
M412 Assignment 7 Solutions, due Friday November 4

1. [15 pts] (Mean Value Property in three space dimensions.) Suppose Ω is an open subset of R
3 and

u ∈ C2(Ω) solves the Laplace equation in Ω. Show that if (x0, y0, z0) ∈ Ω, and Sr(x0, y0, z0) is a sphere
centered at (x0, y0, z0) with radius r, contained entirely in Ω, then

u(x0, y0, z0) =
1

4πr2

∫
∂Sr(x0,y0,z0)

u(x, y, z)dS.

Hints. Laplace’s equation in spherical coordinates (r, θ, φ) takes the form

sin φ(r2ur)r + (sinφuφ)φ +
1

sinφ
uθθ = 0.

(See Haberman p. 28 for a description of spherical coordinates.) The differential surface increment in
spherical coordinates is

dS = r2 sin φdφdθ.

Solution. Begin by taking the point (x0, y0, z0) as the center point for your spherical coordinates; that is,
this point corresponds with r = 0. Now, integrate Laplace’s equation over the angular variables 0 ≤ φ ≤ π
and 0 ≤ θ ≤ 2π,

∫ π

0

∫ 2π

0

sin φ(r2ur)rdθdφ +
∫ π

0

∫ 2π

0

(sin φuφ)φdθdφ +
∫ π

0

∫ 2π

0

1
sinφ

uθθdθdφ = 0.

In this case, u(r, 0, φ) = u(r, 2π, φ), and we have

∫ π

0

∫ 2π

0

1
sin φ

uθθdθdφ =
∫ π

0

1
sinφ

∫ 2π

0

uθθdθdφ =
∫ π

0

1
sin φ

(uθ(r, 2π, φ) − uθ(r, 0, φ))dφ = 0.

In addition, by changing the order of integration on the second summand, we find
∫ 2π

0

∫ π

0

(sin φuφ)φdφdθ =
∫ 2π

0

(sin πuφ(r, θ, π) − sin 0uφ(r, θ, 0))dθ = 0.

Observing that r is constant with respect to angular integration, we conclude

(
r2(

∫ π

0

∫ 2π

0

sinφudθdφ)r

)
r

= 0.

Defining

I(r) =
∫ π

0

∫ 2π

0

u sinφdθdφ,

we have
(r2I ′)′ = 0 ⇒ r2I ′ = C1 ⇒ I(r) = −C1r

−1 + C2.

Taking |I(0)| < ∞, we conclude that C1 = 0, and so I(r) is constant for all r. Thus

I(r) = I(0) =
∫ π

0

∫ 2π

0

u(0, θ, φ) sin φdθdφ = u(0, θ, φ)2π(−1) cosφ
∣∣∣π
0

= 4πu(0, θ, φ).
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Turning this around,

u(0, θ, φ) =
1
4π

∫ π

0

∫ 2π

0

u(r, θ, φ) sin φdθdφ =
1

4πr2

∫ π

0

∫ 2π

0

u(r, θ, φ)r2 sin φdθdφ,

and this is the claim.

2. [10 pts] (Maximum/Minimum principle for the Laplace equation in three space dimensions.) Suppose Ω
is a bounded, open, connected subset of R

3 and u ∈ C2(Ω) ∩ C(Ω̄) solves the Laplace equation on Ω. Show
that u can only attain its maximum or minimum on the interior of Ω if u is constant on the entirety of Ω.
(You may use without proof the following fact: If u is constant on any sphere in Ω then u it is constant
throughout the entirety of Ω.)

Solution. Suppose that u attains its maximum at a point (x0, y0, z0) on the interior of Ω. For any sphere
centered at this point with radius r small enough to that the sphere lies entirely in Ω, the value u(x0, y0, z0)
can be computed as an average of values on the surface of the sphere,

u(x0, y0, z0) =
1

4πr2

∫
∂Sr(x0,y0,z0)

u(x, y, z)dS.

Since u(x0, y0, z0) ≥ u(x, y, z) for all (x, y, z) ∈ ∂Sr (by the assumption that u is maximal at (x0, y0, z0)),
this can only possibly hold if u(x, y, z) = u(x0, y0, z0) for all (x, y, z) ∈ ∂Sr. Since this is true for all r small
enough for Sr to be contained in Ω, it is true for an entire sphere. By the unproven fact, this means that u
must be constant throughout Ω. We conclude that either u does not have a maximum in the interior or Ω,
of if it does have a maximum in the interior of Ω it is constant throughout the entirety of Ω.

3. [5 pts] (Uniqueness of solutions to the Laplace equation in three space dimensions.) Suppose Ω is a
bounded, open, connected subset of R

3. Show that solutions u ∈ C2(Ω) ∩ C(Ω̄) to the Laplace equation

4u =0; Ω
u = f ; ∂Ω

are unique.

Solution. Let u1 and u2 both solve this equation, and set v = u1 − u2. Then

4v = 0; Ω
v = 0; ∂Ω,

and by the maximum/minimum principle of Problem 2, v ≡ 0.

4. [5 pts] (Stability of solutions to the Laplace equation in three space dimensions.) Suppose Ω is a bounded,
open, connected subset of R

3. Show that solutions u ∈ C2(Ω) ∩ C(Ω̄) to the Laplace equation

4u =0; Ω
u = f ; ∂Ω

are stable with respect to small changes in the boundary data f .

Solution. Let w solve the slightly altered equation

4w = 0; Ω
w = f + s; ∂Ω,
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where s is assumed to be some small function defined on (x, y, z) ∈ ∂Ω. Taking v = w − u, we have

4v =0; Ω
v = s; ∂Ω,

for which the maximum/minimum principle asserts

inf
(x,y,z)∈∂Ω

s(x, y) ≤ v(x, y) ≤ sup
(x,y,z)∈∂Ω

s(x, y).

Since small changes in the boundary data lead to only small changes in the solution, we say that solutions
to this equation are stable.

5. [5 pts] Show that a necessary condition for solutions to the Laplace equation on Ω to exist is
∫

∂Ω

∇u · ~ndS = 0.

What does this condition correspond with physically.

Solution. Noting that 4u = ∇ · (∇u), we see that if 4u = 0, there holds

0 =
∫

Ω

4udV =
∫

Ω

∇ · (∇u)dV =
∫

∂Ω

∇u · ~ndS.

This asserts that the total heat flow through the boundary must be 0 for a heat equation to have an
equilibrium solution.

6. [10 pts] Establish the trigonometric identity

1 + 2
N∑

n=1

cos
nπx

L
=

sin[(N + 1
2 ) π

Lx]
sin( π

2Lx)
.

Hint. Set y = πx
L and use Euler’s formula

e±iny = cosny ± i sinny

to show that
2 cosny = einy + e−iny.

Then find a way to employ the relation

N∑
n=1

xn =
x − xN+1

1 − x
.

Solution. Beginning with 2 cosny = einy + e−iny, write

2
N∑

n=1

cosny =
N∑

n=1

(einy + e−iny) =
N∑

n=1

((eiy)n + (e−iy)n),
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from which we can employ the suggested relation to find

N∑
n=1

((eiy)n + (e−iy)n) =
eiy − eiy(N+1)

1 − eiy
+

e−iy − e−iy(N+1)

1 − e−iy

=
ei y

2 − eiy(N+ 1
2 )

e−i y
2 − ei y

2
+

e−i y
2 − e−iy(N+ 1

2 )

ei y
2 − e−i y

2

=
ei y

2 − e−i y
2

e−i y
2 − ei y

2
+

eiy(N+ 1
2 ) − e−iy(N+ 1

2 )

ei y
2 − e−i y

2

= − 1 +
sin[(N + 1

2 )y]
sin[y

2 ]
,

which is the claimed identity.
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