
M412 Assignment 8 Solutions, due Friday November 11

1. [10 points] Finish our proof of Fourier’s Theorem by showing that

lim
N→∞

1
2L

∫ x+L

x

f(y)
(
1 + 2

N∑
n=1

cos(
nπ

L
(y − x))

)
dy =

1
2
f(x+).

Solution. Proceeding similarly as we did in class, set z = y − x to obtain the integration

lim
N→∞

1
2L

∫ L

0

f(x + z)
(
1 + 2

N∑
n=1

cos(
nπ

L
z)

)
dz.

Next, introduce the limit
lim

y→x+
f(y) = f(x+)

by re-writing this integral as

lim
N→∞

1
2L

∫ L

0

(f(x + z) − f(x+))
(
1 + 2

N∑
n=1

cos(
nπ

L
z)

)
dz+ lim

N→∞
1

2L

∫ L

0

f(x+)
(
1 + 2

N∑
n=1

cos(
nπ

L
z)

)
dz.

Now evaluate these limits one at a time, beginning with the second, for which we can integrate directly,

lim
N→∞

1
2L

∫ L

0

f(x+)
(
1 + 2

N∑
n=1

cos(
nπ

L
z)

)
dz = lim

N→∞

[ 1
2L

∫ L

0

f(x+)dz +
1
L

N∑
n=1

∫ L

0

cos(
nπ

L
z)dz

]

=
1
2
f(x+),

where we have observed that each integration over cosine gives 0 here. Finally, we evaluate the first integral
in our decomposition by using the trigonometric identity

1 + 2
N∑

n=1

cos
nπx

L
=

sin[(N + 1
2 ) π

Lx]
sin( π

2Lx)
.

We find

lim
N→∞

1
2L

∫ L

0

(f(x + z) − f(x+))
( sin[(N + 1

2 ) π
Lz]

sin( π
2Lz)

)
dz = lim

N→∞
1

2L

∫ L

0

(f(x + z) − f(x+))
sin( π

2Lz)

(
sin[(N +

1
2
)
π

L
z]

)
dz.

The quotient

q(z) =
(f(x + z) − f(x+))

sin( π
2Lz)

is clearly pointwise continuous except possibly near z = 0. (This is clear because f is assumed pointwise
continuous (in fact, pointwise smooth), and sin( π

2Lz) is continuous and non-zero on z ∈ [0, L], except at the
point z = 0.) In order to check the behavior as z → 0, we compute

lim
z→0

(f(x + z) − f(x+))
sin( π

2Lz)
=

f ′(x+)
π
2L

,
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obtained as in class by L’Hospital’s rule. Since f is assumed piecewise smooth, this limit exists, and we can
conclude that q is piecewise continuous on z ∈ [0, L]. The Riemann–Lebesgue lemma applies, then, giving
that the limit is 0.

2. [5 points] Finish our proof regarding term-by-term integration of the full Fourier series by computing bn.

Solution. We have

bn =
1
L

∫ +L

−L

G(x) sin
nπx

L
dx =

1
L

∫ +L

−L

(F (x) − A0x) sin
nπx

L
dx

=
1
L

[
(F (x) − A0x)(− L

nπ
) cos

nπx

L

∣∣∣+L

−L
+

∫ +L

−L

(f(x) − A0)(
L

nπ
) cos

nπx

L
dx

]

=
1
L

[
(F (L) − A0L)(− L

nπ
) cosnπ − (F (−L) + A0L)(− L

nπ
) cosnπ +

L

nπ

∫ +L

−L

f(x) cos
nπx

L
dx

]

=
1
L

[
(F (L) − F (−L) − 2A0L)(− L

nπ
) cosnπ

]
+

L

nπ
An,

where we have observed that cosine integrates to 0 on [−L, L]. Finally, we observe that for

F (x) =
∫ x

−L

f(y)dy,

F (−L) = 0 and

F (L) =
∫ +L

−L

f(y)dy = 2LA0,

so that all terms in the square brackets cancel, and we have

bn =
L

nπ
An.

3. [5 points] Using Fourier’s Theorem, prove that the Fourier sine series for a piecewise smooth function f(x)
defined on [0, L] converges to 1

2 (f(x−) + f(x+)) on (0, L). Under what condition on f(x) does the Fourier
sine series definitely not converge at the endpoints x = 0 and x = L?

Solution. Since f is only defined for x ∈ [0, L], extend it as an odd function to x ∈ [−L, L]. That is, set
f(x) = −f(−x) for all x ∈ [−L, L]. According to Fourier’s Theorem, the full Fourier series for this extended
function converges for all x ∈ [−L, L]. Now, write this Fourier series

f(x) = A0 +
∞∑

n=1

An cos
nπx

L
+ Bn sin

nπx

L
,

and observe that since f(x) is odd,

A0 = 0; An = 0 for all n = 1, 2, ....

Moreover,

Bn =
1
L

∫ +L

−L

f(x) sin
nπx

L
dx =

2
L

∫ L

0

f(x) sin
nπx

L
dx,

and this is the Fourier sine series of f . It converges on [−L, L] and so it converges on [0, L].
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The endpoints are tricky. The point is that since a Fourier sine series consists of a sum of sines, its value
must necessarily be 0 for x = 0 and for x = L. So the series will not converge to f(x) at the endpoints unless
f(0) = 0 and/or f(L) = 0. Observe, however, that the (periodically extended) odd extension of f , denoted
here by fE , satisfies

fE(0−) = −fE(0+) and fE(L−) = −fE(L+),

and so the series does converge to 1
2 (fE(x−) + fE(x+)).

4. [10 points] For the heat equation

ut =uxx

u(t, 0) =0
u(t, L) =0
u(0, x) = f(x),

where f(x) is assumed continuous on [0, L], with f(0) = f(L) = 0, and f ′(x) is assumed piecewise continuous
on [0, L], prove that the infinite series found by the method of separation of variables is a solution. You may
use without proving it that under these conditions on f the Fourier sine series associated with f is uniformly
convergent.

Solution. We are given that the Fourier sine series for f(x) converges,

f(x) =
∞∑

n=1

Bn sin
nπx

L
; Bn =

2
L

∫ L

0

f(x) sin
nπx

L
dx.

Our candidate for a full solution to the PDE is then

u(t, x) =
∞∑

n=1

Bne−
n2π2

L2 t sin
nπx

L
.

We now use the Weierstrass M-test to show that this series, as well as its term-by-term derivatives, converge
uniformly for t ∈ [t0, T ], for t0 > 0 arbitrarily small and T arbitrarily large. First, the Riemann–Lebesgue
lemma implies that

lim
n→∞Bn = 0,

from which we can conclude that there exists some constant C so that

|Bn| ≤ C

for all n = 1, 2, 3, .... We have then

|Bne−
n2π2

L2 t sin
nπx

L
| ≤ Ce−

n2π2

L2 t0 .

In this way, we can apply the Weierstrass M test with

Mn = Ce−
n2π2

L2 t0 ,

where it is straightforward to check with the ratio test that

∞∑
n=1

Mn converges.
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A slight modification of this argument gives that the series obtained by differentiating our series for u(t, x)
term-by-term also converge uniformly, and we can conclude from this and a theorem from class that u(t, x)
can be differentiated term-by-term to any order in both x and t. Computing directly, we find

ut =
∞∑

n=1

(−n2π2

L2
)Bne−

n2π2

L2 t sin
nπx

L
= uxx.

Finally, since f(x) converges uniformly, Abel’s test for uniform convergence gives that the series for u(t, x)
converges uniformly for t ∈ [0, T ], which gives continuity down to our initial function f(x).

5. [10 points] Haberman 3.4.4.

Solution to Part (a). If f(x) and f ′(x) are both piecewise smooth (on [0, L]), f(x) can be expanded as a
Fourier sine series and f ′(x) can be expanded as a Fourier cosine series,

f(x) =
∞∑

n=1

Bn sin
nπx

L

f ′(x) = a0 +
∞∑

n=1

an cos
nπx

L
.

We now compute

an =
2
L

∫ L

0

f ′(x) cos
nπx

L
dx =

2
L

[
f(x) cos

nπx

L

∣∣∣L
0

+
nπ

L

∫ L

0

f(x) sin
nπx

L
dx

]

=
2
L

[
f(L) cosnπ − f(0)

]
+

nπ

L
Bn.

In order for term-by-term differentiation of the series for f(x) to give the series for f ′(x), we require

(−1)nf(L) = f(0),

which implies f(0) = f(L) = 0.

Solution to Part (b). In this case, we have

f(x) =A0 +
∞∑

n=1

An cos
nπx

L

f ′(x) =
∞∑

n=1

bn sin
nπx

L
,

and we immediately find

bn =
2
L

∫ L

0

f ′(x) sin
nπx

L
dx = −nπ

L
An,

which is precisely what we arrive at by differentiating the series for f(x) term by term.

6a. [10 points] Haberman 3.4.11.

Solution. Set

u(t, x) =
∞∑

n=1

cn(t) sin
nπx

L
,
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and also (following Haberman’s hint)

g(x) =
∞∑

n=1

Bn sin
nπx

L
.

Upon substitution, we find
∞∑

n=1

(c′n(t) + k
n2π2

L2
cn(t)) sin

nπx

L
=

∞∑
n=1

Bn sin
nπx

L
.

Matching coefficients of sine,

c′n(t) + k
n2π2

L2
cn(t) = Bn.

(This equation can also be obtained in the usual way through the trigonometric orthogonality relations.)
For initial conditions, we compute

f(x) =
∞∑

n=1

cn(0) sin
nπx

L
⇒ cn(0) =

2
L

∫ L

0

f(x) sin
nπx

L
dx.

Solving for cn(t) with an integrating factor, we find

ek n2π2

L2 ycn(t) = Bn

∫
ek n2π2

L2 tdt = Bn
L2

kn2π2
ek n2π2

L2 t + C,

or

cn(t) = Bn
L2

kn2π2
+ Ce−k n2π2

L2 t.

Setting t = 0, we have

C = cn(0) − Bn
L2

kn2π2
,

giving

cn(t) = Bn
L2

kn2π2
+

(
cn(0) − Bn

L2

kn2π2

)
e−k n2π2

L2 t.

The solution is then

u(t, x) =
∞∑

n=1

[
Bn

L2

kn2π2
+

(
cn(0) − Bn

L2

kn2π2

)
e−k n2π2

L2 t
]
sin

nπx

L
.

6b. [5 points] For the PDE in Haberman 3.4.11, find the equilibrium solution ū(x) and show that it matches
the limit of your full solution as t → ∞.

Solution. First, the equilibrium solution satisfies

kūxx(x) = −
∞∑

n=1

Bn sin
nπx

L

ū(0) =0
ū(L) =0.

Integrating twice, we have

kū(x) =
∞∑

n=1

L2

n2π2
Bn sin

nπx

L
+ C1x + C2.
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According to our boundary conditions, ū(0) = 0 implies that C2 = 0, while ū(L) = 0 implies that C1 = 0.
Therefore

ū(x) =
∞∑

n=1

L2

kn2π2
Bn sin

nπx

L
.

On the other hand, we see that

lim
t→∞u(t, x) =

∞∑
n=1

Bn
L2

kn2π2
sin

nπx

L
,

the same thing.

7a. [10 points] Haberman 3.4.12.

Solution. In this case we look for solutions of the form

u(t, x) = C0(t) +
∞∑

n=1

Cn(t) cos
nπx

L
. (1)

Upon substitution into the equation, we have

C′
0(t) +

∞∑
n=1

(
C′

n(t) +
n2π2

L2
Cn(t)

)
cos

nπx

L
= e−t + e−2t cos

3πx

L
,

from which we have three cases:

n = 0 : C′
0(t) = e−t; C0(0) =

1
L

∫ L

0

f(x)dx

n = 3 : C ′
3(t) + k

9π2

L2
C3(t) = e−2t; C3(0) =

2
L

∫ L

0

f(x) cos
3πx

L
dx

n 6= 0, 3 : C′
n(t) + k

n2π2

L2
Cn(t) = 0; Cn(0) =

2
L

∫ L

0

f(x) cos
nπx

L
dx.

Solving these, we find

C0(t) = (1 − e−t) + C0(0)

C3(t) = (
9π2k

L2
− 2)−1(e−2t − e−k 9π2t

L2 ) + C3(0)e−k 9π2t
L2

Cn(t) = Cn(0)e−k n2π2

L2 t; n 6= 0, 3,

which can be substituted into (1) to get

u(t, x) = (1 − e−t) + C0(0) +
(
(
9π2k

L2
− 2)−1(e−2t − e−k 9π2t

L2 ) + C3(0)e−k 9π2t
L2

)
cos

3πx

L

+
∑

n6=0,3

Cn(0)e−k n2π2

L2 t cos
nπx

L
.

7b. [5 points] For the PDE in Haberman 3.4.12, find the equilibrium solution ū(x) and show that it matches
the limit of your full solution as t → ∞.
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Solution. First, the equilibrium solution should satisfy

kūxx = 0
ūx(0) = 0
ūx(L) = 0,

from which we can only conclude that
ū(x) = C,

for some constant C. In order to determine the value of C, we integrate the entire equation,
∫ L

0

utdx = k

∫ L

0

uxxdx +
∫ L

0

e−tdx + e−2t

∫ L

0

e−2t cos
3πx

L
dx,

from which we find
d

dt

∫ L

0

udx = Le−t ⇒
∫ L

0

udx = −Le−t + K.

Setting t = 0, this becomes
∫ L

0

f(x)dx = −L + K ⇒ K = L +
∫ L

0

f(x)dx.

Finally, taking the limit as t approached ∞,

∫ L

0

ūdx = L +
∫ L

0

f(x)dx ⇒ CL = L +
∫ L

0

f(x)dx ⇒ C = 1 +
1
L

∫ L

0

f(x)dx.

Thus

ū(x) = 1 +
1
L

∫ L

0

f(x)dx.

Finally, taking the limit as t → ∞ in the solution from Part (a), we have

lim
t→∞u(t, x) = 1 + C0(0) = 1 +

1
L

∫ L

0

f(x)dx,

which is indeed the equilibrium solution.
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