
M412 Practice Problems for Final Exam

1. Solve the PDE

ut + t3ux =u

u(t, 0) = t, t > 0

u(0, x) =1 − e−x, x > 0.

2. Solve the PDE

utt = c2uxx; x > 0, t > 0
u(0, x) = f(x); x > 0

ut(0, x) = g(x); x > 0
ux(t, 0) = t; t > 0.

3. Solve the PDE

uxx + uyy =0
u(x, 0) = 0, u(x, 2) = 0
u(0, y) = 0, u(1, y) = 2.

4. Solve the PDE

ut =uxx + e−t sin 3πx

u(t, 0) =0, u(t, 1) = 0
u(0, x) = sinπx.

5. For the PDE in Problem 4, find an equilbrium solution and show that it matches the limit as t → ∞ of
your solution to Problem 4.

6. For the PDE

ut = uxx + t sin x

ux(t, 0) = − 1
ux(t, π) = 0
u(0, x) = cosx,

find the total energy ∫ π

0

u(t, x)dx.

7. Use separation of variables to show that solutions to the quarter-plane problem

ut =uxx; t > 0, x > 0
ux(t, 0) =0
|u(t, +∞)|bounded
u(0, x) = f(x)
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can be written in the form
u(t, x) =

∫ ∞

0

C(ω)e−ω2t cosωxdω,

for some appropriate constant C(ω).

8. Use the method of Fourier tranforms to solve the first order equation

ut =ux

u(0, x) = f(x).

9. [This question appeared on Exam 3.] Use Fourier’s Theorem to prove that if a function f(x) is piecewise
smooth on an interval [0, L], then the Fourier cosine series for f(x) converges for all x ∈ (0, L) to

(i) : f(x) if f is continuous at the point x

(ii) :
1
2
(f(x−) + f(x+)) if f has a jump discontinuity at the point x

What does the Fourier cosine series converge to at the endpoints x = 0 and x = L?

10. We have seen in the homework that if a function f(x) is piecewise smooth on an interval [0, L], then the
Fourier sine series for f(x) converges for all x ∈ (0, L) to

(i) : f(x) if f is continuous at the point x

(ii) :
1
2
(f(x−) + f(x+)) if f has a jump discontinuity at the point x.

Use this and Problem 9 to prove that if f(x) is continuous on [0, L] and f ′(x) is piecewise smooth on the
same interval, then the Fourier cosine series for f(x) can be differentiated term by term.

Solutions

1. For x ≥ t4

4 , we have

dx

dt
= t3; x(0) = x0 ⇒ x(t) =

t4

4
+ x0

du

dt
= u; u(0) = 1 − e−x0 ⇒ u(t) = (1 − e−x0)et,

from which we conclude
u(t, x) = (1 − e−(x− t4

4 ))et.

For x ≤ t4

4 , we have

dx

dt
= t3; x(t0) = 0 ⇒ x(t) =

t4

4
− t40

4
,

du

dt
= u; u(t0) = t0 ⇒ u(t) = t0e

t−t0 ,

from which we conclude
u(t, x) = (t4 − 4x)1/4et−(t4−4x)1/4

.
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Combining these,

u(t, x) =

{
(t4 − 4x)1/4et−(t4−4x)1/4

, x ≤ t4

4

(1 − e−(x− t4
4 ))et, x ≥ t4

4 .

2. We write solutions in the form

u(t, x) = F (x − ct) + G(x + ct),

where for x > 0, we have

F (x) =
1
2
f(x) − 1

2c

∫ x

0

g(y)dy

G(x) =
1
2
f(x) +

1
2c

∫ x

0

g(y)dy.

This entirely determines the solution for x − ct > 0. For x − ct < 0, we need to evaluate F at negative
numbers. In order to do this, we notice that our final condition gives

t = F ′(−ct) + G′(ct).

Setting x = −ct, we find
F ′(x) = −x

c
− G′(−x).

We compute, now,∫ x

0

F ′(y)dy =
∫ x

0

−y

c
− G′(−y)dy ⇒ F (x) − F (0) = −x2

2c
+ G(−x) − G(0).

It’s clear from our expressions for F and G that (assuming our solution is continuous) F (0) = G(0), from
which we conclude

F (x) = −x2

2c
+ G(−x).

In this we, for x − ct < 0,

F (x − ct) = − (x − ct)2

2c
+ G(ct − x).

We have, then

u(t, x) =

{
1
2 [f(x − ct) + f(x + ct)] + 1

2c

∫ x+ct

x−ct
g(y)dy, x − ct > 0

− (x−ct)2

2c + 1
2 [f(ct − x) + f(x + ct)] + 1

2c

∫ x+ct

0 g(y)dy + 1
2c

∫ ct−x

0 g(y)dy, x − ct < 0.

3. Since we have a bounded domain, we proceed by separation of variables, letting u(x, y) = X(x)Y (y), for
which we find

uxx + uyy = 0 ⇒ X ′′(x)Y (y) + X(x)Y ′′(y) = 0 ⇒ X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= λ.

Observe here in particular that we have chosen the sign in front of λ so that the variable with both boundary
conditions 0 (Y in this case) will have the standard eigenvalue equation, Y ′′ + λY = 0. We have, u(x, 0) =
0 ⇒ Y (0) = 0, u(x, 2) = 0 ⇒ Y (2) = 0, and u(0, y) = 0 ⇒ X(0) = 0. We have, then, the two ODE

Y ′′ + λY =0; Y (0) = 0, Y (2) = 0
X ′′ − λX =0; X(0) = 0.
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For the Y (y) equation, we take Y (y) = C1 cos
√

λy+C2 sin
√

λy, and use the boundary conditions to conclude

Yn(y) = sin
nπ

2
y, n = 1, 2, 3....

For X(x), we have
X(x) = C3 cosh

nπ

2
x + C4 sinh

nπ

2
x,

for which our boundary condition X(0) = 0 determines C3 = 0, eliminating one constant of integration. We
finally have our general expansion for u(x, y),

u(x, y) =
∞∑

n=1

An sinh
nπ

2
x sin

nπ

2
y.

Finally, we employ our last boundary condition, u(1, y) = 2 to obtain the Fourier sine series

2 =
∞∑

n=1

An sinh
nπ

2
sin

nπ

2
y.

We have, then

An sinh
nπ

2
=

2
2

∫ 2

0

2 sin
nπ

2
ydy = − 4

nπ
cos

nπ

2
y
∣∣∣2
0

= − 4
nπ

[(−1)n − 1],

where I have explicitly written the fraction 2
2 as a reminder that it comes from 2

H . Our solution is

u(x, y) =
∞∑

n=1

− 4
nπ [(−1)n − 1]

sinh nπ
2

sinh
nπx

2
sin

nπ

2
y.

4. Due to the non-homogeneous term, we must proceed here by eigenfunction expansion. First, we construct
eigenfunctions, Xn(x), for the homogeneous problem. Substituting u(t, x) = T (t)X(x) into ut = uxx, and
considering our boundary conditions, we determine

X ′′ + λX = 0; X(0) = 0, X(1) = 0,

for which we have Xn(x) = sin nπx. We now look for a solution as an expansion of these eigenfunctions

u(t, x) =
∞∑

n=1

cn(t) sin nπx.

Substituting this expansion back into the full non-homogeneous equation, we find

∞∑
n=1

(
c′n(t) + n2π2cn(t)

)
sin nπx = e−t sin 3πx.

The key observation we make here is that this is simply a Fourier sine series with fancy constants, Bn =
c′n(t) − n2π2cn(t). Consequently, we have

c′n(t) + n2π2cn(t) =2
∫ 1

0

e−t sin(3πx) sin(nπx)dx =

{
e−t, n = 3
0, n 6= 3.
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For initial conditions, we take our initial data

u(0, x) = sinπx ⇒ sin πx =
∞∑

n=1

cn(0) sinnπx,

for which

cn(0) = 2
∫ 1

0

sin(πx) sin(nπx)dx =

{
1, n = 1
0, n 6= 1.

We have now an ODE to solve for each n = 1, 2, 3..., but we observe that if both c′n(t)+n2π2cn(t) and cn(0)
are 0, the cn(t) ≡ 0. In this case, the only two expansion coefficients that are not identically 0 are c1(t) and
c3(t). For c1(t), we have

c′1 + π2c1 = 0; c1(0) = 1 ⇒ c1(t) = e−π2t.

For c3(t), we have
c′3 + 9π2c3 = e−t; c3(0) = 0,

which we solve by the integrating factor method. (Recall that for a general linear first order equation
y′(t) + p(t)y(t) = g(t), the integrating factor is e

R
p(t)dt, where the constant of integration can be dropped.)

In this case, the integrating factor is simply e9π2t, and we have

(e9π2tc3)′ = e9π2te−t ⇒ e9π2tc3(t) =
1

9π2 − 1
e−t(1−9π2) + C.

According to our intial condition c3(0) = 0, we have

C =
1

1 − 9π2
.

We conclude that
c3(t) =

1
1 − 9π2

(e−9π2t − e−t),

with then
u(t, x) = e−π2t sin(πx) +

1
1 − 9π2

(e−9π2t − e−t) sin(3πx).

5. Our equilibrium equation for ū(x) is

ūxx =0
ū(0) =0
ū(1) =0,

which is solved by
ū(x) ≡ 0.

Taking a limit as t → ∞ of our solution to Problem 4, we see that they agree.

6. Integrating the full equation, we have∫ π

0

utdx =
∫ π

0

uxxdx +
∫ π

0

t sinxdx ⇒ d

dt

∫ π

0

u(t, x)dx = ux(t, π) − ux(t, 0) − t cosx
∣∣∣π
0
.

It follows that
d

dt

∫ π

0

u(t, x)dx = 1 + 2t.
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Integrating, ∫ π

0

u(t, x)dx = t + t2 + C.

In order to find C, we use u(0, x) = cosx to compute∫ π

0

cosxdx = C ⇒ C = 0.

We conclude ∫ π

0

u(t, x)dx = t + t2.

7. Separate variables with u(t, x) = T (t)X(x), and set

T ′

T
=

X ′′

X
= −λ,

from which we have the eigenvalue problem

X ′′ + λX =0
X ′(0) =0
X(+∞) bounded.

In this case, all λ ≥ 0 are eigenvalues, with associated eigenfunctions

Xλ(x) = cos
√

λx.

Since the eigenvalues are continuous, we integrate rather than summing, obtaining a general solution of the
form

u(t, x) =
∫ ∞

0

A(λ)e−λt cos
√

λxdλ.

Finally, set ω =
√

λ to get

u(t, x) =
∫ ∞

0

A(ω2)e−ω2t cosωx2ωdω.

The stated result follows from the choice

C(ω) = 2ωA(ω2).

8. Taking the Fourier transform of this equation, we have

ût = − iωû

û(t, ω) = f̂(ω)e−iωt.

Inverting, we compute

u(t, x) =
∫ +∞

−∞
e−iωxf̂(ω)e−iωtdω =

∫ +∞

−∞
e−iω(x+t)f̂(ω)dω,

where this last expression is the inverse transform of f̂ , evaluated at x + t. That is,

u(t, x) = f(x + t).
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9. Since f(x) is only defined on the interval [0, L], we are free to extend it in any way we like to the full
interval [−L, L], where Fourier’s theorem is valid. We extend it as an even function, so that the extension
fE(x) is defined by

fE(x) =

{
f(x), 0 ≤ x ≤ L

f(−x), −L ≤ x ≤ 0.

If f(x) is piecewise smooth on [0, L], then fE(x) is piecewise smooth on [−L, L], and Fourier’s Theorem
states that fE definitely has a convergent Fourier series,

fE(x) = A0 +
∞∑

n=1

An cos
nπx

L
+ Bn sin

nπx

L
.

We now compute A0, An, and Bn, keeping in mind that fE(x) is an even function. We have

A0 =
1

2L

∫ +L

−L

fE(x)dx =
1
L

∫ L

0

fE(x)dx

An =
1
L

∫ +L

−L

fE(x) cos
nπx

L
dx =

2
L

∫ L

0

fE(x) cos
nπx

L
dx

Bn =
1
L

∫ +L

−L

fE(x) sin
nπx

L
dx = 0.

In this way, we see that the series for fE(x) is a Fourier cosine series that converges on [−L, L]. If it converges
on [−L, L], it must converge on [0, L], and since f(x) and fE(x) agree there, it converges to f(x).

Last, since fE(x) is an even extension, we have

lim
x→0−

fE(x) = lim
x→0+

fE(x)

lim
x→L−

fE(x) = lim
x→−L+

fE(x),

so that the Fourier cosine series of f(x) converges at x = 0 to

lim
x→0+

f(x),

and at x = L to
lim

x→L−
f(x).

10. First, under these assumptions, f(x) has a convergent Fourier cosine series (by Problem 9),

f(x) = A0 +
∞∑

n=1

An cos
nπx

L
.

Moreover, f ′(x) has a convergent sine series

f ′(x) =
∞∑

n=1

Bn sin
nπx

L
,

with

Bn =
2
L

∫ L

0

f ′(x) sin
nπx

L
dx =

2
L

[
f(x) sin

nπx

L

∣∣∣L
0
− nπ

L

∫ L

0

f(x) cos
nπx

L
dx

]
= − nπ

L
An,

which gives precisely the series that arises by differentiating the Fourier cosine series of f(x) term by term.
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