M412 Assignment 7 Solutions, due Friday November 4

1. [15 pts] (Mean Value Property in three space dimensions.) Suppose Ω is an open subset of \mathbb{R}^{3} and $u \in C^{2}(\Omega)$ solves the Laplace equation in Ω. Show that if $\left(x_{0}, y_{0}, z_{0}\right) \in \Omega$, and $S_{r}\left(x_{0}, y_{0}, z_{0}\right)$ is a sphere centered at $\left(x_{0}, y_{0}, z_{0}\right)$ with radius r, contained entirely in Ω, then

$$
u\left(x_{0}, y_{0}, z_{0}\right)=\frac{1}{4 \pi r^{2}} \int_{\partial S_{r}\left(x_{0}, y_{0}, z_{0}\right)} u(x, y, z) d S
$$

Hints. Laplace's equation in spherical coordinates (r, θ, ϕ) takes the form

$$
\sin \phi\left(r^{2} u_{r}\right)_{r}+\left(\sin \phi u_{\phi}\right)_{\phi}+\frac{1}{\sin \phi} u_{\theta \theta}=0
$$

(See Haberman p. 28 for a description of spherical coordinates.) The differential surface increment in spherical coordinates is

$$
d S=r^{2} \sin \phi d \phi d \theta
$$

Solution. Begin by taking the point $\left(x_{0}, y_{0}, z_{0}\right)$ as the center point for your spherical coordinates; that is, this point corresponds with $r=0$. Now, integrate Laplace's equation over the angular variables $0 \leq \phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$,

$$
\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \phi\left(r^{2} u_{r}\right)_{r} d \theta d \phi+\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\sin \phi u_{\phi}\right)_{\phi} d \theta d \phi+\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{\sin \phi} u_{\theta \theta} d \theta d \phi=0
$$

In this case, $u(r, 0, \phi)=u(r, 2 \pi, \phi)$, and we have

$$
\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{\sin \phi} u_{\theta \theta} d \theta d \phi=\int_{0}^{\pi} \frac{1}{\sin \phi} \int_{0}^{2 \pi} u_{\theta \theta} d \theta d \phi=\int_{0}^{\pi} \frac{1}{\sin \phi}\left(u_{\theta}(r, 2 \pi, \phi)-u_{\theta}(r, 0, \phi)\right) d \phi=0
$$

In addition, by changing the order of integration on the second summand, we find

$$
\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\sin \phi u_{\phi}\right)_{\phi} d \phi d \theta=\int_{0}^{2 \pi}\left(\sin \pi u_{\phi}(r, \theta, \pi)-\sin 0 u_{\phi}(r, \theta, 0)\right) d \theta=0
$$

Observing that r is constant with respect to angular integration, we conclude

$$
\left(r^{2}\left(\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \phi u d \theta d \phi\right)_{r}\right)_{r}=0
$$

Defining

$$
I(r)=\int_{0}^{\pi} \int_{0}^{2 \pi} u \sin \phi d \theta d \phi
$$

we have

$$
\left(r^{2} I^{\prime}\right)^{\prime}=0 \Rightarrow r^{2} I^{\prime}=C_{1} \Rightarrow I(r)=-C_{1} r^{-1}+C_{2}
$$

Taking $|I(0)|<\infty$, we conclude that $C_{1}=0$, and so $I(r)$ is constant for all r. Thus

$$
I(r)=I(0)=\int_{0}^{\pi} \int_{0}^{2 \pi} u(0, \theta, \phi) \sin \phi d \theta d \phi=\left.u(0, \theta, \phi) 2 \pi(-1) \cos \phi\right|_{0} ^{\pi}=4 \pi u(0, \theta, \phi)
$$

Turning this around,

$$
u(0, \theta, \phi)=\frac{1}{4 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} u(r, \theta, \phi) \sin \phi d \theta d \phi=\frac{1}{4 \pi r^{2}} \int_{0}^{\pi} \int_{0}^{2 \pi} u(r, \theta, \phi) r^{2} \sin \phi d \theta d \phi
$$

and this is the claim.
2. [10 pts] (Maximum/Minimum principle for the Laplace equation in three space dimensions.) Suppose Ω is a bounded, open, connected subset of \mathbb{R}^{3} and $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ solves the Laplace equation on Ω. Show that u can only attain its maximum or minimum on the interior of Ω if u is constant on the entirety of Ω. (You may use without proof the following fact: If u is constant on any sphere in Ω then u it is constant throughout the entirety of Ω.)

Solution. Suppose that u attains its maximum at a point $\left(x_{0}, y_{0}, z_{0}\right)$ on the interior of Ω. For any sphere centered at this point with radius r small enough to that the sphere lies entirely in Ω, the value $u\left(x_{0}, y_{0}, z_{0}\right)$ can be computed as an average of values on the surface of the sphere,

$$
u\left(x_{0}, y_{0}, z_{0}\right)=\frac{1}{4 \pi r^{2}} \int_{\partial S_{r}\left(x_{0}, y_{0}, z_{0}\right)} u(x, y, z) d S
$$

Since $u\left(x_{0}, y_{0}, z_{0}\right) \geq u(x, y, z)$ for all $(x, y, z) \in \partial S_{r}$ (by the assumption that u is maximal at $\left.\left(x_{0}, y_{0}, z_{0}\right)\right)$, this can only possibly hold if $u(x, y, z)=u\left(x_{0}, y_{0}, z_{0}\right)$ for all $(x, y, z) \in \partial S_{r}$. Since this is true for all r small enough for S_{r} to be contained in Ω, it is true for an entire sphere. By the unproven fact, this means that u must be constant throughout Ω. We conclude that either u does not have a maximum in the interior or Ω, of if it does have a maximum in the interior of Ω it is constant throughout the entirety of Ω.
3. [5 pts] (Uniqueness of solutions to the Laplace equation in three space dimensions.) Suppose Ω is a bounded, open, connected subset of \mathbb{R}^{3}. Show that solutions $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ to the Laplace equation

$$
\begin{aligned}
\triangle u & =0 ; & & \Omega \\
u & =f ; & & \partial \Omega
\end{aligned}
$$

are unique.
Solution. Let u_{1} and u_{2} both solve this equation, and set $v=u_{1}-u_{2}$. Then

$$
\begin{array}{rlrl}
\triangle v & =0 ; & & \Omega \\
v & =0 ; & \partial \Omega
\end{array}
$$

and by the maximum/minimum principle of Problem $2, v \equiv 0$.
4. [5 pts] (Stability of solutions to the Laplace equation in three space dimensions.) Suppose Ω is a bounded, open, connected subset of \mathbb{R}^{3}. Show that solutions $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ to the Laplace equation

$$
\begin{aligned}
\triangle u & =0 ; & & \Omega \\
u & =f ; & & \partial \Omega
\end{aligned}
$$

are stable with respect to small changes in the boundary data f.
Solution. Let w solve the slightly altered equation

$$
\begin{aligned}
\triangle w & =0 ; \quad \Omega \\
w & =f+s ; \quad \partial \Omega
\end{aligned}
$$

where s is assumed to be some small function defined on $(x, y, z) \in \partial \Omega$. Taking $v=w-u$, we have

$$
\begin{aligned}
\triangle v & =0 ; & & \Omega \\
v & =s ; & & \partial \Omega
\end{aligned}
$$

for which the maximum/minimum principle asserts

$$
\inf _{(x, y, z) \in \partial \Omega} s(x, y) \leq v(x, y) \leq \sup _{(x, y, z) \in \partial \Omega} s(x, y)
$$

Since small changes in the boundary data lead to only small changes in the solution, we say that solutions to this equation are stable.
5. [5 pts] Show that a necessary condition for solutions to the Laplace equation on Ω to exist is

$$
\int_{\partial \Omega} \nabla u \cdot \vec{n} d S=0
$$

What does this condition correspond with physically.
Solution. Noting that $\Delta u=\nabla \cdot(\nabla u)$, we see that if $\triangle u=0$, there holds

$$
0=\int_{\Omega} \triangle u d V=\int_{\Omega} \nabla \cdot(\nabla u) d V=\int_{\partial \Omega} \nabla u \cdot \vec{n} d S
$$

This asserts that the total heat flow through the boundary must be 0 for a heat equation to have an equilibrium solution.
6. [10 pts] Establish the trigonometric identity

$$
1+2 \sum_{n=1}^{N} \cos \frac{n \pi x}{L}=\frac{\sin \left[\left(N+\frac{1}{2}\right) \frac{\pi}{L} x\right]}{\sin \left(\frac{\pi}{2 L} x\right)}
$$

Hint. Set $y=\frac{\pi x}{L}$ and use Euler's formula

$$
e^{ \pm i n y}=\cos n y \pm i \sin n y
$$

to show that

$$
2 \cos n y=e^{i n y}+e^{-i n y}
$$

Then find a way to employ the relation

$$
\sum_{n=1}^{N} x^{n}=\frac{x-x^{N+1}}{1-x}
$$

Solution. Beginning with $2 \cos n y=e^{i n y}+e^{-i n y}$, write

$$
2 \sum_{n=1}^{N} \cos n y=\sum_{n=1}^{N}\left(e^{i n y}+e^{-i n y}\right)=\sum_{n=1}^{N}\left(\left(e^{i y}\right)^{n}+\left(e^{-i y}\right)^{n}\right)
$$

from which we can employ the suggested relation to find

$$
\begin{aligned}
\sum_{n=1}^{N}\left(\left(e^{i y}\right)^{n}+\left(e^{-i y}\right)^{n}\right) & =\frac{e^{i y}-e^{i y(N+1)}}{1-e^{i y}}+\frac{e^{-i y}-e^{-i y(N+1)}}{1-e^{-i y}} \\
& =\frac{e^{i \frac{y}{2}}-e^{i y\left(N+\frac{1}{2}\right)}}{e^{-i \frac{y}{2}}-e^{i \frac{y}{2}}}+\frac{e^{-i \frac{y}{2}}-e^{-i y\left(N+\frac{1}{2}\right)}}{e^{i \frac{y}{2}}-e^{-i \frac{y}{2}}} \\
& =\frac{e^{i \frac{y}{2}}-e^{-i \frac{y}{2}}}{e^{-i \frac{y}{2}}-e^{i \frac{y}{2}}}+\frac{e^{i y\left(N+\frac{1}{2}\right)}-e^{-i y\left(N+\frac{1}{2}\right)}}{e^{i \frac{y}{2}}-e^{-i \frac{y}{2}}} \\
& =-1+\frac{\sin \left[\left(N+\frac{1}{2}\right) y\right]}{\sin \left[\frac{y}{2}\right]}
\end{aligned}
$$

which is the claimed identity.

