M412 Assignment 7, due Friday November 4

1. [15 pts] (Mean Value Property in three space dimensions.) Suppose Ω is an open subset of \mathbb{R}^{3} and $u \in C^{2}(\Omega)$ solves the Laplace equation in Ω. Show that if $\left(x_{0}, y_{0}, z_{0}\right) \in \Omega$, and $S_{r}\left(x_{0}, y_{0}, z_{0}\right)$ is a sphere centered at $\left(x_{0}, y_{0}, z_{0}\right)$ with radius r, contained entirely in Ω, then

$$
u\left(x_{0}, y_{0}, z_{0}\right)=\frac{1}{4 \pi r^{2}} \int_{\partial S_{r}\left(x_{0}, y_{0}, z_{0}\right)} u(x, y, z) d S
$$

Hints. Laplace's equation in spherical coordinates (r, θ, ϕ) takes the form

$$
\sin \phi\left(r^{2} u_{r}\right)_{r}+\left(\sin \phi u_{\phi}\right)_{\phi}+\frac{1}{\sin \phi} u_{\theta \theta}=0
$$

(See Haberman p. 28 for a description of spherical coordinates.) The differential surface increment in spherical coordinates is

$$
d S=r^{2} \sin \phi d \phi d \theta
$$

2. [10 pts] (Maximum/Minimum principle for the Laplace equation in three space dimensions.) Suppose Ω is a bounded, open, connected subset of \mathbb{R}^{3} and $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ solves the Laplace equation on Ω. Show that u can only attain its maximum or minimum on the interior of Ω if u is constant on the entirety of Ω. (You may use without proof the following fact: If u is constant on any sphere in Ω then u it is constant throughout the entirety of Ω.)
3. [5 pts] (Uniqueness of solutions to the Laplace equation in three space dimensions.) Suppose Ω is a bounded, open, connected subset of \mathbb{R}^{3}. Show that solutions $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ to the Laplace equation

$$
\begin{aligned}
\triangle u & =0 ; & & \Omega \\
u & =f ; & & \partial \Omega
\end{aligned}
$$

are unique.
4. [5 pts] (Stability of solutions to the Laplace equation in three space dimensions.) Suppose Ω is a bounded, open, connected subset of \mathbb{R}^{3}. Show that solutions $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ to the Laplace equation

$$
\begin{aligned}
\triangle u & =0 ; & & \Omega \\
u & =f ; & & \partial \Omega
\end{aligned}
$$

are stable with respect to small changes in the boundary data f.
5. [5 pts] Show that a necessary condition for solutions to the Laplace equation on Ω to exist is

$$
\int_{\partial \Omega} \nabla u \cdot \vec{n} d S=0
$$

What does this condition correspond with physically.
6. [10 pts] Establish the trigonometric identity

$$
1+2 \sum_{n=1}^{N} \cos \frac{n \pi x}{L}=\frac{\sin \left[\left(N+\frac{1}{2}\right) \frac{\pi}{L} x\right]}{\sin \left(\frac{\pi}{2 L} x\right)}
$$

Hint. Set $y=\frac{\pi x}{L}$ and use Euler's formula

$$
e^{ \pm i n y}=\cos n y \pm i \sin n y
$$

to show that

$$
2 \cos n y=e^{i n y}+e^{-i n y}
$$

Then find a way to employ the relation

$$
\sum_{n=1}^{N} x^{n}=\frac{x-x^{N+1}}{1-x}
$$

