M412 Practice Problems for Final Exam

1. Solve the PDE

$$
\begin{aligned}
u_{t}+t^{3} u_{x} & =u \\
u(t, 0) & =t, \quad t>0 \\
u(0, x) & =1-e^{-x}, \quad x>0 .
\end{aligned}
$$

2. Solve the PDE

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x} ; \quad x>0, t>0 \\
u(0, x) & =f(x) ; \quad x>0 \\
u_{t}(0, x) & =g(x) ; \quad x>0 \\
u_{x}(t, 0) & =t ; \quad t>0
\end{aligned}
$$

3. Solve the PDE

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u(x, 0)=0, \quad u(x, 2)=0 \\
& u(0, y)=0, \quad u(1, y)=2
\end{aligned}
$$

4. Solve the PDE

$$
\begin{aligned}
u_{t} & =u_{x x}+e^{-t} \sin 3 \pi x \\
u(t, 0) & =0, \quad u(t, 1)=0 \\
u(0, x) & =\sin \pi x
\end{aligned}
$$

5. For the PDE in Problem 4, find an equilbrium solution and show that it matches the limit as $t \rightarrow \infty$ of your solution to Problem 4.
6. For the PDE

$$
\begin{aligned}
u_{t} & =u_{x x}+t \sin x \\
u_{x}(t, 0) & =-1 \\
u_{x}(t, \pi) & =0 \\
u(0, x) & =\cos x
\end{aligned}
$$

find the total energy

$$
\int_{0}^{\pi} u(t, x) d x
$$

7. Use separation of variables to show that solutions to the quarter-plane problem

$$
\begin{aligned}
u_{t} & =u_{x x} ; \quad t>0, x>0 \\
u_{x}(t, 0) & =0 \\
\mid u(t,+\infty) & \mid \text { bounded } \\
u(0, x) & =f(x)
\end{aligned}
$$

can be written in the form

$$
u(t, x)=\int_{0}^{\infty} C(\omega) e^{-\omega^{2} t} \cos \omega x d \omega
$$

for some appropriate constant $C(\omega)$.
8. Use the method of Fourier tranforms to solve the first order equation

$$
\begin{aligned}
u_{t} & =u_{x} \\
u(0, x) & =f(x) .
\end{aligned}
$$

9. [This question appeared on Exam 3.] Use Fourier's Theorem to prove that if a function $f(x)$ is piecewise smooth on an interval $[0, L]$, then the Fourier cosine series for $f(x)$ converges for all $x \in(0, L)$ to
$(i): f(x)$ if f is continuous at the point x
(ii) : $\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)$if f has a jump discontinuity at the point x

What does the Fourier cosine series converge to at the endpoints $x=0$ and $x=L$?
10. We have seen in the homework that if a function $f(x)$ is piecewise smooth on an interval $[0, L]$, then the Fourier sine series for $f(x)$ converges for all $x \in(0, L)$ to

$$
\begin{aligned}
& (i): f(x) \text { if } f \text { is continuous at the point } x \\
& \text { (ii) }: \frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right) \text {if } f \text { has a jump discontinuity at the point } x
\end{aligned}
$$

Use this and Problem 9 to prove that if $f(x)$ is continuous on $[0, L]$ and $f^{\prime}(x)$ is piecewise smooth on the same interval, then the Fourier cosine series for $f(x)$ can be differentiated term by term.

Solutions

1. For $x \geq \frac{t^{4}}{4}$, we have

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{3} ; & x(0)=x_{0} \Rightarrow x(t)=\frac{t^{4}}{4}+x_{0} \\
\frac{d u}{d t}=u ; & u(0)=1-e^{-x_{0}} \Rightarrow u(t)=\left(1-e^{-x_{0}}\right) e^{t}
\end{array}
$$

from which we conclude

$$
u(t, x)=\left(1-e^{-\left(x-\frac{t^{4}}{4}\right)}\right) e^{t}
$$

For $x \leq \frac{t^{4}}{4}$, we have

$$
\begin{aligned}
& \frac{d x}{d t}=t^{3} ; \quad x\left(t_{0}\right)=0 \Rightarrow x(t)=\frac{t^{4}}{4}-\frac{t_{0}^{4}}{4} \\
& \frac{d u}{d t}=u ; \quad u\left(t_{0}\right)=t_{0} \Rightarrow u(t)=t_{0} e^{t-t_{0}}
\end{aligned}
$$

from which we conclude

$$
u(t, x)=\left(t^{4}-4 x\right)^{1 / 4} e^{t-\left(t^{4}-4 x\right)^{1 / 4}}
$$

Combining these,

$$
u(t, x)= \begin{cases}\left(t^{4}-4 x\right)^{1 / 4} e^{t-\left(t^{4}-4 x\right)^{1 / 4}}, & x \leq \frac{t^{4}}{4} \\ \left(1-e^{-\left(x-\frac{t^{4}}{4}\right)}\right) e^{t}, & x \geq \frac{t^{4}}{4}\end{cases}
$$

2. We write solutions in the form

$$
u(t, x)=F(x-c t)+G(x+c t)
$$

where for $x>0$, we have

$$
\begin{aligned}
& F(x)=\frac{1}{2} f(x)-\frac{1}{2 c} \int_{0}^{x} g(y) d y \\
& G(x)=\frac{1}{2} f(x)+\frac{1}{2 c} \int_{0}^{x} g(y) d y
\end{aligned}
$$

This entirely determines the solution for $x-c t>0$. For $x-c t<0$, we need to evaluate F at negative numbers. In order to do this, we notice that our final condition gives

$$
t=F^{\prime}(-c t)+G^{\prime}(c t)
$$

Setting $x=-c t$, we find

$$
F^{\prime}(x)=-\frac{x}{c}-G^{\prime}(-x)
$$

We compute, now,

$$
\int_{0}^{x} F^{\prime}(y) d y=\int_{0}^{x}-\frac{y}{c}-G^{\prime}(-y) d y \Rightarrow F(x)-F(0)=-\frac{x^{2}}{2 c}+G(-x)-G(0)
$$

It's clear from our expressions for F and G that (assuming our solution is continuous) $F(0)=G(0)$, from which we conclude

$$
F(x)=-\frac{x^{2}}{2 c}+G(-x)
$$

In this we, for $x-c t<0$,

$$
F(x-c t)=-\frac{(x-c t)^{2}}{2 c}+G(c t-x)
$$

We have, then

$$
u(t, x)= \begin{cases}\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) d y, & x-c t>0 \\ -\frac{(x-c t)^{2}}{2 c}+\frac{1}{2}[f(c t-x)+f(x+c t)]+\frac{1}{2 c} \int_{0}^{x+c t} g(y) d y+\frac{1}{2 c} \int_{0}^{c t-x} g(y) d y, & x-c t<0\end{cases}
$$

3. Since we have a bounded domain, we proceed by separation of variables, letting $u(x, y)=X(x) Y(y)$, for which we find

$$
u_{x x}+u_{y y}=0 \Rightarrow X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)=0 \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}=\lambda
$$

Observe here in particular that we have chosen the sign in front of λ so that the variable with both boundary conditions 0 (Y in this case) will have the standard eigenvalue equation, $Y^{\prime \prime}+\lambda Y=0$. We have, $u(x, 0)=$ $0 \Rightarrow Y(0)=0, u(x, 2)=0 \Rightarrow Y(2)=0$, and $u(0, y)=0 \Rightarrow X(0)=0$. We have, then, the two ODE

$$
\begin{array}{ll}
Y^{\prime \prime}+\lambda Y=0 ; & Y(0)=0, Y(2)=0 \\
X^{\prime \prime}-\lambda X=0 ; & X(0)=0
\end{array}
$$

For the $Y(y)$ equation, we take $Y(y)=C_{1} \cos \sqrt{\lambda} y+C_{2} \sin \sqrt{\lambda} y$, and use the boundary conditions to conclude

$$
Y_{n}(y)=\sin \frac{n \pi}{2} y, \quad n=1,2,3 \ldots
$$

For $X(x)$, we have

$$
X(x)=C_{3} \cosh \frac{n \pi}{2} x+C_{4} \sinh \frac{n \pi}{2} x
$$

for which our boundary condition $X(0)=0$ determines $C_{3}=0$, eliminating one constant of integration. We finally have our general expansion for $u(x, y)$,

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi}{2} x \sin \frac{n \pi}{2} y
$$

Finally, we employ our last boundary condition, $u(1, y)=2$ to obtain the Fourier sine series

$$
2=\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi}{2} \sin \frac{n \pi}{2} y
$$

We have, then

$$
A_{n} \sinh \frac{n \pi}{2}=\frac{2}{2} \int_{0}^{2} 2 \sin \frac{n \pi}{2} y d y=-\left.\frac{4}{n \pi} \cos \frac{n \pi}{2} y\right|_{0} ^{2}=-\frac{4}{n \pi}\left[(-1)^{n}-1\right]
$$

where I have explicitly written the fraction $\frac{2}{2}$ as a reminder that it comes from $\frac{2}{H}$. Our solution is

$$
u(x, y)=\sum_{n=1}^{\infty} \frac{-\frac{4}{n \pi}\left[(-1)^{n}-1\right]}{\sinh \frac{n \pi}{2}} \sinh \frac{n \pi x}{2} \sin \frac{n \pi}{2} y
$$

4. Due to the non-homogeneous term, we must proceed here by eigenfunction expansion. First, we construct eigenfunctions, $X_{n}(x)$, for the homogeneous problem. Substituting $u(t, x)=T(t) X(x)$ into $u_{t}=u_{x x}$, and considering our boundary conditions, we determine

$$
X^{\prime \prime}+\lambda X=0 ; \quad X(0)=0, X(1)=0
$$

for which we have $X_{n}(x)=\sin n \pi x$. We now look for a solution as an expansion of these eigenfunctions

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n}(t) \sin n \pi x
$$

Substituting this expansion back into the full non-homogeneous equation, we find

$$
\sum_{n=1}^{\infty}\left(c_{n}^{\prime}(t)+n^{2} \pi^{2} c_{n}(t)\right) \sin n \pi x=e^{-t} \sin 3 \pi x
$$

The key observation we make here is that this is simply a Fourier sine series with fancy constants, $B_{n}=$ $c_{n}^{\prime}(t)-n^{2} \pi^{2} c_{n}(t)$. Consequently, we have

$$
c_{n}^{\prime}(t)+n^{2} \pi^{2} c_{n}(t)=2 \int_{0}^{1} e^{-t} \sin (3 \pi x) \sin (n \pi x) d x= \begin{cases}e^{-t}, & n=3 \\ 0, & n \neq 3\end{cases}
$$

For initial conditions, we take our initial data

$$
u(0, x)=\sin \pi x \Rightarrow \sin \pi x=\sum_{n=1}^{\infty} c_{n}(0) \sin n \pi x
$$

for which

$$
c_{n}(0)=2 \int_{0}^{1} \sin (\pi x) \sin (n \pi x) d x= \begin{cases}1, & n=1 \\ 0, & n \neq 1\end{cases}
$$

We have now an ODE to solve for each $n=1,2,3 \ldots$, but we observe that if both $c_{n}^{\prime}(t)+n^{2} \pi^{2} c_{n}(t)$ and $c_{n}(0)$ are 0 , the $c_{n}(t) \equiv 0$. In this case, the only two expansion coefficients that are not identically 0 are $c_{1}(t)$ and $c_{3}(t)$. For $c_{1}(t)$, we have

$$
c_{1}^{\prime}+\pi^{2} c_{1}=0 ; \quad c_{1}(0)=1 \Rightarrow c_{1}(t)=e^{-\pi^{2} t}
$$

For $c_{3}(t)$, we have

$$
c_{3}^{\prime}+9 \pi^{2} c_{3}=e^{-t} ; \quad c_{3}(0)=0
$$

which we solve by the integrating factor method. (Recall that for a general linear first order equation $y^{\prime}(t)+p(t) y(t)=g(t)$, the integrating factor is $e^{\int p(t) d t}$, where the constant of integration can be dropped.) In this case, the integrating factor is simply $e^{9 \pi^{2} t}$, and we have

$$
\left(e^{9 \pi^{2} t} c_{3}\right)^{\prime}=e^{9 \pi^{2} t} e^{-t} \Rightarrow e^{9 \pi^{2} t} c_{3}(t)=\frac{1}{9 \pi^{2}-1} e^{-t\left(1-9 \pi^{2}\right)}+C
$$

According to our intial condition $c_{3}(0)=0$, we have

$$
C=\frac{1}{1-9 \pi^{2}}
$$

We conclude that

$$
c_{3}(t)=\frac{1}{1-9 \pi^{2}}\left(e^{-9 \pi^{2} t}-e^{-t}\right)
$$

with then

$$
u(t, x)=e^{-\pi^{2} t} \sin (\pi x)+\frac{1}{1-9 \pi^{2}}\left(e^{-9 \pi^{2} t}-e^{-t}\right) \sin (3 \pi x)
$$

5. Our equilibrium equation for $\bar{u}(x)$ is

$$
\begin{aligned}
\bar{u}_{x x} & =0 \\
\bar{u}(0) & =0 \\
\bar{u}(1) & =0,
\end{aligned}
$$

which is solved by

$$
\bar{u}(x) \equiv 0 .
$$

Taking a limit as $t \rightarrow \infty$ of our solution to Problem 4, we see that they agree.
6. Integrating the full equation, we have

$$
\int_{0}^{\pi} u_{t} d x=\int_{0}^{\pi} u_{x x} d x+\int_{0}^{\pi} t \sin x d x \Rightarrow \frac{d}{d t} \int_{0}^{\pi} u(t, x) d x=u_{x}(t, \pi)-u_{x}(t, 0)-\left.t \cos x\right|_{0} ^{\pi}
$$

It follows that

$$
\frac{d}{d t} \int_{0}^{\pi} u(t, x) d x=1+2 t
$$

Integrating,

$$
\int_{0}^{\pi} u(t, x) d x=t+t^{2}+C
$$

In order to find C, we use $u(0, x)=\cos x$ to compute

$$
\int_{0}^{\pi} \cos x d x=C \Rightarrow C=0
$$

We conclude

$$
\int_{0}^{\pi} u(t, x) d x=t+t^{2}
$$

7. Separate variables with $u(t, x)=T(t) X(x)$, and set

$$
\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

from which we have the eigenvalue problem

$$
\begin{aligned}
& X^{\prime \prime}+\lambda X=0 \\
& \quad X^{\prime}(0)=0 \\
& X(+\infty) \text { bounded. }
\end{aligned}
$$

In this case, all $\lambda \geq 0$ are eigenvalues, with associated eigenfunctions

$$
X_{\lambda}(x)=\cos \sqrt{\lambda} x
$$

Since the eigenvalues are continuous, we integrate rather than summing, obtaining a general solution of the form

$$
u(t, x)=\int_{0}^{\infty} A(\lambda) e^{-\lambda t} \cos \sqrt{\lambda} x d \lambda
$$

Finally, set $\omega=\sqrt{\lambda}$ to get

$$
u(t, x)=\int_{0}^{\infty} A\left(\omega^{2}\right) e^{-\omega^{2} t} \cos \omega x 2 \omega d \omega
$$

The stated result follows from the choice

$$
C(\omega)=2 \omega A\left(\omega^{2}\right)
$$

8. Taking the Fourier transform of this equation, we have

$$
\begin{aligned}
\hat{u}_{t} & =-i \omega \hat{u} \\
\hat{u}(t, \omega) & =\hat{f}(\omega) e^{-i \omega t} .
\end{aligned}
$$

Inverting, we compute

$$
u(t, x)=\int_{-\infty}^{+\infty} e^{-i \omega x} \hat{f}(\omega) e^{-i \omega t} d \omega=\int_{-\infty}^{+\infty} e^{-i \omega(x+t)} \hat{f}(\omega) d \omega
$$

where this last expression is the inverse transform of \hat{f}, evaluated at $x+t$. That is,

$$
u(t, x)=f(x+t)
$$

9. Since $f(x)$ is only defined on the interval $[0, L]$, we are free to extend it in any way we like to the full interval $[-L, L]$, where Fourier's theorem is valid. We extend it as an even function, so that the extension $f_{E}(x)$ is defined by

$$
f_{E}(x)= \begin{cases}f(x), & 0 \leq x \leq L \\ f(-x), & -L \leq x \leq 0\end{cases}
$$

If $f(x)$ is piecewise smooth on $[0, L]$, then $f_{E}(x)$ is piecewise smooth on $[-L, L]$, and Fourier's Theorem states that f_{E} definitely has a convergent Fourier series,

$$
f_{E}(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}
$$

We now compute A_{0}, A_{n}, and B_{n}, keeping in mind that $f_{E}(x)$ is an even function. We have

$$
\begin{aligned}
& A_{0}=\frac{1}{2 L} \int_{-L}^{+L} f_{E}(x) d x=\frac{1}{L} \int_{0}^{L} f_{E}(x) d x \\
& A_{n}=\frac{1}{L} \int_{-L}^{+L} f_{E}(x) \cos \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f_{E}(x) \cos \frac{n \pi x}{L} d x \\
& B_{n}=\frac{1}{L} \int_{-L}^{+L} f_{E}(x) \sin \frac{n \pi x}{L} d x=0
\end{aligned}
$$

In this way, we see that the series for $f_{E}(x)$ is a Fourier cosine series that converges on $[-L, L]$. If it converges on $[-L, L]$, it must converge on $[0, L]$, and since $f(x)$ and $f_{E}(x)$ agree there, it converges to $f(x)$.
Last, since $f_{E}(x)$ is an even extension, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f_{E}(x) & =\lim _{x \rightarrow 0^{+}} f_{E}(x) \\
\lim _{x \rightarrow L^{-}} f_{E}(x) & =\lim _{x \rightarrow-L^{+}} f_{E}(x)
\end{aligned}
$$

so that the Fourier cosine series of $f(x)$ converges at $x=0$ to

$$
\lim _{x \rightarrow 0^{+}} f(x)
$$

and at $x=L$ to

$$
\lim _{x \rightarrow L^{-}} f(x)
$$

10. First, under these assumptions, $f(x)$ has a convergent Fourier cosine series (by Problem 9),

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

Moreover, $f^{\prime}(x)$ has a convergent sine series

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

with

$$
\begin{aligned}
B_{n} & =\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \sin \frac{n \pi x}{L} d x=\frac{2}{L}\left[\left.f(x) \sin \frac{n \pi x}{L}\right|_{0} ^{L}-\frac{n \pi}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x\right] \\
& =-\frac{n \pi}{L} A_{n}
\end{aligned}
$$

which gives precisely the series that arises by differentiating the Fourier cosine series of $f(x)$ term by term.

