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Abstract

Working with a general class of linear Hamiltonian systems specified on R, we

develop a framework for relating the Maslov index to the number of eigenvalues the

systems have on intervals of the form [�1,�2) and (�1,�2). We verify that our frame-

work can be implemented for Sturm-Liouville systems, fourth-order potential systems,

and a family of systems nonlinear in the spectral parameter. The analysis is primarily

motivated by applications to the analysis of spectral stability for nonlinear waves, and

aspects of such analyses are emphasized.

1 Introduction

For values � confined to an interval I ⇢ R, we consider linear Hamiltonian systems

Jy
0 = B(x;�)y; x 2 R, y(x;�) 2 C2n

, (1.1)

where J denotes the 2n⇥ n symplectic matrix

J =

✓
0n �In

In 0n

◆
,

and throughout the analysis we will make the following assumptions on B(x;�):
(A) For each � 2 I, B(·;�) 2 L

1
loc(R,C2n⇥2n), with B(x;�) self-adjoint for a.e. x 2

R, and additionally the partial derivative B�(x;�) exists for a.e. x 2 R, with B�(·;�) 2

L
1
loc(R,C2n⇥2n).

For this analysis, we will say that � is an eigenvalue of (1.1) provided there exists a
function

y(·;�) 2 (ACloc(R,C2n) \ L
2(R,C2n))\{0}

that satisfies (1.1) for a.e. x 2 R, and we will take the geometric multiplicity of � to be
the dimension of the space of such solutions. (Here, and throughout, ACloc(·) refers to the
space of functions absolutely continuous on compact subsets of R.) Our primary goal for
the analysis is to use the Maslov index to count the number of eigenvalues that (1.1) has on
intervals of the form [�1,�2) and (�1,�2) (assumed, in each case, to be a subset of I).
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We are primarily motivated by applications to the spectral stability of nonlinear waves
arising in certain nonlinear evolutionary PDE such as Allen-Cahn systems

ut +DF (u) = uxx, (x, t) 2 R⇥ R+, u(x, t) 2 Cn
, (1.2)

and higher-order analogues

ut +DF (u) = �uxxxx, (x, t) 2 R⇥ R+, u(x, t) 2 Cn
.

(Here, D denotes the Jacobian operator.) In the former case, if ū(x) denotes a stationary
solution, then we can linearize about ū(x) (setting u = ū+ v and dropping terms nonlinear
in v) to obtain a linear equation

vt +D
2
F (ū)v = vxx, (x, t) 2 R⇥ R+, v(x, t) 2 Cn

.

In this setting, spectral stability is determined by the spectrum of the associated eigenvalue
problem

��xx +D
2
F (ū)� = ��, x 2 R, �(x;�) 2 Cn

, (1.3)

which we can put in the form of (1.1) by setting y =
�
y1
y2

�
=
�
�
�0

�
. Precisely, we find

Jy
0 = B(x;�)y; B(x;�) =

✓
�I �D

2
F (ū(x)) 0
0 I

◆
.

We would like to determine whether (1.3) has any negative eigenvalues, and this information
clearly follows from a count of the number of eigenvalues that (1.3) has on (�1, 0).

We are particularly interested in stationary solutions that approach fixed endstates u± as
x ! ±1, and such cases provide us with additional structure that will be necessary for our
general analysis. In order to keep the analysis as applicable as possible, we will make three
general assumptions (in addition to Assumptions (A)), which we will subsequently verify in
a selection of important cases. Prior to stating these assumptions, we need to develop some
notation and terminology that will be used througout the discussion. We begin with the
following definition.

Definition 1.1. We say that a measurable function y : R ! C2n lies left in R if for any
c 2 R, the restriction of y(·) to (�1, c) is in L

2((�1, c),C2n). Likewise, we say that a
measurable function y : R ! C2n lies right in R if for any c 2 R, the restriction of y(·) to
(c,+1) is in L

2((c,+1),C2n). If each column of a matrix-valued function lies left (resp.
right) in R, then we say the matrix-valued function lies left (resp. right) in R.

Our primary tool for this analysis will be the Maslov index, and as a starting point for
a discussion of this object, we define what we will mean by a Lagrangian subspace of C2n.

Definition 1.2. We say ` ⇢ C2n is a Lagrangian subspace of C2n if ` has dimension n and

(Ju, v) = 0, (1.4)

for all u, v 2 `. (Here, and throughout, (·, ·) denotes the usual inner product on C2n.) In
addition, we denote by ⇤(n) the collection of all Lagrangian subspaces of C2n, and we will
refer to this as the Lagrangian Grassmannian.
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Any Lagrangian subspace ` of C2n can be spanned by a choice of n linearly independent
vectors in C2n. We will generally find it convenient to collect these n vectors as the columns
of a 2n ⇥ n matrix X, which we will refer to as a frame for `. Moreover, we will often
coordinatize our frames as X =

�
X
Y

�
, where X and Y are n⇥ n matrices. Following [25] (p.

274), we specify a metric on ⇤(n) in terms of appropriate orthogonal projections. Precisely,
let Pi denote the orthogonal projection matrix onto `i 2 ⇤(n) for i = 1, 2. I.e., if Xi denotes
a frame for `i, then Pi = Xi(X⇤

iXi)�1
X

⇤
i . We take our metric d on ⇤(n) to be defined by

d(`1, `2) := kP1 � P2k,

where k · k can denote any matrix norm. We will say that a path of Lagrangian subspaces
` : I ! ⇤(n) is continuous provided it is continuous under the metric d.

Suppose `1(·), `2(·) denote continuous paths of Lagrangian subspaces `i : I ! ⇤(n),
i = 1, 2, for some parameter interval I. The Maslov index associated with these paths, which
we will denote Mas(`1, `2; I), is a count of the number of times t at which the Lagrangian
subspaces `1(t) and `2(t) intersect as t ranges over I, counted with both multiplicity and
direction. (In this setting, if we let t⇤ denote the point of intersection (often referred to
as a crossing point), then multiplicity corresponds with the dimension of the intersection
`1(t⇤) \ `2(t⇤); a precise definition of what we mean in this context by direction will be
given in Section 2.) For additional background on the Maslov index for evolving pairs of
Lagrangian subspaces, we refer the reader to Section 3 in [46], Section 3.5 in [25], and Section
1 in [31].

We are now prepared to state the three general assumptions (in addition to Assump-
tions (A)) that will be required for our analysis. For convenient reference, some notational
conventions will be embedded in the statements of these assumptions.

(B1) For each � 2 I, there exists an n-dimensional space of solutions to (1.1) that lie
left in R, and likewise an n-dimensional space of solutions to (1.1) that lie right in R. We
will denote by X(x;�) a 2n⇥n matrix solution of (1.1) comprising as its columns a choice of
basis for the n-dimensional space of solutions to (1.1) that lie left in R, and we will denote by
X̃(x;�) a 2n⇥n matrix solution of (1.1) comprising as its columns a choice of basis for the n-
dimensional space of solutions to (1.1) that lie right in R. We will show that when constructed
in this way, X(x;�) and X̃(x;�) constitute frames for Lagrangian subspaces of C2n, which
we will respectively denote `(x;�) and ˜̀(x;�). We assume that `, ˜̀2 C(R ⇥ I,⇤(n)), and
additionally that for any �0 2 I there exists a constant r0 > 0 and a choice of framesX0(x;�)
for `(x;�) (resp. X̃0(x;�) for ˜̀(x;�)) such that for each x 2 R, X0(x;�) (resp. X̃0(x;�)) is
di↵erentiable in � in the interval (�0�r0,�0+r0), with @�X0(·;�) lying left in R and satisfying
(@�X0(x;�))0 = B�(x;�)X0(x;�) + B(x;�)@�X0(x;�) for a.e. x 2 R (resp. @�X̃0(x;�) lying
right in R and satisfying (@�X̃0(x;�))0 = B�(x;�)X̃0(x;�)+B(x;�)@�X̃0(x;�) for a.e. x 2 R).

(B2) For each � 2 I, there exists a choice of frames X](x;�) and X̃
](x;�) for `(x;�) and

˜̀(x;�) (respectively) so that the asymptotic frames

X�(�) := lim
x!�1

X
](x;�); and X̃+(�) := lim

x!+1
X̃

](x;�)

are well defined, and are respectively frames for Lagrangian subspaces `�(�) and ˜̀
+(�),

satisfying
`�(�) \ ˜̀

+(�) = {0} 8� 2 I.

3



In addition, for fixed values �1,�2 2 I, �1 < �2, there exists a choice of frames X
[(x;�i),

i = 1, 2, so that the asymptotic frames

X+(�i) := lim
x!+1

X
[(x;�i), i = 1, 2, (1.5)

are well defined, and are frames for Lagrangian subspaces `+(�i), i = 1, 2. In all of these
statements, the subscripts � and + denote objects obtained in the asymptotic limit as
x ! �1 or x ! +1 (respectively), and consequently expressions such as `�(�) and ˜̀

+(�)
refer to fixed Lagrangian subspaces rather than paths.

(B3) There exists a constant c0 > 0 su�ciently large so that for any c > c0, the matrix
Z c

�1
X(x;�)⇤B�(x;�)X(x;�)dx

is positive definite for all � 2 I.

Assumptions (B1), (B2), and (B3), along with Assumptions (A), hold in many im-
portant cases. As specific examples, we will verify them for linear Hamiltonian systems
associated with Sturm-Liouville Systems

�(P (x)�0)0 + V (x)� = �Q(x)�, x 2 R, �(x;�) 2 Cn
, (1.6)

fourth-order potential equations,

�
0000 + V (x)� = ��, x 2 R, �(x;�) 2 Cn

, (1.7)

and a family of systems nonlinear in the spectral parameter �,

�(P11(x)�
0)0+V11(x)�+V12(x)(�I�V22(x))

�1
V12(x)

⇤
� = ��, x 2 R, �(x;�) 2 Cn

, (1.8)

with appropriate assumptions on the coe�cient matrices in all cases. (Equation (1.8) arises
in the analysis of di↵erential-algebraic Sturm-Liouville systems; see Section 5 for details.)

We can state our main theorem as follows.

Theorem 1.1. For (1.1), suppose that for some I ⇢ R and �1,�2 2 I, �1 < �2, Assumptions
(A), (B1), (B2), and (B3) hold. If N ([�1,�2)) denotes the number of eigenvalues that (1.1)
has on the interval [�1,�2), counted with geometric multiplicity, then

N ([�1,�2)) = �Mas(`(·;�2), ˜̀+(�2), (�1,+1]) + Mas(`(·;�1), ˜̀+(�1), (�1,+1]).

Remark 1.1. The inclusive bracket on +1 indicates that we use Assumption (B2) to
compactify R for our Maslov index calculations. In particular, this means that, at least
in principle, ±1 can serve as crossing points. According to Assumption (B2), we have
`�(�1) \ ˜̀

+(�1) = {0}, so �1 will never serve as a crossing point for our analysis (hence
the open parentheses on �1), but it may be the case that `+(�1) \ ˜̀

+(�1) 6= {0}, in which
case +1 will serve as a crossing point. The same remark holds with �1 replaced by �2.

For specific applications such as the ones we will discuss in detail, we can establish
additional properties that may not hold in the generality Theorem 1.1. Among these, we
will emphasize the following:
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1. In some cases we can replace the target spaces ˜̀+(�1) and ˜̀
+(�2) with target spaces for

which the flow associated with the relevant Maslov index is monotonic (i.e., the sign
associated with each crossing point is the same). As an important example, we will
show in Section 4 that for Sturm-Liouville systems, this is the case for the Dirichlet
Lagrangian subspace `D (with frame XD =

�
0
I

�
).

2. As discussed in our motivating applications to the stability of nonlinear waves, we are
often interested in counting the number of eigenvalues that (1.1) has below some fixed
value �2, and for this it’s convenient to show that we can take �1 su�ciently negative
so that

Mas(`(·;�1), ˜̀+(�1), (�1,+1]) = 0.

In this case,
N ((�1,�2)) = �Mas(`(·;�2), ˜̀+(�2), (�1,+1]).

3. In certain specialized cases, we can apply our results to operators that are not self-
adjoint. The most important such case arises when (1.2) is linearized about a traveling
wave solution ū(x� st), leading to the eigenvalue problem

��xx � s�x +D
2
F (ū)� = ��, x 2 R, �(x) 2 Cn

. (1.9)

This case will be discussed in Section 4.3.

We now state specific results obtained for (1.6), (1.7), and (1.8). In all cases, we refer to
later sections, where detailed assumptions are stated.

Theorem 1.2. For (1.6), let Assumptions (SL1) and (SL2) from Section 4 hold, and
express (1.6) in the form (1.1) (giving (4.8)). Then for  specified as in (4.5), (A), (B1),
(B2), and (B3) all hold for (4.8) with I = (�1,) and any �1,�2 2 I, �1 < �2, and so the
result of Theorem 1.1 holds for all intervals [�1,�2], �1 < �2 < . In addition, if N ([�1,�2))
denotes the number of eigenvalues, counted with multiplicity, that (1.6) has on the interval
[�1,�2), and we express the frame X(x;�) from (B1) as X(x;�) =

�
X(x;�)
Y (x;�)

�
, then we have

N ([�1,�2)) =
X

x2R

dimkerX(x;�2)�
X

x2R

dimkerX(x;�1),

and
N ((�1,�2)) =

X

x2R

dimkerX(x;�2).

Theorem 1.3. For (1.8), let Assumptions (DA1) and (DA2) from Section 5 hold, and
express (1.8) in the form (1.1) (giving (5.7)). Then for any interval I ⇢ R satisfying (5.5),
Assumptions (A), (B1), (B2), and (B3) all hold for (5.7) with any �1,�2 2 I, �1 < �2,
and so the result of Theorem 1.1 holds for all intervals [�1,�2] ⇢ I, �1 < �2. In addition, if
N ([�1,�2)) denotes the number of eigenvalues, counted with multiplicity, that (1.8) has on
the interval [�1,�2), and we express the frame X(x;�) from (B1) as X(x;�) =

�
X(x;�)
Y (x;�)

�
, then

we have
N ([�1,�2)) =

X

x2R

dimkerX(x;�2)�
X

x2R

dimkerX(x;�1).
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Finally, if �2 2 I lies entirely below �ess(La) (with La as specified in Section 5), then

N ((�1,�2)) =
X

x2R

dimkerX(x;�2).

Theorem 1.4. For (1.7), let Assumptions (FP1) and (FP2) from Section 6 hold, and
express (1.7) in the form (1.1) (giving (6.5)). Then for  specified as in (6.3), (A), (B1),
(B2), and (B3) all hold for (6.5) with I = (�1,) and any �1,�2 2 I, �1 < �2, and so the
result of Theorem 1.1 holds for all intervals [�1,�2], �1 < �2 < . In addition, if N ([�1,�2))
denotes the number of eigenvalues, counted with multiplicity, that (1.7) has on the interval
[�1,�2), then

N ([�1,�2)) =
X

x2R

dimker�(x;�2)�
X

x2R

dimker�(x;�1),

where (for i = 1, 2)

�(x;�i) =

✓
�1(x;�i) �2(x;�i) . . . �2n(x;�i)
�
0
1(x;�i) �

0
2(x;�i) . . . �

0
2n(x;�i)

◆
,

with {�j(x;�i)}2nj=1, i = 1, 2, comprising a collection of 2n linearly independent solutions of
(1.7) that lie left in R. Finally,

N ((�1,�2)) =
X

x2R

dimker�(x;�2).

In the remainder of this introduction, we provide some background and context for our
analysis and also set out a plan for the paper. For the former, our results serve as natural
generalizations of Sturm’s Oscillation Theorem and the Morse Index Theorem, and so go
respectively back to [47] and [44]. The earliest result readily identifiable with our methods
is due to R. Bott in [10], followed (chronologically) by the work of H.M. Edwards in [24],
V. Maslov in [43] and V. I. Arnol’d in [3, 4]. In [10, 24], the authors work in the context of
bounded domains, with [24] especially emphasizing a formulation of the problem via forms
rather than di↵erential operators. For the eponymous reference [43], the Maslov index is
introduced as a tool in the development of asymptotic relations, and spectral counts such
as those developed here aren’t directly considered (see Part 2, Chapter 2, Section 2 of [43]).
Likewise, in [3, 4], the author’s interest lies primarily in developing properties of the Maslov
index for fixed values of �.

Specific applications to the stability of nonlinear waves were carried about by Chris Jones
in [38, 39], by Jones and collaborators in [6, 8, 17, 40], and subsequently by numerous others,
including [11, 14, 15, 21]. The Maslov index is amenable to numerical computations, and
several analyses have emphasized this aspect of the theory, including [9, 12, 13, 16]. These
results have all addressed applications to equations of the form (1.2) (though [14, 15, 21]
address a skew-gradient reaction term) and to nonlinear waves associated with homoclinic
orbits (i.e., with u� = u+). In addition, the target Lagrangian subspace in the relevant
calculations has typically been taken to be the Dirichlet Lagrangian subspace rather than
the “natural” targets ˜̀

+(�1) and ˜̀
+(�2) (an exception is [21]).
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In [22], Jones and Jian Deng applied the Maslov index in the setting of multidimensional
Schrödinger equations, instigating a resurgence of interest in the methods (see also [19, 41]).
Motivated by this work, the author, along with Yuri Latushkin and Alim Sukhtayev revisited
implementations of the Maslov index in a single space dimension, adapting the spectral-flow
formulation of [45] to obtain a specification of the Maslov index especially suitable to general
linear Hamiltonian systems associated with either homoclinic or heteroclinic orbits [30, 34].
This approach was employed in [31] to establish a result for heteroclinic traveling-wave
solutions arising in equations of the form (1.2), and was employed in [29] in an analysis of
general linear Hamiltonian systems of the form (1.1) on finite domains.

The primary goal of the current analysis is to adapt the approach taken in [31] (addressing
equations of the form (1.2)) to the more general setting of (1.1). Auxiliary to this, we hope
to clarify the mechanism by which the target Lagrangian subspaces ˜̀+(�1) and ˜̀

+(�2) can be
replaced by target Lagrangian subspaces for which all crossing points for the Maslov index
calculations have the same direction (i.e., target Lagrangian subspaces for which the flow is
monotonic). To the author’s knowledge this is the most general setting in which these types
of “Maslov equals Morse” results have been developed. In particular, the author is not aware
of any prior such results on unbounded domains for higher order equations such as (1.7), or
for equations such as (1.8) for which the dependence on � in the Hamiltonian formulation is
nonlinear. In addition, the only previous work in the case of heteroclinic orbits appears to
be [31].

Having stated the novel aspects of the current analysis, we emphasize that these com-
ments refer to a specific approach for which a target space is fixed and the Maslov index is
computed as a count of intersections between a path of Lagrangian subspaces and this fixed
target. Alternative approaches have been based on computing Maslov indices for appropriate
pairs of evolving Lagrangian subspaces (i.e., both paths of Lagrangian subspaces evolve as
the independent variable varies, and there is no fixed target). In [33], the authors evolve one
path of Lagrangian subspaces forward from �1 and another backward from +1, and the
associated spectral flow is captured where the two meet at x = 0 (see Theorem 1 in [33],
which is formulated for a general class of linear Hamiltonian systems and stated in terms of
the spectral flow of an appropriately defined operator pencil). In [26, 27, 37], the authors
use renormalized oscillation theory, in which the Maslov index is computed for a pair of
Lagrangian paths, with one specified at some value �1 and the other specified at �2 > �1,
leading to a count of the number of eigenvalues the operator has on (�1,�2). This latter
method has the advantage of providing a naturally monotonic flow as x increases from �1

to +1 and being applicable in a wider range of cases than either the current approach or
the approach of [33] (perhaps most notably, in the renormalized oscillation setting, there’s
no requirement on the existence of asymptotic endstates as assumed here in Assumption
(B1)).

The paper is organized as follows. In Section 2, we review elements of the Maslov index
that will be used in our development, and in Section 3 we prove Theorem 1.1. In the
subsequent three sections, we apply Theorem 1.1 to prove (respectively) Theorems 1.2, 1.4,
and 1.3.
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2 The Maslov Index

Our framework for computing the Maslov index is adapted from Section 2 of [35], which is
based on the spectral flow formulation of [45]. Rather than repeating that development here,
we will only highlight the points most salient to the current analysis. For a full discussion of
the Maslov index in the current setting, we refer the reader to [35], and for a broader view
of the Maslov index we refer the reader to [7, 20, 46].

Given any pair of Lagrangian subspaces `1 and `2 with respective frames X1 =
�
X1

Y1

�
and

X2 =
�
X2

Y2

�
, we consider the matrix

W̃ := �(X1 + iY1)(X1 � iY1)
�1(X2 � iY2)(X2 + iY2)

�1
. (2.1)

In [35], the authors establish: (1) the inverses appearing in (2.1) exist; (2) W̃ is independent
of the specific frames X1 and X2 (as long as these are indeed frames for `1 and `2); (3) W̃
is unitary; and (4) the identity

dim(`1 \ `2) = dim(ker(W̃ + I)). (2.2)

Given two continuous paths of Lagrangian subspaces `i : [0, 1] ! ⇤(n), i = 1, 2, with
respective frames Xi : [0, 1] ! C2n⇥n, relation (2.2) allows us to compute the Maslov index
Mas(`1, `2; [0, 1]) as a spectral flow through �1 for the path of matrices

W̃ (t) := �(X1(t) + iY1(t))(X1(t)� iY1(t))
�1(X2(t)� iY2(t))(X2(t) + iY2(t))

�1
. (2.3)

If �1 2 �(W̃ (t⇤)) for some t⇤ 2 [0, 1], then we refer to t⇤ as a crossing point, and we see
from (2.2) that the multiplicity of �1 as an eigenvalue of W̃ (t⇤) corresponds with dim(`1(t⇤)\
`2(t⇤)). We compute the Maslov index Mas(`1, `2; [0, 1]) by allowing t to increase from 0 to
1 and incrementing the index whenever an eigenvalue crosses �1 in the counterclockwise
direction, while decrementing the index whenever an eigenvalue crosses �1 in the clockwise
direction. These increments/decrements are counted with multiplicity, so for example, if a
pair of eigenvalues crosses �1 together in the counterclockwise direction, then a net amount
of +2 is added to the index. Regarding behavior at the endpoints, if an eigenvalue of W̃
rotates away from �1 in the clockwise direction as t increases from 0, then the Maslov
index decrements (according to multiplicity), while if an eigenvalue of W̃ rotates away from
�1 in the counterclockwise direction as t increases from 0, then the Maslov index does not
change. Likewise, if an eigenvalue of W̃ rotates into �1 in the counterclockwise direction
as t increases to 1, then the Maslov index increments (according to multiplicity), while if
an eigenvalue of W̃ rotates into �1 in the clockwise direction as t increases to 1, then the
Maslov index does not change. Finally, it’s possible that an eigenvalue of W̃ will arrive at
�1 for t = t⇤ and stay. In these cases, the Maslov index only increments/decrements upon
arrival or departure, and the increments/decrements are determined as for the endpoints
(departures determined as with t = 0, arrivals determined as with t = 1).

One of the most important features of the Maslov index is homotopy invariance, for
which we need to consider continuously varying families of Lagrangian paths. To set some
notation, we let I be a closed interval in R, and we denote by P(I) the collection of all
paths L(t) = (`1(t), `2(t)), where `1, `2 : I ! ⇤(n) are continuous paths in the Lagrangian–
Grassmannian. We say that two paths L,M 2 P(I) are homotopic provided there exists a
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family Hs so that H0 = L, H1 = M, and Hs(t) is continuous as a map from (t, s) 2 I⇥ [0, 1]
into ⇤(n)⇥ ⇤(n).

The Maslov index has the following properties.

(P1) (Path Additivity) If L 2 P(I) and a, b, c 2 I, with a < b < c, then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If L,M 2 P(I) are homotopic, with L(a) = M(a) and L(b) =
M(b) for some a, b 2 I (i.e., if L,M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

Straightforward proofs of these properties appear in [30] for Lagrangian subspaces of R2n,
and proofs in the current setting of Lagrangian subspaces of C2n are essentially identical.

As noted previously, the direction we associate with a crossing point is determined by the
direction in which eigenvalues of W̃ rotate through �1 (counterclockwise is positive, while
clockwise is negative). In order to understand the nature of this rotation in specific cases,
we will use the following lemma from [30]. (In [30], the statement takes the frames to be C1,
but the proof only requires di↵erentiability, as asserted here.)

Lemma 2.1. Suppose `1, `2 : I ! ⇤(n) denote paths of Lagrangian subspaces of C2n with
respective frames X1 =

�
X1

Y1

�
and X2 =

�
X2

Y2

�
that are di↵erentiable at t0 2 I. If the matrices

�X1(t0)
⇤
JX

0
1(t0) = X1(t0)

⇤
Y

0
1(t0)� Y1(t0)

⇤
X

0
1(t0)

and (noting the sign change)

X2(t0)
⇤
JX

0
2(t0) = �(X2(t0)

⇤
Y

0
2(t0)� Y2(t0)

⇤
X

0
2(t0))

are both non-negative, and at least one is positive definite, then the eigenvalues of W̃ (t)
rotate in the counterclockwise direction as t increases through t0. Likewise, if both of these
matrices are non-positive, and at least one is negative definite, then the eigenvalues of W̃ (t)
rotate in the clockwise direction as t increases through t0.

Remark 2.1. In Theorem 1.1, the Maslov indices are computed on the unbounded interval
(�1,+1), and the notation (�1,+1] is used to signify that the limit +1 can serve as a
crossing point. Precisely, under our limit assumptions in (B2), we can compactify (�1,1)
with a map such as

x = ln(
1 + ⌧

1� ⌧
); ⌧ 2 [�1, 1],

and subsequently compute the relevant Maslov indices on the bounded interval I = [�1, 1],
employing the considerations discussed in this section. We recall from Remark 1.1 that due
to our Assumption (B2), �1 cannot serve as a crossing point, and so is omitted from the
square-bracket notation.
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3 Proof of Theorem 1.1

Before proving Theorem 1.1, we verify the assertion made in the statement of Assumption
(B1) that X(x;�) and X̃(x;�) are necessarily frames for Lagrangian subspaces of C2n for
all (x,�) 2 R ⇥ I. We will carry out the demonstration for X(x;�); the case of X̃(x;�) is
essentially identical. First, we note that under our Assumption (A) we haveX(·;�), X̃(·;�) 2
ACloc(R,C2n⇥n) for all � 2 I (see, e.g., Theorem 2.1 in [48]). Next, according to Proposition
2.1 of [35], it’s su�cient to show that

X(x;�)⇤JX(x;�) = 0, 8 (x,�) 2 R⇥ I. (3.1)

In order to verify this, we fix any � 2 I and compute (with prime denoting di↵erentiation
with respect to x)

@

@x
(X(x;�)⇤JX(x;�)) = X

0(x;�)⇤JX(x;�) +X(x;�)⇤JX0(x;�)

= �(JX0(x;�))⇤X(x;�) +X(x;�)⇤JX0(x;�)

= �(B(x;�)X(x;�))⇤X(x;�) +X(x;�)⇤B(x;�)X(x;�)

= 0, a.e. x 2 R,

where in obtaining the final equality we’ve observed from Assumption (A) that B(x;�) is
self-adjoint for a.e. x 2 R. Recalling that X(x;�)⇤JX(x;�) is locally absolutely continuous
in R, we see that it is constant on R. But the columns of X(x;�) lie left in R, so

lim
x!�1

X(x;�)⇤JX(x;�) = 0.

This calculation holds for all � 2 I, allowing us to conclude (3.1).
Turning now to the proof of Theorem 1.1, we begin by fixing any pair �1,�2 2 I, �1 < �2,

and for all (x,�) 2 R ⇥ [�1,�2], we let `(x,�) and ˜̀(x;�) denote the Lagrangian subspaces
described in (B1) and (B2). We will fix some c > 0 to be chosen su�ciently large during
the analysis, and we will establish Theorem 1.1 by considering the Maslov index for `(x;�)
and ˜̀(c;�) along a path designated as the Maslov box in the next paragraph. As described
in Section 2, this Maslov index is computed as a spectral flow for the matrix

W̃c(x;�) := �(X(x;�) + iY (x;�))(X(x;�)� iY (x;�))�1

⇥ (X̃(c;�)� iỸ (c;�))(X̃(c;�) + iỸ (c;�))�1
.

(3.2)

By Maslov Box, in this case we mean the following sequence of contours: (1) fix x = �c

and let � increase from �1 to �2 (the bottom shelf); (2) fix � = �2 and let x increase from �c

to c (the right shelf); (3) fix x = c and let � decrease from �2 to �1 (the top shelf); and (4)
fix � = �1 and let x decrease from c to �c (the left shelf).

The Bottom Shelf. For the bottom shelf, the Maslov index detects intersections between
`(�c;�) and ˜̀(c,�) as � increases from �1 to �2. Since [�1,�2] is compact, it follows from
our Assumption (B2) that we can take c su�ciently large so that

`(�c;�) \ ˜̀(c;�) = {0}, 8� 2 [�1,�2].
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In this way, we see that
Mas(`(�c; ·), ˜̀(c; ·); [�1,�2]) = 0.

The Top Shelf. For the top shelf, the Maslov index detects intersections between `(c;�)
and ˜̀(c;�) as � decreases from �2 to �1. These Lagrangian subspaces will intersect if and
only if � is an eigenvalue of (1.1), and the multiplicity of this intersection will correspond
with the geometric multiplicity of � as an eigenvalue of (1.1). We would like to conclude
that the Maslov index for the top shelf is precisely a count, including geometric multiplicity,
of the number of eigenvalues that (1.1) has on the interval [�1,�2), and in order to draw this
conclusion we need to know that crossing points in this case all have the same direction. For
this, we observe from Lemma 2.1 that the direction of rotation associated with the Maslov
index along the top shelf will be determined by the signs of the matrices

�X(c;�)⇤J@�X(c;�) (3.3)

and
X̃(c;�)⇤J@�X̃(c;�) (3.4)

in the following sense: if both of these matrices are non-positive at some � 2 [�1,�2], and at
least one of them is negative definite at �, then the rotation at that value � for all eigenvalues
of W̃ (c;�) will be in the clockwise direction (with � increasing).

For the first of these matrices, we compute

@

@x
X(x;�)⇤J@�X(x;�) = X

0(x;�)⇤J@�X(x;�) +X(x;�)⇤J@�X
0(x;�)

= �(JX0(x;�))⇤@�X(x;�) +X(x;�)⇤@�(JX
0(x;�))

= �(B(x;�)X(x;�))⇤@�X(x;�) +X(x;�)⇤@�(B(x;�)X(x;�))

= �X(x;�)⇤B(x;�)@�X(x;�) +X(x;�)⇤B�(x;�)X(x;�)

+X(x;�)⇤B(x;�)@�X(x;�)

= X(x;�)⇤B�(x;�)X(x;�).

Upon integrating this relation on (�1, c) and observing from (B1) that

lim
x!�1

X(x;�)⇤J@�X(x;�) = 0,

we obtain the relation

X(c;�)⇤J@�X(c;�) =

Z c

�1
X(x;�)⇤B�(x;�)X(x;�)d⇠.

According to Assumption (B3), this matrix is positive definite for c su�ciently large, and
we can conclude that (3.3) is negative definite. By a similar calculation, we can check that
(3.4) is negative definite as well. We can conclude from Lemma 2.1 that the eigenvalues of
W̃ (c;�) rotate monotonically in the clockwise direction as � increases from �1 to �2, and
consequently that

N ([�1,�2)) = �Mas(`(c; ·), ˜̀(c; ·); [�1,�2]).
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The inclusion of �1 on the left-hand side is due to the clockwise rotation as � increases,
leading to a decrement of the Maslov index if (c,�1) corresponds with a crossing point, and
the exclusion of �2 follows similarly.

The left and right shelves. The left and right shelves are both left as computations in
Theorem 1.1, but in order to eliminate the arbitrary value c, we need to show that by taking
c su�ciently large we can ensure that

Mas(`(·;�1), ˜̀(c;�1); [�c, c]) = Mas(`(·;�1), ˜̀+(�1); (�1,+1]), (3.5)

and similarly with �1 replaced by �2. In order to understand why (3.5) holds, it’s convenient
to observe that the left-hand side is computed via the matrix W̃c(x;�1) (i.e., (3.2) with
� = �1), while the right-hand side is computed via the matrix

W̃(x;�1) = �(X(x;�1) + iY (x;�1))(X(x;�1)� iY (x;�1))
�1

⇥ (X̃+(�1)� iỸ+(�1))(X̃+(�1) + iỸ+(�1))
�1
.

Comparing expressions for W̃c(x;�1) and W̃(x;�1), we see that we can write W̃c(x;�1) =
W̃(x;�1)Ṽ (c;�1), where

Ṽ (c;�1) = (X̃+(�1) + iỸ+(�1))(X̃+(�1)� iỸ+(�1))
�1

⇥ (X̃(c;�1)� iỸ (c;�1))(X̃(c;�1) + iỸ (c;�1))
�1
.

Here, Ṽ (c;�2) is a continuous matrix-valued function of c, satisfying

lim
c!+1

Ṽ (c;�2) = I.

Let {wc
j(x;�1)}

n
j=1 denote the eigenvalues of W̃c(x;�1), and let {!j(x;�1)}nj=1 denote the

eigenvalues of W̃(x;�1). Using Assumption (B2), we see that the limits

W̃
�
c (�1) := lim

x!�1
W̃c(x;�1); W̃

�(�1) := lim
x!�1

W̃(x;�1)

W̃
+
c (�1) := lim

x!+1
W̃c(x;�1); W̃

+(�1) := lim
x!+1

W̃(x;�1)

are all well defined. It follows that we can e↵ectively view W̃c(x;�1) and W̃(x;�1) as contin-
uous matrix-valued functions on a compact interval (as discussed in Remark 2.1). Precisely,
given any ✏ > 0, we can find L, c0 > 0 su�ciently large so that for each j 2 {1, 2, . . . , n}
(with an appropriate choice of labeling)

|w
c
j(x;�1)� !j(x;�1)| < ✏, 8 |x| > L, c > c0. (3.6)

To be clear about this important relation, we introduce the notation {w
c,+
j (�1)}nj=1 for the

eigenvalues of W̃+
c (�1), and observe by continuity that given any ✏1 > 0 we can find L1

su�ciently large so that

|w
c
j(x;�1)� w

c,+
j (�1)| < ✏1, 8 x > L1,
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and likewise we introduce the notation {!
+
j (�1)}

n
j=1 for the eigenvalues of W̃

+(�1), and
observe by continuity that given any ✏2 > 0 we can find L2 su�ciently large so that

|!
+
j (�1)� !j(x;�1)| < ✏2, 8 x > L2.

Finally, we notice that given any ✏3 > 0 there exists c3 su�ciently large so that

|w
c,+
j (�1)� !

+
j (�1)| < ✏3, 8 c > c3.

Combining these observations, we compute

|w
c
j(x;�1)� !j(x;�1)| = |w

c
j(x;�1)� w

c,+
j (�1) + w

c,+
j (�1)� !

+
j (�1) + !

+
j (�1)� !j(x;�1)|

 |w
c
j(x;�1)� w

c,+
j (�1)|+ |w

c,+
j (�1)� !

+
j (�1)|+ |!

+
j (�1)� !j(x;�1)|

< ✏1 + ✏3 + ✏2.

Given any ✏ > 0, we can now choose L1, L2, and c3 su�ciently large so that ✏i < ✏/3,
i = 1, 2, 3. If we then take L = max{L1, L2} and c0 = c3 we obtain the part of (3.6) with
x > L. The case x < �L can be handled similarly, possibly by choosing larger values of L
and c0. In all of these calculations, it has been critical that �1 remains fixed, as it can be
shown that the path of asymptotic Lagrangian subspaces `+(�) is not necessarily continuous
in � (see, e.g., the appendix of [31] or Lemma 3.7 of [1]).

Similarly as with the previous calculation, given any ✏ > 0 we can use compactness of
[�L,L] to take c1 > c0 su�ciently large so that

|w
c
j(x;�1)� !j(x;�1)| < ✏, 8 x 2 [�L,L], c > c1.

Combining these observations, we see that given any ✏ > 0 we can take c1 su�ciently large
so that

|w
c
j(x;�1)� !j(x;�1)| < ✏, 8 x 2 R, c > c1. (3.7)

We also note that according to the second part of Assumption (B2), we can take c large
enough so that we have both �1 /2 �(W̃c(�c;�1)) and �1 /2 �(W̃(�c;�1)).

At this point, we divide the analysis into two cases: (1) �1 is not an eigenvalue of (1.1); and
(2) �1 is an eigenvalue of (1.1). For Case (1), suppose �1 is not an eigenvalue of (1.1). Then
we immediately have �1 /2 �(W̃c(c;�1)) (for any c 2 R), and since `+(�1)\ ˜̀

+(�1) = {0}, we
can take c large enough so that �1 /2 �(W̃(c;�1)). In summary, the situation is as follows:
for W̃c(x;�1) we have both �1 /2 �(W̃c(�c;�1)) and �1 /2 �(W̃c(c;�1)), and likewise for
W̃(x;�1) we have both �1 /2 �(W̃(�c;�1)) and �1 /2 �(W̃(c;�1)). It follows that there
exists some � > 0 so that

|w
c
j(�c;�1) + 1| > �, |w

c
j(c;�1) + 1| > �, 8 j 2 {1, 2, . . . , n},

and
|!j(�c;�1) + 1| > �, |!j(c;�1) + 1| > �, 8 j 2 {1, 2, . . . , n}.

See Figure 3.1, sketched for the case n = 2.
Using (3.7), we can take c large enough so that ✏ < �. In this way, as x increases

from �c to c, an eigenvalue of W̃c(x;�) can complete a full loop around S
1 if and only
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2 �(W̃c(�c;�1))
2 �(W̃(�c;�1))

2 �(W̃c(c;�1))

2 �(W̃(c;�1))

✏

�

Figure 3.1: Eigenvalues of W̃c(±c;�1) and W̃(±c;�1).

if a corresponding eigenvalue of W̃(x;�1) also completes a full loop. In addition, since
the distance between eigenvalues of W̃c(x;�) and eigenvalues of W̃(x;�1) is less than the
initial and final distances of the eigenvalues of these matrices from �1, the total count of
crossing points associated with the Maslov index computed via W̃c(x;�1) must be precisely
the corresponding count computed via W̃(x;�1). We can conclude that

Mas(`(·;�1), ˜̀(c;�1); [�c, c]) = Mas(`(·;�1), ˜̀+(�1); [�c, c]), (3.8)

for all c su�ciently large. According to (B2), we can take c su�ciently large so that
`(x;�1)\ ˜̀

+(�1) = {0} for all x < �c, and since �1 is not an eigenvalue of (1.1), we can take
c su�ciently large so that `(x;�1) \ ˜̀

+(�1) = {0} for all x > c. We conclude that

Mas(`(·;�1), ˜̀+(�1); (�1,�c]) = 0,

and
Mas(`(·;�1), ˜̀+(�1); [c,+1]) = 0.

This allows us to conclude (3.5) in the case that �1 is not an eigenvalue of (1.1).
For Case (2), we assume �1 is an eigenvalue of (1.1), and in order to be definite we

will specify its geometric multiplicity as m. We continue to have �1 /2 �(W̃c(�c;�1)) and
�1 /2 �(W̃(�c;�1)) (for c su�ciently large), but now �1 2 �(W̃c(c;�1)) with multiplicity m,
and it’s not definite whether �1 is in the spectrum of W̃(c;�1). The matrix W̃c(c;�1) will
have n�m eigenvalues located away from �1, and there will correspond n�m eigenvalues
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of W̃(c;�1) located away from �1 (with the remaining eigenvalues of W̃(c;�1) necessarily
near �1). The flow associated with these n�m eigenvalues can be analyzed precisely as in
Case (1).

We now consider the m eigenvalues of W̃(x;�1) near �1 at x = c. For this, we first recall
that �1 2 �(W̃c(c;�1)) with multiplicity m, and that c has been chosen large enough so that
the eigenvalues of W̃(c;�1) will be near the eigenvalues of W̃c(c;�1), with “near” determined
by the value of ✏ in (3.7). It follows that exactly m eigenvalues of W̃(c;�1) will satisfy

|!j(c;�1) + 1| < ✏. (3.9)

Moreover, since the limit
lim
x!1

W̃(x;�1)

is well defined, c can be taken large enough so that

|!j(x;�1) + 1| < ✏, 8 x > c. (3.10)

This group of m eigenvalues of W̃(x;�1) near �1 in the sense of (3.9) will track the group of
eigenvalues of W̃c(x;�1) that approach �1 as x ! c

�. The evolution will proceed as in the
previous case, except that in this case the right and left sides of (3.8) won’t necessarily agree.
For W̃c(x;�1), the evolution stops at x = c, but for W̃(x;�1), it continues as x tends to +1.
Moreover, as x tends to +1 the m eigenvalues of W̃(x;�1) that are not bounded away from
�1 will necessarily approach �1 in the asymptotic limit. At this point, it’s critical to observe
that this set of m eigenvalues of W̃(x;�1) cannot complete a loop of S1 as x increases from
c (because they must remain near �1), and so the signs associated with their approaches to
�1 have already been determined by the time x arrives at c. In particular, these signs must
agree with those of the eigenvalues of W̃c(x;�1) that approach �1 as x ! c

�. In this way,
we conclude

Mas(`(·;�1), ˜̀(c;�1); [�c, c]) = Mas(`(·;�1), ˜̀+(�1); [�c,+1]),

and extension of the right-hand side to (�1,+1] is precisely as before. This gives (3.5) in
Case (2). The same considerations hold for �2.

Combining these observations, we can use path additivity along with homotopy invariance
to write (respectively)

0 = bottom shelf + right shelf + top shelf + left shelf

= 0 +Mas(`(·;�2), ˜̀(c;�2); [�c, c]) +N ([�1,�2))�Mas(`(·;�1), ˜̀(c;�1); [�c, c])

= Mas(`(·;�2), ˜̀+(�2); (�1,+1]) +N ([�1,�2))�Mas(`(·;�1), ˜̀+(�1); (�1,+1]).

Rearranging terms, we obtain precisely the claim of Theorem 1.1. ⇤

4 Sturm-Liouville Systems

In this section, we apply Theorem 1.1 to Sturm-Liouville systems

�(P (x)�0)0 + V (x)� = �Q(x)�; x 2 R, �(x;�) 2 Cn
, (4.1)
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and we also establish the additional properties stated in Theorem 1.2. In order to ensure
that our general assumptions (A), (B1), (B2), and (B3) hold, we make the following
assumptions on the coe�cient matrices P , V , and Q.

(SL1) We take P 2 ACloc(R,Cn⇥n) and V,Q 2 C(R,Cn⇥n), with P (x), V (x), and Q(x)
self-adjoint for each x 2 R. Moreover, we assume that there exist constants ✓P , ✓Q > 0 so
that for any v 2 Cn

(P (x)v, v) � ✓P |v|
2; (Q(x)v, v) � ✓Q|v|

2
,

for all x 2 R.
(SL2) Each of the matrices P , V , and Q approaches well-defined asymptotic endstates at

exponential rate as x ! ±1. Precisely, there exist self-adjoint matrices P±, V±, Q± 2 Cn⇥n,
with P±, Q± positive definite, along with constants C,M � 0, ⌘ > 0, so that

|P (x)� P±|  Ce
�⌘|x|; |V (x)� V±|  Ce

�⌘|x|; |Q(x)�Q±|  Ce
�⌘|x|

x ? ±M,

|P
0(x)|  Ce

�⌘|x| a.e. x ? ±M.

Remark 4.1. Our assumption of continuity on V (x) and Q(x) is only used in establishing
the final two claims in Theorem 1.2, and in particular Theorem 1.1 can be applied under the
weaker assumptions V (·), Q(·) 2 L

1
loc(R,Cn⇥n).

We can associate with (4.1) the operator

L� := Q(x)�1
n
� (P (x)�0)0 + V (x)�

o
, (4.2)

for which we assign the domain

D :=
n
� 2 L

2(R,Cn) : �,�0
2 ACloc(R,Cn), L� 2 L

2(R,Cn)
o
, (4.3)

and we also introduce the inner product

h�, iQ :=

Z

R
(Q(x)�(x), (x))dx.

With this choice of domain and inner product, L is densely defined, closed, and self-adjoint,
so �(L) ⇢ R (see, e.g., [48]).

As shown in [28, 42] (though see Remark 4.2, immediately following this paragraph), the
essential spectrum of L is entirely determined by the asymptotic systems

�P±�
00 + V±� = �Q±� (4.4)

in the following way: the essential spectrum is precisely the collection of values � 2 R for
which there exists a solution to (4.4) of the form �(x) = e

ikx
r for some constant scalar k 2 R

and some constant non-zero vector r 2 Cn. Upon substitution of �(x) = e
ikx

r into (4.4), we
obtain the relation

(k2
P± + V±)r = �Q±r.

16



If we compute an inner product of this equation with r, we find

k
2(P±r, r) + (V±r, r) = �(Q±r, r).

Since P±, Q± are positive definite, we see that

� �
(V±r, r)

(Q±r, r)
, 8 k 2 R.

We’ll set

 := min
n

inf
r2Cn\{0}

(V�r, r)

(Q�r, r)
, inf
r2Cn\{0}

(V+r, r)

(Q+r, r)

o
. (4.5)

Then
�ess(L) = [,+1),

and we can conclude that for (4.1) we can take the interval I described in Assumptions (A),
(B1), (B2), and (B3) to be I = (�1,).

Remark 4.2. Strictly speaking, our references [28, 42] assume slightly more on the coe�-
cients P (x), Q(x), and V (x) than we assume here. (See Theorem A.2 in the appendix to
Chapter 5 of [28] and Theorem 3.1.11 in [42]). In the current setting, however, we can verify
directly that the results of [28, 42] extend to L. Briefly, we do this by using Lemma 4.1 (see
below) to directly compute the resolvent kernel (i.e., the Green’s function) for the operator
L��I, and then verifying directly that for � < , and � not an eigenvalue of L, the resolvent
expressed via this Green’s function is indeed a bounded linear operator on our Hilbert space
L
2(R,Cn). Finally, the fact that �ess(L) is precisely [,1) (not just a subset) follows from

Theorem 11.5(c) in [48]. This program is carried out in detail in the closely-related setting
of Sturm-Liouville operators on the half-line at the end of Section 2 in [36].

Next, in order to describe the Lagrangian subspaces `(x;�) and ˜̀(x;�) specified in our
general assumptions (B1), (B2), and (B3) we’ll need a characterization of solutions to
(4.1) that lie left in R, along with a characterization of solutions to (4.1) that lie right in
R. For this, we begin by fixing some � <  and looking for solutions of (4.4) of the form
�(x;�) = e

µ(�)x
r(�), where in this case µ is a scalar function of � and r is a vector-valued

function of � with r(�) 2 Cn. We find that

(�µ
2
P± + V± � �Q±)r = 0,

which we can rearrange as
P

�1
± (V± � �Q±)r = µ

2
r.

Since the matrices P± are positive definite, it’s natural to work with the inner products

(r, s)± := (P±r, s), (4.6)

and it’s clear that for � < , the matrices P
�1
± (V± � �Q±) are self-adjoint and positive

definite with these inner products (respectively). We conclude that the values µ
2 will be

positive real values, and that the associated eigenvectors can be chosen to be orthonormal
with respect to (4.6). For each of the n values of µ2, we can associate two values ±

p
µ2. By
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a choice of labeling, we can split these into n negative values {µ±
k }

n
k=1 and n positive values

{µ
±
k }

2n
k=n+1, with the correspondence (again, by labeling convention)

µ
±
n+k(�) = �µ

±
k (�), k = 1, 2, . . . , n.

For each k 2 {1, 2, . . . , n}, we denote by r
±
k (�) the eigenvector of P

�1
± (V± � �Q±) with asso-

ciated eigenvalue µ
±
k (�)

2 = µ
±
n+k(�)

2. I.e., (with dependence on � temporarily suppressed)

P
�1
± (V± � �Q±)r

±
k = µ

± 2
k r

±
k , 8 k 2 {1, 2, . . . , n}.

In order to place (4.1) in our general framework, we set y =
�
y1
y2

�
=
�

�
P (x)�0

�
, so that we

have

y
0 = A(x;�)y; A(x;�) =

✓
0 P (x)�1

V (x)� �Q(x) 0

◆
, (4.7)

or equivalently

Jy
0 = B(x;�)y; B(x;�) =

✓
�Q(x)� V (x) 0

0 P (x)�1

◆
. (4.8)

We see immediately that under Assumption (SL1), our general Assumptions (A) hold.
If we set

A±(�) :=

✓
0 P

�1
±

V± � �Q± 0

◆
,

then under our Assumptions (SL2) we have the relations

|A(x;�)� A±(�)|  C̃e
�⌘̃|x|

x ? ±M̃.

for some constants C̃, M̃ � 0, ⌘̃ > 0.
The values {µ±

k (�)}
2n
k=1 described above comprise a labeling of the eigenvalues of A±(�).

If we let {r±k }
2n
k=1 denote the eigenvectors of A±(�) respectively associated with these eigen-

vectors, then we find

r
±
k (�) =

✓
r
±
k (�)

µ
±
k (�)P±r

±
k (�)

◆
; r

±
n+k(�) =

✓
r
±
k (�)

�µ
±
k (�)P±r

±
k (�)

◆
; k = 1, 2, . . . , n. (4.9)

We’ll set
R±(�) = (r±1 (�) r

±
2 (�) . . . r

±
n (�)),

noting that by orthonormality of the vectors {r±j (�)}
n
j=1 with respect to the inner products

(4.6), we have the relations
R±(�)

⇤
P±R±(�) = I. (4.10)

If we also set
D±(�) = diag(µ±

1 (�) µ
±
2 (�) . . . µ

±
n (�)),

then we can express a frame for the eigenspace of A�(�) associated with its positive eigen-
values as

X�(�) =

✓
R�(�)

�P�R�(�)D�(�)

◆
.
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Likewise, we can express a frame for the eigenspace of A�(�) associated with its negative
eigenvalues as

X
g
�(�) =

✓
R�(�)

P�R�(�)D�(�)

◆
,

where the superscript g indicates that solutions to (4.4) associated with negative eigenvalues
of A� will grow as x tends to �1. In the same way, we can express a frame for the eigenspace
of A+(�) associated with its negative eigenvalues as

X̃+(�) =

✓
R+(�)

P+R+(�)D+(�)

◆
,

and a frame for the eigenspace of A+(�) associated with its positive eigenvalues as

X̃
g
+(�) =

✓
R+(�)

�P+R+(�)D+(�)

◆
.

It’s straightforward to check that the matrices X�(�), X
g
�(�), X̃+(�), and X̃

g
+(�) are

all frames for Lagrangian subspaces of C2n. To see this for X�(�), we recall from Lemma
2.2 of [35] that we only need to show that rankX�(�) = n and X�(�)⇤JX�(�) = 0. The
statement about rank is clear from the invertibility of R�(�), and for the latter requirement
we can compute directly to see that

X�(�)
⇤
JX�(�) =

�
R�(�)⇤ �D�(�)R�(�)⇤P�

�✓P�R�(�)D�(�)
R�(�)

◆

= R�(�)
⇤
P�R�(�)D�(�)�D�(�)R�(�)

⇤
P�R�(�) = D�(�)�D�(�) = 0,

where we have used (4.10).
The following lemma can be adapted directly from Lemma 2.1 in [36], and we refer the

reader to that reference for the proof.

Lemma 4.1. Assume (SL1) and (SL2) hold, and let {µ
±
k (�)}

2n
k=1 and {r

±
k (�)}

2n
k=1 be as

described just above. Then there exists a family of bases {y
�
k (·;�)}

2n
k=n+1, � 2 (�1,),

for the spaces of solutions to (4.7) that lie left in R, and a family of bases {y
+
k (·;�)}

n
k=1,

� 2 (�1,), for the spaces of solutions to (4.7) that lie right in R. Respectively, we can
choose these so that

y
�
n+k(x;�) = e

�µ�
k (�)x(r�n+k(�) + E

�
n+k(x;�)), k = 1, 2, . . . , n,

y
+
k (x;�) = e

µ+
k (�)x(r+k (�) + E

+
k (x;�)), k = 1, 2, . . . , n,

where for any fixed interval [�1,�2], with �1 < �2 < , there exist a constant � > 0 so that
for each k 2 {1, 2, . . . , n}

E
�
n+k(x;�) = O(e��|x|), x ! �1; E

+
k (x;�) = O(e��|x|), x ! +1,

uniformly for � 2 [�1,�2].
Moreover, there exists a �-dependent family of bases {y

�
k (·;�)}

n
k=1, � 2 (�1,), for

the spaces of solutions to (4.7) that do not lie left in R, and a �-dependent family of bases
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{y
+
k (·;�)}

2n
k=n+1, � 2 (�1,), for the spaces of solutions to (4.7) that do not lie right in R.

Respectively, we can choose these so that

y
�
k (x;�) = e

µ�
k (�)x(r�k (�) + E

�
k (x;�)), k = 1, 2, . . . , n,

y
+
n+k(x;�) = e

�µ+
k (�)x(r+n+k(�) + E

+
n+k(x;�)), k = 1, 2, . . . , n,

where for any fixed interval [�1,�2], with �1 < �2 < , there exist a constant � > 0 so that
for each k 2 {1, 2, . . . , n}

E
�
k (x;�) = O(e��|x|), x ! �1; E

+
n+k(x;�) = O(e��|x|), x ! +1,

uniformly for � 2 [�1,�2].

Lemmas along the lines of of Lemma 4.1 are quite standard (e.g., Theorem 10.1.2 of [42]),
but the statement has been given in full to emphasize the amount of information we have
in this case about solutions to (4.7). We note that the proof of Lemma 4.1 does not require
that we know a priori that �ess(L) = [,1).

In addition to the structural assertions of Lemma 4.1, we need to establish the continuity
and di↵erentiability in � specified in Assumption (B1). For this, we take advantage of the
observation that we can work with any valid frames for `(x;�) and ˜̀(x;�).

Lemma 4.2. Assume (SL1) and (SL2) hold, and for each � 2 (�1,) let {y�
k (·;�)}

2n
k=n+1

and {y
+
k (·;�)}

n
k=1 be as described in Lemma 4.1. If `(x;�) and ˜̀(x;�) respectively denote

the Lagrangian subspaces with frames

X(x;�) = (y�
n+1(x;�) y

�
n+2(x;�) · · · y

�
2n(x;�)), (4.11)

and
X̃(x;�) = (y+

1 (x;�) y
+
2 (x;�) · · · y

+
n (x;�)), (4.12)

then `, ˜̀2 C(R⇥ (�1,),⇤(n)).

Lemma 4.3. Assume (SL1) and (SL2) hold, and for some fixed �0 2 (�1,)) let the
elements {y

�
k (·;�0)}

2n
k=n+1 and {y

+
k (·;�0)}

n
k=1 be as described in Lemma 4.1. Then there

exists a constant r0 > 0 so that the elements {y
�
k (·;�0)}

2n
k=n+1 (resp. {y

+
k (·;�0)}

n
k=1) can be

analytically extended on B(�0, r0) (the disk in C with center �0 and radius r0) to a basis
for the space of solutions of (4.8) that lie left in R (resp. lie right in R). Moreover, The
�-derivatives of these extensions lie left in R (resp. right in R) and respectively satisfy
(@�y

±
k (x;�))

0 = B�(x;�)y
±
k (x;�) + B(x;�)@�y±

k (x;�) for all � 2 B(�0, r0) and a.e. x 2 R.

Remark 4.3. The verification that the frames X(x;�) and X̃(x;�) specified in (4.11) and
(4.12) are indeed frames for Lagrangian subspaces is precisely as in the calculation immedi-
ately following (3.1) in Section 3.

The significance of Lemma 4.2 lies in the assertion that in addition to being continuous
in x, ` and ˜̀ are continuous in � as well. The significance of Lemma 4.3 lies in the assertion
that we can find frames for ` and ˜̀, possibly alternative to (4.11) and (4.12), that are locally
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analytic in �, with �-derivatives that lie respectively left and right in R. The final assertion
of Lemma 4.3 is straightforward to see by integrating (4.7) to see that

y(x;�) = y(�M ;�) +

Z x

�M

A(⇠;�)y(⇠;�)d⇠,

and using the properties of A(x;�) and the analytic extensions of {y�
k (·;�0)}

2n
k=n+1 to justify

di↵erentiating under the integral sign in �, followed by di↵erentiation in x (and similarly for
the analytic extensions of {y+

k (·;�0)}
n
k=1).

These lemmas are both proven under more general assumptions in Section 2.3 of [37].

Since eD�(�)x is an invertible matrix, we can replace the frameX(x;�) specified in Lemma
4.2 with X(x;�)eD�(�)x (i.e., each of these matrices X(x;�) and X(x;�)eD�(�)x is a valid
frame for `(x;�)). From this observation and the estimates of Lemma 4.1 we see that

lim
x!�1

X(x;�)eD�(�)x = X�(�).

We conclude that the asymptotic Lagrangian subspace `�(�) described in (B2) exists, with
the choice of frame X�(�). Likewise, since e

�D+(�)x is an invertible matrix, we can replace
the frame X̃(x;�) specified in Lemma 4.2 with X̃(x;�)e�D+(�)x. From this observation and
the estimates of Lemma 4.1 we see that

lim
x!+1

X̃(x;�)e�D+(�)x = X̃+(�).

We conclude that the asymptotic Lagrangian subspace ˜̀
+(�) described in (B2) exists, with

the choice of frame X̃+(�).
We also need to verify that appropriate limiting frames X+(�1) and X+(�2) exist. Fo-

cusing on �1, we first note that if �1 is not an eigenvalue of L then the columns of X(x;�1)
must necessarily be a basis for the space of solutions to (4.7) that do not lie right in R. Using
Lemma 4.1, we see that in this case we can take as our frame for `(x;�1) the matrix

X
g(x;�) := (y+

n+1(x;�) y
+
n+2(x;�) · · · y

+
2n(x;�)),

comprising solutions to (4.7) that do not lie right in R. Proceeding similarly as above, we
can replace X

g(x;�) with the alternative frame X
g(x;�)eD+(�)x, from which we see that

lim
x!+1

X
g(x;�)eD+(�)x = X̃

g
+(�1).

The case in which �1 is an eigenvalue of L requires more care, and we refer the reader to the
appendix of [31] for a full discussion. (The analysis of [31] is for the case in which P (x) and
Q(x) are identity matrices, but it carries immediately to the current setting.)

We’ve now established that Assumptions (A) and (B1) hold, along with the first part
of (B2). For the second part of (B2), we need to show that

`�(�) \ ˜̀
+(�) = {0}, 8� 2 (�1,).
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According to Lemma 2.2 of [35], it su�ces to show that the matrix X�(�)⇤JX̃+(�) has a
trivial kernel for all � 2 (�1,). To verify this, we compute

X�(�)
⇤
JX̃+(�) = (R�(�)

⇤
�D�(�)R�(�)

⇤
P

⇤
�)

✓
�P+R+(�)D+(�)

R+(�)

◆

= �R�(�)
⇤
P+R+(�)D+(�)�D�(�)

⇤
R�(�)

⇤
P

⇤
�R+(�).

(4.13)

Using (4.10) we can compute

(R�(�)
⇤
P+R+(�))

�1 = (P+R+(�))
�1(R�(�)

⇤)�1 = R+(�)
⇤
P�R�(�).

If we multiply the right-hand side of (4.13) on the left by (R�(�)⇤P+R+(�))�1 we obtain

D+(�) +R+(�)
⇤
P�R�(�)D�(�)R�(�)

⇤
P�R+(�),

which is self-adjoint and negative definite (since the eigenvalues of the diagonal matrices
D±(�) are all strictly negative). In particular, this matrix is non-singular, and we can
conclude that X�(�)⇤JX̃+(�) is non-singular as well, which is what we hoped to show.

This leaves us with (B3), for which we first observe that

B�(x;�) =

✓
Q(x) 0
0 0

◆
.

We see that
X(x;�)⇤B�(x;�)X(x;�) = X(x;�)⇤Q(x)X(x;�),

so that Z c

�1
X(x;�)⇤B�(x;�)X(x;�)dx =

Z c

�1
X(x;�)⇤Q(x)X(x;�)dx.

Since Q(x) is positive definite for a.e. x 2 R, the right-hand side of this last relation is
positive definite for any c 2 R, which is more than we need for (B3). We’ve now established
that under our Assumptions (SL1) and (SL2) on (4.1), our general Assumptions (A), (B1),
(B2), and (B3) all hold. This establishes the first part of Theorem 1.2.

4.1 Exchanging the Target Space

Next, we will use Hörmander’s index to show that in the calculation of the Maslov indices
Mas(`(·;�i), ˜̀+(�i); (�1,+1]), i = 1, 2, the target spaces ˜̀+(�1) and ˜̀

+(�2) can be replaced
by the Dirichlet plane `D with frame XD =

�
0
I

�
, and that the resulting flow in this case is

monotonic (i.e., the direction is the same for each crossing point). We begin with a brief
discussion of Hörmander’s index, and in particular the approach of [32] for its evaluation. For
this, we fix any four Lagrangian subspaces ⌫, �, ⌫̃, and �̃, using Greek letters to distinguish
this background discussion from the notation currently in use for analyzing (4.7). In addition,
we denote by P(⌫, �) the collection of all continuous paths of Lagrangian subspaces ⇢ :
[0, 1] ! ⇤(n) such that ⇢(0) = ⌫ and ⇢(1) = �. As verified in Section 3 of [32], the di↵erence

Mas(⇢(·), �̃; [0, 1])�Mas(⇢(·), ⌫̃; [0, 1])
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is independent of ⇢ 2 P(⌫, �), and so this di↵erence is an integer depending only on the fixed
Lagrangian subspaces ⌫, �, ⌫̃, and �̃. Following standard terminology and notation (e.g.,
equation (2.9) in [23] and Definition 3.9 in [49]) we refer to this value as Hörmander’s index
and express it as

s(⌫̃, �̃; ⌫, �) := Mas(⇢(·), �̃; [0, 1])�Mas(⇢(·), ⌫̃; [0, 1]). (4.14)

We see immediately from (4.14) that if we are given any ⇢ 2 P(⌫,�), and would like to
change its target from �̃ to ⌫̃, then we can simply rearrange (4.14) to write

Mas(⇢(·), �̃; [0, 1]) = Mas(⇢(·), ⌫̃; [0, 1]) + s(⌫̃, �̃; ⌫,�). (4.15)

In order to make practical use of (4.15), we need to compute s(⌫̃, �̃; ⌫,�), and one straight-
forward approach for this, developed in [32], is as follows. First, a Maslov-box argument
similar to the one in Section 3 of the current analysis can be used to show that for any
⇢̃ 2 P(⌫̃, �̃), we have

s(⌫̃, �̃; ⌫, �) = Mas(⇢̃(·), ⌫; [0, 1])�Mas(⇢̃(·), �; [0, 1]). (4.16)

In this calculation, we are free to choose any ⇢̃ 2 P(⌫̃, �̃) we like, and one convenient choice
is to let ⇢̃(t) denote (for each t 2 [0, 1]) the Lagrangian subspace with frame

X̃(t) := tX�̃ + (1� t)X⌫̃ . (4.17)

To be sure, X̃(t) specified in this way is not always the frame for a Lagrangian subspace for
all t 2 [0, 1], but for a broad class of frames X�̃ and X⌫̃ , including all those we will need to
work with in the current analysis, it is. (A convenient criterion for verifying that this holds
for a pair of frames X�̃ and X⌫̃ is given in Section 3.2 of [32].)

In order to organize calculations along these lines, we follow the convention of [32] and
define

I(⌫;X⌫̃ ,X�̃) := �Mas(⇢̃(·), ⌫; [0, 1]),

where in this specification ⇢̃ : [0, 1] ! ⇤(n) must be precisely the path of Lagrangian
subspaces associated with the frames X̃(t) specified in (4.17). This development allows us
to compute Hörmander’s index as

s(⌫̃, �̃; ⌫, �) = I(�;X⌫̃ ,X�̃)� I(⌫;X⌫̃ ,X�̃). (4.18)

In Section 3 of [32], the author computes I(⌫;X⌫̃ ,X�̃) for several typical cases, including all
those encountered in the current analysis. One important such case, which we will use in this
section, supposes ⌫ has a frame

�
I

M⌫

�
, for some self-adjoint matrix M⌫ , X⌫̃ is the Dirichlet

frame
�
0
I

�
, and X�̃ has the frame

�
I

M�̃

�
, for some self-adjoint matrix M�̃. Then, from Section

3.3.1 of [32], we have the relation

I(⌫;X⌫̃ ,X�̃) = n�(M⌫̃ �M⌫) + n0(M⌫̃ �M⌫), (4.19)

where for any self-adjoint n⇥nmatrixM , n�(M) denotes the number of negative eigenvalues
of M and n0(M) denotes the dimension of the kernel of M .
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Returning now to the current analysis, since the calculations will be the same for ˜̀
+(�1)

and ˜̀
+(�2), we will focus on the latter. Our goal, we recall, is to exchange the target

˜̀
+(�2) for the Dirichlet target `D in the calculation of Mas(`(·;�2); ˜̀+(�2); (�1,+1]), and
according to our general development above we can accomplish this by writing

Mas(`(·;�2); ˜̀+(�2); (�1,+1]) = Mas(`(·;�2); `D; (�1,+1])

+ s(`D, ˜̀+(�2); `�(�2), `+(�2)).

In order to evaluate Hörmander’s index in this case, we’ll use (4.18) to write

s(`D,˜̀+(�2); `�(�2), `+(�2)) = I(`+(�2);XD,

✓
I

Ỹ+(�2)X̃+(�2)�1

◆
)

� I(`�(�2);XD,

✓
I

Ỹ+(�2)X̃+(�2)�1

◆
),

(4.20)

where in order to place ourselves in the context of [32], we have replaced X̃+(�2) with its
normalized frame. According to (4.19), we can write

I(`+(�2);XD,

✓
I

Ỹ+(�2)X̃+(�2)�1

◆
) = n�(Ỹ+(�2)X̃+(�2)

�1
� Y+(�2)X+(�2)

�1)

+ n0(Ỹ+(�2)X̃+(�2)
�1

� Y+(�2)X+(�2)
�1),

(4.21)

for which we need to understand the matrix Ỹ+(�2)X̃+(�2)�1
� Y+(�2)X+(�2)�1. First, we

see immediately that

Ỹ+(�2)X̃+(�2)
�1 = P+R+(�2)D+(�2)R+(�2)

⇤
P+.

At this point, we divide the analysis into two cases: (1) �2 is not an eigenvalue of (4.1);
and (2) �2 is an eigenvalue of (4.1). In the event that �2 is not an eigenvalue of (4.1), we
can take X+(�2) = X̃

g
+(�2) so that

Y+(�2)X+(�2)
�1 = �P+R+(�2)D+(�2)R+(�2)

⇤
P+.

In this way, we see that

Ỹ+(�2)X̃+(�2)
�1

� Y+(�2)X+(�2)
�1 = 2P+R+(�2)D+(�2)R+(�2)

⇤
P+,

and this final matrix is self-adjoint and negative definite. We conclude that

I(`+(�2);XD,

✓
I

Ỹ+(�2)X̃+(�2)�1

◆
) = n. (4.22)

Likewise,

I(`�(�2);XD,

✓
I

Ỹ+(�2)X̃+(�2)�1

◆
) = n�(Ỹ+(�2)X̃+(�2)

�1
� Y�(�2)X�(�2)

�1)

+ n0(Ỹ+(�2)X̃+(�2)
�1

� Y�(�2)X�(�2)
�1).
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In this case,

Ỹ+(�2)X̃+(�2)
�1

� Y�(�2)X�(�2)
�1 = P+R+(�2)D+(�2)R+(�2)

⇤
P+

+ P�R�(�2)D�(�2)R�(�2)
⇤
P�.

This is a sum of two self-adjoint negative definite operators, and so it is negative definite.
We conclude that

I(`�(�2);XD,

✓
I

Ỹ+(�2)X̃+(�2)�1

◆
) = n,

and combining this with (4.22), we see that

s(`D, ˜̀+(�2); `�(�2), `+(�2)) = 0,

so that
Mas(`(·;�2), ˜̀+(�2); (�1,+1]) = Mas(`(·;�2), `D; (�1,+1]). (4.23)

Since we are currently assuming that �2 is not an eigenvalue of (4.1), `+(�2) \ `D = {0}
(because `+(�2) = ˜̀g

+(�2), and ˜̀g
+(�2)\`D = {0}). (These claims are easily checked by using

the frames for `�(�2) and ˜̀g
+(�2).) We conclude that +1 cannot serve as a crossing point

for the calculation on either side of (4.23), allowing us to write

Mas(`(·;�2), ˜̀+(�2); (�1,+1]) = Mas(`(·;�2), `D; (�1,+1)).

As a transition to the case in which �2 is an eigenvalue of (4.1), we claim that in either
case (i.e., whether or not �2 is an eigenvalue of (4.1)), the crossing points arising in the
calculation of Mas(`(·;�2), `D; (�1,+1]) all have the same direction (negative). To see
this, we employ Lemma 1.1 of [32], which in the current setting can be stated as follows:

Lemma 4.4 (Lemma 1.1 from [32]). Fix a, b 2 R, a < b, and for values of � confined to an
interval I ⇢ R consider the linear Hamiltonian system

Jy
0 = B(x;�)y, x 2 (a, b), y(x;�) 2 C2n

, (4.24)

for which we assume the following:

(A) For each � 2 I, B(·;�) 2 C([a, b],C2n⇥2n), with B(x;�) self-adjoint for each x 2

[a, b], and additionally the partial derivative B�(x;�) exists for all x 2 R, with B�(·;�) 2

L
1((a, b),C2n⇥2n);

(B1) If Z is a frame for a Lagrangian subsapace of C2n and Xa(x;�) is a matrix solution of
(4.24) such that Xa(a;�) = Z, then for each x 2 (a, b] the matrix

Z x

a

Xa(⇠;�)
⇤B�(⇠;�)Xa(⇠;�)d⇠

is positive definite for all � 2 I;

(B2) For a fixed target Lagrangian subspace `T , the restriction B(x;�)|`T is non-negative
for all (x,�) 2 [a, b] ⇥ I, and moreover if y(x;�) is any non-trivial solution of (4.24) with
y(x;�) 2 `T for all x in some interval [c, d] ⇢ [a, b], c < d, then

Z d

c

(B(x;�)y(x;�), y(x;�))dx > 0.
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(We note that this final condition can be satisfied in the vacuous case that there are no such
non-trivial solutions.)

If `a(x;�) denotes the Lagrangian subspace of C2n with frame Xa(x;�), then the crossing
points for the calculation Mas(`a(·;�), `T ; [a, b]) all have the same sign (negative), and in
particular we can write

Mas(`a(·;�), `T ; [a, b]) = �

X

x2[a,b)

dim(`a(x;�) \ `T )

= �

X

x2[a,b)

dimker(Xa(x;�)
⇤
JXT ).

For the current setting, it’s clear from (SL1) and (SL2) that (A) and (B1) hold for
any finite interval [a, b] ⇢ R. To verify (B2), we need to check two items: (1) If PD denotes
projection onto the Dirichlet subspace, then the matrix PDB(x;�2)PD is non-negative for all
x 2 R; and (2) if y(x;�2) is any non-trivial solution of (4.8) with y(x;�2) 2 `D for all x in
some interval [c, d], c < d, then

Z d

c

(B(x;�2)y(x;�2), y(x;�2))dx > 0.

For (1), we observe that for any v =
�
v1
v2

�
2 C2n, we have PDv =

�
0
v2

�
, so that

v
⇤
PDB(x;�2)PDv = (0 v

⇤
2)

✓
�2Q(x)� V (x) 0

0 P (x)�1

◆✓
0

v2

◆
= v

⇤
2P (x)�1

v2 � 0,

where the final inequality follows from Assumption (SL2). For (2), suppose y(x;�2) is any
non-trivial solution of (4.8) so that y(x;�2) 2 `D for all x in some interval [c, d], c < d.
Then, in particular, �(x;�2) = 0 for all such x, and since �(x;�2) is absolutely continuous
on R we can conclude that �0(x;�2) = 0 for a.e. x 2 (a, b). But then y(x;�2) = 0 for a.e.
x 2 (a, b), contradicting our assumption that y(x;�2) is non-trivial. We conclude that Items
(1) and (2) both hold, and from Lemma 4.4 we can conclude that crossing points arising in
the calculation of Mas(`(·;�2), `D; (�1,+1]) all have the same sign (negative). In addition,
the well-defined limits of B(x;�2) and X(x;�2) as x ! +1 allow us to extend Lemma 4.4
to possible crossing points at +1.

Turning now to the case in which �2 is an eigenvalue of (4.1), we observe that we can
no longer rule out the possibility that +1 serves as a crossing point for the calculation of
Mas(`(·;�2), `D; (�1,+1]). Nonetheless, by our monotonicity considerations if +1 serves
as a crossing point, it must correspond with one or more eigenvalues of

W̃D(x;�2) := (X(x;�2) + iY (x;�2))(X(x;�2)� iY (x;�2))

arriving at �1 in the clockwise direction as x ! +1. (Here, W̃D(x;�2) is just our usual
matrix of the form (2.1) with Dirichlet target.) Such arrivals do not increment the Maslov
index, and so in this case we have again

Mas(`(·;�2), `D; (�1,+1]) = Mas(`(·;�2), `D; (�1,+1)).
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Since �2 lies below the essential spectrum there must exist ✏ > 0 su�ciently small so that
�2 � ✏ is not an eigenvalue of (4.1), and moreover (4.1) has no eigenvalues between �2 � ✏

and �2. We claim that we must have

Mas(`(·;�2 � ✏), `D; (�1,+1)) = Mas(`(·;�2), `D; (�1,+1)). (4.25)

To see this, we first observe by monotonicity that the calculation of the Maslov index
Mas(`(·;�2), `D; (�1,+1)) can involve at most a finite number of crossing points. This
is because any eigenvalue of W̃D(x;�2) must complete a full loop of S1 between crossings,
and by continuity and compactification no eigenvalue of W̃D(x;�2) can compute more than
a finite number of such loops.

Next, if we combine our monotonicity as � varies with our monotonicity as x varies, we
find that the crossing points for `(x;�) and `D form monotonic spectral curves as depicted in
Figure 4.1 (see Section 2.3 of [32] for a detailed discussion of this point). We see that every
finite crossing along the vertical shelf at �2 must correspond with exactly one crossing point
along the vertical shelf at �2 � ✏. This still leaves open the possibility that (+1,�2) serves
as a crossing point for the vertical shelf at �2 while (+1,�2� ✏) does not serve as a crossing
point for the vertical shelf at �2 � ✏. As noted above, however, such an asymptotic crossing
doesn’t contribute to the Maslov index in either case, establishing (4.25).

x

� �2

�2 � ✏



Figure 4.1: Monotonic spectral curves when the target space is `D.

Now, using the observation that �2 � ✏ is not an eigenvalue of (4.1), we can compute
(with ✏ small enough so that �1 < �2 � ✏)

N ([�1,�2)) = N ([�1,�2 � ✏))

= �Mas(`(·;�2), ˜̀+(�2 � ✏); (�1,+1]) + Mas(`(·;�1), ˜̀+(�1); (�1,+1])

= �Mas(`(·;�2 � ✏), `D; (�1,+1)) + Mas(`(·;�1), ˜̀+(�1); (�1,+1])

= �Mas(`(·;�2), `D; (�1,+1)) + Mas(`(·;�1), ˜̀+(�1); (�1,+1]).

Since we also have (directly from Theorem 1.1)

N ([�1,�2)) = �Mas(`(·;�2), ˜̀+(�2); (�1,+1]) + Mas(`(·;�1), ˜̀+(�1); (�1,+1]),
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we can conclude that

Mas(`(·;�2), ˜̀+(�2); (�1,+1]) = Mas(`(·;�2), `D; (�1,+1)).

Using again monotonicity of this last count, along with our observation above that the
calculation of Mas(`(·;�2), `D; (�1,+1)) can involve at most a finite number of crossing
points, we can write

Mas(`(·;�2), `D; (�1,+1)) = �

X

x2R

dim(`(x;�2) \ `D) = �

X

x2R

dimker(X(x;�2)
⇤
JXD),

(4.26)
where in obtaining this second equality, we have observed from Lemma 2.2 of [35] that if X1

and X2 are frames for any two Lagrangian subspaces `1 and `2 then

dim(`1 \ `2) = dimker(X⇤
1JX2).

The same considerations hold for �1, allowing us to conclude

N ([�1,�2)) = �Mas(`(·;�2), ˜̀+(�2); (�1,+1]) + Mas(`(·;�1), ˜̀+(�1); (�1,+1])

= �Mas(`(·;�2), `D; (�1,+1)) + Mas(`(·;�1), `D; (�1,+1))

=
X

x2R

dim(`(x;�2) \ `D)�
X

x2R

dim(`(x;�1) \ `D)

=
X

x2R

dimker(X(x;�2)
⇤
JXD)�

X

x2R

dimker(X(x;�1)
⇤
JXD),

For these latter calculations, we have (recalling X(x;�2) =
�
X(x;�2)
Y (x;�2)

�
)

X(x;�2)
⇤
JXD = �X(x;�2)

⇤
,

and since dimker(�X(x;�2)⇤) = dimker(X(x;�2)), we can write

N ([�1,�2)) =
X

x2R

dimkerX(x;�2)�
X

x2R

dimkerX(x;�1), (4.27)

which is precisely the second assertion in Theorem 1.2.

4.2 Eliminating the Left Shelf

In this section, we will check that for Sturm-Liouville systems under assumptions (SL1) and
(SL2) we can take �1 su�ciently negative so that there are no crossing points along the left
shelf. We begin by noting that a point (s,�1) 2 R⇥ (�1,) will be a crossing point for the
Lagrangian subspaces `(x;�) and ˜̀

+(�1) if and only if �1 is an eigenvalue for the half-line
problem

�(P (x)�0)0 + V (x)� = �Q(x)�; x 2 (�1, s)

X̃+(�1)
⇤
J

✓
�(s)

P (s)�(s)

◆
= 0.
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We will use an energy argument to show that the set of eigenvalues for this problem is
bounded below, independently of s. To this end, suppose � is an eigenvalue, and let �(x;�)
denote a corresponding eigenfunction. If we take an L

2((�1, s),Cn) inner product of the
system with �, we obtain

�

Z s

�1
((P (x)�0)0,�)dx+

Z s

�1
(V (x)�,�)dx = �

Z s

�1
(Q(x)�,�)dx.

For the first integral, we can integrate by parts to write

�

Z s

�1
((P (x)�0)0,�)dx = �(P (s)�0(s),�(s)) +

Z s

�1
(P (x)�0

,�
0)dx.

The key point here is the boundary term, and for this, we observe that our boundary con-
dition can be expressed as

0 = (R+(�1)
⇤
D+(�1)R+(�1)

⇤
P+)

✓
�P (s)�0(s)

�(s)

◆

= �R+(�1)
⇤
P (s)�0(s) +D+(�1)R+(�1)

⇤
P+�(s).

Recalling the relation (R+(�1)⇤)�1 = P+R+(�1), we can solve for P (s)�0(s) in terms of �(s)
to get

P (s)�0(s) = P+R+(�1)D+(�1)R+(�1)
⇤
P+�(s).

We see that the boundary term can be expressed as

�(P (s)�0(s),�(s)) = �(P+R+(�1)D+(�1)R+(�1)
⇤
P+�(s),�(s)).

The matrix P+R+(�1)D+(�1)R+(�1)⇤P+ is negative definite, so we can conclude that

�(P (s)�0(s),�(s)) � 0

for all �(s) 2 Cn. It follows that

�

Z s

�1
((P (x)�0)0,�)dx �

Z s

�1
(P (x)�0

,�
0)dx � ✓Pk�

0
k
2
L2((�1,s),Cn).

We also have Z s

�1
(Q(x)�,�)dx � ✓Qk�k

2
L2((�1,s),Cn),

and by combining (SL1) and (SL2) we see that there exists a constant CV � 0 su�ciently
large so that ���

Z s

�1
(V (x)�,�)dx

���  CV k�k
2
L2((�1,s),Cn).

Combining these observations, we see that for � < 0 we can write

�✓Qk�k
2
L2((�1,s),Cn) � �

Z s

�1
(Q(x)�,�)dx = �

Z s

�1
((P (x)�0)0,�)dx+

Z s

�1
(V (x)�,�)dx

� ✓Pk�
0
k
2
L2((�1,s),Cn) � CV k�k

2
L2((�1,s),Cn),
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from which we see that

� � �
CV

✓Q
.

We conclude that for � < �(CV /✓Q) there are no crossing points. In particular, if �1 <

�(CV /✓Q), then X

x2R

dimker(X(x;�1)) = 0,

so by taking �1 < �(CV /✓Q) in (4.27) we see that

N ((�1,�2)) =
X

x2R

dimkerX(x;�2),

which is precisely the final claim of Theorem 1.2. ⇤

4.3 Traveling Waves

As noted in the Introduction, if we want to analyze the stability of a traveling-wave solution
ū(x� st) to the Allen-Cahn equation (1.2), we need to understand the eigenvalues of

Hs� := ��
00
� s�

0 + V (x)� = ��, V (x) = D
2
F (ū(x)), (4.28)

which is not self-adjoint for s 6= 0 (even if V (x) is self-adjoint). If we set y =
�
y1
y2

�
=
�
�
�0

�
,

then we obtain

Jy
0 = B(x;�)y; B(x;�) =

✓
�I � V (x) sI

0 I

◆
,

where we’re using B(x;�) in order to reserve the notation B(x;�) for self-adjoint matrices.
In this case, we can readily place the analysis in the setting of (1.1) by making the change

of variables ⇣ = e
s
2xy, for which we find

J⇣
0 = B(x;�)⇣; B(x;�) =

✓
�I � V (x) s

2I
s
2I I

◆
. (4.29)

If V satisfies the same assumptions as stated in (SL1) and (SL2), then our analysis of (4.8)
can be carried out with only minor adjustments, and we can conclude precisely the claims
stated in Theorem 1.2. In fact, as shown in [31], the limit conditions can be relaxed from
exponential rate to the following.

(SL2)
0 There exist self-adjoint matrices V± so that the limits limx!±1 V (x) = V± exist,

and for each M 2 R,
Z +1

M

(1 + |x|)|V (x)� V+|dx < 1,

Z M

�1
(1 + |x|)|V (x)� V�|dx < 1.

For convenient reference, we state this assertion as a theorem. For a full proof, though
by di↵erent calculations in some places, the reader is referred to [31].
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Theorem 4.1. For (4.28), let Assumptions (SL1) (on V ) and (SL2)
0 hold. Then �p(Hs) ⇢

R, and for  specified as in (4.5), except with Q± = I, (A), (B1), (B2), and (B3) all
hold for (4.29) with I = (�1,). We conclude that the result of Theorem 1.1 holds for all
intervals [�1,�2], �1 < �2 < . In addition, if N ([�1,�2)) denotes the number of eigenvalues,
counted with multiplicity, that (4.28) has on the interval [�1,�2), and we express the frame
X(x;�) from (B1) as X(x;�) =

�
X(x;�)
Y (x;�)

�
, then

N ([�1,�2)) =
X

x2R

dimkerX(x;�2)�
X

x2R

dimkerX(x;�1),

and
N ((�1,�2)) =

X

x2R

dimkerX(x;�2).

Unfortunately, our approach to handling traveling waves ū(x�st) does not readily extend
to more general Allen-Cahn type systems such as

ut +DF (u) = Buxx, (x, t) 2 R⇥ R+, u(x, t) 2 Cn
,

for which the di↵usion matrix B is not the identity matrix. For an interesting step in this
direction, we refer the reader to the recent result [5].

We conclude this section by mentioning a second, more complicated, case in which the
current method can be applied in the analysis of traveling waves. In particular, we consider
equations

ut +MDF (u) = uxx, (x, t) 2 R⇥ R+, u(x, t) 2 Cn
, (4.30)

for which M denotes a constant, invertible, self-adjoint n ⇥ n matrix. In order to analyze
the stability of a traveling-wave solution ū(x � st) to (4.30), we use moving coordinates as
before and linearize, leading to the eigenvalue problem

��
00
� s�

0 +MD
2
F (ū(x))� = ��, (x, t) 2 R⇥ R+, u(x, t) 2 Cn

. (4.31)

The additional complication here is that MD
2
F (ū(x)) may not be a self-adjoint potential.

In order to place (4.31) in the current framework, we set y =
�
y1
y2

�
=
�

�
M�1�0

�
, so that

Jy
0 = B(x;�)y; B(x;�) =

✓
�M

�1
�D

2
F (ū(x)) sI

0 M

◆
.

If we now set ⇣ = e
s
2xy as before, we obtain the system

J⇣
0 = B(x;�)⇣; B(x;�) =

✓
�M

�1
�D

2
F (ū(x)) s

2I
s
2I M

◆
,

which has the form of (1.1).
The verification of our general assumptions (A), (B1), (B2), and (B3) requires addi-

tional assumptions on M , and we won’t pursue a full analysis here. We note, however, that
the following important case was analyzed in [18, 21]: M = QS, where Q is a diagonal
matrix with either +1 or �1 in each diagonal entry and S is a positive diagonal matrix.
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5 Di↵erential-Algebraic Sturm-Liouville Systems

Following Section 5.4 in [35], we consider di↵erential-algebraic Sturm-Liouville systems

La� = �(P (x)�0)0 + V (x)� = ��, x 2 R, �(x;�) 2 Cn
, (5.1)

with degenerate matrix

P (x) =

✓
P11(x) 0

0 0

◆
.

We make the following assumptions on P and V :

(DA1) For some 0 < m < n, P11 2 ACloc(R,Cm⇥m), with P11(x) self-adjoint for all
x 2 R; also, V 2 C(R,Cn⇥n), with V (x) self-adjoint for all x 2 R. In addition, there exists
a constant ✓P11 > 0 so that for any v 2 Cn,

(P11(x)v, v) � ✓P11 |v|
2

for all x 2 R.
(DA2) There exist self-adjoint matrices P±

11, V
±, along with constants C, M , and ⌘ > 0,

so that

|P11(x)� P
±
11|  Ce

�⌘|x|
, x ? ±M ; |P

0
11(x)|  Ce

�⌘|x|
, x ? ±M ;

|V (x)� V
±
|  Ce

�⌘|x|
, x ? ±M.

For notational convenience, we’ll write

V (x) =

✓
V11(x) V12(x)
V12(x)⇤ V22(x)

◆
,

where V11(x) is an m ⇥ m matrix, V12(x) is an m ⇥ (n � m) matrix, and V22(x) is an
(n�m)⇥ (n�m) matrix. We’ll write � =

�
�1

�2

�
, where �1(x;�) 2 Cm and �2(x;�) 2 Cn�m,

allowing us to express (5.1) as

�(P11(x)�
0
1)

0 + V11(x)�1 + V12(x)�2 = ��1

V12(x)
⇤
�1 + V22(x)�2 = ��2.

(5.2)

We will take as our domain for La, the set

Da := {� = (�1,�2) 2 L
2(R,Cm)⇥ L

2(R,Cn�m) :

�1,�
0
1 2 ACloc(R,Cm), La� 2 L

2(R,Cm)⇥ L
2(R,Cn�m)}.

According to [2], the essential spectrum of La will contain the ranges of the eigenvalues
of V22(x) as x ranges over R. Precisely, we’ll let {⌫k(x)}n�m

k=1 denote the eigenvalues of V22(x),
and we’ll denote by Rk the closure of the range of ⌫k : R ! R. Then

n�m[

k=1

Rk ⇢ �ess(La).
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For all � /2 [
n�m
k=1 Rk, we can solve the second equation in (5.2) for �2, giving

�2(x;�) = (�I � V22(x))
�1
V12(x)

⇤
�1(x;�).

Upon substitution of this expression for �2 into the first equation in (5.2), we obtain an
equation for �1,

�(P11(x)�
0
1)

0 +V(x;�)�1 = ��1, (5.3)

where we’ve set
V(x;�) := V11(x) + V12(x)(�I � V22(x))

�1
V12(x)

⇤
.

We can now analyze (5.3) similarly as we analyzed (4.1). First, for � /2 [
n�m
k=1 Rk, the

matrices (�I � V
±
22) are non-singular, and we can consider the limiting system

�P
±
11�

00
1 +V

±(�)�1 = ��1, (5.4)

where
V

±(�) := V
±
11 + V

±
12(�I � V

±
22)

�1
V

± ⇤
12 .

Similarly as with (4.1), we can check that in addition to the set [
n�m
k=1 Rk, the essential

spectrum of La includes all values � for which �1(x) = e
ikx

r1 solves this equation for some
constant scalar k 2 R and constant vector r1 2 Cm. In this case, we have

(k2
P

±
11 +V

±(�))r1 = �r1.

Computing an inner product of this system with r1, we see that

k
2(P±

11r1, r1) + (V±(�)r1, r1) = �|r1|
2
.

Since the matrices P
±
11 are positive definite, we see that in order for � to satisfy this rela-

tionship, we must have

� �
(V±(�)r1, r1)

|r1|
2

.

If we set


±(�) := inf

r12Cm\{0}

(V±(�)r1, r1)

|r1|
2

(i.e., the lowest eigenvalues of the matrices V±(�)), then we can characterize this part of the
essential spectrum with the set

R0 :=
n
� 2 R : � � min{�(�),+(�)}

o
.

With this notation in place, we see that we can consider any interval I ⇢ R so that

I \

n�m[

k=0

Rk = ;. (5.5)
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As an important example case, we observe that we can take any interval I that lies
entirely below the essential spectrum. In order to characterize the bottom of the essential
spectrum more precisely, we begin by setting


±
1 := inf

r12Cm\{0}

(V ±
11r1, r1)

|r1|
2

and


±
2 := inf

r22Cn�m\{0}

(V ±
22r2, r2)

|r2|
2

.

By spectral mapping, the eigenvalues of (�I � V
±
22)

�1 will be (� � ⌫
±
k )

�1, where {⌫
±
k }

n�m
k=1

denote the eigenvalues of V ±
22 . In this case, we’re taking � below the set [

n�m
k=1 Rk, so in

particular below the eigenvalues of V ±
22 . It follows that

inf
r22Cn�m\{0}

((�I � V
±
22)

�1
r2, r2)

|r2|
2

= (�� 
±
2 )

�1
< 0,

and so
((�I � V

±
22)

�1
r2, r2) � (�� 

±
2 )

�1
|r2|

2
.

This allows us to compute

inf
r12Cm\{0}

(V ±
12(�I � V

±
22)

�1
V

± ⇤
12 r1, r1)

|r1|
2

= inf
r12Cm\{0}

((�I � V
±
22)

�1
V

± ⇤
12 r1, V

± ⇤
12 r1)

|r1|
2

� inf
r12Cm\{0}

(�� 
±
2 )

�1
|V

± ⇤
12 r1|

2

|r1|
2

= (�� 
±
2 )

�1 inf
r12Cm\{0}

(V ±
12V

± ⇤
12 r1, r1)

|r1|
2

= (�� 
±
2 )

�1
⇢
±
,

where ⇢± denote the lowest eigenvalues of V ±
12V

± ⇤
12 . In summary, we can ensure that � /2 R0

by taking � to satisfy the pair of inequalities

� < 
�
1 +

⇢
�

(�� 
�
2 )

, and � < 
+
1 +

⇢
+

(�� 
+
2 )

.

Since �� 
±
2 < 0, we can express these relations as the quadratic inequalities

�
2
� (±1 + 

±
2 )�+ 

±
1 

±
2 � ⇢

±, 2
> 0.

(We emphasize that we are taking � below [
n�m
k=1 Rk, so this does not assert that large positive

values of � are admissible.) Upon solving this quadratic inequality, we find that admissible
values of � include those values below [

n�m
k=1 Rk that also satisfy the inequality

� < min
±

n1
2

⇣
(±1 + 

±
2 )�

q
(±1 � 

±
2 )

2 + 4⇢± 2
⌘o

.

Returning to the general case, we let I denote any interval satisfying (5.5), not necessarily
below �ess(La). For � 2 I, we are now in a position to develop frames X(x;�) and X̃(x;�)
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as described in (B1). For this, we begin by looking for solutions to (5.4) of the form
�(x;�) = e

µ(�)x
r(�), where µ : I ! R and r1 : I ! Cn. We find,

{�µ
2
P

±
11 +V

±(�)� �I}r1 = 0.

The allowable values of µ2 are precisely the eigenvalues of (P±
11)

�1(V±(�) � �I), which is
self-adjoint with respect to the inner product (r, s)P±

11
:= (P±

11r, s). We conclude that these
eigenvalues will be real-valued, and that we can choose the associated eigenvectors to be
orthonormal with respect to this inner product. In addition, for � 2 I, we have

� < inf
r12Cm\{0}

(V±(�)r1, r1)

|r1|
2

,

so that V
±(�) � �I is a positive matrix. We conclude that µ

2 takes only positive real
values, leading to n negative values for µ and n positive values. We will denote these
values {µ±

k (�)}
2n
k=1, with the first n values negative, the second n values positive, and (by a

choice of labeling) the relation µ
±
n+k(�) = �µ

±
k (�) for all k 2 {1, 2, . . . , n}. We denote the

corresponding eigenvectors {r±k (�)}
n
k=1 so that

(P±
11)

�1(V±(�)� �I)r±k = (µ±
k )

2
r
±
k , 8 k 2 {1, 2, . . . , n}.

In order to place (5.3) in our general framework, we will set y =
�
y1
y2

�
=
�

�1

P11(x)�0
1

�
so that

we have

y
0 = A(x;�)y; A(x;�) =

✓
0 P11(x)�1

V(x;�)� �I 0

◆
, (5.6)

or equivalently

Jy
0 = B(x;�)y; B(x;�) =

✓
�I �V(x;�) 0

0 P11(x)�1

◆
. (5.7)

For � 2 I, we see that B(·;�) 2 L
1
loc(R,C2m⇥2m), and it’s clear that B(x;�) is self-adjoint

for all x 2 R. We also need to compute B�(x;�), and for this, we first observe that

V�(x;�) = �V12(x)(�I � V22(x))
�2
V12(x)

⇤

= �

⇣
(�I � V22(x))

�1
V12(x)

⇤
⌘⇤
(�I � V22(x))

�1
V12(x)

⇤
.

(5.8)

Recalling that V 2 C(R,Cn⇥n), and that for � 2 I, we have � /2 �(V22(x)) [ �(V
±
22) for all

x 2 R, we see that V�(·;�) 2 L
1
loc(R,Cm⇥m), and consequently B�(·;�) 2 L

1
loc(R,C2m⇥2m).

This establishes Assumptions (A).
For (B1), we will proceed precisely as we did with Sturm-Liouville Systems. Similarly

as in (4.9), the values {µ±
k (�)}

2n
k=1 described above comprise a labeling of the eigenvalues of

A±(�) := limx!±1 A(x;�). If we let {r
±
k (�)}

2n
k=1 denote the eigenvectors of A±(�) respec-

tively associated with these eigenvectors, then we find

r
±
k (�) =

✓
r
±
k (�)

µ
±
k (�)P

±
11r

±
k (�)

◆
; r

±
n+k(�) =

✓
r
±
k (�)

�µ
±
k (�)P

±
11r

±
k (�)

◆
; k = 1, 2, . . . , n. (5.9)

The following lemma can be established by a proof almost identical to the proof of Lemma
4.1.
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Lemma 5.1. Assume (DA1) and (DA2) hold, and let I be as in (5.5). Also, let {µ±
k (�)}

2m
k=1

and {r
±
k (�)}

2m
k=1 be as described just above. Then there exists a family of bases {y�

k (·;�)}
2m
k=m+1,

� 2 I, for the spaces of solutions to (5.6) that lie left in R, and a family of bases {y+
k (·;�)}

m
k=1,

� 2 I, for the spaces of solutions to (5.6) that lie right in R. Respectively, we can choose
these so that

y
�
m+k(x;�) = e

�µ�
k (�)x(r�m+k(�) + E

�
m+k(x;�)), k = 1, 2, . . . ,m,

y
+
k (x;�) = e

µ+
k (�)x(r+k (�) + E

+
k (x;�)), k = 1, 2, . . . ,m,

where for any fixed interval [�1,�2] ⇢ I, there exists a constant � > 0 so that for each
k 2 {1, 2, . . . ,m}

E
�
m+k(x;�) = O(e��|x|), x ! �1; E

+
k (x;�) = O(e��|x|), x ! +1,

uniformly for � 2 [�1,�2].
Moreover, there exists a �-dependent family of bases {y�

k (·;�)}
m
k=1, � 2 I, for the spaces of

solutions to (5.6) that do not lie left in R, and a �-dependent family of bases {y+
k (·;�)}

2m
k=m+1,

� 2 I, for the spaces of solutions to (5.6) that do not lie right in R. Respectively, we can
choose these so that

y
�
k (x;�) = e

µ�
k (�)x(r�k (�) + E

�
k (x;�)), k = 1, 2, . . . ,m,

y
+
m+k(x;�) = e

�µ+
k (�)x(r+m+k(�) + E

+
m+k(x;�)), k = 1, 2, . . . ,m,

where for any fixed interval [�1,�2] ⇢ I, there exist a constant � > 0 so that for each
k 2 {1, 2, . . . ,m}

E
�
k (x;�) = O(e��|x|), x ! �1; E

+
m+k(x;�) = O(e��|x|), x ! +1,

uniformly for � 2 [�1,�2].

Precisely as in the case of Sturm-Liouville Systems, we require the following two auxiliary
lemmas, which are again adapted from [37] (with a straightforward modification in this case,
extending the result from cases in which B(x;�) is linear in � to cases in which it is analytic
in �).

Lemma 5.2. Assume (DA1) and (DA2) hold, and for each � 2 I (with I as in (5.5))
let {y�

k (·;�)}
2m
k=m+1 and {y

+
k (·;�)}

m
k=1 be as described in Lemma 5.1. If `(x;�) and ˜̀(x;�)

respectively denote the Lagrangian subspaces with frames

X(x;�) = (y�
m+1(x;�) y

�
m+2(x;�) · · · y

�
2m(x;�)), (5.10)

and
X̃(x;�) = (y+

1 (x;�) y
+
2 (x;�) · · · y

+
m(x;�)), (5.11)

then `, ˜̀2 C(R⇥ I,⇤(n)).
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Lemma 5.3. Assume (DA1) and (DA2) hold, and for some fixed �0 2 I (with I as in
(5.5)) let {y

�
k (·;�0)}

2m
k=m+1 and {y

+
k (·;�0)}

m
k=1 be as described in Lemma 5.1. Then there

exists a constant r0 > 0 so that the elements {y
�
k (·;�0)}

2m
k=m+1 (resp. {y

+
k (·;�0)}

m
k=1) can be

analytically extended on B(�0, r0) to a basis for the space of solutions of (5.7) that lie left in
R (resp. lie right in R). Moreover, The �-derivatives of these extensions lie left in R (resp.
right in R) and respectively satisfy (@�y

±
k (x;�))

0 = B�(x;�)y
±
k (x;�) + B(x;�)@�y±

k (x;�) for
all � 2 B(�0, r0) and a.e. x 2 R.

Proceeding similarly as with Sturm-Liouville Systems, we can respectively replace the
framesX(x;�) and X̃(x;�) specified in (5.10) and (5.11) withX(x;�)eD�(�)x and X̃(x;�)e�D+(�)x,
where

D±(�) = diag(µ±
1 (�) µ

±
2 (�) . . . µ

±
m(�)).

It follows that the frames for `�(�) and ˜̀
+(�) can be taken respectively to be

X�(�) =

✓
R�(�)

�P
�
11R�(�)D�(�)

◆
; X̃+(�) =

✓
R+(�)

P
+
11R+(�)D+(�)

◆
,

where
R±(�) = (r±1 (�) r

±
2 (�) . . . r

±
m(�)).

This establishes (B1) and the first part of (B2), and the second part of (B2) can be
established precisely as for Sturm-Liouville systems.

For (B3), we have

B�(x;�) =

✓
I �V�(x;�) 0

0 0

◆
,

from which we see that

X(x;�)⇤B�(x;�)X(x;�) = X(x;�)⇤(I �V�(x;�))X(x;�).

It’s clear from (5.8) that �V�(x;�) is non-negative, and so I �V�(x;�) is positive definite.
From this observation, (B3) follows immediately as in Section 4. We conclude that the
assumptions of Theorem 1.1 hold in this case, and this gives the first part of Theorem 1.3.

For the remainder of Theorem 1.3, it follows from the structure of X(x;�), X̃(x;�), and
B(x;�) that the relevant calculations from Section 4 can be used to show that the target
spaces ˜̀

+(�1) and ˜̀
+(�2) can be replaced with the Dirichlet space `D, and also that the

Maslov index with `D as the target space has monotonic crossing points.
Last, suppose [�1,�2] ⇢ I lies entirely below the essential spectrum of La. Then �1 can

be chosen su�ciently negative so that there are no crossing points along the vertical shelf at
�1. To see this, we again proceed as in Section 4, observing that a point (s,�1) 2 R⇥ I will
correspond with a crossing point if and only if �1 is an eigenvalue of the half-line problem

�(P11(x)�
0
1)

0 +V(x;�)�1 = ��1

X̃+(�1)
⇤
J

✓
�1(s)

P11(s)�0
1(s)

◆
= 0.

Proceeding as in Section 4, the only new aspect is the term
Z s

�1
(V(x;�)�1(x;�),�1(x;�))dx,
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which we bound (in absolute value) by kV(·;�)kL1(�1,s)k�1(·;�)k2L2(�1,s). In the current
setting,

|V(x;�)|  |V11(x)|+ |V12(x)||(�I � V22(x))
�1
||V12(x)

⇤
|,

where | · | denotes any matrix norm. Using the facts that � 2 I, V 2 C(R,Cn⇥n), and the
limit conditions (DA2), we conclude that |V(x;�)| is bounded independently of x and �

(for � < �2). We conclude that if we take �1 su�ciently negative, there will be no crossing
points along the vertical shelf at �1. This completes the proof of Theorem 1.3. ⇤

6 Fourth Order Potential Systems

In this section, we apply Theorem 1.1 to fourth-order potential systems

L� := �
0000 + V (x)� = ��; x 2 R, �(x;�) 2 Cn

. (6.1)

In order to ensure that our general assumptions (A), (B1), (B2), and (B3) hold, we make
the following assumptions on the coe�cient matrix V .

(FP1) We take V 2 C(R,Cn⇥n), with V (x) self-adjoint for all x 2 R.
(FP2) We assume the limits limx!±1 V (x) = Va exist and agree, and

Z +1

�1
(1 + |x|)(V (x)� Va)dx < 1.

Remark 6.1. We emphasize that in this case we take the endstates limx!±1 V (x) = V± to
agree. This corresponds with cases in which the PDE

ut +DF (u) = �uxxxx; (x, t) 2 R⇥ R+, u(x, t) 2 Cn
,

is linearized about a stationary solution ū(x) for which the endstates u± agree. If V� 6= V+,
the analysis becomes substantially more technical, and we leave such cases to future studies.

We take as our domain for L the set H4(R,Cn), noting from [48] that with this choice L
is self-adjoint. As with Sturm-Liouville systems, the essential spectrum of L is determined
by the asymptotic problem

�
0000 + Va� = ��. (6.2)

Precisely, if we look for solutions of the form �(x) = e
ikx

r, then the essential spectrum of
(6.2) is precisely the collection of � 2 R for which �(x) = e

ikx
r solves (6.2) for some k 2 R

and r 2 Cn. Upon substitution of �(x) = e
ikx

r in to (6.2), we obtain

(k4
I + Va)r = �r =) k

4
|r|

2 + (Var, r) = �|r|
2
.

We see from this that if we set

 := inf
r 6=0

(Var, r)

|r|2
, (6.3)

then �ess(L) = [,1). This will allow us to take the interval I in Assumptions (A), (B1),
(B2), and (B3) to be I = (�1,).
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In order to characterize the Lagrangian subspaces `(x;�) and ˜̀(x;�) described in As-
sumption (B1), we will need a lemma analogous to Lemma 4.1. In order to develop such a
lemma, we begin by looking for solutions of (6.2) of the form �(x;�) = e

µ(�)x
r, where in this

case µ is a real-valued function of �, and r is a constant vector r 2 Cn. We see that

(µ4
I + Va � �I)r = 0,

so in particular, the allowable values of � � µ
4 are eigenvalues of the matrix Va. I.e., if we

denote the eigenvalues of Va by {⌫k}
n
k=1, then each allowable value of µ4 must satisfy

�� µ
4 = ⌫k

for some ⌫k 2 �(Va). Since � <  (with  the lowest eigenvalue of Va), we see that ��⌫k < 0
for all k 2 {1, . . . , n}, so that µ

4
> 0. Each such ⌫k will correspond with four values of

µ, and we will denote the full collection of such values {µk}
4n
k=1, indexed so that for each

k 2 {1, 2 . . . , n},

µk(�) = (�
1
p
2
� i

1
p
2
) 4
p
⌫k � �; µn+k(�) = (�

1
p
2
+ i

1
p
2
) 4
p
⌫k � �;

µ2n+k(�) = (
1
p
2
+ i

1
p
2
) 4
p
⌫k � �; µ3n+k(�) = (

1
p
2
� i

1
p
2
) 4
p
⌫k � �.

We note that with this choice of indexing, we have the relations

µ2n+k(�) = �µk(�); µ3n+k(�) = �µn+k(�); 8 k 2 {1, 2, . . . , n}.

For each k 2 {1, 2 . . . , n}, the values µk(�), µn+k(�), µ2n+k(�), and µ3n+k(�) all corre-
spond with the same eigenvector of Va, which we denote rk (independent of �, since Va is
independent of �). For the set {µk(�)}nk=1, we can express this as

(µk(�)
4
I + Va � �I)rk = 0.

Since the matrix Va is self-adjoint, we can choose the collection {rk}
n
k=1 to be orthonormal.

We will set
R = (r1 r2 · · · rn),

for which orthonormality can be expressed as R⇤
R = I.

In order to place (6.1) in our general framework, we will express it as a first-order system.
For this, it will be convenient to make the choices y1 = �, y2 = �

00, y3 = ��
000, and y4 = ��

0,
for which we find

y
0 = A(x;�)y; A(x;�) =

0

BB@

0 0 0 �I

0 0 �I 0
V (x)� �I 0 0 0

0 �I 0 0

1

CCA , (6.4)

or equivalently

Jy
0 = B(x;�)y; B(x;�) =

0

BB@

�I � V (x) 0 0 0
0 I 0 0
0 0 0 �I

0 0 �I 0

1

CCA . (6.5)
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(We refer the reader to [29] for a full discussion of the motivation behind these choices for
the vector y.) The values {µk}

4n
k=1 are precisely the eigenvalues of the matrix

Aa(�) := lim
x!±1

A(x;�),

and it’s straightforward to check that the associated eigenvectors are respectively

rpn+k(�) =

0

BB@

rk

(µpn+k)2rk
�(µpn+k)3rj
�µpn+krk

1

CCA ; p = 0, 1, 2, 3.

The following lemma can be proven in almost precisely the same way as Lemma 2.2 in
[31].

Lemma 6.1. Assume (FP1) and (FP2) hold, and let {µk(�)}4nk=1 and {rk(�)}4nk=1 be as
described just above. Then there exists a family of bases {y

�
k (·;�)}

2n
k=2n+1, � 2 (�1,),

for the spaces of solutions to (6.4) that lie left in R, and a family of bases {y
+
k (·;�)}

2n
k=1,

� 2 (�1,), for the spaces of solutions to (6.4) that lie right in R. Respectively, we can
choose these so that

y
�
2n+k(x;�) = e

�µk(�)x(r2n+k(�) + E
�
2n+k(x;�)), k = 1, 2, . . . , 2n,

y
+
k (x;�) = e

µk(�)x(rk(�) + E
+
k (x;�)), k = 1, 2, . . . , 2n,

where for any fixed interval [�1,�2] ⇢ (�1,), �1 < �2, and for any k 2 {1, 2, . . . , 2n}

E
�
2n+k(x;�) = O((1 + |x|)�1), x ! �1; E

+
k (x;�) = O((1 + |x|)�1), x ! +1,

uniformly for � 2 [�1,�2].
Moreover, there exists a �-dependent family of bases {y

�
k (·;�)}

2n
k=1, � 2 (�1,), for

the spaces of solutions to (6.4) that do not lie left in R, and a �-dependent family of bases
{y

+
k (·;�)}

4n
k=2n+1, � 2 (�1, k), for the spaces of solutions to (6.4) that do not lie right in R.

Respectively, we can choose these so that

y
�
k (x;�) = e

µk(�)x(rk(�) + E
�
k (x;�)), k = 1, 2, . . . , 2n,

y
+
2n+k(x;�) = e

�µk(�)x(r2n+k(�) + E
+
2n+k(x;�)), k = 1, 2, . . . , 2n,

where for any fixed interval [�1,�2] ⇢ (�1,), �1 < �2, and for any k 2 {1, 2, . . . , 2n}

E
�
k (x;�) = O((1 + |x|)�1), x ! �1; E

+
2n+k(x;�) = O((1 + |x|)�1), x ! +1,

uniformly for � 2 [�1,�2].

Precisely as in the previous cases, we require the following two auxiliary lemmas, which
are again adapted from [37].
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Lemma 6.2. Assume (FP1) and (FP2) hold, and for each � 2 (�1,) let {y�
k (·;�)}

4n
k=2n+1

and {y
+
k (·;�)}

2n
k=1 be as described in Lemma 6.1. If `(x;�) and ˜̀(x;�) respectively denote

the Lagrangian subspaces with frames

X(x;�) = (y�
2n+1(x;�) y

�
2n+2(x;�) · · · y

�
4n(x;�)), (6.6)

and
X̃(x;�) = (y+

1 (x;�) y
+
2 (x;�) · · · y

+
2n(x;�)), (6.7)

then `, ˜̀2 C(R⇥ (�1,),⇤(n)).

Lemma 6.3. Assume (FP1) and (FP2) hold, and for some fixed �0 2 (�1,) let the
elements {y

�
k (·;�0)}

4n
k=2n+1 and {y

+
k (·;�0)}

2n
k=1 be as described in Lemma 6.1. Then there

exists a constant r0 > 0 so that the elements {y�
k (·;�0)}

4n
k=2n+1 (resp. {y+

k (·;�0)}
2n
k=1) can be

analytically extended in B(�0, r0) to a basis for the space of solutions of (6.5) that lie left in
R (resp. lie right in R). Moreover, The �-derivatives of these extensions lie left in R (resp.
right in R) and respectively satisfy (@�y

±
k (x;�))

0 = B�(x;�)y
±
k (x;�) + B(x;�)@�y±

k (x;�) for
all � 2 B(�0, r0) and a.e. x 2 R.

We will set
D(�) = diag(µ1(�) µ2(�) . . . µ2n(�)),

and we note that our labeling conventions have been chosen so that

�D(�) = diag(µ2n+1(�) µ2n+2(�) . . . µ4n(�)).

If we replace X(x;�) with X(x;�)eD(�)x and X̃(x;�) with X̃(x;�)e�D(�)x, we readily see
that the asymptotic Lagrangian subspaces `�(�) and ˜̀

+(�) are well defined with respective
frames

X�(�) =

0

BB@

R R

RD(�)2 R(D(�)⇤)2

RD(�)3 R(D(�)⇤)3

RD(�) RD(�)⇤

1

CCA ; X̃+(�) =

0

BB@

R R

RD(�)2 R(D(�)⇤)2

�RD(�)3 �R(D(�)⇤)3

�RD(�) �RD(�)⇤

1

CCA . (6.8)

Likewise, we obtain asymptotic frames associated with solutions that do not lie left (re-
spectively right) in R, and we see from Lemma 6.1 that these will be X

g
�(�) = X̃+(�) and

X̃
g
+(�) = X�(�).
We need to check directly that X�(�), X̃+(�), X

g
�(�), and X̃

g
+(�) are frames for La-

grangian subspaces. The calculation is the same for each case, so we provide details only for
the first. If we compute X�(�)⇤JX�(�), and use the orthogonality relation R

⇤
R = I, we

obtain a diagonal 2n⇥ 2n matrix with upper left n⇥ n submatrix

�D(�)3 + (D(�)⇤)3 � (D(�)⇤)2D(�) +D(�)⇤D(�)2

and lower right n⇥ n submatrix

�(D(�)⇤)3 +D(�)3 �D(�)2D(�)⇤ +D(�)(D(�)⇤)2.
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The entries of D(�)2 are purely imaginary, so that D(�)2 = �(D(�)⇤)2. If follows im-
mediately that the two matrix expressions above are both 0, and we can conclude that
X�(�)⇤JX�(�) = 0.

For the second part of Assumption (B2), we need to verify that the matrixX�(�)⇤JX̃+(�)
is non-singular for all � < . Computing directly as with the calculation of X�(�)⇤JX�(�)
just above, we find that

X�(�)
⇤
JX̃+(�) =

✓
0 4(D(�)⇤)3

4D(�)3 0

◆
,

and since the matrix D(�) is diagonal with non-zero entries (for � < ), we can conclude
that X�(�)⇤JX̃+(�) is non-singular.

In order to verify Assumption (B3) in this case, we begin by observing that

B�(x;�) =

0

BB@

I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA ,

so that
X(x;�)⇤B�(x;�)X(x;�) = X1(x;�)

⇤
X1(x;�),

where the n⇥ 2n matrix X1(x;�) comprises the first n rows of each column of the 4n⇥ 2n
matrix X(x;�). We compute

Z c

�1
X(x;�)⇤B�(x;�)X(x;�)dx =

Z c

�1
X1(x;�)

⇤
X1(x;�)dx.

The columns of X1(x;�) are 2n linearly independent solutions of (6.1), and so this matrix
is positive definite by precisely the same considerations as discussed in Section 4.

We have now verified Assumptions (A), (B1), (B2), and (B3) for this case, and so
we can apply Theorem 1.1 to obtain the first claim in Theorem 1.4. For the second claim
in Theorem 1.4, we will proceed as in the previous sections, using Hörmander’s index to
replace ˜̀

+(�1) and ˜̀
+(�2) with a target frame XT with respect to which the calculations of

the Maslov indices are monotonic. As discussed in [32], a natural frame to work with is

XT =

0

BB@

0 0
0 I

I 0
0 0

1

CCA .

It is straightforward to check that XT is the frame for a Lagrangian subspace of C4n, and we
denote this subspace `T . Recalling our conventions for the components of y (just above (6.4)),
we see that crossing points for this target will consist of pairs (x⇤,�⇤) so that �(x⇤;�⇤) = 0
and �0(x⇤;�⇤) = 0.

Focusing on the case � = �2, we recall from Section 4.1 that the di↵erence

Mas(`(·;�2), ˜̀+(�2); (�1,+1])�Mas(`(·;�2), `T ; (�1,+1])
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depends only on the fixed Lagrangian subspaces `T , ˜̀+(�2), `�(�2) and `+(�2), and corre-
sponds with Hörmander’s index

s(`T , ˜̀+(�2); `�(�2), `+(�2)). (6.9)

In order to evaluate Hörmander’s index, we will again use the interpolation-space approach
of [32], and for this we need to work with a frame for ˜̀

+(�2) for which that analysis holds.
To this end, we introduce the inverse of the matrix

✓
R R

�RD(�2) �RD(�2)⇤

◆
,

which we find by inspection is

M̃(�2) :=

✓
(D(�2)�D(�2)⇤)�1 0

0 (D(�2)�D(�2)⇤)�1

◆✓
�D(�2)⇤R⇤

�R
⇤

D(�2)R⇤
R

⇤

◆
. (6.10)

We will replace the frame X̃+(�2) with the frame X̃+(�2)M̃(�2). For notational purposes,
we can express this new frame as

X̃+(�2)M̃(�2) =

0

BB@

I 0
X̃21 X̃22

X̃31 X̃32

0 I

1

CCA ;

✓
X̃21 X̃22

X̃31 X̃32

◆
=

✓
RD(�2)2 R(D(�2)⇤)2

�RD(�2)3 �R(D(�2)⇤)3

◆
M̃(�2).

In order to apply the development of [32], we need to check two conditions on the frames
XT and X̃+(�2)M̃(�2). First, we need to verify that

X
⇤
TJ(X̃+(�2)M̃(�2)) + (X̃+(�2)M̃(�2))

⇤
JXT = 0. (6.11)

To see this, we compute directly to find

X
⇤
TJ(X̃+(�2)M̃(�2)) =

✓
I 0
0 �I

◆
; (X̃+(�2)M̃(�2))

⇤
JXT =

✓
�I 0
0 I

◆
,

from which (6.11) is immediate. The second condition we need to check is that the ma-
trix X

⇤
TJ(X̃+(�2)M̃(�2)) is non-singular, and this is immediately clear from the previous

calculations. Recalling (4.18), we can now write

s(`T , ˜̀+(�2); `�(�2), `+(�2)) = I(`+(�2);XT , X̃+(�2)M̃(�2))

� I(`�(�2);XT , X̃+(�2)M̃(�2)).
(6.12)

If �2 is not an eigenvalue for (6.1), then `+(�2) is the Lagrangian subspace with frame
X̃

g
+(�2), which, as noted above, is equal to X�(�2). I.e., `+(�2) = `�(�2), and so clearly

Hörmander’s index is 0. We can conclude that if �2 is not an eigenvalue for (6.1), then

Mas(`(·;�2), ˜̀+(�2); (�1,+1]) = Mas(`(·;�2), `T ; (�1,+1]).
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As a transition to the case in which �2 is an eigenvalue of (6.1), we claim that in either
case (i.e., whether or not �2 is an eigenvalue of (6.1)), the crossing points arising in the
calculation of Mas(`(·;�2), `T ; (�1,+1]) all have the same direction (negative). To see
this, we employ again Lemma 4.4. Assumptions (A) and (B1) from that lemma follow
immediately from (FP1) and (FP2), and for (B2) we need to check two things: (1) If
PT denotes projection onto the Lagrangian subspace `T , then the matrix PTB(x;�2)PT is
non-negative for a.e. x 2 R; and (2) if y(x;�2) is any non-trivial solution of (6.5) with
y(x;�2) 2 `T for all x in some interval [a, b], a < b, then

Z b

a

(B(x;�2)y(x;�2), y(x;�2))dx > 0.

For (1), we observe that

v =

0

BB@

v1

v2

v3

v4

1

CCA =) PTv =

0

BB@

0
v2

v3

0

1

CCA ,

and consequently

v
⇤
PTB(x;�1)PTv = (0 v

⇤
2 v

⇤
3 0)

0

BB@

�I � V (x) 0 0 0
0 I 0 0
0 0 0 �I

0 0 �I 0

1

CCA

0

BB@

0
v2

v3

0

1

CCA = |v2|
2
� 0.

For (2), suppose y(x;�2) is any non-trivial solution of (6.5) so that y(x;�2) 2 `T for all x
in some interval [a, b], a < b. Then, in particular, �(x;�2) = 0 for all such x, and since
�(x;�2) and its first two derivatives are absolutely continuous on R we can conclude that
�
(k)(x;�2) = 0, k = 1, 2, 3, for a.e. x 2 (a, b). But then y(x;�2) = 0 for a.e. x 2 (a, b),

contradicting our assumption that y(x;�2) is non-trivial. We conclude that Items (1) and
(2) both hold, and from Lemma 4.4 we can conclude that crossing points arising in the
calculation of Mas(`(·;�2), `T ; (�1,+1]) all have the same sign (negative).

We can now use this monotonicity to argue precisely as in Section 4 that whether or not
�2 is an eigenvalue of (6.1) we must have

Mas(`(·;�2), ˜̀+(�2); (�1,+1]) = Mas(`(·;�2), `T ; (�1,+1)).

The same considerations hold for �1, allowing us to write

N ([�1,�2)) = �Mas(`(·;�2), ˜̀+(�2); (�1,+1]) + Mas(`(·;�1), ˜̀+(�1); (�1,+1])

= �Mas(`(·;�2), `T ; (�1,+1)) + Mas(`(·;�1), `T ; (�1,+1))

=
X

x2R

dim(`(x;�2) \ `T )�
X

x2R

dim(`(x;�1) \ `T )

=
X

x2R

dimker(X(x;�2)
⇤
JXT )�

X

x2R

dimker(X(x;�1)
⇤
JXT ).
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For these latter calculations, if we write

X(x;�) =

0

BB@

X11(x;�) X12(x;�)
X21(x;�) X22(x;�)
X31(x;�) X32(x;�)
X41(x;�) X42(x;�),

1

CCA

then we have

X(x;�1)
⇤
JXT =

✓
X11(x;�) X12(x;�)
�X41(x;�) �X42(x;�)

◆
.

If we recall our specifications for the components of y in terms of �, �0, �00, and �000, we see
that we can write

N ([�1,�2)) =
X

x2R

dimker�(x;�2)�
X

x2R

dimker�(x;�1), (6.13)

where (for i = 1, 2)

�(x;�i) =

✓
�1(x;�i) �2(x;�i) . . . �2n(x;�i)
�
0
1(x;�i) �

0
2(x;�i) . . . �

0
2n(x;�i)

◆
,

with {�j(x;�1)}2nj=1 comprising a collection of 2n linearly independent solutions of (6.1) that
lie left in R.

Last, we check that we can take �1 su�ciently negative so that there are no crossing
points along the left shelf. For this, we begin by observing that (s,�1) 2 R ⇥ (�1,) will
be a crossing point for `(·;�1) and ˜̀

+(�1) if and only if �1 is an eigenvalue for

�
0000 + V (x)� = ��;

X̃+(�1)
⇤
J

0

BB@

�(s)
�
00(s)

��
000(s)

��
0(s)

1

CCA = 0.

Suppose � is an eigenvalue for this system, and let � denote an associated eigenfunction.
If we take an L

2((�1, s),Cn) inner product of the system with �, we obtain the integral
relation Z s

�1
(�0000

,�)dx+

Z s

�1
(V �,�)dx = �k�k

2
L2((�1,s),Cn). (6.14)

For the first integral, we integrate by parts twice to obtain the relation
Z s

�1
(�0000

,�)dx = k�
00
k
2
L2((�1,s),Cn) +

⇣✓
�(s)

��0(s)

◆
,

✓
�
000(s)

�00(s)

◆⌘
.

Recalling (6.8), we can express the boundary condition as

✓
R

⇤ (D(�)⇤)2R⇤
�(D(�)⇤)3R⇤

�D(�)⇤R⇤

R
⇤

D(�)2R⇤
�D(�)3R⇤

�D(�)R⇤

◆
0

BB@

�
000(s)
�
0(s)
�(s)
�
00(s)

1

CCA = 0,
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or equivalently
✓
R

⇤
�D(�)⇤R⇤

R
⇤

�D(�)R⇤

◆✓
�
000(s)

�00(s)

◆
=

✓
(D(�)⇤)3R⇤ (D(�)⇤)2R⇤

D(�)3R⇤
D(�)2R⇤

◆✓
�(s)

��0(s)

◆
.

Recalling (6.10), we see that
✓
�
000(s)

�00(s)

◆
= M̃(�)⇤

✓
(D(�)⇤)3R⇤ (D(�)⇤)2R⇤

D(�)3R⇤
D(�)2R⇤

◆✓
�(s)

��0(s)

◆
,

where we can write

M̃(�)⇤
✓
(D(�)⇤)3R⇤ (D(�)⇤)2R⇤

D(�)3R⇤
D(�)2R⇤

◆
=

✓
R 0
0 R

◆✓
�D(�) D(�)⇤

�I I

◆

⇥

✓
(D(�)⇤ �D(�))�1 0

0 (D(�)⇤ �D(�))�1

◆✓
(D(�)⇤)3 (D(�)⇤)2

D(�)3 D(�)2

◆✓
R

⇤ 0
0 R

⇤

◆
.

(6.15)
This matrix is clearly similar to the product of the middle three matrices, and so has the
same eigenvalues as that matrix product. In order to compute these eigenvalues, we set

⇤(�) := diag( 4
p
⌫1 � �

4
p
⌫2 � � . . .

4
p
⌫n � �),

so that

D(�) = (�
1
p
2
� i

1
p
2
)⇤(�); D(�)⇤ �D(�) = (i

p

2)⇤(�);

D(�)2 = i⇤(�)2; D(�)3 = (
1
p
2
� i

1
p
2
)⇤(�),

with corresponding adjoints. These relations allow us to express the product of the middle
three matrices in (6.15) as

✓
( 1p

2
+ i

1p
2
)⇤ (� 1p

2
+ i

1p
2
)⇤

�I I

◆ 1
i
p
2
⇤�1 0

0 1
i
p
2
⇤�1

! 
( 1p

2
+ i

1p
2
)⇤3

�i⇤2

( 1p
2
� i

1p
2
)⇤3

i⇤2

!

=

✓p
2⇤3

�⇤2

�⇤2
p
2⇤

◆
.

We observe that this matrix is self-adjoint, and it follows that the full matrix in (6.15) is
self-adjoint. In addition, we can compute the eigenvalues of this matrix by computing the
roots of the characteristic equation

det

✓p
2⇤3

� �I �⇤2

�⇤2
p
2⇤� �I

◆
= det((

p

2⇤3
� �I)(

p

2⇤� �I)� ⇤4)

= det(�2
I �

p

2(⇤+ ⇤3)� + ⇤4).

Here, since ⇤ is a diagonal matrix, this determinant is a product

nY

j=1

(�2
�

p

2( 4
p
⌫j � �+ ( 4

p
⌫j � �)3)� + ⌫j � �),
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which clearly can have no roots for �  0. We conclude that the matrix

M̃(�)⇤
✓
(D(�)⇤)3R⇤ (D(�)⇤)2R⇤

D(�)3R⇤
D(�)2R⇤

◆

is positive definite, and so

⇣✓
�(s)

��0(s)

◆
,

✓
�
000(s)

�00(s)

◆⌘
=
⇣✓

�(s)

��0(s)

◆
, M̃(�)⇤

✓
(D(�)⇤)3R⇤ (D(�)⇤)2R⇤

D(�)3R⇤
D(�)2R⇤

◆✓
�(s)

��0(s)

◆⌘
� 0

for all s 2 R. Returning to (6.14), we see that

�k�k
2
L2((�1,s),Cn) �

Z s

�1
(V �,�)dx � �kV kL1(R,Cn⇥n)k�k

2
L2((�1,s),Cn),

and consequently
� � �kV kL1(R,Cn⇥n).

In this way, we see that if we take �1 < �kV kL1(R,Cn⇥n) then there will be no crossing points
along the vertical shelf at � = �1. This gives the final claim in Theorem 1.4. ⇤
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