2.5.5 (a).

Solution. Separating variables as in the previous problem, we find that the eigenvalues are determined by

T ′′ + λT = 0
T ′(0) = 0

T (
π

2
) = 0,

from which we find that the eigenvalues are λ = (2n−1)2, n = 1, 2, ..., with eigenfunctions T (θ) = cos(2n−1)θ.
Using in this case the additional restriction that R(0) is bounded, we have

R(r) = r2n−1,

and so that most general form of solution is

u(r, θ) =
∞∑

n=1

Anr2n−1 cos(2n − 1)θ.

Setting u(1, θ) = f(θ), we have

f(θ) =
∞∑

n=1

An cos(2n − 1)θ.

Upon multiplication of both sides by cos(2m − 1)θ and integration on 0 ≤ θ ≤ π
2 , we conclude

An =
4
π

∫ π
2

0

f(θ) cos(2n − 1)θdθ,

which entirely determines the solution.
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