M412 Assignment 8 Solutions, due Friday November 11

1. [10 points] Finish our proof of Fourier’s Theorem by showing that

z+L N
dmar [ 1012 (T )y = 370,

Solution. Proceeding similarly as we did in class, set z = y — « to obtain the integration

. 1 [ al nm
lim _/0 f(x—l—z)(l +2;cos(fz))dz.

Next, introduce the limit
lim f(y) = f(z")

y—xt

by re-writing this integral as

lim 1 /OL(f(a: +z) — f(ﬁ))(l + Zicos(n%z))dz—l— ngnoo % /OL f(gﬁ)(l + 27§:1cos(n%z))dz.

Now evaluate these limits one at a time, beginning with the second, for which we can integrate directly,
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where we have observed that each integration over cosine gives 0 here. Finally, we evaluate the first integral
in our decomposition by using the trigonometric identity

N : 1\m
142 Z cos T —sm[(N +3)57] .
n=1
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We find
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The quotient

is clearly pointwise continuous except possibly near z = 0. (This is clear because f is assumed pointwise
continuous (in fact, pointwise smooth), and sin(5F 2) is continuous and non-zero on z € [0, L], except at the
point z = 0.) In order to check the behavior as z — 0, we compute
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obtained as in class by L’Hospital’s rule. Since f is assumed piecewise smooth, this limit exists, and we can
conclude that ¢ is piecewise continuous on z € [0, L]. The Riemann-Lebesgue lemma applies, then, giving
that the limit is 0.

2. [5 points] Finish our proof regarding term-by-term integration of the full Fourier series by computing b,,.

Solution. We have
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by, =7 » G(x)sdex: E[L (F(z) — Apz) sin de
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where we have observed that cosine integrates to 0 on [—L, L]. Finally, we observe that for

ra - [ IL F(y)dy.

F(—L)=0and
+L
F(L) = . f(y)dy = 2LA,,

so that all terms in the square brackets cancel, and we have

L
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3. [5 points] Using Fourier’s Theorem, prove that the Fourier sine series for a piecewise smooth function f(z)
defined on [0, L] converges to +(f(z~) + f(z*)) on (0,L). Under what condition on f(z) does the Fourier
sine series definitely not converge at the endpoints x = 0 and x = L?

Solution. Since f is only defined for x € [0, L], extend it as an odd function to « € [—L, L]. That is, set
f(z) = —f(—=z) for all x € [-L, L]. According to Fourier’s Theorem, the full Fourier series for this extended
function converges for all z € [-L, L]. Now, write this Fourier series

o0
f(x) :Ao—l—rg:lAncosn—zaj —|—aninn—7£x7

and observe that since f(z) is odd,
Ag=0; A,=0foralln=1,2,...
Moreover,
B, = % —;L f(z)sin ?dm = %/OL f(x)sin n—zxdx,

and this is the Fourier sine series of f. It converges on [—L, L] and so it converges on [0, L].



The endpoints are tricky. The point is that since a Fourier sine series consists of a sum of sines, its value
must necessarily be 0 for z = 0 and for x = L. So the series will not converge to f(z) at the endpoints unless
f(0) =0 and/or f(L) = 0. Observe, however, that the (periodically extended) odd extension of f , denoted
here by fg, satisfies

fe(07) = —f(07) and fg(L™) = —fr(L™),
and so the series does converge to 3(fg(z7) + fr(z™)).

4. [10 points] For the heat equation

u(t,0) ;OM
u(t,L) =0
u(0,z) = f(x),

where f(x) is assumed continuous on [0, L], with f(0) = f(L) = 0, and f’(z) is assumed piecewise continuous
on [0, L], prove that the infinite series found by the method of separation of variables is a solution. You may
use without proving it that under these conditions on f the Fourier sine series associated with f is uniformly
convergent.

Solution. We are given that the Fourier sine series for f(z) converges,
flx) = EOO Bpsin 2. B, = 2 /L f(z)sin MY e
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Our candidate for a full solution to the PDE is then
= n2n2, nmwr
t,x) = Bpe 17 "sin —.
u(t, x) ng_l e P sin—

We now use the Weierstrass M-test to show that this series, as well as its term-by-term derivatives, converge
uniformly for ¢ € [to, T], for o > 0 arbitrarily small and T arbitrarily large. First, the Riemann-Lebesgue
lemma implies that

lim B, =0,
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from which we can conclude that there exists some constant C' so that
B, < C

for all n = 1,2,3,.... We have then
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|Bpe™ L2 tsmT| < Ce 12 0,

In this way, we can apply the Weierstrass M test with
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where it is straightforward to check with the ratio test that
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A slight modification of this argument gives that the series obtained by differentiating our series for u(t, z)
term-by-term also converge uniformly, and we can conclude from this and a theorem from class that u(¢, x)
can be differentiated term-by-term to any order in both z and ¢. Computing directly, we find

2,2 2 2

oo
n*m _n2x2, . nAX
up = E (— i )B,e” 12 smT:um.

n=1

Finally, since f(z) converges uniformly, Abel’s test for uniform convergence gives that the series for u(t, )
converges uniformly for ¢ € [0, 7], which gives continuity down to our initial function f(zx).

5. [10 points] Haberman 3.4.4.

Solution to Part (a). If f(z) and f/(z) are both piecewise smooth (on [0, L]), f(z) can be expanded as a
Fourier sine series and f’(x) can be expanded as a Fourier cosine series,

nmwx
E B, sin —
nmwr
—a0+ E ancos—.

We now compute
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In order for term-by-term differentiation of the series for f(z) to give the series for f'(x), we require

(=D"f(L) = f(0),
which implies f(0) = f(L) = 0.

Solution to Part (b). In this case, we have

nmwx

flz) = Ao—l-ZA cos —

n=1
= nwx
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and we immediately find

nw
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which is precisely what we arrive at by differentiating the series for f(z) term by term.
6a. [10 points] Haberman 3.4.11.
Solution. Set
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E en(t sm ,
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and also (following Haberman’s hint)
= nww
=N "B, sin =2
g(x) ; n SI0L—5
Upon substitution, we find
=, , n?n? nmx nmwx
Z(cn(t) —i—k‘?cn( sm— ZB" s1n—
n=1
Matching coefficients of sine
n27r2
&, (t) + k—=—cn(t) = By,.

(This equation can also be obtained in the usual way through the trigonometric orthogonality relations.)

o L
f/o f(a:)sinn—zxdx.

For initial conditions, we compute
E cn (0 sm LI cn (0

Solving for ¢, (t) with an integrating factor, we find
n2n? n2r2 L? n2n?
P Ve, (1) :Bn/elc L2 tdt:BnWek7t+C,
or )
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Setting t = 0, we have
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The solution is then
=2 [Bug * (20~ Bus

6b. [5 points] For the PDE in Haberman 3.4.11, find the equilibrium solution #(x) and show that it matches

the limit of your full solution as t — oo

Solution. First, the equilibrium solution satisfies
= nwx
k TT - = n in —
Uy (T) Z B, sin T
n=1
a(0) =0
(L) =0
Integrating twice, we have
N SR . nmx
ku(x) = nz::l 32 B, sin — + Ciz + C>.



According to our boundary conditions, @(0) = 0 implies that C2 = 0, while @(L) = 0 implies that C; = 0.

Therefore -
nwT
E an 2B sin — i3

On the other hand, we see that
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nmx
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the same thing.
Ta. [10 points] Haberman 3.4.12.

Solution. In this case we look for solutions of the form

ult,@) = Co(t) + Y Cu(t) cos ? (1)
n=1

Upon substitution into the equation, we have
> n2m nme 3mx
o(t) + Z (C;L(t) + ?Cn(t)) cos —— =e ' + e cos -,
=1

from which we have three cases:

L
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0
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n=3: Cit)+ k‘gLiQCg(t) =e % C3(0) = %/0 f(z)cos 37TTxdx
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Solving these, we find

which can be substituted into (1) to get

2 24 w2t
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7b. [5 points] For the PDE in Haberman 3.4.12, find the equilibrium solution #(x) and show that it matches
the limit of your full solution as ¢t — oo.



Solution. First, the equilibrium solution should satisfy

kg, =0

u,(0) =0
from which we can only conclude that

a(x) =C,

for some constant C. In order to determine the value of C', we integrate the entire equation,
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from which we find

Setting ¢t = 0, this becomes

L L
/ f(z)dz = —L+K:>K:L+/ f(z)dx.
0 0

Finally, taking the limit as ¢ approached oo,

L L L L
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Thus I
a(z) =1+ %/0 f(z)dx.

Finally, taking the limit as ¢t — oo in the solution from Part (a), we have

L
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which is indeed the equilibrium solution.



