M412 Assignment 6 Solutions, due Friday October 28

1. [10 pts] Show that for the eigenvalue problem

$$
\left(p(x) u_{x}\right)_{x}+q(x) u+\lambda \sigma(x) u=0 ; \quad a \leq x \leq b
$$

eigenvalues λ are related to their eigenfunctions u by the Rayleigh quotient

$$
\lambda=\frac{\int_{a}^{b}\left(p(x) u_{x}^{2}-q(x) u^{2}\right) d x+\left(p(a) u(a) u_{x}(a)-p(b) u(b) u_{x}(b)\right)}{\int_{a}^{b} \sigma(x) u(x)^{2} d x}
$$

Solution. Multiply the eigenvalue equation by $u(x)$ and integrate x from a to b,

$$
\int_{a}^{b} u\left(p(x) u_{x}\right)_{x} d x+\int_{a}^{b} q(x) u^{2} d x+\lambda \int_{a}^{b} \sigma(x) u^{2} d x=0
$$

Integrating the first term by parts, we find

$$
\left.p(x) u u_{x}\right|_{a} ^{b}-\int_{a}^{b} p(x) u_{x}^{2} d x+\int_{a}^{b} q(x) u^{2} d x+\lambda \int_{a}^{b} \sigma(x) u^{2} d x=0
$$

Solving for λ gives the claimed relationship.
2. [10 pts] Haberman 2.5.10.

Solution. Let u_{1} and u_{2} both be solutions to the problem

$$
\begin{aligned}
\triangle u & =g(\mathbf{x}) \\
u & =f(\mathbf{x}) \text { on the boundary. }
\end{aligned}
$$

Then the variable $v=u_{1}-u_{2}$ solves

$$
\begin{aligned}
\triangle v & =0 \\
v & =0 \text { on the boundary. }
\end{aligned}
$$

According to the maximum principle, this gives

$$
v \equiv 0
$$

3. [10 pts] Haberman 2.5.14.

Solution. Let $u(t, x)$ solve the equation with $u(0, x)=f(x)$ and let $w(t, x)$ solve the equation with the perturbed initial condition $f(x)+\frac{1}{n} \sin \frac{n \pi x}{L}$, and define $v(t, x)=w(t, x)-u(t, x)$ as the error between the two. Solve for v by separation of variables, taking $v(t, x)=T(t) X(x)$, so that

$$
-\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}=-\lambda ; \quad X(0)=0 ; \quad X(L)=0
$$

Proceeding as usual, we find

$$
\lambda=\frac{m^{2} \pi^{2}}{L^{2}} ; \quad X_{m}(x)=\sin \frac{m \pi x}{L} ; \quad m=1,2, \ldots
$$

where I've used the index m because the problem uses an index n in its statement. We have

$$
v(t, x)=\sum_{m=1}^{\infty} A_{m} e^{+k \frac{m^{2} \pi^{2}}{L^{2}} t} \sin \frac{m \pi x}{L}
$$

from which we can already see the main point, that we now have exponential growth in t rather than exponential decay. Setting $v(0, x)=\frac{1}{n} \sin \frac{n \pi x}{L}$, we immediately see that

$$
A_{m}= \begin{cases}0, & m \neq n \\ \frac{1}{n}, & m=n\end{cases}
$$

so that

$$
v(t, x)=\frac{1}{n} e^{+k \frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi x}{L}
$$

(We say that the $\mathrm{n}^{\text {th }}$ eigenmode has been excited.) The main observation to make here is that the smaller n is the faster our exponential growth in t will be. So even for arbitrarily small perturbations (changes to initial data), errors grow exponentially in time.

