
Solving ODE in MATLAB

P. Howard

Fall 2009

Contents

1 Finding Explicit Solutions 1

1.1 First Order Equations . 2
1.2 Second and Higher Order Equations . 3
1.3 Systems . 3

2 Finding Numerical Solutions 5

2.1 First-Order Equations with Anonymous Functions 5
2.2 First Order Equations with M-files . 8
2.3 Systems of ODE . 9
2.4 Passing Parameters . 10
2.5 Second Order Equations . 11

3 Laplace Transforms 12

4 Boundary Value Problems 12

5 Event Location 13

6 Numerical Methods 16

6.1 Euler’s Method . 16
6.2 Higher order Taylor Methods . 20

7 Advanced ODE Solvers 22

7.1 Stiff ODE . 22

1 Finding Explicit Solutions

MATLAB has an extensive library of functions for solving ordinary differential equations.
In these notes, we will only consider the most rudimentary.

1

1.1 First Order Equations

Though MATLAB is primarily a numerics package, it can certainly solve straightforward
differential equations symbolically.1 Suppose, for example, that we want to solve the first
order differential equation

y′(x) = xy. (1.1)

We can use MATLAB’s built-in dsolve(). The input and output for solving this problem in
MATLAB is given below.

>>y=dsolve(’Dy=y*x’,’x’)
y =
C2*exp(xˆ2/2)

Notice in particular that MATLAB uses capital D to indicate the derivative and requires that
the entire equation appear in single quotes. MATLAB takes t to be the independent variable
by default, so here x must be explicitly specified as the independent variable. Alternatively,
if you are going to use the same equation a number of times, you might choose to define it
as a variable, say, eqn1.

>>eqn1=’Dy=y*x’
eqn1 =
Dy=y*x
>>y=dsolve(eqn1,’x’)
y =
C2*exp(xˆ2/2)

To solve an initial value problem, say, equation (1.1) with y(1) = 1, use

>>y=dsolve(eqn1,’y(1)=1’,’x’)
y =
exp(xˆ2/2)/exp(1)ˆ(1/2)

or

>>inits=’y(1)=1’;
>>y=dsolve(eqn1,inits,’x’)
y =
exp(xˆ2/2)/exp(1)ˆ(1/2)

Now that we’ve solved the ODE, suppose we want to plot the solution to get a rough idea of
its behavior. We run immediately into two minor difficulties: (1) our expression for y(x) isn’t
suited for array operations (.*, ./, .ˆ), and (2) y, as MATLAB returns it, is actually a symbol
(a symbolic object). The first of these obstacles is straightforward to fix, using vectorize().
For the second, we employ the useful command eval(), which evaluates or executes text
strings that constitute valid MATLAB commands. Hence, we can use

1Actually, whenever you do symbolic manipulations in MATLAB what you’re really doing is calling

Maple.

2

>>x = linspace(0,1,20);
>>z = eval(vectorize(y));
>>plot(x,z)

You may notice a subtle point here, that eval() evaluates strings (character arrays), and y,
as we have defined it, is a symbolic object. However, vectorize converts symbolic objects
into strings.

1.2 Second and Higher Order Equations

Suppose we want to solve and plot the solution to the second order equation

y′′(x) + 8y′(x) + 2y(x) = cos(x); y(0) = 0, y′(0) = 1. (1.2)

The following (more or less self-explanatory) MATLAB code suffices:

>>eqn2=’D2y+8*Dy+2*y=cos(x)’;
>>inits2=’y(0)=0,Dy(0)=1’;
>>y=dsolve(eqn2,inits2,’x’)
y =
(14ˆ(1/2)*exp(4*x - 14ˆ(1/2)*x)*exp(x*(14ˆ(1/2) - 4))*(sin(x) - cos(x)*(14ˆ(1/2)

- 4)))/(28*((14ˆ(1/2) - 4)ˆ2 + 1)) - (98*14ˆ(1/2) + 378)/(exp(x*(14ˆ(1/2) +
4))*(868*14ˆ(1/2) + 3136)) - (14ˆ(1/2)*exp(4*x + 14ˆ(1/2)*x)*(sin(x) + cos(x)*(14ˆ(1/2)
+ 4)))/(28*exp(x*(14ˆ(1/2) + 4))*((14ˆ(1/2) + 4)ˆ2 + 1)) - (exp(x*(14ˆ(1/2)
- 4))*(98*14ˆ(1/2) - 378))/(868*14ˆ(1/2) - 3136)

>>x=linspace(0,1,20);
>>z=eval(vectorize(y));
>>plot(x,z)

Clearly, the symbolic expression MATLAB gives isn’t always particularly useful.

1.3 Systems

Suppose we want to solve and plot solutions to the system of three ordinary differential
equations

x′(t) = x(t) + 2y(t) − z(t)

y′(t) = x(t) + z(t)

z′(t) = 4x(t) − 4y(t) + 5z(t). (1.3)

First, to find a general solution, we proceed as in Section 4.1.1, except with each equation
now braced in its own pair of (single) quotation marks:

>>[x,y,z]=dsolve(’Dx=x+2*y-z’,’Dy=x+z’,’Dz=4*x-4*y+5*z’)
x =
- (C3*exp(t))/2 - (C4*exp(2*t))/2 - (C5*exp(3*t))/4

3

y =
(C3*exp(t))/2 + (C4*exp(2*t))/4 + (C5*exp(3*t))/4
z =
C3*exp(t) + C4*exp(2*t) + C5*exp(3*t)

(If you use MATLAB to check your work, keep in mind that its choice of constants C1,
C2, and C3 probably won’t correspond with your own. For example, you might have C =
−2C1 + 1/2C3, so that the coefficients of exp(t) in the expression for x are combined.
Fortunately, there is no such ambiguity when initial values are assigned.) Notice that since
no independent variable was specified, MATLAB used its default, t. For an example in which
the independent variable is specified, see Section 4.1.1. To solve an initial value problem,
we simply define a set of initial values and add them at the end of our dsolve() command.
Suppose we have x(0) = 1, y(0) = 2, and z(0) = 3. We have, then,

>>inits=’x(0)=1,y(0)=2,z(0)=3’;
>>[x,y,z]=dsolve(’Dx=x+2*y-z’,’Dy=x+z’,’Dz=4*x-4*y+5*z’,inits)
x =
6*exp(2*t) - (5*exp(3*t))/2 - (5*exp(t))/2
y =
(5*exp(3*t))/2 - 3*exp(2*t) + (5*exp(t))/2
z =
10*exp(3*t) - 12*exp(2*t) + 5*exp(t)

Finally, plotting this solution can be accomplished as in Section 4.1.1.

>>t=linspace(0,.5,25);
>>xx=eval(vectorize(x));
>>yy=eval(vectorize(y));
>>zz=eval(vectorize(z));
>>plot(t, xx, t, yy, t, zz)

The figure resulting from these commands is included as Figure 1.1.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Figure 1.1: Solutions to equation (1.3).

4

2 Finding Numerical Solutions

MATLAB has a number of tools for numerically solving ordinary differential equations. We
will focus on the main two, the built-in functions ode23 and ode45 , which implement versions
of Runge–Kutta 2nd/3rd-order and Runge–Kutta 4th/5th-order, respectively.

2.1 First-Order Equations with Anonymous Functions

Example 2.1. Numerically approximate the solution of the first order differential equation

dy

dx
= xy2 + y; y(0) = 1,

on the interval x ∈ [0, .5].
For any differential equation in the form y′ = f(x, y), we begin by defining the function

f(x, y). For single equations, we can define f(x, y) as an anonymous function.2 Here,

>>f = @(x,y) x*yˆ2+y
f =
@(x,y)x*yˆ2+y

The basic usage for MATLAB’s solver ode45 is

ode45(function,domain,initial condition).

That is, we use

>>[x,y]=ode45(f,[0 .5],1)

and MATLAB returns two column vectors, the first with values of x and the second with
values of y. (The MATLAB output is fairly long, so I’ve omitted it here.) Since x and y are
vectors with corresponding components, we can plot the values with

>>plot(x,y)

which creates Figure 2.1.
Choosing the partition. In approximating this solution, the algorithm ode45 has

selected a certain partition of the interval [0, .5], and MATLAB has returned a value of y at
each point in this partition. It is often the case in practice that we would like to specify the
partition of values on which MATLAB returns an approximation. For example, we might
only want to approximate y(.1), y(.2), ..., y(.5). We can specify this by entering the vector
of values [0, .1, .2, .3, .4, .5] as the domain in ode45. That is, we use

2In MATLAB’s version 7 series inline functions are being replaced by anonymous functions.

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 2.1: Plot of the solution to y′ = xy2 + y, with y(0) = 1.

>>xvalues=0:.1:.5
xvalues =
0 0.1000 0.2000 0.3000 0.4000 0.5000
>>[x,y]=ode45(f,xvalues,1)
x =
0
0.1000
0.2000
0.3000
0.4000
0.5000
y =
1.0000
1.1111
1.2500
1.4286
1.6667
2.0000

It is important to point out here that MATLAB continues to use roughly the same partition
of values that it originally chose; the only thing that has changed is the values at which it is
printing a solution. In this way, no accuracy is lost.

Options. Several options are available for MATLAB’s ode45 solver, giving the user lim-
ited control over the algorithm. Two important options are relative and absolute tolerance,
respecively RelTol and AbsTol in MATLAB. At each step of the ode45 algorithm, an error

6

is approximated for that step. If yk is the approximation of y(xk) at step k, and ek is the
approximate error at this step, then MATLAB chooses its partition to ensure

ek ≤ max(RelTol ∗ |yk|, AbsTol),

where the default values are RelTol = 10−3 = .001 and AbsTol = 10−6 = .000001. Notice
particularly that with this convention if the magnitude of the solution |yk| gets large then the
error can be quite large and RelTol should be reduced. On the other hand, if the magnitude
of the solution is smaller than 10−6 then AbsTol clearly must be reduced.

As an example we note that for the equation y′ = xy2 + y, with y(0) = 1, the exact
solution is

y(x) =
1

1 − x
.

(In order to see this, either simply compute y′ and check it, or write the equation as (e−xy)′ =
e−xxy2, then set w = e−xy, so that w′ = exxw2. Now separate variables.) Clearly, the
solution will get large near x = 1, so let’s check what happens numerically. For this example,
we will use format long since small numbers are involved.

>>format long
>>xvalues=linspace(0,1-1e-6,5);
>>[x,y]=ode45(@firstode,xvalues,1)
{Warning: Failure at t=9.999897e-01. Unable to meet integration tolerances

without reducing the step size below the
smallest value allowed (1.776357e-15) at time t.}
> In <a href=”matlab: opentoline(’/usr/local/MatlabR2009A/toolbox/matlab/funfun/ode45.m’,371,1)”

at 371
x =
0
0.249999750000000
0.499999500000000
0.749999250000000
y =
1.000000000000000
1.333333067684270
1.999997861816373
4.000188105612917

Here, MATLAB gives an error message and fails to compute a value for y as x = 1 − 10−6.
The exact value is y(1− 10−6) = 106, so the error would be roughly 106 · 10−3 = 103. In the
following code, we correct this by changing RelTol to 10−6.

>>options=odeset(’RelTol’,1e-6)
options =
AbsTol: []
BDF: []
Events: []

7

InitialStep: []
Jacobian: []
JConstant: []
JPattern: []
Mass: []
MassConstant: []
MassSingular: []
MaxOrder: []
MaxStep: []
NonNegative: []
NormControl: []
OutputFcn: []
OutputSel: []
Refine: []
RelTol: 1.000000000000000e-06
Stats: []
Vectorized: []
MStateDependence: []
MvPattern: []
InitialSlope: []
>>[x,y]=ode45(@firstode,xvalues,1,options)
x =
0
0.249999750000000
0.499999500000000
0.749999250000000
0.999999000000000
y =
1.0e+05 *
0.000010000000000
0.000013333328835
0.000019999973180
0.000039999922011
8.580803909114046

Here, we have omitted the semicolon on the odeset command so that we can see the options
MATLAB has available. We note that MATLAB now gives a value

y(1 − 10−6) = 8.5808 × 105.

Of course we can obtain more accurate results by taking RelTol to be even smaller.

2.2 First Order Equations with M-files

Alternatively, we can solve the same ODE as in Example 2.1 by first defining f(x, y) as an
M-file firstode.m.

8

function yprime = firstode(x,y);
% FIRSTODE: Computes yprime = x*yˆ2+y
yprime = x*yˆ2 + y;

In this case, we only require one change in the ode45 command: we must use a pointer @
to indicate the M-file. That is, we use the following commands.

>>xspan = [0,.5];
>>y0 = 1;
>>[x,y]=ode45(@firstode,xspan,y0);

2.3 Systems of ODE

Solving a system of ODE in MATLAB is quite similar to solving a single equation, though
since a system of equations cannot be defined as an inline function we must define it as an
M-file.

Example 2.2. Solve the system of Lorenz equations,3

dx

dt
= − σx + σy

dy

dt
=ρx − y − xz

dz

dt
= − βz + xy, (2.1)

where for the purposes of this example, we will take σ = 10, β = 8/3, and ρ = 28, as well as
x(0) = −8, y(0) = 8, and z(0) = 27. The MATLAB M-file containing the Lorenz equations
appears below.

function xprime = lorenz(t,x);
%LORENZ: Computes the derivatives involved in solving the
%Lorenz equations.
sig=10;
beta=8/3;
rho=28;
xprime=[-sig*x(1) + sig*x(2); rho*x(1) - x(2) - x(1)*x(3); -beta*x(3) + x(1)*x(2)];

Observe that x is stored as x(1), y is stored as x(2), and z as stored as x(3). Additionally,
xprime is a column vector, as is evident from the semicolon following the first appearance of
x(2). If in the Command Window, we type

>>x0=[-8 8 27];
>>tspan=[0,20];
>>[t,x]=ode45(@lorenz,tspan,x0)

3The Lorenz equations have some properties of equations arising in atmospherics. Solutions of the Lorenz

equations have long served as an example for chaotic behavior.

9

Though not given here, the output for this last command consists of a column of times
followed by a matrix with three columns, the first of which corresponds with values of x
at the associated times, and similarly for the second and third columns for y and z. The
matrix has been denoted x in the statement calling ode45, and in general any coordinate of
the matrix can be specified as x(m, n), where m denotes the row and n denotes the column.
What we will be most interested in is referring to the columns of x, which correspond with
values of the components of the system. Along these lines, we can denote all rows or all
columns by a colon :. For example, x(:,1) refers to all rows in the first column of the matrix
x; that is, it refers to all values of our original x component. Using this information, we can
easily plot the Lorenz strange attractor, which is a plot of z versus x:

>>plot(x(:,1),x(:,3))

See Figure 2.2.

−20 −15 −10 −5 0 5 10 15 20
5

10

15

20

25

30

35

40

45
The Lorenz Strange Attractor

x

y

Figure 2.2: The Lorenz Strange Attractor

Of course, we can also plot each component of the solution as a function of t, and one
useful way to do this is to stack the results. We can create Figure 2.3 with the following
MATLAB code.

>>subplot(3,1,1)
>>plot(t,x(:,1))
>>subplot(3,1,2)
>>plot(t,x(:,2))
>>subplot(3,1,3)
>>plot(t,x(:,3))

2.4 Passing Parameters

In analyzing system of differential equations, we often want to experiment with different
parameter values. For example, in studying the Lorenz equations we might want to consider
the behavior as a function of the values of σ, β, and ρ. Of course, one way to change this
is to manually re-open the M-file lorenz.m each time we want to try new values, but not

10

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20
Components for the Lorenz Equations

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

Figure 2.3: Plot of coordinates for the Lorenz equations as a function of t.

only is a slow way to do it, it’s unwieldy to automate. What we can do instead is pass
parameter values directly to our M-file through the ode45 call statement. In order to see
how this works, we first alter lorenz.m into lorenz1.m, the latter of which accepts a vector
of parameters that we denote p.

function xprime = lorenz1(t,x,p);
%LORENZ: Computes the derivatives involved in solving the
%Lorenz equations.
sig=p(1); beta=p(2); rho=p(3);
xprime=[-sig*x(1) + sig*x(2); rho*x(1) - x(2) - x(1)*x(3); -beta*x(3) + x(1)*x(2)];

We can now send parameter values with ode45.

>>p=[10 8/3 28];
>>[t,x]=ode45(@lorenz1,tspan,x0,[],p);

2.5 Second Order Equations

The first step in solving a second (or higher) order ordinary differential equation in MATLAB
is to write the equation as a first order system. As an example, let’s return to equation (1.2)
from Subsection 1.2. Taking y1(x) = y(x) and y2(x) = y′(x), we have the system

y′

1(x) = y2(x)

y′

2(x) = − 8y2(x) − 2y1(x) + cos(x).

We can now proceed as in Section 2.3.

11

3 Laplace Transforms

One of the most useful tools in mathematics is the Laplace transform. MATLAB has built-
in routines for computing both Laplace transforms and inverse Laplace transforms. For
example, to compute the Laplace transform of f(t) = t2, type simply

>>syms t;
>>laplace(tˆ2)

In order to invert, say, F (s) = 1
1+s

, type

>>syms s;
>>ilaplace(1/(1+s))

4 Boundary Value Problems

For various reasons of arguable merit most introductory courses on ordinary differential
equations focus primarily on initial value problems (IVP’s). Another class of ODE’s that
often arise in applications are boundary value problems (BVP’s). Consider, for example, the
differential equation

y′′ − 3y′ + 2y =0

y(0) = 0

y(1) = 10,

where our conditions y(0) = 0 and y(1) = 10 are specified on the boundary of the interval of
interest x ∈ [0, 1]. (Though our solution will typically extend beyond this interval, the most
common scenario in boundary value problems is the case in which we are only interested in
values of the independent variable between the specified endpoints.) The first step in solving
this type of equation is to write it as a first order system with y1 = y and y2 = y′, for which
we have

y′

1 = y2

y′

2 = − 2y1 + 3y2.

We record this system in the M-file bvpexample.m.

function yprime = bvpexample(t,y)
%BVPEXAMPLE: Differential equation for boundary value
%problem example.
yprime=[y(2); -2*y(1)+3*y(2)];

Next, we write the boundary conditions as the M-file bc.m, which records boudary residues.

function res=bc(y0,y1)
%BC: Evaluates the residue of the boundary condition
res=[y0(1);y1(1)-10];

12

By residue, we mean the left-hand side of the boundary condition once it has been set to 0.
In this case, the second boundary condition is y(1) = 10, so its residue is y(1) − 10, which
is recorded in the second component of the vector that bc.m returns. The variables y0 and
y1 represent the solution at x = 0 and at x = 1 respectively, while the 1 in parentheses
indicates the first component of the vector. In the event that the second boundary condition
was y′(1) = 10, we would replace y1(1)− 10 with y1(2) − 10.

We are now in a position to begin solving the boundary value problem. In the following
code, we first specify a grid of x values for MATLAB to solve on and an initial guess for
the vector that would be given for an initial value problem [y(0), y′(0)]. (Of course, y(0) is
known, but y′(0) must be a guess. Loosely speaking, MATLAB will solve a family of initial
value problems, searching for one for which the boundary conditions are met.) We solve the
boundary value problem with MATLAB’s built-in solver bvp4c.

>>sol=bvpinit(linspace(0,1,25),[0 1]);
>>sol=bvp4c(@bvpexample,@bc,sol);
>>sol.x
ans =
Columns 1 through 9
0 0.0417 0.0833 0.1250 0.1667 0.2083 0.2500 0.2917 0.3333
Columns 10 through 18
0.3750 0.4167 0.4583 0.5000 0.5417 0.5833 0.6250 0.6667 0.7083
Columns 19 through 25
0.7500 0.7917 0.8333 0.8750 0.9167 0.9583 1.0000
>>sol.y
ans =
Columns 1 through 9
0 0.0950 0.2022 0.3230 0.4587 0.6108 0.7808 0.9706 1.1821
2.1410 2.4220 2.7315 3.0721 3.4467 3.8584 4.3106 4.8072 5.3521
Columns 10 through 18
1.4173 1.6787 1.9686 2.2899 2.6455 3.0386 3.4728 3.9521 4.4805
5.9497 6.6050 7.3230 8.1096 8.9710 9.9138 10.9455 12.0742 13.3084
Columns 19 through 25
5.0627 5.7037 6.4090 7.1845 8.0367 8.9726 9.9999
14.6578 16.1327 17.7443 19.5049 21.4277 23.5274 25.8196

We observe that in this case MATLAB returns the solution as a structure whose first compo-
nent sol.x simply contains the x values we specified. The second component of the structure
sol is sol.y, which is a matrix containing as its first row values of y(x) at the x grid points
we specified, and as its second row the corresponding values of y′(x).

5 Event Location

Typically, the ODE solvers in MATLAB terminate after solving the ODE over a specified
domain of the independent variable (the range we have referred to above as xspan or tspan).

13

In applications, however, we often would like to stop the solution at a particular value of the
dependent variable (for example, when an object fired from the ground reaches its maximum
height or when a population crosses some threshhold value). As an example, suppose we
would like to determine the period of a pendulum. Since we do not know the appropriate
time interval (in fact, that’s what we’re trying to determine), we would like to specify that
MATLAB solve the equation until the pendulum swings through some specified fraction
of its complete cycle and to give the time this took. In our case, we will record the time
it takes the pendulum to reach the bottom of its arc, and multiply this by 4 to arrive at
the pendulum’s period. (In this way, the event is independent of the pendulum’s initial
conditions.) The equation for a simple pendulum is

d2θ

dt2
= −

g

l
sin θ,

which can be written as the system

y′

1 = y2

y′

2 = −
g

l
sin y1,

where y1 = θ and y2 = θ′. This system is stored in pendode.m with l = 1.

function yprime = pendode(t,y);
%PENDODE: Holds ODE for pendulum equation.
g = 9.81; l = 1;
yprime = [y(2);-(g/l)*sin(y(1))];

In addition to this file, we write an events file pendevent.m that specifies the event we are
looking for.

function [lookfor stop direction]=pendevent(t,x)
%PENDEVENT: MATLAB function M-file that contains the event
%that our pendulum reaches its center point from the right
lookfor = y(1) ; %Searches for this expression set to 0
stop = 1; %Stop when event is located
direction = -1; %Specifiy direction of motion at event

In pendevent.m, the line lookfor=y(1) specifies that MATLAB should look for the event
y(1) = 0 (that is, y(t) = 0). (If we wanted to look for the event y(t) = 1, we would use
lookfor=y(1)-1.) The line stop=1 instructs MATLAB to stop solving when the event is
located, and the command direction=-1 instructs MATLAB to only accept events for which
y(2) (that is, θ′) is negative (if the pendulum starts to the right of center, it will be moving
in the negative direction the first time it reaches the center point).

We can now solve the ODE up until the time our pendulum reaches the center point with
the following commands issued in the Command Window:

14

>>options=odeset(’Events’,@pendevent);
>>y0=[pi/4 0];
>>[t, y, te, ye, ie]=ode45(@pendode, [0, 10], y0, options);
>>te
te =
0.5215
>>ye
ye =
-0.0000 -2.3981

Here, y0 is a vector of initial data, for which we have chosen that the pendulum begin with
angle π/4 and with no initial velocity. The command ode45() returns a vector of times t, a
matrix of dependent variables y, the time at which the event occurred, te, and the values
of y when the event occurred, ye. In the event that a vector of events is specified, index
vector ie describes which event has occured in each instance. Here, only a single event has
been specified, so ie=1. In this case, we see that the event occurred at time t = .5215, and
consequently the period is P = 2.086 (within numerical errors). Though the exact period of
the pendulum is difficult to analyze numerically, it is not difficult to show through the small
angle approximation sin θ ∼= θ that for θ small the period of the pendulum is approximately

P = 2π
√

l
g
, which in our case gives P = 2.001. (While the small angle approximation gives

a period independent of θ, the period of a pendulum does depend on θ.)
In order to better understand this index ie, let’s verify that the time is the same for each

quarter swing. That is, let’s record the times at which θ = 0 and additionally the times at
which θ′ = 0 and look at the times between them. In this case, pendevent.m is replaced by
pendevent1.m.

function [lookfor stop direction]=pendevent1(t,y)
%PENDEVENT1: MATLAB function M-file that contains the event
%that our pendulum returns to its original postion pi/4
lookfor = [y(1);y(2)]; %Searches for this expression set to 0
stop = [0;0]; %Do not stop when event is located
direction = [0;0]; %Either direction accepted

In this case, we are looking for two different events, and so the variables in pendevent1.m
are vectors with two components, each corresponding with an event. In this case, we do not
stop after either event, and we do not specify a direction. In the Command Window, we
have the following.

>>options=odeset(’Events’,@pendevent1);
>>y0=[pi/4 0];
>>[t, y, te, ye, ie]=ode45(@pendode,[0 2],y0,options);
>>te
te =
0.0000
0.5216

15

1.0431
1.5646
>>ye
ye =
0.7854 -0.0000
-0.0000 -2.3972
-0.7853 0.0000
0.0000 2.3970
>>ie
ie =
2
1
2
1

We see that over a time interval [0, 2] the event times are approximately 0, .5216, 1.0431,
and 1.5646. Looking at the matrix ye, for which the first value in each row is an angular
position and the second is an angular velocity, we see that the first event correponds with the
starting position, the second event corresponds with the pendulum’s hanging straight down,
the third event corresponds with the pendulum’s having swung entirely to the opposite side,
and the fourth event corresponds with the pendulum’s hanging straight down on its return
trip. It’s now clear how ie works: it is 2 when the second event we specified occurs and 1
when the first event we specified occurs.

6 Numerical Methods

Though we can solve ODE on MATLAB without any knowledge of the numerical methods
it employs, it’s often useful to understand the basic underlying principles. In this section we
will use Taylor’s Theorem to derive methods for approximating the solution to a differential
equation.

6.1 Euler’s Method

Consider the general first order differential equation

dy

dx
= f(x, y); y(x0) = y0, (6.1)

and suppose we would like to solve this equation on the interval of x-values [x0, xn]. Our goal
will be to approximate the value of the solution y(x) at each of the x values in a partition
P = [x0, x1, x2, ..., xn]. Since y(x0) is given, the first value we need to estimate is y(x1). By
Taylor’s Theorem, we can write

y(x1) = y(x0) + y′(x0)(x1 − x0) +
y′(c)

2
(x1 − x0)

2,

16

where c ∈ (x0, x1). Observing from our equation that y′(x0) = f(x0, y(x0)), we have

y(x1) = y(x0) + f(x0, y(x0))(x1 − x0) +
y′(c)

2
(x1 − x0)

2.

If our partition P has small subintervals, then x1 − x0 will be small, and we can regard the
smaller quantity y′(c)

2
(x1 − x0)

2 as an error term. That is, we have

y(x1) ≈ y(x0) + f(x0, y(x0))(x1 − x0). (6.2)

We can now compute y(x2) in a similar manner by using Taylor’s Theorem to write

y(x2) = y(x1) + y′(x1)(x2 − x1) +
y′(c)

2
(x2 − x1)

2.

Again, we have from our equation that y′(x1) = f(x1, y(x1)), and so

y(x2) = y(x1) + f(x1, y(x1))(x2 − x1) +
y′(c)

2
(x2 − x1)

2.

If we drop the term y′(c)
2

(x2 − x1)
2 as an error, then we have

y(x2) ≈ y(x1) + f(x1, y(x1))(x2 − x1),

where the value y(x1) required here can be approximate by the value from (6.2). More
generally, for any k = 1, 2, ..., n − 1 we can approximate y(xk+1) from the relation

y(xk+1) ≈ y(xk) + f(xk, y(xk))(xk+1 − xk),

where y(xk) will be known from the previous calculation. As with methods of numerical
integration, it is customary in practice to take our partition to consist of subintervals of
equal width,

(xk+1 − xk) = △x =
xn − x0

n
.

(In the study of numerical methods for differential equations, this quantity is often denoted
h.) In this case, we have the general relationship

y(xk+1) ≈ y(xk) + f(xk, y(xk))△x.

If we let the values y0, y1, ..., yn denote our approximations for y at the points x0, x1, ..., xn

(that is, y0 = y(x0), y1 ≈ y(x1), etc.), then we can approximate y(x) on the partition P by
iteratively computing

yk+1 = yk + f(xk, yk)△x. (6.3)

Example 6.1. Use Euler’s method (6.3) with n = 10 to solve the differential equation

dy

dx
= sin(xy); y(0) = π,

on the interval [0, 1]. We will carry out the first few iterations in detail, and then we will
write a MATLAB M-file to carry it out in its entirety. First, the initial value y(0) = π gives

17

us the values x0 = 0 and y0 = π. If our partition is composed of subintervals of equal width,
then x1 = △x = 1

10
= .1, and according to (6.3)

y1 = y0 + sin(x0y0)△x = π + sin(0).1 = π.

We now have the point (x1, y1) = (.1, π), and we can use this and 6.3 to compute

y2 = y1 + sin(x1y1)△x = π + sin(.1π)(.1) = 3.1725.

We now have (x2, y2) = (.2, 3.1725), and we can use this to compute

y3 = y2 + sin(x2y2)△x = 3.1725 + sin(.2(3.1725))(.1) = 3.2318.

More generally, we can use the M-file euler.m.

function [xvalues, yvalues] = euler(f,x0,xn,y0,n)
%EULER: MATLAB function M-file that solve the
%ODE y’=f, y(x0)=y0 on [x0,y0] using a partition
%with n equally spaced subintervals
dx = (xn-x0)/n;
x(1) = x0;
y(1) = y0;
for k=1:n
x(k+1)=x(k) + dx;
y(k+1)= y(k) + f(x(k),y(k))*dx;
end
xvalues = x’;
yvalues = y’;

We can implement this file with the following code, which creates Figure 6.1.

>>f=inline(’sin(x*y)’)
f =
Inline function:
f(x,y) = sin(x*y)
>>[x,y]=euler(f,0,1,pi,10)
x =
0
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000

18

1.0000
y =
3.1416
3.1416
3.1725
3.2318
3.3142
3.4112
3.5103
3.5963
3.6548
3.6764
3.6598
>>plot(x,y)
>>[x,y]=euler(f,0,1,pi,100);
>>plot(x,y)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Figure 6.1: Euler approximations to the solution of y′ = sin(x, y) with △x = .1 (left) and
△x = .01 (right).

For comparison, the exact values to four decimal places are given below.

x =
0
0.1000
0.2000
0.3000
0.4000

19

0.5000
0.6000
0.7000
0.8000
0.9000
1.0000
y =
3.1416
3.1572
3.2029
3.2750
3.3663
3.4656
3.5585
3.6299
3.6688
3.6708
3.6383

△

6.2 Higher order Taylor Methods

The basic idea of Euler’s method can be improved in a straightforward manner by using
higher order Taylor polynomials. In deriving Euler’s method, we approximated y(x) with a
first order polynomial. More generally, if we use a Taylor polynomial of order n we obtain
the Taylor method of order n. In order to see how this is done, we will derive the Taylor
method of order 2. (Euler’s method is the Taylor method of order 1.)

Again letting P = [x0, x1, ..., xn] denote a partition of the interval [x0, xn] on which we
would like to solve (6.1), our starting point for the Taylor method of order 2 is to write down
the Taylor polynomial of order 2 (with remainder) for y(xk+1) about the point xk. That is,
according to Taylor’s theorem,

y(xk+1) = y(xk) + y′(xk)(xk+1 − xk) +
y′′(xk)

2
(xk+1 − xk)

2 +
y′′′(c)

3!
(xk+1 − xk)

3,

where c ∈ (xk, xk+1). As with Euler’s method, we drop off the error term (which is now
smaller), and our approximation is

y(xk+1) ≈ y(xk) + y′(xk)(xk+1 − xk) +
y′′(xk)

2
(xk+1 − xk)

2.

We already know from our derivation of Euler’s method that y′(xk) can be replaced with
f(xk, y(xk)). In addition to this, we now need an expression for y′′(xk). We can obtain this
by differentiating the original equation y′(x) = f(x, y(x)). That is,

y′′(x) =
d

dx
y′(x) =

d

dx
f(x, y(x)) =

∂f

∂x
(x, y(x)) +

∂f

∂y
(x, y(x))

dy

dx
,

20

where the last equality follows from a generalization of the chain rule to functions of two
variables (see Section 10.5.1 of the course text). From this last expression, we see that

y′′(xk) =
∂f

∂x
(xk, y(xk)) +

∂f

∂y
(xk, y(xk))y

′(xk) =
∂f

∂x
(xk, y(xk)) +

∂f

∂y
(xk, y(xk))f(xk, y(xk)).

Replacing y′′(xk) with the right-hand side of this last expression, and replacing y′(xk) with
f(xk, y(xk)), we conclude

y(xk+1) ≈ y(xk) + f(xk, y(xk))(xk+1 − xk)

+
[∂f

∂x
(xk, y(xk)) +

∂f

∂y
(xk, y(xk))f(xk, y(xk))

](xk+1 − xk)
2

2
.

If we take subintervals of equal width △x = (xk+1 − xk), this becomes

y(xk+1) ≈ y(xk) + f(xk, y(xk))△x

+
[∂f

∂x
(xk, y(xk)) +

∂f

∂y
(xk, y(xk))f(xk, y(xk))

]△x2

2
.

Example 6.2. Use the Taylor method of order 2 with n = 10 to solve the differential
equation

dy

dx
= sin(xy); y(0) = π,

on the interval [0, 1].
We will carry out the first few iterations by hand and leave the rest as an exercise. To

begin, we observe that

f(x, y) = sin(xy)

∂f

∂x
(x, y) = y cos(xy)

∂f

∂y
(x, y) = x cos(xy).

If we let yk denote an approximation for y(xk), the Taylor method of order 2 becomes

yk+1 = yk + sin(xkyk)(.1)

+
[

yk cos(xkyk) + xk cos(xkyk) sin(xkyk)
](.1)2

2
.

Beginning with the point (x0, y0) = (0, π), we compute

y1 = π + π(.005) = 3.1573,

which is closer to the correct value of 3.1572 than was the approximation of Euler’s method.
We can now use the point (x1, y1) = (.1, 3.1573) to compute

y2 =3.1573 + sin(.1 · 3.1573)(.1)

+
[

3.1573 cos(.1 · 3.1573) + .1 cos(.1 · 3.1573) sin(.1 · 3.1573)
](.1)2

2
=3.2035,

which again is closer to the correct value than was the y2 approximation for Euler’s method.
△

21

7 Advanced ODE Solvers

In addition to the ODE solvers ode23 and ode45, which are both based on the Runge–Kutta
scheme, MATLAB has several additional solvers, listed below along with MATLAB’s help-file
suggestions regarding when to use them.

• Multipstep solvers

– ode113. If using stringent error tolerances or solving a computationally intensive
ODE file.

• Stiff problems (see discussion below)

– ode15s. If ode45 is slow because the problem is stiff.

– ode23s. If using crude error tolerances to solve stiff systems and the mass matrix
is constant.

– ode23t. If the problem is only moderately stiff and you need a solution without
numerical damping.

– ode23tb. If using crude error tolerances to solve stiff systems.

7.1 Stiff ODE

By a stiff ODE we mean an ODE for which numerical errors compound dramatically over
time. For example, consider the ODE

y′ = −100y + 100t + 1; y(0) = 1.

Since the dependent variable, y, in the equation is multiplied by 100, small errors in our
approximation will tend to become magnified. In general, we must take considerably smaller
steps in time to solve stiff ODE, and this can lengthen the time to solution dramatically.
Often, solutions can be computed more efficiently using one of the solvers designed for stiff
problems.

22

Index

boundary value problems, 12

dsolve, 2

eval, 2
event location, 13

inverse laplace, 12

laplace, 12
Laplace transforms, 12

ode, 5
ode113(), 22
ode15s(), 22
ode23s(), 22
ode23t(), 22
ode23tb(), 22

stiff ODE, 22

vectorize(), 2

23

