M412 Assignment 8 Solutions, due Friday November 11

1. [10 points] Finish our proof of Fourier's Theorem by showing that

$$
\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{x}^{x+L} f(y)\left(1+2 \sum_{n=1}^{N} \cos \left(\frac{n \pi}{L}(y-x)\right)\right) d y=\frac{1}{2} f\left(x^{+}\right)
$$

Solution. Proceeding similarly as we did in class, set $z=y-x$ to obtain the integration

$$
\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{0}^{L} f(x+z)\left(1+2 \sum_{n=1}^{N} \cos \left(\frac{n \pi}{L} z\right)\right) d z
$$

Next, introduce the limit

$$
\lim _{y \rightarrow x^{+}} f(y)=f\left(x^{+}\right)
$$

by re-writing this integral as

$$
\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{0}^{L}\left(f(x+z)-f\left(x^{+}\right)\right)\left(1+2 \sum_{n=1}^{N} \cos \left(\frac{n \pi}{L} z\right)\right) d z+\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{0}^{L} f\left(x^{+}\right)\left(1+2 \sum_{n=1}^{N} \cos \left(\frac{n \pi}{L} z\right)\right) d z
$$

Now evaluate these limits one at a time, beginning with the second, for which we can integrate directly,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{0}^{L} f\left(x^{+}\right)\left(1+2 \sum_{n=1}^{N} \cos \left(\frac{n \pi}{L} z\right)\right) d z & =\lim _{N \rightarrow \infty}\left[\frac{1}{2 L} \int_{0}^{L} f\left(x^{+}\right) d z+\frac{1}{L} \sum_{n=1}^{N} \int_{0}^{L} \cos \left(\frac{n \pi}{L} z\right) d z\right] \\
& =\frac{1}{2} f\left(x^{+}\right)
\end{aligned}
$$

where we have observed that each integration over cosine gives 0 here. Finally, we evaluate the first integral in our decomposition by using the trigonometric identity

$$
1+2 \sum_{n=1}^{N} \cos \frac{n \pi x}{L}=\frac{\sin \left[\left(N+\frac{1}{2}\right) \frac{\pi}{L} x\right]}{\sin \left(\frac{\pi}{2 L} x\right)}
$$

We find
$\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{0}^{L}\left(f(x+z)-f\left(x^{+}\right)\right)\left(\frac{\sin \left[\left(N+\frac{1}{2}\right) \frac{\pi}{L} z\right]}{\sin \left(\frac{\pi}{2 L} z\right)}\right) d z=\lim _{N \rightarrow \infty} \frac{1}{2 L} \int_{0}^{L} \frac{\left(f(x+z)-f\left(x^{+}\right)\right)}{\sin \left(\frac{\pi}{2 L} z\right)}\left(\sin \left[\left(N+\frac{1}{2}\right) \frac{\pi}{L} z\right]\right) d z$.
The quotient

$$
q(z)=\frac{\left(f(x+z)-f\left(x^{+}\right)\right)}{\sin \left(\frac{\pi}{2 L} z\right)}
$$

is clearly pointwise continuous except possibly near $z=0$. (This is clear because f is assumed pointwise continuous (in fact, pointwise smooth), and $\sin \left(\frac{\pi}{2 L} z\right)$ is continuous and non-zero on $z \in[0, L]$, except at the point $z=0$.) In order to check the behavior as $z \rightarrow 0$, we compute

$$
\lim _{z \rightarrow 0} \frac{\left(f(x+z)-f\left(x^{+}\right)\right)}{\sin \left(\frac{\pi}{2 L} z\right)}=\frac{f^{\prime}\left(x^{+}\right)}{\frac{\pi}{2 L}}
$$

obtained as in class by L'Hospital's rule. Since f is assumed piecewise smooth, this limit exists, and we can conclude that q is piecewise continuous on $z \in[0, L]$. The Riemann-Lebesgue lemma applies, then, giving that the limit is 0 .
2. [5 points] Finish our proof regarding term-by-term integration of the full Fourier series by computing b_{n}.

Solution. We have

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{+L} G(x) \sin \frac{n \pi x}{L} d x=\frac{1}{L} \int_{-L}^{+L}\left(F(x)-A_{0} x\right) \sin \frac{n \pi x}{L} d x \\
& =\frac{1}{L}\left[\left.\left(F(x)-A_{0} x\right)\left(-\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L}\right|_{-L} ^{+L}+\int_{-L}^{+L}\left(f(x)-A_{0}\right)\left(\frac{L}{n \pi}\right) \cos \frac{n \pi x}{L} d x\right] \\
& =\frac{1}{L}\left[\left(F(L)-A_{0} L\right)\left(-\frac{L}{n \pi}\right) \cos n \pi-\left(F(-L)+A_{0} L\right)\left(-\frac{L}{n \pi}\right) \cos n \pi+\frac{L}{n \pi} \int_{-L}^{+L} f(x) \cos \frac{n \pi x}{L} d x\right] \\
& =\frac{1}{L}\left[\left(F(L)-F(-L)-2 A_{0} L\right)\left(-\frac{L}{n \pi}\right) \cos n \pi\right]+\frac{L}{n \pi} A_{n},
\end{aligned}
$$

where we have observed that cosine integrates to 0 on $[-L, L]$. Finally, we observe that for

$$
F(x)=\int_{-L}^{x} f(y) d y
$$

$F(-L)=0$ and

$$
F(L)=\int_{-L}^{+L} f(y) d y=2 L A_{0}
$$

so that all terms in the square brackets cancel, and we have

$$
b_{n}=\frac{L}{n \pi} A_{n}
$$

3. [5 points] Using Fourier's Theorem, prove that the Fourier sine series for a piecewise smooth function $f(x)$ defined on $[0, L]$ converges to $\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)$on $(0, L)$. Under what condition on $f(x)$ does the Fourier sine series definitely not converge at the endpoints $x=0$ and $x=L$?

Solution. Since f is only defined for $x \in[0, L]$, extend it as an odd function to $x \in[-L, L]$. That is, set $f(x)=-f(-x)$ for all $x \in[-L, L]$. According to Fourier's Theorem, the full Fourier series for this extended function converges for all $x \in[-L, L]$. Now, write this Fourier series

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}
$$

and observe that since $f(x)$ is odd,

$$
A_{0}=0 ; \quad A_{n}=0 \text { for all } n=1,2, \ldots
$$

Moreover,

$$
B_{n}=\frac{1}{L} \int_{-L}^{+L} f(x) \sin \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

and this is the Fourier sine series of f. It converges on $[-L, L]$ and so it converges on $[0, L]$.

The endpoints are tricky. The point is that since a Fourier sine series consists of a sum of sines, its value must necessarily be 0 for $x=0$ and for $x=L$. So the series will not converge to $f(x)$ at the endpoints unless $f(0)=0$ and/or $f(L)=0$. Observe, however, that the (periodically extended) odd extension of f, denoted here by f_{E}, satisfies

$$
f_{E}\left(0^{-}\right)=-f_{E}\left(0^{+}\right) \text {and } f_{E}\left(L^{-}\right)=-f_{E}\left(L^{+}\right)
$$

and so the series does converge to $\frac{1}{2}\left(f_{E}\left(x^{-}\right)+f_{E}\left(x^{+}\right)\right)$.
4. [10 points] For the heat equation

$$
\begin{aligned}
u_{t} & =u_{x x} \\
u(t, 0) & =0 \\
u(t, L) & =0 \\
u(0, x) & =f(x)
\end{aligned}
$$

where $f(x)$ is assumed continuous on $[0, L]$, with $f(0)=f(L)=0$, and $f^{\prime}(x)$ is assumed piecewise continuous on $[0, L]$, prove that the infinite series found by the method of separation of variables is a solution. You may use without proving it that under these conditions on f the Fourier sine series associated with f is uniformly convergent.
Solution. We are given that the Fourier sine series for $f(x)$ converges,

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} ; \quad B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Our candidate for a full solution to the PDE is then

$$
u(t, x)=\sum_{n=1}^{\infty} B_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi x}{L}
$$

We now use the Weierstrass M-test to show that this series, as well as its term-by-term derivatives, converge uniformly for $t \in\left[t_{0}, T\right]$, for $t_{0}>0$ arbitrarily small and T arbitrarily large. First, the Riemann-Lebesgue lemma implies that

$$
\lim _{n \rightarrow \infty} B_{n}=0
$$

from which we can conclude that there exists some constant C so that

$$
\left|B_{n}\right| \leq C
$$

for all $n=1,2,3, \ldots$ We have then

$$
\left|B_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi x}{L}\right| \leq C e^{-\frac{n^{2} \pi^{2}}{L^{2}} t_{0}}
$$

In this way, we can apply the Weierstrass M test with

$$
M_{n}=C e^{-\frac{n^{2} \pi^{2}}{L^{2}} t_{0}},
$$

where it is straightforward to check with the ratio test that

$$
\sum_{n=1}^{\infty} M_{n} \text { converges. }
$$

A slight modification of this argument gives that the series obtained by differentiating our series for $u(t, x)$ term-by-term also converge uniformly, and we can conclude from this and a theorem from class that $u(t, x)$ can be differentiated term-by-term to any order in both x and t. Computing directly, we find

$$
u_{t}=\sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi x}{L}=u_{x x}
$$

Finally, since $f(x)$ converges uniformly, Abel's test for uniform convergence gives that the series for $u(t, x)$ converges uniformly for $t \in[0, T]$, which gives continuity down to our initial function $f(x)$.
5. [10 points] Haberman 3.4.4.

Solution to Part (a). If $f(x)$ and $f^{\prime}(x)$ are both piecewise smooth (on $\left.[0, L]\right), f(x)$ can be expanded as a Fourier sine series and $f^{\prime}(x)$ can be expanded as a Fourier cosine series,

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \\
f^{\prime}(x) & =a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{aligned}
$$

We now compute

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \cos \frac{n \pi x}{L} d x=\frac{2}{L}\left[\left.f(x) \cos \frac{n \pi x}{L}\right|_{0} ^{L}+\frac{n \pi}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right] \\
& =\frac{2}{L}[f(L) \cos n \pi-f(0)]+\frac{n \pi}{L} B_{n} .
\end{aligned}
$$

In order for term-by-term differentiation of the series for $f(x)$ to give the series for $f^{\prime}(x)$, we require

$$
(-1)^{n} f(L)=f(0)
$$

which implies $f(0)=f(L)=0$.
Solution to Part (b). In this case, we have

$$
\begin{aligned}
f(x) & =A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \\
f^{\prime}(x) & =\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
\end{aligned}
$$

and we immediately find

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \sin \frac{n \pi x}{L} d x=-\frac{n \pi}{L} A_{n}
$$

which is precisely what we arrive at by differentiating the series for $f(x)$ term by term.
6a. [10 points] Haberman 3.4.11.
Solution. Set

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n}(t) \sin \frac{n \pi x}{L}
$$

and also (following Haberman's hint)

$$
g(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} .
$$

Upon substitution, we find

$$
\sum_{n=1}^{\infty}\left(c_{n}^{\prime}(t)+k \frac{n^{2} \pi^{2}}{L^{2}} c_{n}(t)\right) \sin \frac{n \pi x}{L}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

Matching coefficients of sine,

$$
c_{n}^{\prime}(t)+k \frac{n^{2} \pi^{2}}{L^{2}} c_{n}(t)=B_{n}
$$

(This equation can also be obtained in the usual way through the trigonometric orthogonality relations.) For initial conditions, we compute

$$
f(x)=\sum_{n=1}^{\infty} c_{n}(0) \sin \frac{n \pi x}{L} \Rightarrow c_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Solving for $c_{n}(t)$ with an integrating factor, we find

$$
e^{k \frac{n^{2} \pi^{2}}{L^{2}} y} c_{n}(t)=B_{n} \int e^{k \frac{n^{2} \pi^{2}}{L^{2}} t} d t=B_{n} \frac{L^{2}}{k n^{2} \pi^{2}} e^{k \frac{n^{2} \pi^{2}}{L^{2}} t}+C
$$

or

$$
c_{n}(t)=B_{n} \frac{L^{2}}{k n^{2} \pi^{2}}+C e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t}
$$

Setting $t=0$, we have

$$
C=c_{n}(0)-B_{n} \frac{L^{2}}{k n^{2} \pi^{2}}
$$

giving

$$
c_{n}(t)=B_{n} \frac{L^{2}}{k n^{2} \pi^{2}}+\left(c_{n}(0)-B_{n} \frac{L^{2}}{k n^{2} \pi^{2}}\right) e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t}
$$

The solution is then

$$
u(t, x)=\sum_{n=1}^{\infty}\left[B_{n} \frac{L^{2}}{k n^{2} \pi^{2}}+\left(c_{n}(0)-B_{n} \frac{L^{2}}{k n^{2} \pi^{2}}\right) e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t}\right] \sin \frac{n \pi x}{L} .
$$

6b. [5 points] For the PDE in Haberman 3.4.11, find the equilibrium solution $\bar{u}(x)$ and show that it matches the limit of your full solution as $t \rightarrow \infty$.
Solution. First, the equilibrium solution satisfies

$$
\begin{aligned}
k \bar{u}_{x x}(x) & =-\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \\
\bar{u}(0) & =0 \\
\bar{u}(L) & =0 .
\end{aligned}
$$

Integrating twice, we have

$$
k \bar{u}(x)=\sum_{n=1}^{\infty} \frac{L^{2}}{n^{2} \pi^{2}} B_{n} \sin \frac{n \pi x}{L}+C_{1} x+C_{2} .
$$

According to our boundary conditions, $\bar{u}(0)=0$ implies that $C_{2}=0$, while $\bar{u}(L)=0$ implies that $C_{1}=0$. Therefore

$$
\bar{u}(x)=\sum_{n=1}^{\infty} \frac{L^{2}}{k n^{2} \pi^{2}} B_{n} \sin \frac{n \pi x}{L}
$$

On the other hand, we see that

$$
\lim _{t \rightarrow \infty} u(t, x)=\sum_{n=1}^{\infty} B_{n} \frac{L^{2}}{k n^{2} \pi^{2}} \sin \frac{n \pi x}{L}
$$

the same thing.
7a. [10 points] Haberman 3.4.12.
Solution. In this case we look for solutions of the form

$$
\begin{equation*}
u(t, x)=C_{0}(t)+\sum_{n=1}^{\infty} C_{n}(t) \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Upon substitution into the equation, we have

$$
C_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left(C_{n}^{\prime}(t)+\frac{n^{2} \pi^{2}}{L^{2}} C_{n}(t)\right) \cos \frac{n \pi x}{L}=e^{-t}+e^{-2 t} \cos \frac{3 \pi x}{L}
$$

from which we have three cases:

$$
\begin{aligned}
n=0: & C_{0}^{\prime}(t)=e^{-t} ; \quad C_{0}(0)=\frac{1}{L} \int_{0}^{L} f(x) d x \\
n=3: & C_{3}^{\prime}(t)+k \frac{9 \pi^{2}}{L^{2}} C_{3}(t)=e^{-2 t} ; \quad C_{3}(0)=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{3 \pi x}{L} d x \\
n \neq 0,3: & C_{n}^{\prime}(t)+k \frac{n^{2} \pi^{2}}{L^{2}} C_{n}(t)=0 ; \quad C_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

Solving these, we find

$$
\begin{aligned}
& C_{0}(t)=\left(1-e^{-t}\right)+C_{0}(0) \\
& C_{3}(t)=\left(\frac{9 \pi^{2} k}{L^{2}}-2\right)^{-1}\left(e^{-2 t}-e^{-k \frac{9 \pi^{2} t}{L^{2}}}\right)+C_{3}(0) e^{-k \frac{9 \pi^{2} t}{L^{2}}} \\
& C_{n}(t)=C_{n}(0) e^{-k \frac{n^{2} \pi^{2} t}{L^{2}} t \quad n \neq 0,3,}
\end{aligned}
$$

which can be substituted into (1) to get

$$
\begin{aligned}
u(t, x) & =\left(1-e^{-t}\right)+C_{0}(0)+\left(\left(\frac{9 \pi^{2} k}{L^{2}}-2\right)^{-1}\left(e^{-2 t}-e^{-k \frac{9 \pi^{2} t}{L^{2}}}\right)+C_{3}(0) e^{-k \frac{9 \pi^{2} t}{L^{2}}}\right) \cos \frac{3 \pi x}{L} \\
& +\sum_{n \neq 0,3} C_{n}(0) e^{-k \frac{n^{2} \pi^{2}}{L^{2} t}} \cos \frac{n \pi x}{L}
\end{aligned}
$$

7b. [5 points] For the PDE in Haberman 3.4.12, find the equilibrium solution $\bar{u}(x)$ and show that it matches the limit of your full solution as $t \rightarrow \infty$.

Solution. First, the equilibrium solution should satisfy

$$
\begin{aligned}
k \bar{u}_{x x} & =0 \\
\bar{u}_{x}(0) & =0 \\
\bar{u}_{x}(L) & =0,
\end{aligned}
$$

from which we can only conclude that

$$
\bar{u}(x)=C,
$$

for some constant C. In order to determine the value of C, we integrate the entire equation,

$$
\int_{0}^{L} u_{t} d x=k \int_{0}^{L} u_{x x} d x+\int_{0}^{L} e^{-t} d x+e^{-2 t} \int_{0}^{L} e^{-2 t} \cos \frac{3 \pi x}{L} d x
$$

from which we find

$$
\frac{d}{d t} \int_{0}^{L} u d x=L e^{-t} \Rightarrow \int_{0}^{L} u d x=-L e^{-t}+K
$$

Setting $t=0$, this becomes

$$
\int_{0}^{L} f(x) d x=-L+K \Rightarrow K=L+\int_{0}^{L} f(x) d x
$$

Finally, taking the limit as t approached ∞,

$$
\int_{0}^{L} \bar{u} d x=L+\int_{0}^{L} f(x) d x \Rightarrow C L=L+\int_{0}^{L} f(x) d x \Rightarrow C=1+\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

Thus

$$
\bar{u}(x)=1+\frac{1}{L} \int_{0}^{L} f(x) d x
$$

Finally, taking the limit as $t \rightarrow \infty$ in the solution from Part (a), we have

$$
\lim _{t \rightarrow \infty} u(t, x)=1+C_{0}(0)=1+\frac{1}{L} \int_{0}^{L} f(x) d x
$$

which is indeed the equilibrium solution.

