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1 Introduction

1.1 The Origin of MATLAB

MATLAB, which stands for MATrix LABoratory, is a software package developed by Math-
Works, Inc. to facillitate numerical computations as well as some symbolic manipulation.
The collection of programs (originally written in Fortran) that eventually became MATLAB
were developed in the late 1970s by Cleve Moler, who used them in a numerical analysis
course he was teaching at the University of New Mexico. Jack Little and Steve Bangert
later reprogrammed these routines in C, and added M-files, toolboxes, and more powerful
graphics (original versions created plots by printing asterisks on the screen). Moler, Little,
and Bangert founded MathWorks in California in 1984.

1.2 Our Course Goal

In recent years mathematical computations have begun to play a larger role in the biological
sciences, and MATLAB is a useful platform for carrying out such calculations with relative
ease. While our focus will naturally be on concepts that arise in calculus, and on the
applications of these concepts, it is also important that students gain some basic familiarity
with MATLAB’s capabilities as a general computing tool. In particular, we will begin
the semester with some background material on arithmetic, algebra, and graphing, and
consequently the MATLAB material will lag several weeks behind the class lecture material.
For example, while we will begin with limits of functions on the first day of class, we will
not get to limits in MATLAB until Week 6.

1.3 Starting MATLAB at Texas A&M University

Your NetID and password should access your calclab account. Log in and click on the six
pointed geometric figure in the bottom left corner of your screen. Go to Mathematics and
choose Matlab. Congratulations! (Alternatively, click on the surface plot icon at the foot
of your screen.)

1.4 The MATLAB Interface

The (default) MATLAB screen is divided into three windows, with a large Command Window
on the right, and two smaller windows stacked one atop the other on the left. (If these
windows aren’t maximized on your screen, you can maximize them by selecting the middle
button at the top right corner of the MATLAB box.) The Command Window is where
calculations are carried out in MATLAB, while the smaller windows display information
about your current MATLAB session, your previous MATLAB sessions, and your computer
account. Your options for these smaller windows are Command History, which displays the
commands you’ve typed in from both the current and previous sessions, Current Directory,
which shows which directory you’re currently in and what files are in that directory, and
Workspace, which displays information about each variable defined in your current session.
You can choose which of these options you would like to have displayed by selecting Desktop
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from the main MATLAB window. Occasionally, it will be important that you are working
in a certain directory. Notice that you can change MATLAB’s working directory by double-
clicking on a directory in the Current Directory window. In order to go backwards a directory,
click on the folder with a black arrow on it in the top left corner of the Current Directory
window.

1.5 Basic Computations

At the prompt designated by two arrows, >>, type sin(0) and press Enter. You should find
that the answer has been assigned to the default variable ans. Next, type sin(0); and hit
Enter (there is now a semicolon at the end of the line). Notice that the semicolon suppresses
screen output.

We will refer to a series of commands as a MATLAB script. For example, we might type

>>t=4;
>>s=sin(t)
s =
-0.7568

where in this example and those that follow, commands typed into MATLAB will be desig-
nated by the prompt >>. (Notice that MATLAB assumes that t is in radians, not degrees.)
While we’re at it, type the up arrow key on your keyboard, and notice that the command
s=sin(t) comes back up on your screen. Hit the up arrow key again and t=4; will appear
at the prompt. Using the down arrow, you can scroll back the other way, giving you a
convenient way to bring up old commands without retyping them.

Example 1.1. Compute

r =
73
√

17

e2
,

where e is the base of the natural logarithm, an irrational number whose value is approxi-
mately e = 2.7182818.

At the MATLAB prompt, type

>>r=7ˆ3*sqrt(17)/exp(2)
r =
191.3946

△

1.6 Diary Files

For many of the assignments this semester, you will need to turn in a log of MATLAB
commands typed and of MATLAB’s responses. (See, for example, Example 1.1.) This is
straightforward in MATLAB with the diary command.

Example 1.2. Write a MATLAB script that sets x = 1 and computes tan−1 x (or arctan x).
Save the script to a file called script1.txt and print it.

In order to accomplish this, we use the following MATLAB commands.

6



>>diary script1.txt
>>x=1
x =
1
>>atan(1)
ans =
0.7854
>>diary off

In this script, the command diary script.txt creates the file script1.txt, and MATLAB begins
recording the commands that follow, along with MATLAB’s responses. When the command
diary off is typed, MATLAB writes the commands and responses to the file script1.txt.
Commands typed after the diary off command will no longer be recorded, but the file
script1.txt can be reopened either with the command diary on or with diary script1.txt.
Finally, the diary file script1.txt can be deleted with the command delete script1.txt.

In order to print script1.txt, follow the xprint instructions posted in the Blocker lab.
More precisely, open a terminal window by selecting the terminal icon from the bottom of
your screen and use the xprint command

xprint -d blocker script1.txt

You will be prompted to give your NetID and password. The file will be printed in Blocker
133. △

1.7 Getting Help

MATLAB has extensive documentation explaining the use of all of its built-in functions (such
as sin, atan, diary, etc.). For example, we can look at the help file for the diary command by
typing help diary in the Command Window. More generally, the help documentation can be
accessed by typing helpdesk in the Command Window. In this case, four options are available
(on the upper left corner of the screen): a contents page, an index option (probably the most
useful), a search option, and a Demo option (i.e., a list of available deomonstrations).

1.8 Assignments

Use MATLAB to make each of the following calculations. Record your calculations in a
diary file and turn in a printout of this file.

1. [2 pts] (Hint: MATLAB understands pi as π.)

r =

√

1 − 2

π5
.

2. [2 pts] (Hint: MATLAB’s convention is log() for natural log.)

r = e2 ln 5.
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3. [2 pts]
r = sin2 2 + cos2 4,

with 2 and 4 measured in radians, MATLAB’s default.

4. [2 pts]
r = sin2 30 + cos2 40,

30 and 40 measured in degrees. (This requires a conversion.)

5. [2 pts] Use MATLAB’s built-in help to look up the function lambertw. Compute w(2)
and write down the equation this value solves.
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2 Symbolic Calculations in MATLAB

Though MATLAB has not been designed with symbolic calculations in mind, it can carry
them out with the Symbolic Math Toolbox, which is standard with student versions. (In
order to check if this, or any other toolbox is on a particular version of MATLAB, type ver at
the MATLAB prompt.) In carrying out these calculations, MATLAB uses Maple software1,
but the user interface is significantly different.

2.1 Defining Symbolic Objects

Symbolic manipulations in MATLAB are carried out on symbolic variables, which can be
either particular numbers or unspecified variables. The easiest way in which to define a
variable as symbolic is with the syms command.

Example 2.1. Suppose we would like to symbolically define the logistic model

R(N) = aN(1 − N

K
),

where N denotes the number of individuals in a population and R denotes the growth rate
of the population. First, we define both the variables and the parameters as symbolic
objects, and then we write the equation with standard MATLAB operations:

>>syms N R a K
>>R=a*N*(1-N/K)
R =
a*N*(1-N/K)

Here, the expressions preceded by >> have been typed at the command prompt and the
others have been returned by MATLAB. △

Symbolic objects can also be defined to take on particular numeric values.

Example 2.2. Suppose we want a general form for the logistic model, but we know that
the value of K (the “carrying capacity”) is 10, and we want to specify this. We can use the
following commands:

>>K=sym(10)
K =
10
>>R=a*N*(1-N/K)
R =
a*N*(1-1/10*N)

1Maple is one of a number of alternatives to MATLAB. These alternative packages tend to have some
advantages and some disadvanges relative to MATLAB, and this leads to a lot of senseless bickering in the
scientific community. FYI.
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2.1.1 Complex Numbers

You can also define and manipulate symbolic complex numbers in MATLAB. Recall that a
complex number has the form

z = x + iy,

where x and y are both real numbers and i =
√
−1. The complex conjugate of a complex

number, denoted z̄, is defined by
z̄ = x − iy.

Example 2.3. Suppose we would like to define the complex number z = x + iy and
compute z2 and zz̄. We use

>>syms x y real
>>z=x+i*y
z =
x+i*y
>>square=expand(zˆ2)
square =
xˆ2+2*i*x*y-yˆ2
>>zzbar=expand(z*conj(z))
zzbar =
xˆ2+yˆ2

Here, we have particularly specified that x and y be real, as is consistent with complex
notation. The built-in MATLAB command conj computes the complex conjugate of its
input, and the expand command is required in order to force MATLAB to multiply out the
expressions. (The expand command is discussed more below in Subsubsection 2.2.2.)

2.1.2 The Clear Command

You can clear variable definitions with the clear command. For example, if x is defined as
a symbolic variable, you can type clear x at the MATLAB prompt, and this definition will
be removed. (Clear will also clear other MATLAB data types.) If you have set a symbolic
variable to be real , you will additionally need to use syms x unreal or the Maple kernel that
MATLAB calls will still consider the variable real.

2.2 Manipulating Symbolic Expressions

Once an expression has been defined symbolically, MATLAB can manipulate it in various
ways.
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2.2.1 The Collect Command

The collect command gathers all terms together that have a variable to the same power.

Example 2.4. Suppose that we would like organize the expression

f(x) = x(sin x + x3)(ex + x2)

by powers of x. We use

>>syms x
>>f=x*(sin(x)+xˆ3)*(exp(x)+xˆ2)
f =
x*(sin(x)+xˆ3)*(exp(x)+xˆ2)
>>collect(f)
ans =
xˆ6+exp(x)*xˆ4+sin(x)*xˆ3+sin(x)*exp(x)*x

△

2.2.2 The Expand Command

The expand command carries out products by distributing through parentheses, and it also
expands logarithmic and trigonometric expressions.

Example 2.5. Suppose we would like to expand the expression

f(x) = ex+x2

.

We use

>>syms x
>>f=exp(x+xˆ2)
f =
exp(x+xˆ2)
>>expand(f)
ans =
exp(x)*exp(xˆ2)

△
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2.2.3 The Factor Command

The factor command can be used to factor polynomials.

Example 2.6. Suppose we would like to factor the polynomial

f(x) = x4 − 2x2 + 1.

We use

>syms x
>f=xˆ4-2*xˆ2+1
f =
xˆ4-2*xˆ2+1
>factor(f)
ans =
(x-1)ˆ2*(x+1)ˆ2

△

2.2.4 The Horner Command

The horner command is useful in preparing an expression for repeated numerical evaluation.
In particular, it puts the expression in a form that requires the least number of arithmetic
operations to evaluate.

Example 2.7. Re-write the polynomial from Example 2.6 in Horner form.

>>syms x
>>f=xˆ4-2*xˆ2+1
f =
xˆ4-2*xˆ2+1
>>horner(f)
ans =
1+(-2+xˆ2)*xˆ2

2.2.5 The Simple Command

The simple command takes a symbolic expression and re-writes it with the least possible
number of characters. (It runs through MATLAB’s various manipulation programs such as
collect, expand, and factor and returns the result of these that has the least possible number
of characters.)

Example 2.8. Suppose we would like a reduced expression for the function

f(x) = (1 +
1

x
+

1

x2
)(1 + x + x2).

We use
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>>syms x f
>>f=(1+1/x+1/xˆ2)*(1+x+xˆ2)
f =
(1+1/x+1/xˆ2)*(x+1+xˆ2)
>>simple(f)
simplify:
(x+1+xˆ2)ˆ2/xˆ2
radsimp:
(x+1+xˆ2)ˆ2/xˆ2
combine(trig):
(3*xˆ2+2*x+2*xˆ3+1+xˆ4)/xˆ2
factor:
(x+1+xˆ2)ˆ2/xˆ2
expand:
2*x+3+xˆ2+2/x+1/xˆ2
combine:
(1+1/x+1/xˆ2)*(x+1+xˆ2)
convert(exp):
(1+1/x+1/xˆ2)*(x+1+xˆ2)
convert(sincos):
(1+1/x+1/xˆ2)*(x+1+xˆ2)
convert(tan):
(1+1/x+1/xˆ2)*(x+1+xˆ2)
collect(x):
2*x+3+xˆ2+2/x+1/xˆ2
mwcos2sin:
(1+1/x+1/xˆ2)*(x+1+xˆ2)
ans =
(x+1+xˆ2)ˆ2/xˆ2

In this example, three lines have been typed, and the rest is MATLAB output as it tries
various possibilities. It returns the expression in ans, in this case from the factor command.
△

2.2.6 The Pretty Command

MATLAB’s pretty command simply re-writes a symbolic expression in a form that appears
more like typeset mathematics than does MATLAB syntax.

Example 2.9. Suppose we would like to re-write the expression from Example 2.8 in a
more readable format. Assuming, we have already defined f as in Example 2.8, we use
pretty(f) at the MATLAB prompt. (The output of this command doesn’t translate well
into a printed document, so I won’t give it here.)
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2.3 Solving Algebraic Equations

MATLAB’s built-in function for solving equations symbolically is solve.

Example 2.10. Suppose we would like to solve the quadratic equation

ax2 + bx + c = 0.

We use

>>syms a b c x
>>eqn=a*xˆ2+b*x+c
eqn =
a*xˆ2+b*x+c
>>roots=solve(eqn)
roots =
1/2/a*(-b+(bˆ2-4*a*c)ˆ(1/2))
1/2/a*(-b-(bˆ2-4*a*c)ˆ(1/2))

Observe that we only defined the expression on the left-hand side of our equality. By default,
MATLAB’s solve command sets this expression to 0. Also, notice that MATLAB knew which
variable to solve for. (It takes x as a default variable.) Suppose that in lieu of solving for x,
we know x and would like to solve for a. We can specify this with the following commands:

>>a=solve(eqn,a)
a =
-(b*x+c)/xˆ2

In this case, we have particularly specified in the solve command that we are solving for a.
Alternatively, we can type an entire equation directly into the solve command. For example:

>>syms a
>>roots=solve(a*xˆ2+b*x+c)
roots =
1/2/a*(-b+(bˆ2-4*a*c)ˆ(1/2))
1/2/a*(-b-(bˆ2-4*a*c)ˆ(1/2))

Here, the syms command has been used again because a has been redefined in the code
above. Finally, we need not first make our variables symbolic if we put the expression in
solve in single quotes. We could simply use solve(’a*xˆ2+b*x+c’). △

MATLAB’s solve command can also solve systems of equations.

Example 2.11. For a population of prey x with growth rate Rx and a population of
predators y with growth rate Ry, the the Lotka–Volterra predator–prey model is

Rx = ax − bxy

Ry = − cy + dxy.
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In this example, we would like to determine whether or not there is a pair of population
values (x, y) for which neither population is either growing or decaying (the rates are both
0). We call such a point an equilibrium point. The equations we need to solve are:

0 = ax − bxy

0 = − cy + dxy.

In MATLAB

>>syms a b c d x y
>>Rx=a*x-b*x*y
Rx =
a*x-b*x*y
>>Ry=-c*y+d*x*y
Ry =
-c*y+d*x*y
>>[prey pred]=solve(Rx,Ry)
prey =
0
1/d*c
pred =
0
1/b*a

Again, MATLAB knows to set each of the expression Rx and Ry to 0. In this case, MAT-
LAB has returned two solutions, one with (0, 0) and one with ( c

d
, a

b
). In this example, the

appearance of [prey pred] particularly requests that MATLAB return its solution as a vector
with two components. Alternatively, we have the following:

>>pops=solve(Rx,Ry)
pops =
x: [2x1 sym]
y: [2x1 sym]
>>pops.x
ans =
0
1/d*c
>>pops.y
ans =
0
1/b*a

In this case, MATLAB has returned its solution as a MATLAB structure, which is a data
array that can store a combination of different data types: symbolic variables, numeric
values, strings etc. In order to access the value in a structure, the format is

structure name.variable identification △
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2.4 Numerical Calculations with Symbolic Expressions

In many cases, we would like to combine symbolic manipulation with numerical calculation.

2.4.1 The Double and Eval commands

The double and eval commands change a symbolic variable into an appropriate double vari-
able (i.e., a numeric value).

Example 2.12. Suppose we would like to symbolically solve the equation x3 + 2x − 1 = 0,
and then evaluate the result numerically. We use

>>syms x
>>r=solve(xˆ3+2*x-1);
>>eval(r)
ans =
0.4534
-0.2267 + 1.4677i
-0.2267 - 1.4677i
>>double(r)
ans =
0.4534
-0.2267 + 1.4677i
-0.2267 - 1.4677i

MATLAB’s symbolic expression for r is long, so I haven’t included it here, but you should
take a look at it by leaving the semicolon off the solve line. △

2.4.2 The Subs Command

In any symbolic expression, values can be substituted for symbolic variables with the subs
command.

Example 2.13. Suppose that in our logistic model

R(N) = aN(1 − N

K
),

we would like to substitute the values a = .1 and K = 10. We use

>>syms a K N
>>R=a*N*(1-N/K)
R =
a*N*(1-N/K)
>>R=subs(R,a,.1)
R =
1/10*N*(1-N/K)
>>R=subs(R,K,10)
R =
1/10*N*(1-1/10*N)
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Alternatively, numeric values can be substitued in. We can accomplish the same result as
above with the commands

>>syms a K N
>>R=a*N*(1-N/K)
R =
a*N*(1-N/K)
>>a=.1
a =
0.1000
>>K=10
K =
10
>>R=subs(R)
R =
1/10*N*(1-1/10*N)

In this case, the specifications a = .1 and K = 10 have defined a and K as numeric values.
The subs command, however, places them into the symbolic expression.

2.5 Assignments

For each problem, turn in a diary file containing your MATLAB script along with MATLAB’s
output.

1. [2 pts] Factor the polynomial

x5 − 15x4 + 85x3 − 225x2 + 274x − 120.

2. [2 pts] Find an inverse for the function

f(x) =
1 − x

1 + x
; x 6= −1.

3. [2 pts] Solve the equation

x − y

x
− y2 = 0

for y as a function of x. (Hint. This is a good problem to use the pretty command on.)
4. [2 pts] Find all solutions for the system of algebraic equations

x2 − y2 = 0

2y − x = 1.

5. [2 pts] Write down expressions for the three solutions for

ax3 + c = 0.

Use the subs command to evaluate your solution for a = 1 and c = 2.
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3 Plots and Graphs in MATLAB

3.1 The Plot Command

The primary tool we will use for plotting in MATLAB is plot().

Example 3.1. Plot the line that passes through the points {(1, 4), (3, 6)}.
We first define the x values (1 for the first point and 3 for the second) as a single variable

x = (1, 3) (typically referred to as a vector) and the y values as the vector y = (4, 6), and then
we plot these points, connecting them with a line. The following commands (accompanied
by MATLAB’s output) suffice:

>>x=[1 3]
x =

1 3
>>y=[4 6]
y =

4 6
>>plot(x,y)

The output we obtain is the plot given as Figure 3.1.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Figure 3.1: A very simple linear plot.

In MATLAB it’s particularly easy to decorate a plot. For example, minimize your plot by
clicking on the left button on the upper right corner of your window, then add the following
lines in the Command Window:

>>xlabel(’Here is a label for the x-axis’)
>>ylabel(’Here is a label for the y-axis’)
>>title(’Useless Plot’)
>>axis([0 4 2 10])

The only command here that needs explanation is the last. It simply tells MATLAB to plot
the x-axis from 0 to 4, and the y-axis from 2 to 10. If you now click on the plot’s button at
the bottom of the screen, you will get the labeled figure, Figure 3.2.
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Figure 3.2: A still pretty much ridiculously simple linear plot.

I added the legend after the graph was printed, using the menu options. Notice that all
this labeling can be carried out and edited from these menu options. After experimenting
a little, your plots will be looking great (or at least better than the default-setting figures
displayed here). Not only can you label and detail your plots, you can write and draw
on them directly from the MATLAB window. One warning: If you retype plot(x,y) after
labeling, MATLAB will think you want to start over and will give you a clear figure with
nothing except the line. To get your labeling back, use the up arrow key to scroll back
through your commands and re-issue them at the command prompt. (Unless you labeled
your plots using menu options, in which case you’re out of luck, though this might be a good
time to consult Section 3.7 on saving plots.) △

Defining vectors as in the example above can be tedious if the vector has many compo-
nents, so MATLAB has a number of ways to shorten your work. For example, you might
try:

>>X=1:9
X =

1 2 3 4 5 6 7 8 9
>>X=0:2:10
X =

0 2 4 6 8 10

3.2 Plotting Functions with the plot command

In order to plot a function with the plot command, we proceed by evaluating the function
at a number of x-values x1, x2, ..., xn and drawing a curve that passes through the points
{(xk, yk)}n

k=1, where yk = f(xk).

Example 3.2. Use the plot command to plot the function f(x) = x2 for x ∈ [0, 1].
First, we will partition the interval [0,1] into twenty evenly spaced points with the com-

mand, linspace(0, 1, 20). (The command linspace(a,b,n) defines a vector with n evenly
spaced points, beginning with left endpoint a and terminating with right endpoint b.) Then
at each point, we will define f to be x2. We have
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>>x=linspace(0,1,20)
x =

Columns 1 through 8
0 0.0526 0.1053 0.1579 0.2105 0.2632 0.3158 0.3684

Columns 9 through 16
0.4211 0.4737 0.5263 0.5789 0.6316 0.6842 0.7368 0.7895

Columns 17 through 20
0.8421 0.8947 0.9474 1.0000

>>f=x.ˆ2
f =

Columns 1 through 8
0 0.0028 0.0111 0.0249 0.0443 0.0693 0.0997 0.1357

Columns 9 through 16
0.1773 0.2244 0.2770 0.3352 0.3989 0.4681 0.5429 0.6233

Columns 17 through 20
0.7091 0.8006 0.8975 1.0000

>>plot(x,f)

Only three commands have been typed; MATLAB has done the rest. One thing you should
pay close attention to is the line f=x.ˆ2, where we have used the array operation .ˆ. This
operation .ˆ signifies that the vector x is not to be squared (it’s not entirely clear at this
point what we might even mean by the square of a vector), but rather that each component
of x is to be squared and the result is to be defined as a component of f , another vector.
Similar commands are .* and ./. These are referred to as array operations, and you will need
to become comfortable with their use. △
Example 3.3. In our section on symbolic algebra, we encountered the logistic population
model, which relates the number of individuals in a population N with the rate of growth
of the population R through the relationship

R(N) = aN(1 − N

K
) = − a

K
N2 + aN.

Taking a = 1 and K = 10, we have

R(N) = −.1N2 + N.

In order to plot this for populations between 0 and 20, we use the following MATLAB code,
which creates Figure 3.3.

>>N=linspace(0,20,1000);
>>R=-.1*N.ˆ2+N;
>>plot(N,R)

Observe that the rate of growth is positive until the population achieves its “carrying capac-
ity” of K = 10 and is negative for all populations beyond this. In this way, if the population
is initially below its carrying capacity, then it will increase toward its carrying capacity, but
will never exceed it. If the population is initially above the carrying capacity, it will decrease
toward the carrying capacity. The carrying capacity is interpreted as the maximum number
of individuals the environment can sustain. △
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Figure 3.3: Growth rate for the logistic model.

3.3 Parametric Curves

In certain cases the relationship between x and y can be described in terms of a third
variable, say t. In such cases, t is a parameter, and we refer to a plot of the points (x, y) as
a parametric curve.

Example 3.4. Plot a curve in the x-y plane corresponding with x(t) = t2 +1 and y(t) = et,
for t ∈ [−1, 1]. One way to accomplish this is through solving for t in terms of x and
substituing your result into y(t) to get y as a function of x. Here, rather, we will simply get
values of x and y at the same values of t. Using semicolons to suppress MATLAB’s output,
we use the following script, which creates Figure 3.4.

>>t=linspace(-1,1,100);
>>x=t.ˆ2 + 1;
>>y=exp(t);
>>plot(x,y)

△

3.4 Juxtaposing One Plot On Top of Another

Example 3.5. For the functions x(t) = t2 + 1 and y(t) = et, plot x(t) and y(t) on the same
figure, both versus t.

The easiest way to accomplish this is with the single command

>>plot(t,x,t,y);
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Figure 3.4: Plot of x(t) = t2 + 1 and y(t) = et for t ∈ [−1, 1].

The color and style of the graphs can be specified in single quotes directly after the pair of
values. For example, if we would like the plot of x(t) to be red, and the plot of y(t) to be
green and dashed, we would use

>>plot(t,x,’r’,t,y,’g–’)

For more information on the various options, type help plot.
Another way to accomplish this same thing is through the hold on command. After

typing hold on, further plots will be typed one over the other until the command hold off is
typed. For example,

>>plot(t,x)2

>>hold on
>>plot (t,y)
>>title(’One plot over the other’)
>>u=[-1 0 1];
>>v=[1 0 -1]
>>plot(u,v)

△

3.5 Multiple Plots

Often, we will want MATLAB to draw two or more plots at the same time so that we can
compare the behavior of various functions.

2If a plot window pops up here, minimize it and bring it back up at the end.
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Example 3.6. Plot the three functions f(x) = x, g(x) = x2, and h(x) = x3.
The following sequence of commands produces the plot given in Figure 3.5.

>>x = linspace(0,1,20);
>>f = x;
>>g = x.ˆ2;
>>h = x.ˆ3;
>>subplot(3,1,1);
>>plot(x,f);
>>subplot(3,1,2);
>>plot(x,g);
>>subplot(3,1,3);
>>plot(x,h);
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Figure 3.5: Algebraic functions on parade.

The only new command here is subplot(m,n,p). This command creates m rows and n columns
of graphs and places the current figure in position p (counted left to right, top to bottom).

3.6 Ezplot

In most of our plotting for M151B, we will use the plot command, but another option is the
built-in function ezplot , which can be used along with symbolic variables.

Example 3.7. Plot the function

f(x) = x4 + 2x3 − 7x2.

We can use

>>syms f x
>>f=xˆ4+2*xˆ3-7*x
f =
xˆ4+2*xˆ3-7*x
>>ezplot(f)
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In this case, MATLAB chooses appropriate axes, and we obtain the plot in Figure 3.6.
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Figure 3.6: Default plot from ezplot.

We can also specify the domain on which to plot with ezplot(f,xmin,xmax). For example,
ezplot(f,-1,1) creates Figure 3.7.

Alternatively, the variables need not be defined symbolically if they are placed in single
quotes. We could also plot this example using respectively

>>ezplot(’xˆ4+2*xˆ3-7*x’)

or

>>ezplot(’xˆ4+2*xˆ3-7*x’,-1,1)

△
The ezplot command can also be a good way for plotting implicitly defined relations, by

which we mean relations between x and y than cannot be solved for one variable in terms
of the other.

Example 3.8. Plot y versus x given the relation

x2

9
+

y2

4
= 1.

This is, of course, the equation of an ellipse, and it can be plotted by separately graphing
each of the two solution curves

y = ±2

√

1 − x2

9
.

Alternatively, we can use the following single command to create Figure 3.8.
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Figure 3.7: Domain specified plot with ezplot.

>>ezplot(’xˆ2/9+yˆ2/4=1’,[-3,3],[-2,2])

Here, observe that the first interval specifies the values of x and the second specifies the
values for y. △

Finally, we can use ezplot to plot parametrically defined relations.

Example 3.9. Use ezplot to plot y versus x, given x(t) = t2+1 and y(t) = et, for t ∈ [−1, 1].
We can accomplish this with the single command

>>ezplot(’tˆ2+1’,’exp(t)’,[-1,1])

△

3.7 Saving Plots as Encapsulated Postscript Files

In order to print a plot, first save it as an encapsulated postscript file. From the options in
your graphics box, choose File, Save As, and change Save as type to EPS file. Finally,
click on the Save button. The plot can now be printed using the xprint command.

Once saved as an encapsulated postscript file, the plot cannot be edited, so it should also
be saved as a MATLAB figure. This is accomplished by choosing File, Save As, and saving
the plot as a .fig file (which is MATLAB’s default).

3.8 Assignments

For each of these assignments, turn in the indicated plot.

1. [2 pts] Use the plot command to plot the function f(x) = x + sin x for x ∈ [0, 2π]. Label
your x and y axes and add a title to your plot.
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Figure 3.8: The ellipse described by x2

9
+ y2

4
= 1.

2. [2 pts] Use the plot command to plot the parametric curve described by the functions
x(t) = tan t and y(t) = cos t for t ∈ (−π

4
, π

4
).

3. [2 pts] The Gompertz population model has the form

R(N) = −aN ln(
N

K
),

where as in the logistic model N denotes the number of individuals in a population and R
denotes the rate of growth of the population. For a = 1 and K = 10, and for N ∈ [0, 20] use
the plot command to plot the logistic model and the Gompertz model on the same figure.
Which model has a higher maximum growth rate?

4. [2 pts] Use the plot command to create a stacked plot with f(x) = sin x on the top plot
and f(x) = cos x on the bottom plot. Take x ∈ [0, 2π].

5. [2 pts] Use the ezplot command to plot the hyperbola described by the equation

x2

9
− y2

4
= 1.

Take x ∈ [−10, 10] and y ∈ [−6, 6].
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4 Semilog and Double-log Plots

In many applications, the values of data points can range significantly, and it can become
convenient to work with log10 values of the original data. In such cases, we often work with
semilog or double-log (or log-log) plots.

4.1 Semilog Plots

Consider the following data (real and estimated) for world populations in certain years.

Year Population

-4000 7 × 106

-2000 2.7 × 107

1 1.7 × 108

2000 6.1 × 109

We can plot these values in MATLAB with the following commands, which produce
Figure 4.1.

>>years=[-4000 -2000 1 2000];
>>pops=[7e+6 2.7e+7 1.7e+8 6.1e+9];
>>plot(years,pops,’o’)

−4000 −3000 −2000 −1000 0 1000 2000
0

1

2

3

4

5

6

7
x 10

9

Figure 4.1: Standard plot for populations versus year.

Looking at Figure 4.1, we immediately see a problem: the final data point is so large that
the remaining points are effectively zero on the scale of our graph. In order to overcome this
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problem, we can take a base 10 logarithm of each of the population values. That is,

log10 7 × 106 = log10 7 + 6

log10 2.7 × 107 = log10 2.7 + 7

log10 1.7 × 108 = log10 1.7 + 8

log10 6.1 × 109 = log10 6.1 + 9.

We can plot these new values with the following commands.

>>logpops=log10(pops);
>>plot(years,logpops,’o’)

In this case, we obtain Figure 4.2.
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Figure 4.2: Plot of the log of populations versus years.

We can improve this slightly with MATLAB’s built-in function semilogy. This function
carries out the same calculation we just did, but MATLAB adds appropriate marks on the
vertical axis to make the scale easier to read. We use

>>semilogy(years,pops,’o’)

The result is shown in Figure 4.3. Observe that there are precisely eight marks in Figure
4.3 between 107 and 108. The first of these marks 2× 107, the second 3× 107 etc. up to the
eighth, which is 9 × 107. At that point, we have reached the mark for 108.
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Figure 4.3: Semilog plot of world population data.

4.1.1 Deriving Functional Relations from a Semilog Plot

Having plotted our population data, suppose we would like to find a relationship of the form

N = f(x),

where N denotes the number of individuals in the population during year x. We proceed by
observing that the four points in Figure 4.3 all lie fairly close to the same straight line. In
Section ??, we will discuss how calculus can be used to find the exact form for such a line,
but for now we simply allow MATLAB to carry out the computation. From the graphics
window for Figure 4.2 (the figure created prior to the use of semilogy), choose Tools, Basic
Fitting. From the Basic Fitting menu, choose a Linear fit and check the box next to
Show Equations. This produces Figure 4.4.

This line suggests that the relationship between N and x is

log10 N = .00048x + 8.6.

(Recall that we obtained this figure by taking log10 of our data.) Taking each side of this
last expression as an exponent for the base 10, we find

10log10 N = 10.00048x+8.6 = 10.00048x108.6.

We conclude with the functional relation

N(x) = 10.00048x108.6,

which is the form we were looking for.
Finally, we note that MATLAB’s built-in function semilogx plots the x-axis on a loga-

rithmic scaling while leaving the y-axis in its original form.
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Figure 4.4: Best line fit for the population data.

4.2 Double-log Plots

In the case that we take the base 10 logarithm of both variables in the problem, we say that
the plot is a double-log or log-log plot.

Example 4.1. In certain cases, the number of plants in an area will decrease as the average
size of the individual plants increases. (Since each plant is using more resources, fewer plants
can be sustained.) In order to find a quantitative relationship between the number of plants
N and the average plant size S, consider the data given in Table 1.

N S

1 10000
10 316.23
50 28.28
100 10

Table 1: Number of plants N and average plant size S.

In this case, we will find a relationship between N and S of the form

S = f(N).

We proceed by taking the base 10 logarithm of all the data and creating a double-log plot
of the resulting values. The following MATLAB code produces Figure 4.5.

>>N=[1 10 50 100];
>>S=[10000 316.23 28.28 10];
>>loglog(N,S)
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Figure 4.5: Double-log plot of average plant size S versus number of plants N .

Since the graph of the data is a straight line in this case,3 we can compute the slope
and intercept from standard formulas. In standard slope-intercept form, we can write the
equation for our line as

log10 S = m log10 N + b.

The slope is

m =
y2 − y1

x2 − x1

,

where (x1, y1) and (x2, y2) denote two points on the line, and b is the value of log10 S when
N = 1 (because log10 1 = 0). In reading the plot, notice that values 10k should be interpreted
simply as k. That is,

m =
4 − 1

0 − 2
= −3

2
,

and
b = 4.

We conclude

log10 S = −3

2
log10 N + 4.

In order to get a functional relationship of the type we are interested in, we take each side
of this last expression as an exponent for the base 10. That is,

10log10 S = 10−
3

2
log10 N+4 = 10log N−

3
2 104 ⇒ S = 104N− 3

2 .

In practice, the multiplication factor 104 varies from situation to situation, but the power
law N− 3

2 is fairly common. We often write

S ∝ N− 3

2 .
3Cooked up, admittedly, though the relationship we’ll get in the end is fairly general.
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△

4.3 Assignments

For each of the following data sets find a relationship between x and y of the form

y = f(x).

1. [3 pts]

x y

0 5.000
10 5.0061
100 5.0609
1000 5.6430

Table 2: Data for Problem 1.

2. [3 pts]

x y

1 -.5
10 0
100 .5

Table 3: Data for Problem 2.

3. [4 pts]

x y

2 7.9370
3 10.4004
4 12.5992
5 14.6201

Table 4: Data for Problem 3.
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5 Inline Functions and M-Files

Functions can be defined in MATLAB either in line (that is, at the command prompt) or as
M-files (separate text files).

5.1 Inline Functions

Example 5.1. Define the function f(x) = ex in MATLAB and compute f(1).
We can accomplish this, as follows, with MATLAB’s built-in inline function.

>>f=inline(’exp(x)’)
>>f(1)
ans =
2.7183

Observe, in particular, the difference between f(1) when f is a function and f(1) when f is
a vector: if f is a vector, then f(1) is the first component of f , not the function f evaluated
at 1. △

In a similar manner, we can define a function of several variables.

Example 5.2. Define the function f(x, y) = x2 + y2 in MATLAB and compute f(1, 2).
In this case, we use

>>f=inline(’xˆ2 + yˆ2’,’x’,’y’)
f =

Inline function:
f(x,y) = xˆ2 + yˆ2

>>f(1,2)
ans =

5

Notice that in the case of multiple variables we specify the order in which the variables will
appear as arguments of f . Compare the previous code with the following, in which MATLAB
expects y as the first input of f and x as the second.4

f=inline(’xˆ2+yˆ2’,’y’,’x’)
f =
Inline function:
f(y,x) = xˆ2+yˆ2

△
In many cases we would like to define functions that use MATLAB’s array operations .ˆ,

.*, and ./. This can be accomplished either by typing the array operations in by hand or by
using the vectorize command.

Example 5.3. Define the function f(x) = x2 in MATLAB in such a way that MATLAB
can take vector input and return vector output. Compute f(x) if x is the vector x = [1, 2].

We use
4Granted, in this example order doesn’t matter.
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>>f=inline(vectorize(’xˆ2’))
f =

Inline function:
f1(x) = x.ˆ2

>>x=[1 2]
x =

1 2
>>f(x)
ans =

1 4

△
Finally, in some cases it is convenient to define an inline function when the variables are

symbolic. Since the inline function expects a string, or character, as input, we first convert
the symbolic expression into a string expression.

Example 5.4. Compute the inverse of the function

f(x) =
1

x + 1
, x > −1,

and define the result as a MATLAB inline function. Compute f−1(5).
We use

>>finv=solve(’1/(x+1)=y’)
finv =
-(y-1)/y
>>finv=inline(char(finv))
finv =
Inline function:
finv(y) = -(y-1)/y
>>finv(5)
ans =
-0.8000

Observe that the variable finv is originally defined symbolically even though the expression
MATLAB solves is given as a string. The char command converts finv into a string, which
is appropriate as input for inline. △

Inline functions can be plotted with either the ezplot command or the fplot (function
plot) command.

Example 5.5. Define the function f(x) = x + sin x as an inline function and plot if for
x ∈ [0, 2π] using first the ezplot command and second the fplot command.

The following commands create, respectively, Figure 5.1 and Figure 5.2.

>>f=inline(’x+sin(x)’)
f =
Inline function:
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f(x) = x+sin(x)
>>ezplot(f,[0 2*pi])
>>fplot(f,[0 2*pi])

△
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x

x+sin(x)

Figure 5.1: Plot of f(x) = x + sin x using ezplot.

5.2 Script M-Files

The heart of MATLAB lies in its use of M-files. We will begin with a script M-file, which is
simply a text file that contains a list of valid MATLAB commands. To create an M-file, click
on File at the upper left corner of your MATLAB window, then select New, followed by M-
file. A window will appear in the upper left corner of your screen with MATLAB’s default
editor. (You are free to use an editor of your own choice, but for the brief demonstration
here, let’s stick with MATLAB’s.) In this window, type the following lines:

x = linspace(0,2*pi,50);
f = sin(x);
plot(x,f)

Save this file by choosing File, Save As from the main menu. In this case, save the file as
sineplot.m, and then close or minimize your editor window. Back at the command line, type
sineplot at the prompt, and MATLAB will plot the sine function on the domain [0, 2π]. It
has simply gone through your file line by line and executed each command as it came to it.
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Figure 5.2: Plot of f(x) = x + sin x using fplot

5.3 Function M-files

The second type of M-file is called a function M-file and typically (though not inevitably)
these will involve some variable or variables sent to the M-file and processed. As our first
example, we will write a function M-file that takes as input the number of points for our
sine plot from the previous section and then plots the sine curve. We can begin by typing

>>edit sineplot

In MATLAB’s editor, revise your file sineplot.m so that it has the following form:

function sineplot(n)
x = linspace(0,2*pi,n);
f = sin(x);
plot(x,f)

Every function M-file begins with the command function, and the input is always placed in
parentheses after the name of the function M-file. Save this file as before and then run it
with 5 points by typing

>>sineplot(5)

In this case, the plot should be fairly poor, so try it with 50 points (i.e., use sineplot(50)).
We can also take several inputs into our function at once. As an example, suppose that

we want to take the left and right endpoints of our plotting interval as input (as well as the
number of points). We use
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function sineplot(a,b,n)
x = linspace(a,b,n);
f = sin(x);
plot(x,f)

Here, observe that order is important, so when you call the function you will need to put
your inputs in the same order as they are read by the M-file. For example, to again plot sine
on [0, 2π], we use

>>sineplot(0,2*pi,50).

MATLAB can also take multiple inputs as a vector. Suppose the three values 0, 2π, and 50
are stored in the vector v. That is, in MATLAB you have typed

>>v=[0,2*pi,50];

In this case, we write a function M-file that takes v as input and appropriately places its
components.

function sineplot(v)
x = linspace(v(1),v(2),v(3));
f = sin(x);
plot(x,f)

5.4 Functions that Return Values

In the function M-files we have considered so far, the files have taken data as input, but they
have not returned values. In order to see how MATLAB returns values, suppose we want to
compute the maximum value of sin(x) on the interval over which we are plotting it. Change
sineplot.m as follows:

function maxvalue = sineplot(v)
x = linspace(v(1),v(2),v(3));
f = sin(x);
maxvalue = max(f);
plot(x,f)

In this new version, we have made two important changes. First, we have added maxvalue =
to our first line, specifying that the value we want MATLAB to return is the one we compute
as maxvalue. Second, we have added a line to the code that computes the maximum of f
and assigns its value to the variable maxvalue. (The MATLAB function max takes vector
input and returns the largest component.) When running an M-file that returns data from
the command window, you will typically want to assign the returned value a designation.
Here, you might use

>>m=sineplot(v)
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The maximum of sin(x) on this interval will be recorded as the value of m.
MATLAB can also return multiple values. Suppose we would like to return both the

maximum and the minimum of f in this example. We use

function [minvalue,maxvalue] = sineplot(v)
x = linspace(v(1),v(2),v(3));
f = sin(x);
minvalue = min(f);
maxvalue = max(f);
plot(x,f)

In this case, at the command prompt, type

>>[m,n]=sineplot(v)

The value of m will now be the minimum of sin(x) on this interval, while n will be the
maximum.

As our last example, we will write a function M-file that takes vector input and returns
vector output. In this case, the input will be as before, and we will record the minimum and
maximum of f in a vector. We have

function w = sineplot(v)
x = linspace(v(1),v(2),v(3));
f = sin(x);
w = [min(f),max(f)];
plot(x,f)

This function can be called with

>>b=sineplot(v)

where it is now understood that b is a vector with two components.

5.5 Debugging M-files

Since MATLAB views M-files as computer programs, it offers a handful of tools for debug-
ging. First, from the M-file edit window, an M-file can be saved and run by clicking on the
icon with the white sheet and downward-directed blue arrow (alternatively, choose Debug,
Run or simply type F5). By setting your cursor on a line and clicking on the icon with the
white sheet and the red dot, you can set a marker at which MATLAB’s execution will stop.
A green arrow will appear, marking the point where MATLAB’s execution has paused. At
this point, you can step through the rest of your M-file one line at a time by choosing the
Step icon (alternatively Debug, Step or F6).

Unless you’re a phenomenal programmer, you will occasionally write a MATLAB program
(M-file) that has no intention of stopping any time in the near future. You can always abort
your program by typing Control-c, though you must be in the MATLAB Command Window
for MATLAB to pay any attention to this. If all else fails, Control-Alt-Backspace will
end your session on a calclab account.
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5.6 Assignments

For the logistic population model

R(N) = aN(1 − N

K
),

the number of individuals in the population can be written as a function of time t (and the
parameters of the model) as

N(t, a, K, N0) =
N0K

N0 + (K − N0)e−at
,

where N0 is the number of individuals at time 0.

1. [2.5 pts ]Define the function N(t, a, K, N0) as an inline function and compute the popu-
lation for t = 10, a = .1, K = 100, and N0 = 5.

2. [2.5 pts] Write a script M-file that plots N as a function of t for the parameter values
given in problem 1. Take t ∈ [0, 5].

3. [2.5 pts] Write a function M-file that takes the parameters a, K, and N0 as input and
plots N as a function of t for t ∈ [0, 5]. Use your M-file to plot N for the values a = .2,
K = 100, N0 = 150.

4. [2.5] Write a function M-file that takes the parameters a, K, and N0 as input and returns
the value of the population at t = 5.
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6 Function Limits in MATLAB

6.1 Symbolic Limits of Functions

MATLAB’s symbolic toolbox has a function limit that can symbolically compute limits. The
syntax for computing the limit

lim
x→a

f(x) = L

is
limit(f(x),x,a),

where x is a symbolic variable.

Example 6.1. Compute the limit

lim
x→0

sin x

x
= 1.

In MATLAB,

>>syms x;
>>limit(sin(x)/x,x,0)
ans =
1

△
Example 6.2. Compute the limit

lim
x→∞

x4 + x2 − 3

3x4 − log x
=

1

3
,

In MATLAB,

>>limit((xˆ4 + xˆ2 - 3)/(3*xˆ4 - log(x)),x,Inf)
ans =
1/3

△
For left and right limits, the option ’left’ or ’right’ can be added at the end of the function

statement.

Example 6.3. Compute the left and right limits

lim
x→0−

|x|
x

= −1; lim
x→0+

|x|
x

= +1.

In MATLAB,
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>>syms x;
>>limit(abs(x)/x,x,0,’left’)
ans =
-1
>>limit(abs(x)/x,x,0,’right’)
ans =
1

△

6.2 Divergence by Oscillation

In class we have observed that in certain cases a limit can fail to exist because the graph of
the function continues to oscillate as the independent variable approaches its limit. In this
subsection, we will consider an example of such a case.

Example 6.4. Consider the limit

lim
x→0

sin
1

x
.

In order to study this limit, we will plot the function sin 1
x

for x near 0. We use

>>x=linspace(.03, .5, 1000);
>>f=sin(1./x);
>>plot(x,f)

We see in Figure 6.1 that as x goes toward 0, sin 1
x

continues to oscillate between -1 and +1,
with the period of oscillation becoming shorter and shorter. △

6.3 The Sandwich Theorem

In class, we considered the following Sandwich Theorem ( sometimes called the Squeeze The-
orem):

Sandwich Theorem. If f(x) ≤ g(x) ≤ h(x) for all x in an open interval containing c
(except possibly at c) and

lim
x→c

f(x) = lim
x→c

h(x) = L,

then
lim
x→0

g(x) = L.

Example 6.5. Consider the limit

lim
x→0

x sin
1

x
.

Our approach to this limit in class was to apply with Sandwich Theorem with the
inequalities

−|x| ≤ x sin
1

x
≤ |x|.

In order to see how this looks graphically, let’s plot all three of these functions together on
a MATLAB figure. We use the commands
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Figure 6.1: Plot of sin 1
x
.

>>x=linspace(-1,1,100);
>>f=-abs(x);
>>g=x.*sin(1./x);
>>h=abs(x);
>>plot(x,f,’r’,x,g,x,h,’r’)

Here, the bounding functions f(x) and h(x) have been drawn in red with the option ’r’ (this
won’t appear in the black and white figure in these notes). △

Example 6.6. We also use the Sandwich Theorem to establish the limit

lim
x→0

sin x

x
= 1.

In order to see this limit graphically, we use the following MATLAB code.

>>x=linspace(-1, 1, 1000);
>>f=sin(x)./x;
>>plot(x,f)

This creates Figure 6.3, in which we see that for x either above or below 0, the limit is
approaching 1. △

6.4 The Bisection Method

In class, we used the Intermediate Value Theorem to develop the bisection method for finding
roots of functions.
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Figure 6.2: Sandwich Theorem plot of x sin 1
x
.

Intermediate Value Theorem. Suppose f(x) is continuous on some closed interval [a, b],
and that either f(a) < L < f(b) or f(b) < L < f(a). There there must exist some point
c ∈ (a, b) so that f(c) = L.

We can use this theorem to find roots for equations of the form

f(x) = 0.

We proceed by finding two points a < b so that either f(a) < 0 < f(b) or f(b) < 0 < f(a). In
either case, the Intermediate Value Theorem asserts that there must be some value c ∈ (a, b)
so that f(c) = 0. That is, c is a root of the equation. Since we only know that the root is
between a and b, our best estimate of its location is the midpoint

m1 =
a + b

2
,

and this is our first approximation of the root. In order to compute a second approximation,
we begin by evaluating f(m1). Of course, if f(m1) = 0, we have found a root. Suppose
alternatively that f(m1) > 0 and that f(a) < 0. In this case, we now know that the root
is located in the interval (a, m1), which is half the size of the interval (a, b). Our second
approximation becomes the midpoint of this interval

m2 =
m1 + a

2
.

By repeating this procedure, we can approximate the root between a and b as closely as we
like. In particular, since we reduce our interval by a factor of 2 at each iteration, our error

at the nth iteration is

En = (b − a)(
1

2
)n.
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Figure 6.3: Plot of sinx
x

.

Example 6.7. (Problem 8 from Section 3.5 of our text.) Use the bisection method to find
a solution of

cos x = x

that is accurate to two decimal places (i.e., that has an error smaller than .01).
In this case, the function of interest is f(x) = cos x−x, and we begin with the endpoints

a = 0 and b = 1, for which f(0) = 1 and f(1) = −.4597. Our first estimate is

m1 =
1

2
.

In order to find an estimate within two decimal places, we require the number of iterations
n to be large enough so that

(
1

2
)n < .01.

That is, we insist that our error is less than 1/100, even though rounding errors could actually
make our two-decimal approximation differ from the correct answer by 1/100. Solving this
inequality for n we find that n must be large enough so that

n >
log10 .01

log10 .5
= 6.6439.

In other words, we require 7 iterations. We will carry this out in MATLAB. For the first few
iterations, we can proceed explicitly

>>cos(1/2)-1/2
ans =
0.3776
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>>m2=(1+1/2)/2
m2 =
0.7500
>>cos(m2)-m2
ans =
-0.0183
>>m3=(.75+.5)/2
m3 =
0.6250

Repeating this 7 times will get old fast, so let’s finish the calculation with an M-file, bisec-
tion.m.5

function value = bisection(a,b,n)
f=inline(’cos(x)-x’,’x’);
fleft = f(a);
fright = f(b);
for k=1:n
m(k) = (a+b)/2;
fmid = f(m(k));
if fmid*fleft > 0
a = m(k);
else
b = m(k);
end
end
value = m;

In this M-file, we take left and right endpoints as input, as well as the number of iterations
n. At step k, our approximation is mk, which in MATLAB looks like m(k). The file returns
a vector containing the approximation at each iteration.

>>bisection(0,1,7)
ans =
0.5000 0.7500 0.6250 0.6875 0.7188 0.7344 0.7422

Here, the approximation at step 7 is m7 = .7422, which we compare with the exact solution
mexact = .7391 (to four decimal places). We see indeed that our approximation is good to
two decimal places (i.e., |m1 − mexact| = .0031 < .01). △

5This M-file, along with several others, is available on the course web site.
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6.5 Experimenting with the Formal Definition of Limits

The formal definition of a (finite) limit is given as follows:

Definition. The statement
lim
x→c

f(x) = L

means that for any ǫ > 0 there exists some δ > 0 so that if 0 < |x−c| < δ then |f(x)−L| < ǫ.
(Recall that we take |x − c| > 0, or equivalently x 6= c, because f(x) may not be defined at
x = c.) That is, by taking x sufficiently close to its limiting value c, we can force f(x) to

be arbitrarily close to its limiting value L.
Example 6.8. Consider the limit

lim
x→1

x2 + 1 = 2.

The formal definition says that in order to prove that this is true, we must show that given
any ǫ > 0 there exists some δ > 0 so that if |x− 1| < δ then |(x2 + 1)− 2| < ǫ. Suppose, for
example, that ǫ = .01. How small must we choose δ? In order to examine this in MATLAB,
we will plot our function x2 + 1 only for those values of x for which |x− 1| < δ. Let’s begin
with the case δ = .1. In order to specify |x − 1| < .1, we use x=linspace(1-.1,1+.1,50). We
create Figure 6.4 with the following code.

>>x=linspace(.9,1.1,50);
>>f=x.ˆ2+1;
>> plot(x,f)
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Figure 6.4: Figure for δ = .1.

Notice that it’s clear from Figure 6.4 that this value of δ is not small enough. That is,
we need to insure that the plot is never farther than .01 from 2, and in this figure it gets as
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far as .2 from 2. (Look at values on the y-axis.) This means that we must take a smaller
value of δ. For δ = .01, we have

x=linspace(.99,1.01,50);
f=x.ˆ2+1;
plot(x,f)

We observe in Figure 6.5 that this is almost sufficient. That is, the values of x2 +1 now only
differ from 2 by about .02.
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Figure 6.5: Figure for δ = .01.

Finally, let’s take δ = .001. In this case, we use

>>x=linspace(.999,1.001,50);
>>f=x.ˆ2+1;
>>plot(x,f)

This creates Figure 6.6, from which it is clear that for these values of x, |(x2 + 1)− 2| < .01.
In particular, this difference appears to be bounded by about .002, so it is even smaller than
we require. △

6.6 Assignments

1. [2 pts] Use MATLAB’s limit function to compute the following limits:

1a.

lim
x→0

tan x

x
.

1b.
lim

x→∞
x3e−x.
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Figure 6.6: Figure for δ = .001.

1c.
lim

x→1+
e−

1

1−x .

2. [2 pts] The limit

lim
x→0+

sin x

x
= 1

can be established by using the Squeeze Theorem and the inequality

cos x ≤ sin x

x
≤ 1

cos x
,

for x ∈ (0, π
2
). Depict this graphically by proceeding similarly as in Example 6.5.

3. [2 pts] Find the number of iterations n that will insure that the solution to

x = tan x,

for x ∈ (π
8
, 3π

8
) is accurate to two decimal places.

4. [2 pts] Alter bisection.m so that the function f(x) is taken (in the form of an inline
function) as input in the function call statement. Use your new M-file to find the root for

f(x) = x − tanx

for x ∈ (π
8
, 3π

8
). Your error should be smaller than .01.

5. [2 pts] The limit

lim
x→1

(1 − .5x−1)

x − 1
= ln(2)
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means that given any ǫ > 0 there exists some δ > 0 so that

0 < |x − 1| < δ ⇒ |(1 − .5x−1)

x − 1
− ln(2)| < ǫ.

Proceeding as in Example 6.8 find an appropriate value for δ if ǫ = .01.
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7 Symbolic Derivatives in MATLAB

Symbolic derivatives can be computed in MATLAB with the command diff().

Example 7.1. Use the diff() command to compute the derivative of x3.
We can compute this three different ways. First, we can proceed directly:

>>syms x;
>>diff(xˆ3)
ans =
3*xˆ2

Alternatively, we can first define f(x) = x3 as an inline function.

>>syms x;
>>f=inline(’xˆ3’,’x’);
>>diff(f(x))
ans =
3*xˆ2

Finally, we can use diff without first specifying x as a symbolic variable by using single
quotes in the argument of diff.

>>diff(’xˆ3’)
ans =
3*xˆ2

△
Example 7.2. Compute the derivative of f(x) = ex sin x. In MATLAB,

>>syms x;
>>diff(exp(x)*sin(x))
ans =
exp(x)*sin(x)+exp(x)*cos(x)

△

7.1 Computing Higher Order Derivatives in MATLAB

The derivative of a function f(x) is again a function f ′(x). If we now take a derivative of
f ′(x), we have

d

dx
f ′(x) = f ′′(x),

which we refer to as the second derivative of f . Alternatively, we have the notation

f ′′(x) =
d2f

dx2
.
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Similarly, the third derivative of f is defined as

f ′′′(x) =
d

dx
f ′′(x),

and can also be written as

f ′′′(x) =
d3f

dx3
.

Proceeding similarly, we can define the derivative of a function to any order. Eventually, the

prime notation becomes unwieldy, and so we often write the nth derivative as

f (n)(x) =
dnf

dxn
.

Example 7.3. For f(x) = x3, compute f ′′(x) in MATLAB.
As with first order derivatives, there are three ways in which to do this in MATLAB.

First, we can simply use the diff command, and specify in the second entry that we want a
second order derivative.

>>syms x;
>>diff(xˆ3,2)
ans =
6*x

Alternatively, we can first specify f(x) as an inline function.

>>syms x;
>>f=inline(’xˆ3’,’x’)
f =
Inline function:
f(x) = xˆ3
>>diff(f(x),2)
ans =
6*x

Finally, we can again use the diff command with single quotes.

>>diff(’xˆ3’,2)
ans =
6*x

△
Example 7.4. Compute the third x-derivative of the function

f(x) = sin(ax).

Again, we can proceed in one of three different ways, though now we must specify which
variable we want MATLAB to differentiate with respect to. First, we use
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>>syms a x;
>>diff(sin(a*x),x,3)
ans =
-cos(a*x)*aˆ3

(In fact, MATLAB takes x as its independent variable by default, so the statement diff(sin(a*x),3)
would also work here, but in general you can use any letter (or combination of letters) as
an independent variable, so long as you specify it as such.) Alternatively, we can define an
inline function as a function of both x and a, and then specify that we want to differentiate
with respect to x.

>>syms a x;
>>f=inline(’sin(a*x)’,’a’,’x’)
f =
Inline function:
f(a,x) = sin(a*x)
>>diff(f(a,x),x,3)
ans =
-cos(a*x)*aˆ3

Finally, we can still use diff with single quotes bracing the argument. In this case, notice
that x must be placed in single quotes when being distinguished as the independent variable.

>>diff(’sin(a*x)’,’x’,3)
ans =
-cos(a*x)*aˆ3

△

7.2 Computing Derivatives as Limits

According to our definition, the derivative of a function f(x) can be computed as the limit

f ′(x) = lim
h→0

f(x + h) − f(x)

h
.

Example 7.5. Use the definition of derivative to compute the derivative of f(x) = x2. In
MATLAB,

>>syms x h;
>>limit(((x+h)ˆ2-xˆ2)/h,h,0)
ans =
2*x

△
Example 7.6. Use the definition of derivative to compute the derivatives of sin x and cos x.
In MATLAB
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>>syms x h;
>>limit((sin(x+h)-sin(x))/h,h,0)
ans =
cos(x)
>>limit((cos(x+h)-cos(x))/h,h,0)
ans =
-sin(x)

△

7.3 Dynamic and Geometric Interpretations of the Derivative

In studying calculus and its applications, it is extremely important to keep in mind both
the dynamic interpretation of the derivative as the rate of change of some process, and the
geometric interpretation of the derivative as the slope of the line that is tangent to the graph
of the function at the specified point.

Example 7.7. The logistic population model relates the rate of growth R of a population
to the size of the population N by the relation

R(N) = aN(1 − N

K
).

If N0 is the population at time 0, it is possible to show that

N(t) =
K

1 + ( K
N0

− 1)e−at
.

In this example, we will investigate the behavior of this function for the values a = 1, N0 = 1,
and K = 10, for which we have

N(t) =
10

1 + 9e−t
.

We can plot this function in MATLAB with the following commands, which create Figure
7.1.

>>t=linspace(0,5,50);
>>N=10./(1+9*exp(-t));
>>plot(t,N)

The average growth rate of this population over any time period is given by

Average growth rate =
Change in population

Length of time period
.

For example, the average growth rate of this population from year 3 to year 5 is

Average growth rate from year 3 to year 5 =
N(5) − N(3)

2
.

In particular, notice that this value N(5)−N(3)
2

is precisely the slope of the line connecting the
points (3, N(3)) and (5, N(5)) (see Figure 7.2). This line is referred to as a secant line and
has slope m = 1.2613 and y-intercept b = 3.1218. It can be added to our figure with the
following commands, which create Figure 7.2.
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Figure 7.1: The logistic curve for a = 1, N0 = 1, and K = 10.

>>s1=1.2613*t+3.1218;
>>hold on
>>plot(t,s1,’–’)

Next, consider the average growth rate of the population between years 3 and 4. In this
case, we have

Average growth rate from year 3 to year 4 =
N(4) − N(3)

1
,

where this is now the slope of the line connecting the points (3, N(3)) and (4, N(4)). The
slope of this new line is m = 1.6792 and the y-intercept is b = 1.8681. We can add this line
to our plot with the following commands, which create Figure 7.3.

>>s2=1.6792*t+1.8681;
>>plot(t,s2,’-.’)

More generally, the average growth rate between time t = 3 and any later time t = 3 + h
is given by

Average growth rate from year 3 to year 3+h =
N(3 + h) − N(3)

h
.

Suppose we would like to know the growth rate of the population precisely at the time t = 3.
We expect that for h small (that is, for time intervals very close to t = 3), the average growth
rate will be a fairly good approximation of this instantaneous growth rate. Moreover, we
can find the exact growth rate at t = 3 by taking a limit as h → 0. That is

Instantaneous growth rate at year 3 = lim
h→0

N(3 + h) − N(3)

h
= 2.1368.
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Figure 7.2: The logistic curve with a secant line.

This limit is the derivative of N(t) at the time t = 3 and corresponds precisely with the slope
of the line tangent to the curve of N(t) at the time t = 3. The y-interept associated with
this time is b = .4953, and so this line can be added to our plot with the following MATLAB
commands, which create Figure 7.4. (The tangent line will appear in red on your figure.)

>>tangent=2.1368*t+.4953
>>plot(t,tangent,’r’)

Generally speaking, we define a derivative of N(t) at any time t by the relation

dN

dt
= lim

h→0

N(t + h) − N(t)

h
.

The fundamental point regarding the geometry of the derivative is that it corresponds with
the slope of the line that is tangent to the curve at that point. △

7.4 Computing the Equation of the Tangent Line

It is clear from our geometric interpretation of derivative that for a differentiable function
f(x), if we want to compute the slope of the tangent line at some point value x = c, we
need only compute f ′(c). In the final example of this section, we will use this information
to compute the equation for the tangent line.

Example 7.8. Compute the equation of the line tangent to f(x) = cos x at the point
x0 = π

4
.

We begin by computing the slope of this line, which is f ′(π
4
). In MATLAB,
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Figure 7.3: The logistic curve with two secant lines.

>>syms x
>>fprime=diff(cos(x))
fprime =
-sin(x)
>>subs(fprime,x,pi/4)
ans =
-0.7071

(You may recall that sin π
4

=
√

2
2

, which is approximated to four decimal places by .7071.)
In order to write the equation in point-slope form y − y0 = m(x − x0), we compute y0 =
cos π

4
= .7071. Finally, we have

y − .7071 = −.7071(x − π

4
),

which can be put into slope-intercept form y = mx + b

y = −.7071x + 1.2625.

We can plot cos x and this tangent line with the following MATLAB code, which creates
Figure 7.5.

>>x=linspace(0,pi/2,100);
>>f=cos(x);
>>tangent=-.7071*x+1.2625;
>>plot(x,f,x,tangent,’–’)

△
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Figure 7.4: The logistic curve with a tangent line at t = 3.

7.5 Assignments

1. [2 pts] Use MATLAB’s diff() function to compute the derivative of each of the following
functions.

1a.
f(x) = xtan x.

1b.
f(x) = cos−1 x.

2. [2 pts] Use MATLAB’s limit() function to compute the derivative of

f(x) = xr,

for any real number r 6= 0.

3. [6 pts] The Malthusian population model R(N) = aN has the solution

N(t) = N0e
at,

where N0 denotes the number of individuals in the population at time t and a denotes the
growth rate of the population. Take N0 = 1 and a = 1, and plot N(t) for t ∈ [0, 5] along with
(a) the secant line between (3, N(3)) and (5, N(5)); (b) the secant line between (3, N(3))
and (4, N(4)); and (c) the line tangent to the graph of N at the point (3, N(3)). (Note:
This problem combines the ideas of Examples 7.7 and 7.8. You will need to use the ideas of
Example 7.8 to find the equation for this tangent line.)
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Figure 7.5: Plot of cosx along with tangent line at x = π
4
.

8 Implicitly Defined Functions

In many cases we find that we have an equation involving both x and y that cannot be
solved explicitly for y as a function of x (see, for example, Example 8.1 below). It may be
the case, however, that given any x there corresponds precisely one y, and in such cases we
say that the resulting function y(x) is implicitly defined by the equation. In the event that
there correspond multiple values of y to certain values of x, it is typically possible to extract
multiple functions from the equation (see Example 8.2).

8.1 Plotting Implicitly Defined Functions

We can plot implicitly defined functions in MATLAB with ezplot.

Example 8.1. Plot the curve described by the relationship

x2y = exy2

.

With ezplot, the syntax is

ezplot(FUN,[xmin xmax ymin ymax]),

where FUN needs to be the relationship between the variables that is equal to zero; i.e., in
this case

FUN = x2y − exy2

.

For this example, we can create Figure 8.1 with the following MATLAB code:

>>ezplot(’xˆ2*y-exp(x*yˆ2)’,[-2 0 0 2])
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Figure 8.1: Plot of the relationship x2y = exy2

.

△
Example 8.2. Write down the two functions y1(x) and y2(x) associated with the equation

x2 + y2 = 1.

In this case, we can solve for y to find

y(x) = ±
√

1 − x2,

which is not a function since there correspond two values of y to each value of x. In this
case, we have two functions

y1(x) = −
√

1 − x2

y2(x) =
√

1 − x2.

△

8.2 Tangent Lines for Implicitly Defined Relations

In order to compute the tangent line at a point for an implicitly defined relation, we require
a method for computing dy

dx
that does not require an explicit formula for y as a function of

x. We accomplish this with implicit differentiation.

Example 8.3. Plot the line tangent to the curve described in Example 8.1 at the point
x = −1. First, we need a value of y associated with x = −1, and we observe that from our
relation we have

y = e−y2

.

Though we cannot solve this exactly, we can solve it in MATLAB with the following code.
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>>y=solve(’y-exp(-yˆ2)’,’y’)
y =
exp(-1/2*lambertw(2))
>>eval(y)
ans =
0.6529

Our point is (−1, .6529). In order to find the slope of the tangent line, we compute dy

dx
by

taking an x-derivative of our entire equation. We have

d

dx
(x2y) =

d

dx
exy2 ⇒ 2xy + x2 dy

dx
= exy2

(y2 + x2y
dy

dx
).

Solving for dy

dx
, we find

dy

dx
=

exy2

y2 − 2xy

x2 − 2xyexy2
. (8.1)

In MATLAB,

>>x=-1;
>>y=.6529;
>>yprime=(exp(x*yˆ2)*yˆ2-2*x*y)/(xˆ2-2*x*y*exp(x*yˆ2))
yprime =
0.8551

We conclude that our line has the form

y = .8551x + b.

We now find b by substituting our point (−1, .6529) for x and y. We have

b = .6529 + .8551 = 1.5080,

and so our tangent line has the equation

y = .8551x + 1.5080.

(Alternatively, we can proceed from point-slope form; see Example 8.8.) We plot this along
with with original curve with the following code, which creates Figure 8.2.

>>ezplot(’xˆ2*y-exp(x*yˆ2)’,[-2 0 0 2])
>>hold on
>>ezplot(’y-.8551*x-1.5080’,[-2 0 0 2])

△
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Figure 8.2: Plot of x2y = exy2

along with the tangent line at (−1, .6529).

8.3 Implicit Differentiation in MATLAB (sort of)

Though MATLAB does not have a built-in function that implicitly differentiates both sides
of an equation, expressions such as (8.1) can be obtained by the application of an important
result involving partial differentiation. Since we haven’t yet discussed partial differentiation,
I will only give the appropriate MATLAB commands here, and we will talk about what they
mean later in the course (next semester). Suppose, then, that for a relationship between x
and y described by the equation

F (x, y) = 0,

we would like to find an expression for y′ = dy

dx
using MATLAB. We use

yprime = −diff(F(x,y),x)/diff(F(x,y),y).

Example 8.4. Use MATLAB to find dy

dx
for x and y described as in Example 9.1.

We use

>>syms x y;
>>F=inline(’xˆ2*y-exp(x*yˆ2)’,’x’,’y’)
F =
Inline function:
F(x,y) = xˆ2*y-exp(x*yˆ2)
>>yprime=-diff(F(x,y),x)/diff(F(x,y),y)
yprime =
(-2*x*y+yˆ2*exp(x*yˆ2))/(xˆ2-2*x*y*exp(x*yˆ2))

In checking that this agrees with (8.1), you might find the pretty function useful. △
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8.4 Assignments

1. [5 pts] Plot the relation between x and y described by the equation

x4 + y4 = 1.

Use the limits x ∈ [−2, 2] and y ∈ [−2, 2]. On the same figure, add the lines that are tangent

to this curve at the points (1
2
,

4
√

15
2

) and (1
2
,

4
√

15
2

).

2. [5 pts] Plot the relation between x and y described by the equation

x3 + y3 = 6xy.

Use the limits x ∈ [−4, 4] and y ∈ [−4, 4]. On the same figure, add the line that is tangent
to this curve at the point (3, 3).
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9 Derivatives of Exponential and Inverse Functions

9.1 Approximating e from the Definition

One definition for the natural base e is the base for which the following limit holds:

lim
h→0

eh − 1

h
= 1.

In order to approximate a value of e from this definition, we must recall what we mean by
this limit. By our formal definition of limits, for any ǫ > 0 there exists some δ > 0 so that
if |h| < δ then

|e
h − 1

h
− 1| < ǫ.

(Keep in mind here that we are not proving this; we are taking advantage of it.) We have,
then

−ǫ <
eh − 1

h
− 1 < ǫ ⇒ (1 − ǫ)h + 1 < eh < (1 + ǫ)h + 1.

Taking the 1
h

power of each term in the inequality, we find that e is bounded by

((1 − ǫ)h + 1)
1

h < e < ((1 + ǫ)h + 1)
1

h . (9.1)

Given any ǫ > 0, we can choose h sufficiently small to make these true, so we will start with
ǫ = .0001, and study values of these expression as h → 0. We can compute an upper bound
with the following MATLAB code, in which the function R(ǫ, h) is simply the right-hand
side of (9.1). We have

>>R=inline(’((1+ep)*h+1)ˆ(1/h)’,’ep’,’h’)
R =
Inline function:
R(ep,h) = ((1+ep)*h+1)ˆ(1/h)
>>R(.0001,.01)
ans =
2.7051
>>R(.0001,.001)
ans =
2.7172
>>R(.0001,.0001)
ans =
2.7184
>>R(.0001,.00001)
ans =
2.7185

We conclude that e < 2.7185. On the other hand, we can get a lower bound with the
following similar code:
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>>L=inline(’((1-ep)*h+1)ˆ(1/h)’,’ep’,’h’)
L =
Inline function:
L(ep,h) = ((1-ep)*h+1)ˆ(1/h)
>>L(.0001,.01)
ans =
2.7045
>>L(.0001,.001)
ans =
2.7167
>>L(.0001,.0001)
ans =
2.7179
>>L(.0001,.00001)
ans =
2.7180

In this way, we conclude
2.7180 < e < 2.7185.

Of course, we can make this approximation better by choosing ǫ smaller to begin with, and
then taking smaller values of h. The exact value of e to four decimal places is e = 2.7183.

9.2 The Derivative of an Inverse Function

If a function f(x) is one-to-one and differentiable on some open interval (a, b), then the
inverse function f−1(x) is one-to-one and differentiable on this same interval, and for all
x ∈ (a, b)

df−1

dx
(x) =

1

f ′(f−1(x))
. (9.2)

Example 9.1. Show that f(x) = x3 + x + 1 is invertible on (−1, 1), and compute

df−1

dx
(0).

First, we can check the invertibility of this function in MATLAB by plotting it and
applying the horizontal line test. The following code created Figure 9.1, from which it is
clear that no horizontal line crosses the function more than once.

>>x=linspace(-1,1,100);
>>f=x.ˆ3+x+1;
>>plot(x,f)

According to (9.2), we can now compute df−1

dx
(0) as

df−1

dx
(0) =

1

f ′(f−1(0))
,
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Figure 9.1: Plot of f(x) = x3 + x + 1.

where
f ′(x) = 3x2 + 1.

All that remains is to compute f−1(0), and we observe that this is the x value associated
with y = 0, and hence it is the real value of x that satisfies the equation

0 = x3 + x + 1.

We solve this in MATLAB with the following code:

>>solve(’xˆ3+x+1’)
ans =
-1/6*(108+12*93ˆ(1/2))ˆ(1/3)+2/(108+12*93ˆ(1/2))ˆ(1/3)
1/12*(108+12*93ˆ(1/2))ˆ(1/3)-1/(108+12*93ˆ(1/2))ˆ(1/3)
+1/2*i*3ˆ(1/2)*(-1/6*(108+12*93ˆ(1/2))ˆ(1/3)-2/(108+12*93ˆ(1/2))ˆ(1/3))
1/12*(108+12*93ˆ(1/2))ˆ(1/3)-1/(108+12*93ˆ(1/2))ˆ(1/3)
-1/2*i*3ˆ(1/2)*(-1/6*(108+12*93ˆ(1/2))ˆ(1/3)-2/(108+12*93ˆ(1/2))ˆ(1/3))
>>eval(ans)
ans =
-0.6823
0.3412 - 1.1615i
0.3412 + 1.1615i

Though the cubic equation has three roots (as expected), only one is real. (If two of the
roots were real, the function would not have an inverse on this interval.) We conclude that
(to four decimal places of accuracy)

f(−.6823) = 0,
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and consequently
f−1(0) = −.6823.

We have, then
df−1

dx
(0) =

1

f ′(f−1(0))
=

1

3(−.6823)2 + 1
= .4173.

△
Example 9.2. For f(x) as in Example 1, plot f−1(x) along with f(x) on x ∈ [−1, 3] and
plot the line tangent to f(x) at the point (−.6823, 0) and the line tangent to f−1(x) at the
point (0,−.6823). (The choice of interval x ∈ [−1, 3] is taken so that the symmetry between
f(x) and f−1(x) will be apparent.)

First, we can invert f(x) in MATLAB by solving the equation y = x3 + x + 1 for x. In
MATLAB, we use.

>>finv=solve(’xˆ3+x+1=y’,’x’);

This statement returns three solutions, but as in Example 1 we are only concerned with the
first, which corresponds with the unique real solution. In order to plot this function along
with f(x), we use the following MATLAB code, which creates Figure 9.2.

>>y=linspace(-1,3,100);
>>finv=eval(vectorize(finv(1)));
>>plot(x,f,y,finv,’–’)
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Figure 9.2: Plot of f(x) = x3 + x + 1 along with f−1(x).

Here, we have used finv(1) to reference only the first component of finv, and we have used
the vectorize command to insert appropriate array operations into the expression for finv(1).
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We see from Figure 9.2 that the inverse function is simply a mirror image of the original
function about the line y = x. In order to plot the tangent line to f(x), we observe from our
calculations above that the slope of this line is

m1 = f ′(−.6823) = 3(−.6823)2 + 1 = 2.3966.

The y-intercept can be found from the point (−.6823, 0),

0 = 2.3966(−.6823) + b1 ⇒ b1 = 1.6352

That is, the equation for the line tangent to f(x) at (−.6823, 0) is

y = 2.3966x + 1.6352.

On the other hand, the slope of the line tangent to f−1(x) at (0,−.6823) is m2 = .4173,
as computed in Example 1. (This is also simply 1/2.3966; that is, these equations have
reciprocal slopes.) In this case, we find the y-intercept b2 from

−.6823 = .4173(0) + b2 ⇒ b2 = −.6823.

That is, the equation for the line tangent to f−1(x) at the point (0,−.6823) is

y = .4173x − .6823.

Finally, we add these lines to our figure with the following MATLAB code.

>>tangent1=2.3866*x+1.6352;
>>tangent2=.4173*y-.6823;
>>plot(x,f,x,tangent1,’b’,y,finv,’–’,y,tangent2,’g’)
>>axis([-1 3 -1 3])

The axis command has been added at the end so that the figure will have the same scaling as
Figure 9.2. In order to add this command, the figure created with plot should be minimized,
and then the command typed into the command window. The new figure is given as Figure
9.3. △

9.3 Assignments

1. [3 pts] Proceed as in Section 9.1 and find the value of a so that

lim
h→0

ah − 1

h
= 1.1447.

2. [2 pts] Use the derivative formula

d

dx
ax = ax ln a,
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Figure 9.3: Plot of f(x) and f−1(x) along with tangent lines.

and the limit definition of derivative to verify your solution to Problem 1. Why couldn’t we
use this easier calculation in Section 9.1?

3. [2 pts] Show that
f(x) = ex − x

is invertible for x ∈ (0, 2), and compute

df−1

dx
(2).

4. [3 pts] For f(x) as in Problem 3 plot f(x) along with f−1(x) for x ∈ [0, 3] and plot the
line tangent to f(x) at the point (f−1(2), 2) and the line tangent to f−1(x) at the point
(2, f−1(2)).
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10 Extrema and the Mean Value Theorem

10.1 The Mean Value Theorem

One of the most useful theorems in calculus is the Mean Value Theorem.

Theorem (Mean Value Theorem). Suppose f(x) is continuous on the closed interval
[a, b] and differentiable on the open interval (a, b). Then there exists at least one number
c ∈ (a, b) so that

f ′(c) =
f(b) − f(a)

b − a
.

Example 10.1. For f(x) = x + e3x on [0, 1], find c so that

f ′(c) =
f(1) − f(0)

1 − 0
. (10.1)

In this case, f ′(x) = 1 + 3e3x, and so we must find c so that

1 + 3e3c =
1 + e3 − 1

1
= e3.

If we subtract 1 from both sides, divide by 3, and take a natural logarithm, we find

c =
1

3
ln(

e3 − 1

3
) = .6168,

which is indeed on the open interval (0, 1).
In order to understand this example graphically, we observe that (10.1) relates the slope

of the tangent line at x = c with the slope of the secant line connecting the points (0, f(0))
and (1, f(1)). In the following MATLAB code, we plot three things: (1) the function f(x)
on (0, 1), (2) the line tangent to f(x) at x = .6168, and (3) the secant line connecting the
points (0, 1) and (1, 1+ e3). In order to plot the tangent line, we will require the y-intercept,
which (observing from above that f ′(.6168) = e3) can be computed from

y = e3x + b,

and the observation that f(.6168) = 6.9786 so that (.6168, 6.9786) is a point on the line.
That is,

6.9786 = .6168e3 + b ⇒ b = −5.4101.

Figure 10.1 is now created with the following MATLAB code.

>>x=linspace(0,1,100);
>>f=x+exp(3*x);
>>tangent=exp(3)*x-5.4101;
>>plot(x,f,x,tangent,[0 1],[1 1+exp(3)])

We observe that the Mean Value Theorem simply asserts that there must be some point
between 0 and 1 so that the slope of the tangent line at that point is the same as the slope
of the secant line between the endpoints of the function. △
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Figure 10.1: Plot of f(x) = x + e3x along with tangent and secant lines.

10.2 Monotonicity

According to our geometric interpretation of the derivative of a function at a point as the
slope of the line tangent to that function at the point, it’s clear that whenever f ′(x) < 0 the
function must be decreasing (these tangent lines are directed downward), while whenever
f ′(x) > 0 the function must be increasing. In the event that a function does not change
direction on an interval (a, b) (that is, the function is either is always increasing or always
decreasing) we call the function strictly monotonic.

Example 10.2. Plot both the function

f(x) = x4 − 3x3 − 7x2 + 1

and its derivative, and observe that f(x) increases whenever f ′(x) is positive and decreases
whenever f ′(x) is negative.

We can create Figure 10.2 with the following MATLAB code.

>>syms x;
>>f=xˆ4-3*xˆ3-7*xˆ2+1;
>>fprime=diff(f)
fprime =
4*xˆ3-9*xˆ2-14*x
>>x=linspace(-2,4,100);
>>f=eval(vectorize(f));
>>fprime=eval(vectorize(fprime));
>>plot(x,f)
>>figure
>>plot(x,fprime,[-2 4],[0 0],’k’)
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Figure 10.2: Plot of f(x) = x4 − 3x3 − 7x2 + 1 (top), along with f ′(x) (bottom).

In particular, the zeros of f ′(x) are located at approximately the values −1.0580, 0, and
3.3080. Observe that f ′(x) is negative for x ∈ (−2,−1.0580) and also for x ∈ (0, 3.3080),
and f(x) is decreasing on precisely these same intervals. Also, observe that at the endpoints
of these intervals (that is, at the values for which f ′(x) = 0), f(x) is either a local maximum
or a local minimum. △

10.3 Concavity

Loosely speaking, we say that a function is concave up if it bends upward and concave down
if it bends downward. Observe from Figure 10.2 that whenever f(x) is concave up, f ′(x) is
increasing, while whenever f(x) is concave down f ′(x) is decreasing. We have the following
definition.

Definition (Concavity). A differentiable function f(x) is concave up/down on an interval
(a, b) if its first derivative is an increasing/decreasing function on (a, b).

From our monotonicity discussion, we know that if f ′(x) is increasing, then its derivative
f ′′(x) must be positive, while if f ′(x) is decreasing, then its derivative must be negative.
This leads to the following test for concavity.
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Concavity Test. Suppose f(x) is twice differentiable on some interval (a, b). If f ′′(x) > 0
on (a, b), then f is concave up on (a, b), while if f ′′(x) < 0 on (a, b), then f is concave down
on (a, b).

Example 10.3. For f(x) as in Example 11.2, plot f(x) and f ′′(x), and observe that f(x)
is concave up whenever f ′′(x) > 0 and that f(x) is concave down whenever f ′′(x) < 0. We
can create Figure 10.3 with the following MATLAB code.

>>syms x;
>>f=xˆ4-3*xˆ3-7*xˆ2+1;
>>fprime2=diff(f,2)
fprime2 =
12*xˆ2-18*x-14
>>x=linspace(-2,4,100);
>>f=eval(vectorize(f));
>>fprime2=eval(vectorize(fprime2));
>>plot(x,f)
>>figure
>>plot(x,fprime2,[-2 4],[0 0],’k’)

△

10.4 Maximization and Minimization

In many applications, we are interested in finding the maximum or the minimum value of a
function over some specified interval. For example, x might denote the number of widgets
made in some industrial process and f(x) might denote the profit drawn from the sale of
these widgets. Since money cannot be made without the production of some widgets, we
know that f(0) = 0, while if we create too many widgets we won’t be able to sell them
all, and we will lose our production costs. The goal is to find precisely the right number
of widgets to maximize our profit. The derivative is an extremely useful tool for solving
problems of this type. Along these lines, we have the following theorem.

Fermat’s Theorem. Suppose f ′(x) is defined on some interval (a, b) and f has a local
minimum or a local maximum at c ∈ (a, b). Then f ′(c) = 0.

If we combine Fermat’s Theorem with the Extreme Value Theorem, we can conclude the
following about the location of the global maximum and the global minimum for a function
f(x) that is continuous on a closed interval [a, b].

Categorization of Extrema. For a continuous function f on a bounded interval [a, b],
suppose c is a global extremum (a global minimum or a global maximum). Then c must
satisfy one of the following:

1. f ′(c) = 0.

2. f ′(c) does not exist.

3. c is an endpoint.
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Figure 10.3: Graphs of f(x) and f ′(x) for Example 3.

In practice, we can use this result to identify all possible candidates for extrema, and then
we can determine the maximum and minimum values of the function by evaluating it at each
of these values.

Example 10.4. Find the global extrema of the function

f(x) = x2esin x − x

x3 + 1
,

on the interval [0, 5].
First, we plot this function for x ∈ [0, 5]. Figure 10.4 is created with the following

MATLAB code.

>>f=inline(’xˆ2*exp(sin(x))-x/(xˆ3+1)’)
f =
Inline function:
f(x) = xˆ2*exp(sin(x))-x/(xˆ3+1)
>>ezplot(f,[0 5])

We can see from this graph the rough locations of the local maxima and minima, and we
must use this information as initial guesses for MATLAB’s function fzero, which numerically
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Figure 10.4: Plot of f(x) = x2esin x − x
x3+1

.

locates the zeros of a function. (In this case, solve won’t work because MATLAB cannot
solve the equation f ′(x) = 0 exactly.) The syntax for fzero is

fzero (f,guess),

where guess denotes an initial guess of the location of a root of the function f .
In order to find all zeros of f ′(x), we use the following MATLAB code:

>>syms x;
>>fprime=diff(f(x))
fprime =
2*x*exp(sin(x))+xˆ2*cos(x)*exp(sin(x))-1/(xˆ3+1)+3*xˆ3/(xˆ3+1)ˆ2
>>fprime=inline(char(fprime))
fprime =
Inline function:
fprime(x) = 2*x*exp(sin(x))+xˆ2*cos(x)*exp(sin(x))-1/(xˆ3+1)+3*xˆ3/(xˆ3+1)ˆ2
>>fzero(fprime,0)
ans =
0.2953
>>fzero(fprime,2.5)
ans =
2.5092
>>fzero(fprime,4.5)
ans =
4.2139

74



Here, the command fprime=inline(char(fprime)) converts fprime into an inline function so
that it can be analyzed with the fzero command. The char command is required to convert
fprime from a symbolic object into a string, which is the required input for inline. We must
now evaluate f(x) at the five possible extrema, 0, .2953, 2.5092, 4.2139, and 5, where of
course the middle values are all approximate. Assuming the previous code for this example
has already been typed in, we can evaluate f(x) at these values as follows:

>>f(0)
ans =
0
>>f(.2953)
ans =
-0.1712
>>f(2.5092)
ans =
11.2209
>>f(4.2139)
ans =
7.3222
>>f(5)
ans =
9.5429

We conclude that the global minimum occurs at (approximately) x = .2953, with f(.2963) =
−.1712 (again approximate), and that the global maximum occurs at x = 2.5092, with
f(2.5092) = 11.2209, both approximate. Of course, given our figure, we could reasonably
evaluate f only at .2953 and 2.5092, but I wanted to proceed here with a general algorithm,
which consists of checking every candidate. △

10.5 Assignments

1. [3 pts] For the function f(x) = x + sin x, find the value c ∈ (0, π) so that

f ′(c) =
f(π) − f(0)

π
.

Plot f(x) along with the line tangent to f at the point (c, f(c)) and the secant line between
(0, 0) and (π, π).

2. [2 pts] Plot f(x) = sin(2x2 − 1) along with its first derivative (as in Example 10.2) for
x ∈ [0, 2π]. Specify the intervals on which f is increasing and the intervals on which f is
decreasing.

3. [2 pts] For the function from Problem 2 plot f(x) along with f ′′(x) (as in Example 10.3)
for x ∈ [0, 2π]. Specify the intervals on which f is concave up and the intervals on which f
is concave down.
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4. [3 pts] Determine the absolute maximum and absolute minimum values of the function

f(x) = x5e−x2 − sin x

x2 + 1
,

for x ∈ [0, 5].
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11 Limits of Sequences

MATLAB’s symbolic toolbox has a function limit that can symbolically compute limits.

Example 11.1. Consider the exponential sequence

an = 3 · 2n, n = 0, 1, 2, 3, ....

We can compute
lim

n→∞
an = ∞

with the following MATLAB code:

>>syms n
>>limit(3*2ˆn,n,Inf)
ans =
Inf

△

Example 11.2. We can compute the limit

lim
n→∞

1

n + 1
= 0

with the following MATLAB code:

>>limit(1/(n+1),n,Inf)
ans =
0

△

Example 11.3. We can compute the Zeno limit

lim
n→∞

2n − 1

2n
= 1

with the following MATLAB code:

>>limit((2ˆn-1)/2ˆn,n,Inf)
ans =
1

△
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11.1 Experimenting with the Limit Definition

In class, we made the following precise definition of a limit:

Definition. The sequence {an}∞n=1 converges to a limit a, written

lim
n→∞

an = a,

if for any ǫ > 0, there exists an integer N so that if n > N then |an − a| < ǫ.

Example 11.4. Consider the Zeno limit

lim
n→∞

2n − 1

2n
= 1.

In proving that this sequence converges to 1, we must show that for any ǫ > 0 there exists
an integer N so that if n > M then

|2
n − 1

2n
− 1| < ǫ.

We can view this graphically in MATLAB by plotting the sequence an as a function of its
index n. At the MATLAB prompt, type

>>n=1:10;
>>a=(2.ˆn-1)./(2.ˆn);
>>plot(n,a,’o’)

The plot this creates is given below in Figure 11.1.
We can see from Figure 11.1 that if ǫ = .1, then N = 4 is clearly sufficient. Likewise, if

ǫ = .05, then N = 5 appears to be sufficient. The choice of N depends on ǫ, and the smaller
we take ǫ to be, the larger N must be. In fact, recalling from class that in the proof that
Zeno’s limit converges we took N to be the first integer larger than − log2 ǫ, we can see the
dependence explicitly. In particular, we plot the function

f(ǫ) = − log2 ǫ.

>>epsilon=.001:.01:.1;
>>f=-log2(epsilon);
>>plot(epsilon,f)

It is clear from Figure 11.2 that as ǫ gets small, this value − log2 ǫ grows.
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Figure 11.1: Figure for Example 4.

11.2 Recursions

We have seen in class that if we are computing population values at discrete times, we
typically find recursive schemes of calculation.

Example 11.5. Consider the Beverton–Holt recruitment curve

Nt+1 =
RNt

1 + R−1
K

Nt

; N(0) = N0,

where we will take the growth rate R to be 2, the carrying capacity K to be 10, and the
initial population N0 to be 1. Write a MATLAB function M-file that takes an integer value
of t as input and returns the value of the population at that time.

function value = bevholt(t)
R = 2; K = 10; N0 = 1;
N(1) = N0;
for k = 1:t
N(k+1) = R*N(k)/(1 + ((R-1)/K)*N(k));
end
value = N(t+1);

Observe that since MATLAB does not allow a 0 index, we have had to associate the index
1 with the time 0, the index 2 with the time 1 etc. We can now calculuate populations
according to this model as follows:

>>bevholt(0)
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Figure 11.2: Plot of − log2 ǫ.

ans =
1
>>bevholt(1)
ans =
1.8182
>>bevholt(2)
ans =
3.0769

Next, we plot solutions to this model for t = 0, 1, 2, ..., 10. We use

>>times=0:10;
>>for k=1:11
N(k)=bevholt(times(k));
end
>>plot(times,N)

The lines can either be written into an M-file or typed directly into the MATLAB prompt.
If you type them directly in at the MATLAB prompt, observe that MATLAB does not give
a prompt after the for statement, but does allow you to write the loop material just below
it. The figure this creates is given in Figure 11.3.

We will show in class that N = K is a fixed point of the Beverton–Holt recursion, and
thus a natural candidate for this limit.
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Figure 11.3: Plot of the Beverton–Holt recruitment curve.

Assignments

1. [2 pts] Compute the following limits in MATLAB:

1a.
lim

N→∞
(
√

N −
√

N − 1).

1b.

lim
N→∞

(1 +
1

N
)N .

2. [3 pts] Show that

lim
N→∞

N(1 − .5
1

N ) = ln 2

(keeping in mind that MATLAB denotes ln by log). This means that for any ǫ > 0 there
exists some integer N large enough so that

|N(1 − .5
1

N ) − ln 2| < ǫ.

Find such values of N for ǫ = .1 and for ǫ = .01.

3. [5 pts] Write a MATLAB function M-file that takes an integer time t as input and returns
the population at time t according to the discrete logistic equation

Nt+1 = Nt

[

1 + R
(

1 − Nt

K

)]

.

Take the growth rate R to be 2, the carrying capacity K to be 10, and the initial population
N0 to be 1. Turn in a plot depicting N(t) at the times t = 0, 1, 2, ..., 10.
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12 Cobwebbing and Newton’s Method

12.1 Cobwebbing

For single recursion equations xn+1 = f(xn) we can graphically depict the iteration process
by the method of cobwebbing.

Example 12.1. Use the method of cobwebbing to depict the solution to the recursion
equation

xn+1 =
1

2
xn; x0 = 1

for n = 10 iterations (i.e., up to x10).
In order to apply the method of cobwebbing, we plot f(x) = 1

2
x and g(x) = x on a single

figure, and beginning with the point (1, 1
2
) (on the graph of f(x)), we draw a line horizontally

to the graph of g(x), then vertically to the graph of f(x) and so on. Each iteration requires
two lines, one horizontal and one vertical. After k iterations we arrive at the point (xk, xk+1).
In order to automate this process we will use the MATLAB file cobweb.m.

function values = cobweb(f,x0,n)
%COBWEB: MATLAB function M-file that takes as input an
%inline function f, an initial point x0, and a number of
%iterations n, and returns a sequence of values x(1) = x0,
%x(2) = x1, ... x(n+1) = xn for the recursion x(n+1)=f(x(n)),
%and plots the cobwebbing associated with this recursion.
%
x(1) = x0;
for k=2:n+1
x(k)=f(x(k-1));
end
%Specify the interval of x values. The gap variable will ensure
%that no lines appear on the boundary of the figure.
a = min(x);
b = max(x);
gap = (b-a)/10;
%Plot the graphs of f(x) and g(x) = x
y=linspace(a-gap,b+gap,round((b-a)*25));
fvals = f(y);
plot(y,y,y,fvals);
%Plot the cobwebbing
hold on
for k=1:n
plot([x(k) f(x(k))], [x(k+1) x(k+1)], ’–’);
plot([x(k+1) x(k+1)], [x(k+1) f(x(k+1))], ’–’);
end
%Place a circle on the final point
plot(x(n+1),f(x(n+1)),’o’,’MarkerFaceColor’,’k’,’MarkerSize’,5)
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values = x;

Notice that while this file is a bit long, most of the code is for commenting and plotting; the
iteration is carried out entirely in the first for loop. We implement this file at the MATLAB
prompt with the following commands, which create Figure 12.1.

>>f = inline(’.5*x’)
f =
Inline function:
f(x) = .5*x
>>cobweb(f,1,10)
ans =
Columns 1 through 7
1.0000 0.5000 0.2500 0.1250 0.0625 0.0312 0.0156
Columns 8 through 11
0.0078 0.0039 0.0020 0.0010

△
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Figure 12.1: Cobwebbing for the recursion equation xn+1 = 1
2
xn; x0 = 1.

Example 12.2. Use the method of cobwebbing to depict the solution to the recursion
equation

xn+1 = 1 − 1

2
xn; x0 = 1

for n = 10 iterations.
Proceeding almost precisely as in Example 12.1, we use the following MATLAB code to

create Figure 12.2.
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>>f = inline(’1-.5*x’)
f =
Inline function:
f(x) = 1-.5*x
>>cobweb(f,1,10)
ans =
Columns 1 through 7
1.0000 0.5000 0.7500 0.6250 0.6875 0.6562 0.6719
Columns 8 through 11
0.6641 0.6680 0.6660 0.6670

We see from the output that the values of xn appear to be approaching 2
3
, which is a stable

fixed point. △
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Figure 12.2: Cobwebbing for the recursion equation xn+1 = 1 − 1
2
xx0 = 1.

Example 12.3. Use the method of cobwebbing to depict the solution to the recursion
equation

xn+1 = 1.8(xn − x3
n)

for n = 10 iterations and three case x0 = 1, x0 = .99, and x0 = 1.01.
For the first, we use the following MATLAB code. Note, in particular, that the cube

must be an array operation.

>>f = inline(’1.8*(x-x.ˆ3)’)
f =
Inline function:
f(x) = 1.8*(x-x.ˆ3)
>>cobweb(f,1,10)
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ans =
1 0 0 0 0 0 0 0 0 0 0

In this case x1 = 0, and 0 is recovered at every subsequent step.
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Figure 12.3: Cobwebbing for the recursion equation xn+1 = 1.8(xn − x3
n), x0 = 1.

Next, we use the command cobweb(f,.99,10), which creates Figure 12.4. In this case,
we find that a small change in the initial value x0 leads to a relatively large change in the
behavior of the system. This is a hallmark of the type of behavior defined as chaos.6 The
system is approaching the fixed point 2

3
.

Finally, we use the command cobweb(f,1.01,10) to create Figure 12.5. We see that again
the behavior is entirely different, and in this case the system approaches the fixed point −2

3
.

12.2 Newton’s Method

In Section 6 we used the bisection method to find the roots of an algebraic equation. As
second, typically much faster method, is known as Newton’s method. Suppose we would like
to find a particular root for the equation

f(x) = 0.

We begin with an initial guess x0, and consider the line tangent to y = f(x) at x0, given in
point-slope form by

y − f(x0) = f ′(x0)(x − x0).

6Technically, a recursion equation must have three properties to be classified as chaotic and this is only
one of them. We haven’t developed enough theory to discuss the other two.
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Figure 12.4: Cobwebbing for the recursion equation xn+1 = 1.8(xn − x3
n) x0 = .99.

Since our goal is to y = 0, we set y = 0 in this linear approximation and obtain (solving for
x in terms of x0) the equation

x = x0 −
f(x0)

f ′(x0)
.

The idea of Newton’s method is simply to keep repeating this process, so that we arrive at
a recursion relation of the form

xn+1 = xn − f(xn)

f ′(xn)
.

Example 12.4. Use Newton’s method to approximate
√

2.
We begin by observing that

√
2 is a solution to the algebraic equation

x2 − 2 = 0.

If we set f(x) = x2 − 2 then we can apply Newton’s method to obtain the iteration

xn+1 = xn − x2
n − 2

2xn

=
x2

n + 2

2xn

.

We can now use cobweb.m to carry out the iteration. Since
√

2 is somewhere between 1
and 2 (the square roots of 1 and 4 respectively), we will take 1.5 as our initial guess. The
following MATLAB code creates Figure ....

>>f=inline(’(x.ˆ2+2)./(2*x)’)
f =
Inline function:
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Figure 12.5: Cobwebbing for the recursion equation xn+1 = 1.8(xn − x3
n) x0 = 1.01.

f(x) = (x.ˆ2+2)./(2*x)
root2=cobweb(f,1.5,10)
root2 =
Columns 1 through 7
1.5000 1.4167 1.4142 1.4142 1.4142 1.4142 1.4142
Columns 8 through 11
1.4142 1.4142 1.4142 1.4142

Notice that the convergence is very fast: four decimal places of accuracy have been obtained
by the second iteration.

12.3 Assignments

1. [4 pts] In Secton 2.3 of the course text, the author studies the recursion relation

xn+1 = rxn(1 − xn), x0 = .2.

for several different values of r (see particularly Figures 2.18 through 2.22 in the text).
Use cobweb.m to create cobweb diagrams corresponding with r = 2, 3.2, 3.52, 3.8, with 10
iterations each. (These correspond respectively with the author’s Figures 2.18 through 2.21.)
In each case explain how the behavior of your cobwebbing diagram corresponds with the
author’s figure.

2. [3 pts] Use Newton’s method to approximate a value for
√

149 to four decimal places.

3. [3 pts] Find the minimum value of f(x) = (ln x)2 + x to four decimal places.
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Figure 12.6: Cobwebbing for the iteration xn+1 = x2
n+2
2xn

, x0 = 1
2
.

13 Riemann Sums in MATLAB

In this section we will review the concept of Riemann summation and use MATLAB to
directly compute a few example Riemann sums.

13.1 Riemann Sums

Definition 13.1. Let f(x) be a function on an interval [a, b], and suppose this interval is
partitioned by the values a = x0 < x1 < ... < xn−1 < xn = b. Any sum of the form

R =

n
∑

k=1

f(ck)△xk,

where △xk = xk − xk−1 and ck ∈ [xk−1, xk] is referred to as a Riemann sum of f .

If we let P denote our choice of partition (the choice of values x0, x1, ..., xn), and we let

‖P‖ := max(△x1,△x2, ...,△xn)

denote the norm of this partition, then we say f is Riemann integrable if

lim
‖P‖→0

n
∑

k=1

f(ck)△xk

exists. Following Leibniz, our notation for this limit is

∫ b

a

f(x)dx = lim
‖P‖→0

n
∑

k=1

f(ck)△xk.
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Example 13.1. As our first example, we will consider the case in which ck is always chosen
as the right endpoint of the interval [xk−1, xk]. If we take a regular partition with n intervals,

then each interval has length △x = b−a
n

, and the kth endpoint is

xk = a + k△x.

The Riemann sum becomes

R =

n
∑

k=1

f(a + k△x)△x.

Suppose we would like to approximate the integral

∫ 2

0

e−x2

dx

with n = 4. We have △x = 2−0
4

= .5 and the values

x0 = 0

x1 = .5

x2 = 1

x3 = 1.5

x4 = 2.0.

The Riemann sum is

R =
4

∑

k=1

f(0 + .5k).5 = .5(e−.52

+ e−12

+ e−1.52

+ e−22

) = .6352.

More generally, we can write a MATLAB function M-file that carries out this calculation for
any function f (defined as an inline function), endpoints a and b and regular partition with
n points. See rsum1.m.7

function value=rsum1(f,a,b,n)
%RSUM1: Computes a Riemann Sum for the function f on
%the interval [a,b] with a regular partition of n points.
%The points on the intervals are chosen as the right endpoints.
value = 0;
dx = (b-a)/n;
for k=1:n
c = a+k*dx;
value = value + f(c);
end
value = dx*value;

We run this in MATLAB with the following lines in the Command Window.

7The MATLAB M-files used in these notes are available from the course web site.
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>>f=inline(’exp(-xˆ2)’)
f =
Inline function:
f(x) = exp(-xˆ2)
>>rsum1(f,0,2,4)
ans =
0.6352
>>rsum1(f,0,2,10)
ans =
0.7837
>>rsum1(f,0,2,100)
ans =
0.8723
>>rsum1(f,0,2,1000)
ans =
0.8811

To four decimal places, the correct value is .8821. △
One interesting aspect of the Riemann sum is that the points ck need not be chosen

in the same place on each interval. That is, suppose we partition the interval [0, 1] with
0 = x0 < x1 = 1

2
< x2 = 1. In this case, a possible Riemann sum is

f(0)
1

2
+ f(1)

1

2
.

Here △x1 = △x2 = 1
2
, and we have chosen c1 as the left endpoint of the interval [0, 1

2
] and

c2 as the right endpoint of the interval [1
2
, 1].

Example 13.2. As our second example, we will consider the case in which ck is randomly
selected on the interval [xk−1, xk]. In this case, we revise rsum1.m into rsum2.m.

function value=rsum2(f,a,b,n)
%RSUM2: Computes a Riemann Sum for the function f on
%the interval [a,b] with a regular partition of n points.
%The points on the intervals are chosen randomly.
value = 0;
dx = (b-a)/n;
for k=1:n
c = dx*rand + (a + (k-1)*dx)
value = value + f(c);
end
value = dx*value;

The only tricky line here is the one that defines ck as a random number on the interval
[xk−1, xk]. In order to avoid a digression on the simulation of random variables, let’s simply
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accept that this line works.8 The implementation is as follows (assuming f(x) = e−x2

has
already been defined as an inline function).

>>rsum2(f,0,2,5)
c =
0.0390
c =
0.5114
c =
1.0188
c =
1.5830
c =
1.9860
ans =
0.8894
>>rsum2(f,0,2,5)
c =
0.0630
c =
0.7882
c =
1.1829
c =
1.3942
c =
1.9201
ans =
0.7793

Observe that the values of c differ for each run of the program. The first value lies in the
interval [0, .4], the second in [.4, .8] etc. We can get better accuracy by increasing the size
of the partition. (In this case a semicolon was added to the line defining c to suppress the
output.)

>>rsum2(f,0,2,10)
ans =
0.8665
>>rsum2(f,0,2,100)
ans =
0.8818

8Okay, if you’re really curious. Given any interval [a, b], the points c = (1 − r)a + rb move from a to b

as r goes from 0 to 1. Our generic interval is [a + (k − 1)△x, a + k△x] and rand denotes a value randomly
chosen between 0 and 1. Therefore c = (1− rand)(a + (k − 1)△x) + rand(a + k△x), which gives the formula
we’re using.
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>>rsum2(f,0,2,1000)
ans =
0.8821

Notice that your values may vary slightly from these due to the random nature of the pro-
gram. Nonetheless, you should find that Riemann sums based on random values are actually
converging more rapidly to the correct solution than did Riemann sums based on right end-
points. The reason for this is that when the ck are chosen randomly the area approximations
on some subintervals are too large (a positive error), while the area approximations on oth-
ers are too small (a negative error). Under summation, these errors can cancel, leading to a
better approximation of the total area.

13.2 Assignments

1. [5 pts] Alter the M-file rsum1.m so that it computes Riemann sums of the given function
by taking the values ck as the left endpoints of each interval. Use your M-file to estimate

∫ 2

0

e−x2

dx

for regular partitions with n = 10, 100, 1000 and compare your result with those obtained
using right endpoints and those obtained using randomly selected points.

2. [5 pts] Alter the M-file rsum1.m so that it computes Riemann sums of the given function
by taking the values ck as the midpoints of each interval. Use your M-file to estimate

∫ 2

0

e−x2

dx

for regular partitions with n = 10, 100, 1000 and compare your result with those obtained
using right endpoints and those obtained using randomly selected points.
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14 Symbolic and Numerical Integration in MATLAB

In this section we introduce MATLAB’s built-in functions for symbolic and numerical inte-
gration.

14.1 Symbolic Integration in MATLAB

Certain functions can be symbolically integrated in MATLAB with the int command.

Example 14.1. Find an antiderivative for the function

f(x) = x2.

We can do this in (at least) three different ways. The shortest is:

>>int(’xˆ2’)
ans =
1/3*xˆ3

Alternatively, we can define x symbolically first, and then leave off the single quotes in the
int statement.

>>syms x
>>int(xˆ2)
ans =
1/3*xˆ3

Finally, we can first define f as an inline function, and then integrate the inline function.

>>syms x
>>f=inline(’xˆ2’)
f =
Inline function:
>>f(x) = xˆ2
>>int(f(x))
ans =
1/3*xˆ3

In certain calculations, it is useful to define the antiderivative as an inline function. Given
that the preceding lines of code have already been typed, we can accomplish this with the
following commands:

>>intoff=int(f(x))
intoff =
1/3*xˆ3
>>intoff=inline(char(intoff))
intoff =
Inline function:
intoff(x) = 1/3*xˆ3
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The inline function intoff(x) has now been defined as the antiderivative of f(x) = x2. △
The int command can also be used with limits of integration.

Example 14.2. Evaluate the integral
∫ 2

1

x cos xdx.

In this case, we will only use the first method from Example 2.1, though the other two
methods will work as well. We have

>>int(’x*cos(x)’,1,2)
ans =
cos(2)+2*sin(2)-cos(1)-sin(1)
>>eval(ans)
ans =
0.0207

Notice that since MATLAB is working symbolically here the answer it gives is in terms of
the sine and cosine of 1 and 2 radians. In order to force MATLAB to evaluate this, we use
the eval command. △

For many functions, the antiderivative cannot be written down in a closed form (as the
sum of a finite number of terms), and so the int command cannot give a result. As an
example, the function

f(x) = e−x2

falls into this category of functions. If we try int on this function, we get:

int(’exp(-xˆ2)’)
ans =
1/2*piˆ(1/2)*erf(x)

where by erf(x) MATLAB is referring to the function

erf(x) :=
2√
π

∫ x

0

e−y2

dy,

which is to say, MATLAB hasn’t actually told us anything. In cases like this, we can proceed
by evaluating the integral numerically.

14.2 Numerical Integration in MATLAB

MATLAB has two primary tools for the numerical evaluation of integrals of real-valued
functions, the quad command which uses an adaptive Simpson’s method (we will discuss
Simpson’s method in Section 4 of these notes) and the quadl command which uses an adaptive
Lobatto method (we won’t discuss the Lobatto method in these notes).

Example 14.3. Evaluate the integral
∫ 2

1

e−x2

dx.

We use
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quad(’exp(-x.ˆ2)’,1,2)
ans =
0.1353

The quad command requires an input function that can be appropriately evaluated for vector
values of the argument, and so we have used an array operation. △

The quad command can also be used to evaluate functions defined in M-files. In this way
it’s possible to integrate functions that have no convenient closed form expression.

Example 14.4. Evaluate the integral

∫ 10

0

y(x)dx,

where y is implicitly defined by the relationship

x = y3 + ey.

In this case, we cannot solve explicity for y as a function of x, and so we will write an
M-file that takes values of x as input and returns the associated values of y as output by
numerically solving the algebraic equation.

function value = yfunction(x)
f=inline(’x-yˆ3-exp(y)’,’x’,’y’);
for k=1:length(x)
value(k) = fzero(@(y) f(x(k),y), .5);
end

The for loop is necessary so that the function yfunction can be evaluated at vector values
for the independent variable x, as required by the quad command. We find

quad(@yfunction,0,10)
ans =
9.9943

(There is also an alternative approach to this type of problem that involves relating the
integral of y(x) to the integral of x(y), but that’s not the topic of this section.) △

14.3 Assignments

1. [2 pts] Find an antiderivative for the function

f(x) = x sin2 x.

2. [2 pts] Evaluate the integral
∫ 2

1

x sin2 xdx.
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3. [2 pts] Evaluate the integral
∫ 2

1

sin(x2)dx.

4. [4 pts] Evaluate the integral
∫ 2

0

y(x)dx,

where y is defined implicitly by the relation

x = y + sin y.
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