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Abstract

In recent work, Baird et al. have generalized the definition of the Maslov index
to paths of Grassmannian subspaces that are not necessarily contained in the La-
grangian Grassmannian [T. J. Baird, P. Cornwell, G. Cox, C. Jones, and R. Marangell,
Generalized Maslov indices for non-Hamiltonian systems, SIAM J. Math. Anal. 54
(2022) 1623-1668]. Such an extension opens up the possibility of applications to non-
Hamiltonian systems of ODE, and Baird and his collaborators have taken advantage
of this observation to establish oscillation-type results for obtaining lower bounds on
eigenvalue counts in this generalized setting. In the current analysis, the author shows
that renormalized oscillation theory, appropriately defined in this generalized setting,
can be applied in a natural way, and that it has the advantage, as in the traditional
setting of linear Hamiltonian systems, of ensuring monotonicity of crossing points as
the independent variable increases for a wide range of system/boundary-condition com-
binations. This seems to mark the first effort to extend the renormalized oscillation
approach to the non-Hamiltonian setting.

1 Introduction

For values of λ in a real interval I ⊂ R, we consider first-order ODE systems

dy

dx
= A(x;λ)y, x ∈ (0, 1), y(x;λ) ∈ Rn, n ∈ {2, 3, . . . }, (1.1)

subject to boundary conditions

y(0) ∈ p, y(1) ∈ q , (1.2)

where for some m ∈ {1, 2, ..., n − 1} p denotes a subspace of Rn with dimension m and q
denotes a subspace of Rn with dimension n−m. Throughout the analysis, we will assume that
for some fixed values λ1, λ2 ∈ I, λ1 < λ2, A ∈ C([0, 1] × [λ1, λ2],Rn×n), and for convenient
reference we will denote this assumption (A). In addition, for our main result we will assume
the following, in which we denote the entries of A(x;λ) by {aij(x;λ)}ni,j=1 :
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(B) For each i ∈ {1, 2, . . . , n}, the entry aii(x;λ) is independent of λ, and for all i, j ∈
{1, 2, . . . , n}, i 6= j, and all λ ∈ [λ1, λ2], the difference aij(x;λ)− aij(x;λ2) is independent of
x.

Our analysis is primarily motivated by the prospect of applying the generalized Maslov
index theory of [2] to systems (1.1) arising when an evolutionary PDE such as a viscous
conservation law is linearized about a traveling wave solution. In particular, suppose ū(x−st)
denotes a viscous profile for the system

ut + f(u)x = Buxx, u(x, t) ∈ Rl, l ∈ N, (1.3)

where for this motivating example we take B to be a constant viscosity matrix. In a moving
coordinate frame, we can view ū(x) as a stationary solution for the system

ut − sux + f(u)x = Buxx,

and if we linearize about ū(x) with u = ū + v (and drop off nonlinear terms), we arrive at
the linear system

vt + ((Df(ū)− sI)v)x = Bvxx,

with associated eigenvalue problem

−Bφ′′ + ((Df(ū)− sI)φ)x = λφ, (1.4)

where Df(ū(x)) denotes the usual Jacobian matrix for f evaluated at the wave. Under quite
general conditions, the stability of ū(x) is determined by the eigenvalues of (1.4) (see, e.g.,
[25]), motivating our interest in eigenvalue problems of the general form

−Bφ′′ +W (x)φ′ + V (x)φ = λφ. (1.5)

In order to place this system in the setting of (1.1), we write y =
(
y1
y2

)
with y1 = φ and

y2 = Bφ′, giving (1.1) with n = 2l and

A(x;λ) =

(
0 B−1

V (x)− λI W (x)B−1.

)
(1.6)

In this case, we see that Assumption (A) holds as long as B is invertible and W,V ∈
C([0, 1],Rl×l), while Assumption (B) is immediate. An additional family of motivating
examples is discussed in Section 6.1.

In this general setting, we will say that λ is an eigenvalue of (1.1)-(1.2) provided there
exists a solution y(·;λ) ∈ C1([0, 1],Rn) of (1.1)-(1.2), and as usual we will refer to the di-
mension of the space of all such solutions as the geometric multiplicity of λ. Our main goal
is to show that a notion of renormalized oscillation theory (described below) can be used to
obtain a lower bound on the number of eigenvalues N#([λ1, λ2]) (counted without multiplic-
ity) that (1.1)-(1.2) has on an interval [λ1, λ2]. Under our relatively weak assumptions on
the dependence of A(x;λ) on λ, it’s possible that the eigenvalues of (1.1), as we’ve defined
them, won’t comprise a discrete set on the interval [λ1, λ2]. In this case, our convention
will be to take N#([λ1, λ2]) = +∞, in which case our lower bounds on N#([λ1, λ2]) will be
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taken to hold trivially. For a more nuanced perspective, developed in the setting of linear
Hamiltonian systems, we refer the reader to [10] and references therein.

Our primary tool for this analysis will be a generalization of the Maslov index introduced
in [2], and for the purposes of this introduction we will start with a brief, intuitive discussion
of this object (see Section 2 for additional details and reference [2] for a full development).
Precisely, we focus on the hyperplane setting discussed in Section 3.2 of [2].

To begin, for any n ∈ N we denote by Grn(R2n) the Grassmannian comprising the n-
dimensional subspaces of R2n, and we let g denote an element of Grn(R2n). The space g can
be spanned by a choice of n linearly independent vectors in R2n, and we will generally find it
convenient to collect these n vectors as the columns of a 2n×n matrix G, which we will refer
to as a frame for g . We specify a metric on Grn(R2n) in terms of appropriate orthogonal
projections. Precisely, let Pi denote the orthogonal projection matrix onto gi ∈ Grn(R2n)
for i = 1, 2. I.e., if Gi denotes a frame for gi, then Pi = Gi(G

∗
iGi)

−1G∗i . We take our metric
d on Grn(R2n) to be defined by

d(g1, g2) := ‖P1 − P2‖,

where ‖ ·‖ can denote any matrix norm. We will say that a path of Grassmannian subspaces
g : [a, b]→ Λ(n) is continuous provided it is continuous under the metric d.

Given a continuous path of Grassmannian subspaces g : [a, b] → Grn(R2n) and a fixed
target space q ∈ Grn(R2n), the generalized Maslov index of [2] (under some additional condi-
tions discussed below) provides a means of counting intersections between the the subspaces
g(t) and q as t increases from a to b, counted with direction, but not with multiplicity. (By
multiplicity, we mean the dimension of the intersection; direction will be discussed in detail
in Section 2). In order to understand how this works, we first recall the notion of a kernel
for a skew-symmetric n-linear map ω.

Definition 1.1. For a skew-symmetric n-linear map ω : R2n×· · ·×R2n → R (R2n appearing
n times), we define the kernel, kerω, to be the subset of R2n,

kerω := {v ∈ R2n : ω(v, v1, . . . , vn−1) = 0, ∀ v1, v2, . . . , vn−1 ∈ R2n}.

Given a target space q ∈ Grn(R2n), we first identify a skew-symmetric n-linear map ω1

so that q = kerω1. For example, if we let {qi}ni=1 denote a basis for q , then we can set

ω1(g1, . . . , gn) := det(g1 . . . gn q1 . . . qn).

Next, we let ω2 denote any skew-symmetric n-linear map for which kerω2 6= q , and we set

Hωi := {g ∈ Grn(R2n) : g ∩ kerωi 6= {0}}, i = 1, 2.

Then according to Definition 1.3 in [2], the set

M := Grn(R2n)\(Hω1 ∩Hω2) (1.7)

is a hyperplane Maslov-Arnold space.
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Definition 1.2. We say that the flow t 7→ g(t) is invariant on [a, b] with respect to ω1 and
ω2 provided the values

ω1(g1(t), . . . , gn(t)) and ω2(g1(t), . . . , gn(t))

do not simultaneously vanish at any t ∈ [a, b] (i.e., g(t) ∈ M for all t ∈ [a, b]). For
brevity, we say that the triple (g(·), ω1, ω2) is invariant on [a, b]. Likewise, we say that a map
g : [a, b]× [c, d]→ Grn(R2n) is invariant on [a, b]× [c, d] with respect to ω1 and ω2 provided
the values

ω1(g1(s, t), . . . , gn(s, t)) and ω2(g1(s, t), . . . , gn(s, t)) (1.8)

do not simultaneously vanish at any (s, t) ∈ [a, b] × [c, d] (i.e., g(s, t) ∈ M for all (s, t) ∈
[a, b]× [c, d]). For brevity, we say that the triple (g(·, ·), ω1, ω2) is invariant on [a, b]× [c, d].
Finally, we will say that a map g : [a, b] × [c, d] → Grn(R2n) is invariant on the boundary
of [a, b]× [c, d] with respect to ω1 and ω2 provided the values in (1.8) do not simultaneously
vanish at any point (s, t) on the boundary of [a, b]× [c, d].

Remark 1.1. The terminology “invariant” is taken from [2], where it arises naturally as
the condition that a path in P (

∧n(R2n)) (i.e., the projective space of all one-dimensional
subspaces of the wedge space

∧n(R2n)) associated to the flow t 7→ g(t) lies entirely in the
Maslov-Arnold space introduced in [2]. While this notion of the Maslov-Arnold space is
critical to the development of [2], we will only use it indirectly here, and so will omit a
precise definition.

In the event that the flow t 7→ g(t) is invariant on [a, b] with respect to ω1 and ω2, the
generalized Maslov index of [2] can be computed as the winding number in projective space
RP 1 of the map

t 7→ [ω1(g1(t), . . . , gn(t)) : ω2(g1(t), . . . , gn(t))] (1.9)

through [0 : 1] (with appropriate conventions taken for counting arrivals and departures; see
Section 2 below). Following the convention of [2], we denote the generalized Maslov index as
Ind(· · · ), though our specific notation is adapted from [17, 18], leading to Ind(g(·), q ; [a, b]);
i.e., Ind(g(·), q ; [a, b]) is a directed count of the number of times the subspace g(t) has non-
trivial intersection with q , counted without multiplicity, as t increases from a to b.

For many applications, we would like to compute the generalized Maslov index associated
with a pair of evolving spaces g , h : [a, b] → Grn(R2n), or more generally (as in the current
setting) a pair of evolving spaces g : [a, b] → Grm(Rn) and h : [a, b] → Grn−m(Rn), where
m ∈ {1, 2, . . . , n − 1}. Following the approach of Section 3.5 in [11], we can proceed by
specifying an evolving subspace f : [a, b]→ Grn(R2n) with frame

F(t) :=

(
G(t) 0n×(n−m)

0n×m H(t)

)
,

and taking as the (fixed) target space the subspace ∆̃ ∈ Grn(R2n) with frame ∆̃ =
(−In
In

)
.

(Here, G(t) and H(t) are respectively frames for g(t) and h(t).) We then specify the gener-
alized Maslov index for the pair g , h : [a, b]→ Grn(R2n) to be

Ind(g(·), h(·); [a, b]) := Ind(f (·), ∆̃; [a, b]), (1.10)

where the right-hand side is computed precisely as specified above (i.e., as in [2]).
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Remark 1.2. Here, and throughout, we will be as consistent as possible with the following
notational conventions: we will express Grassmannian subspaces with script letters such as
g , and we will denote a choice of basis elements for g by {gi}mi=1. We will also collect these
basis elements into an associated frame

G = (g1, g2, . . . , gm).

Returning to (1.1), we begin by letting G(x;λ) ∈ Rn×m denote a matrix solution of the
system

G′ = A(x;λ)G, G(0;λ) = P, (1.11)

where P denotes any frame for the subspace p from (1.2), and likewise we let H(x;λ) ∈
Rn×(n−m) denote a matrix solution of the system

H′ = A(x;λ)H, H(1;λ) = Q, (1.12)

where Q denotes any frame for the subspace q from (1.2), and we emphasize that H(x;λ) is
initialized at x = 1. Correspondingly, we let g(x;λ) denote the m-dimensional subspace of
Rn with frame G(x;λ), and we let h(x;λ) denote the (n −m)-dimensional subspace of Rn

with frame H(x;λ).
Next, we fix any interval [λ1, λ2] ⊂ I, λ1 < λ2, and for any λ ∈ [λ1, λ2], we set

F(x;λ) :=

(
G(x;λ) 0n×(n−m)

0n×m H(x;λ2)

)
∈ R2n×n, (1.13)

and correspondingly let f (x;λ) denote the n-dimensional subspace of R2n with frame F(x;λ).
(We note that in the specification of F(x;λ), the frame H is evaluated at (x, λ2).)

In order to compute the generalized Maslov index specified in (1.10), we introduce the
skew-symmetric n-linear map

ω1(f1, f2, . . . , fn) := det(F ∆̃), (1.14)

where {fj}nj=1 ⊂ R2n comprise the columns of the 2n× n matrix F. With this specification,

it’s clear that kerω1 = ∆̃. In order to use the development of [2], we additionally need to
introduce any skew-symmetric n-linear map ω2 for which kerω2 6= ∆̃. In principle, we have
considerable freedom in the selection of ω2, but in practice we would like to choose ω2 in a
specific way so that all crossing points for the generalized Maslov index will have the same
direction. Toward this end, we specify ω2 in the following way.

Specification of ω2. Recalling that we denote by {aij(x;λ)}ni,j=1 the components of the

matrix A(x;λ) from (1.1), we let Ã(λ) denote the real-valued n× n matrix with entries

ãij(λ) :=

{
0 i = j

aij(0;λ) i 6= j
,

and set

Ã(λ1, λ2) :=

(
Ã(λ1) 0

0 Ã(λ2)

)
. (1.15)
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Then we define the skew-symmetric n-linear map

ω2(f1, . . . , fn) :=
n∑
k=1

ω1(f1, . . . , Ã(λ1, λ2)fk, . . . , fn). (1.16)

Given ω1 as specified in (1.14), and ω2 such that kerω2 6= ∆̃ (not necessarily as in
(1.16)), we will be particularly interested in computing the generalized Maslov index along
the boundary of [0, 1] × [λ1, λ2] (see Figure 4.1, below, in which we follow a long-standing
convention of taking the axis associated with the spectral parameter to be horizontal). Fol-
lowing the notation of [2], we will denote this quantity m, and precisely it follows from path
additivity of the generalized Maslov index (as discussed in Section 2) that

m = Ind(g(0; ·), h(0;λ2); [λ1, λ2]) + Ind(g(·;λ2), h(·;λ2); [0, 1])

− Ind(g(1; ·), h(x;λ2); [λ1, λ2])− Ind(g(·;λ1), h(·;λ2); [0, 1]).

In the event that the triple (f (·; ·), ω1, ω2) is invariant on the entirety of [0, 1] × [λ1, λ2] it
follows by a homotopy argument that m = 0, but this need not be the case in general.

We are now in a position to state our main theorem.

Theorem 1.1. For (1.1)-(1.2), suppose Assumptions (A) hold for some interval [λ1, λ2] ⊂ I,
λ1 < λ2, and for each (x, λ) ∈ [0, 1]× [λ1, λ2], let g(x;λ), h(x;λ), and f (x;λ) be linear spaces
with frames respectively specified in (1.11), (1.12), and (1.13). In addition, let ω1 denote the
skew-symmetric n-linear map specified in (1.14). If ω2 is any skew-symmetric n-linear map
for which the triple (f (·; ·), ω1, ω2) is invariant on the boundary of [0, 1]× [λ1, λ2], then

N#([λ1, λ2]) ≥ | Ind(g(·;λ1), h(·;λ2); [0, 1]) + m|. (1.17)

If we additionally assume (B), and let ω2 be the particular skew-symmetric n-linear map
specified in (1.16), then

Ind(g(·;λ1), h(·;λ2); [0, 1]) = #{x ∈ (0, 1] : g(x;λ1) ∩ h(x;λ2) 6= {0}},

where the right-hand side of this final relation indicates a direct count of the (necessarily)
discrete number of values x ∈ (0, 1] at which the subspaces g(x;λ1) and h(x;λ2) intersect
non-trivially.

Remark 1.3. We note that in this statement we don’t require that kerω2 be different from
kerω1. This is simply because if kerω2 = kerω1, then the triple (f (·; ·), ω1, ω2) is invariant
on the boundary of [0, 1]× [λ1, λ2] if and only if ω1(f1(x;λ), · · · , fn(x;λ)) is non-zero for all
(x, λ) ∈ ∂([0, 1] × [λ1, λ2]). But in this case, both sides of (1.17) must be zero, and so the
statement holds trivially.

In order to understand why x = 1 is included in the final count in Theorem 1.1 while
x = 0 is not, we note that the final assertion of the theorem is established by showing that
the crossing points in the calculation of Ind(g(·;λ1), h(·;λ2); [0, 1]) are monotonically positive.
By convention, a positive crossing at the left endpoint of an interval does not contribute to
the count, while a positive crossing at the right endpoint of an interval does. This notion of
direction is discussed in Section 2.
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In the remainder of this introduction, we briefly discuss the development of renormalized
oscillation theory, and set out a plan for the paper. For the former, the notion of renormalized
oscillation theory was introduced in [12] in the context of single Sturm-Liouville equations,
and subsequently was developed in [23, 24] for Jacobi operators and Dirac operators. More
recently, Gesztesy and Zinchenko have extended these early results to the setting of singular
Hamiltonian systems in the limit-point case [13], and the author and Alim Sukhtayev have
shown how the Maslov index can be used to further extend such results to the full range
of cases from limit-point to limit-circle [17, 18]. The primary motivation for the original
development of [12] seems to have been the prospect of counting eigenvalues in gaps between
bands of essential spectrum (such counts being problematic in the (non-renormalized) os-
cillation case). (See [22] for an expository discussion.) The analyses described above are
all in the context of Hamiltonian systems for which the eigenvalues under investigation are
discrete, possibly in a gap of essential spectrum. Renormalized oscillation theory has also
been developed in some cases for which nonlinear dependence on the spectral parameter
λ leads to a generalized notion of eigenvalues introduced in [3] as finite eigenvalues. For
the development in this setting (restricted to the Hamiltonian case), see [10]. Finally, we
mention that the novel aspect of the current analysis is that it seems to be the first effort to
extend renormalized oscillation results to the non-Hamiltonian setting.

Plan of the paper. In Section 2, we discuss the generalized Maslov index of [2], with an
emphasis on properties that will be necessary for our analysis, and in Section 3 we discuss
the application of renormalized oscillation theory in the current setting. In Section 4 we
prove Theorem 1.1, and in Section 5 we develop a framework for checking the invariance
assumption of Theorem 1.1 and computing the value m in particular cases. In Section 6, we
consider two families of examples, along with specific implementations for three particular
equations.

2 Properties of the Generalized Maslov Index

In this section, we emphasize properties of the generalized Maslov index that will have a
role in our analysis, leaving a full development of the theory to [2]. In particular, a proper
discussion of this object requires some items from algebraic topology that are (1) already
covered clearly and concisely in [2]; and (2) not critical to the development of our results.
Aside from an occasional clarifying comment for interested readers, these items are omitted
from the current discussion.

As in the introduction, we let g : [a, b] → Grn(R2n) denote a continuous path of Grass-
mannian subspaces, and we let q ∈ Grn(R2n) denote a fixed target subspace. We let ω1

denote a skew-symmetric n-linear map such that kerω1 = q , and we let ω2 denote a second
skew-symmetric n-linear map so that the triple (g(·), ω1, ω2) satisfies the invariance property
described in Definition 1.2 on the interval [a, b] (i.e., g(t) ∈ M for all t ∈ [a, b], where M is
as in (1.7)). (Here, we note that q is not needed in the triple notation, since q is determined
by ω1.) Recalling that our notational convention is to fix a choice of frames G(t) for g(t)
with columns {gi(t)}ni=1, we set

ω̃i(t) := ωi(g1(t), g2(t), . . . , gn(t)), i = 1, 2. (2.1)
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I.e., ωi will consistently denote a skew-symmetric n-linear map, and ω̃i will consistently
denote the evaluation of ωi along a particular path mapping [a, b] to Grn(R2n).

The generalized Maslov index Ind(g(·), q ; [a, b]) is then computed as described in (1.9),
with appropriate conventions for counting arrivals and departures to and from the point
in projective space [0 : 1] (described below). In practice, we proceed by tracking a point
p(t) ∈ S1, which can be precisely specified as

p(t) =


(

ω̃2(t)√
ω̃1(t)2+ω̃2(t)2

, ω̃1(t)√
ω̃1(t)2+ω̃2(t)2

)
ω̃2(t) ≤ 0

−
(

ω̃2(t)√
ω̃1(t)2+ω̃2(t)2

, ω̃1(t)√
ω̃1(t)2+ω̃2(t)2

)
ω̃2(t) > 0.

(2.2)

In the usual way, we think of mapping RP 1 to the left half of the unit circle and then closing
to S1 by equating the points (0, 1) and (0,−1). It’s clear that t∗ is a crossing point of the flow
if and only if p(t∗) = (−1, 0), so the generalized Maslov index is computed as a count of the
number of times the point p(t) crosses (−1, 0). We take crossings in the clockwise direction
to be negative and crossings in the counterclockwise direction to be positive. Regarding
behavior at the endpoints, if p(t) rotates away from (−1, 0) in the clockwise direction as t
increases from 0, then the generalized Maslov index decrements by 1, while if p(t) rotates
away from (−1, 0) in the counterclockwise direction as t increases from 0, then the generalized
Maslov index does not change. Likewise, if p(t) rotates into (−1, 0) in the counterclockwise
direction as t increases to 1, then the generalized Maslov index increments by 1, while if
p(t) rotates into (−1, 0) in the clockwise direction as t increases to 1, then the generalized
Maslov index does not change. Finally, it’s possible that p(t) will arrive at (−1, 0) for t = t∗
and remain at (−1, 0) as t traverses an interval. In these cases, the generalized Maslov index
only increments/decrements upon arrival or departure, and the increments/decrements are
determined as for the endpoints (departures determined as with t = 0, arrivals determined
as with t = 1).

Remark 2.1. In [2], the authors view S1 as a circle in C, and make the specification

p(t) = (
ω̃1(t)− iω̃2(t)

|ω̃1(t)− iω̃2(t)|
)2.

This choice leads to precisely the same dynamics as those described above, and in particular
to the same values of the generalized Maslov index.

We emphasize, as in the introduction, that in contrast with the Maslov index in the setting
of Lagrangian flow, the generalized Maslov index does not keep track of the dimensions of
the intersections.

To set some notation, we let ω1 and ω2 be as above, and denote by Pω1,ω2([a, b]) the
collection of all continuous paths g : [a, b] → Grn(R2n) that are invariant with respect to
the skew-symmetric n-linear maps ω1 and ω2. The generalized Maslov index of [2] has the
following properties (see Proposition 3.8 in [2]).

(P1) (Path Additivity) If g ∈ Pω1,ω2([a, b]) and q = kerω1, then for any ã, b̃, c̃ ∈ [a, b], with

ã < b̃ < c̃, we have

Ind(g(·), q ; [ã, c̃]) = Ind(g(·), q ; [ã, b̃]) + Ind(g(·), q ; [b̃, c̃]).
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(P2) (Homotopy Invariance) If g , h ∈ Pω1,ω2([a, b]) are homotopic in M with g(a) = h(a)
and g(b) = h(b) (i.e., if g , h are homotopic with fixed endpoints) then

Ind(g(·), q ; [a, b]) = Ind(h(·), q ; [a, b]).

2.1 Direction of Rotation

One of the advantages of the renormalized oscillation approach in the linear Hamiltonian
setting is that it often leads to monotoncity in the calculation of the Maslov index as the
independent variable varies [17, 18]. In order to show that the same advantage can be
obtained in the non-Hamiltonian setting, we employ the approach of Section 4 in [2] to
analyze the direction of flow. For this, our starting point is the observation that for p(t)
near (−1, 0), the location of p(t) can be tracked via the angle

θ(t) = π + tan−1 ω̃1(t)

ω̃2(t)
, (2.3)

with π arising from our convention of placing crossings at (−1, 0). By the monotonicity of
tan−1 x, the direction of θ(t) near a value t = t∗ for which θ(t∗) = π is determined by the

derivative of the ratio r(t) = ω̃1(t)
ω̃2(t)

, for which r(t∗) = 0. Precisely, if r′(t∗) =
ω̃′1(t∗)

ω̃2(t∗)
< 0 then

the rotation of p(t) is clockwise at t∗, while if r′(t∗) > 0 then the rotation is counterclockwise.

2.2 Invariance and the Computation of m

Given a triple (g(·), ω1, ω2), we would like to be able to check the invariance property of
Definition 1.2 on a given interval [a, b]. One strategy for this, employed in [2], is to show
that the quantity ω̃1(t)2 + ω̃2(t)2 is non-zero at t = a and to verify by computing its rate of
change that it cannot become 0 at any t ∈ [a, b]. More precisely, the authors of [2] introduce
scaled variables

ψ1(t) :=
ω̃1(t)

d(t)
; and ψ1(t) :=

ω̃2(t)

d(t)
, (2.4)

where
d(t) = |g1(t) ∧ g2(t) ∧ · · · ∧ gn(t)| =

√
detG(t), (2.5)

with G(t) denoting the Gram matrix; i.e., the matrix with entries (G(t))ij = (gi(t), gj(t)).
(Here, (·, ·) denotes the usual Euclidean inner product.) If we then set

ρ(t) =
1

2
(ψ1(t)2 + ψ2(t)2), (2.6)

we can proceed similarly as described above, checking that ρ(0) > 0 and verifying that ρ′(t)
is sufficiently bounded below so that in fact ρ(t) is bounded away from 0 for all t ∈ [a, b].
This calculation clearly depends critically on the choices of ω̃1(t) and ω̃2(t). Details in the
setting of our analysis of (1.1) are carried out in Section 5.

Remark 2.2. An advantage of the variables ψ1(t) and ψ2(t) from (2.4) is that they are
invariant (up to a possible change of sign) under coordinate transformations. Precisely, if
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ω denotes any skew-symmetric n-linear map, then the evaluation of ω on the columns of G
(i.e., on the basis elements {gi}ni=1 for g) and the evaluation of ω on the columns of GM for
some invertible n× n matrix M (i.e., on a new basis for g) are related by

ω((GM)1, (GM)2, . . . , (GM)2) = (detM)ω(g1, g2, . . . , gn).

Likewise,
|(GM)1 ∧ (GM)2 ∧ · · · ∧ (GM)n| = | detM ||g1 ∧ g2 ∧ · · · ∧ gn|.

Combining these observations, we see that if we set

Ψ(g1, g2, . . . , gn) :=
ω(g1, g2, . . . , gn)

|g1 ∧ g2 ∧ · · · ∧ gn|
,

then

Ψ((GM)1, (GM)2, . . . , (GM)2) =
detM

| detM |
Ψ(g1, g2, . . . , gn).

More generally, suppose g : [a, b] × [c, d] → Grn(R2n) is a continuous map, and for
some q ∈ Grn(R2n) let ω1 be as in (1.14), with also ω2 denoting any skew-symmetric n-
linear map with kerω2 6= q . In the current generalized setting, it may be the case that the
triple (g(·, ·), ω1, ω2) is invariant on the boundary of [a, b] × [c, d], but not on the entirety
of its interior. In this case, the generalized Maslov index computed along the boundary of
[a, b]× [c, d] is well-defined, and as in the introduction we denote it m.

In [2], the authors introduce a method that in some cases can be used to compute m from
local information in the interior of [a, b]×[c, d]. For rigorous statements, the interested reader
is referred to Lemmas 4.9 and 4.10 in [2], but the main ideas are as follows. Suppose the
triple (g(·, ·), ω1, ω2) loses invariance at a point (s∗, t∗) in the interior of [a, b]× [c, d], so that
in particular we have both ω̃1(s∗, t∗) = 0 and ω̃2(s∗, t∗) = 0. In addition, suppose the point
(s∗, t∗) lies on a spectral curve that can be expressed near (s∗, t∗) as a function s(t): i.e., s(t)
satisfies ω̃1(s(t), t) = 0 for t sufficiently close to t∗, and also s(t∗) = s∗. Upon differentiating
the relation ω̃1(s(t), t) = 0 with respect to t (in cases in which s(t) is sufficiently smooth to
allow it), we find

∂ω̃1

∂s
(s∗, t∗)s

′(t∗) +
∂ω̃1

∂t
(s∗, t∗) = 0.

In certain cases, arising both in [2] and the current analysis, we have additionally that
∂ω̃1

∂t
(s∗, t∗) = 0, and in such cases points (s∗, t∗) at which invariance is lost can be characterized

by the condition that either ∂ω̃1

∂s
(s∗, t∗) = 0 or s′(t∗) = 0 (or both). We will see an illustration

of this dynamic in Section 6.2.2.
In order to understand the second observation from [2] regarding points (s∗, t∗) at which

invariance is lost, we observe that in some cases, again arising both in [2] and the current
analysis, the flow associated with the generalized Maslov index will be monotonic on hori-
zontal lines (as in the case of [2]) or vertical lines (as in the current setting). (This difference
between [2] and the current analysis is entirely artificial, depending only on different choices
of orientation of the axes.) For specificity of this discussion, we will focus on the case in
which the flow is monotonically positive on vertical axes as t increases. In this setting,
suppose (s∗, t∗) is a point in the interior of [a, b] × [c, d] at which invariance fails. Then by
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a homotopy argument we can determine the contribution associated with the point to the
value m by considering a sufficiently small box enclosing (s∗, t∗) and not enclosing any other
points at which invariance is lost (under the assumption that the points at which invariance
is lost form a discrete set). Moreover, we can think of selecting boxes sufficiently narrow
in the s-direction so that any spectral curves passing through (s∗, t∗) necessarily enter and
exit the small box through its vertical sides (see Figure 2.1). In this way, the contribution
associated with (s∗, t∗) to m is entirely determined by the manner in which the spectral
curves passing through (s∗, t∗) cross the vertical shelves of this box. Precisely, the analogue
to Lemma 2.10 in [2] in our setting can be loosely stated as follows: if we let i− denote the
number of spectral curves that strictly increase as t increases to t∗ (i.e., s(t) strictly increases
as t increases to t∗), and we let i+ denote the number of spectral curves that strictly increase
as t increases from t∗, and in addition we assume that all curves are strictly monotonic as t
increases to/from t∗, then the contribution to m associated with (s∗, t∗) will be 2(i+ − i−).

s

t
(s∗, t∗)

i− = 1, i+ = 0

Ind = −2

(s∗, t∗)

i− = 0, i+ = 1

Ind = 2

(s∗, t∗)

i− = 1, i+ = 1

Ind = 0

Figure 2.1: Local contributions to m.

3 Oscillation Theory and Renormalized Oscillation The-

ory

In [2], the authors use their generalized Maslov index to establish an oscillation result for
systems (1.1) arising from reaction-diffusion systems

ut = Buxx + F (u), u(x; t) ∈ Rd, (3.1)

for which F does not have a gradient structure (i.e., F cannot be expressed as the gradient of
some map F : Rn → R). Similarly as with our discussion of (1.3), we can naturally associate
(3.1) with the eigenvalue problem

Bφ′′ +DF (ū(x))φ = λφ, (3.2)
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where ū(x) denotes a stationary solution to (3.1). Equation (3.2) can be expressed as (1.1)
with

A(x;λ) =

(
0 B−1

λI −DF (ū(x)) 0

)
. (3.3)

In order to compare the current approach with that of [2], we briefly summarize the
main oscillation theorem from that reference (Theorem 4.1 in [2]). Considering (1.1) on the
interval [0, L] for some L > 0, with A(x;λ) as specified in (3.3), the authors take boundary
conditions at the right to be Dirichlet, and boundary conditions at the left to be either
Dirichlet or Robin, where by Robin boundary conditions the authors mean that the space
p ∈ Grn(R2n) in (1.2) has a frame

(
I
Φ

)
, where Φ denotes any n× n matrix with real-valued

entries. In order to express this result in the current framework and notation, we let G(x;λ)
denote a 2n× n matrix-valued solution of (1.1)-(3.3) such that G(0;λ) = P (a frame for p),
and we let g(x;λ) denote the evolving subspace with frame G(x;λ). With q denoting the
Dirichlet subspace, we specify ω1 so that kerω1 = q , and set

ω2(g1, . . . , gn) :=
n∑
j=1

ω1(g1, . . . , A(x;λ)gj, . . . , gn). (3.4)

Due to the particular form of A(x;λ), ω2 does not explicitly depend on either x or λ. For
values δ > 0 sufficiently small and λ∞ > 0 sufficiently large, the authors of [2] assume the
triple (g(·; ·), ω1, ω2) is invariant on the boundary of the set [δ, L] × [0, λ∞]. Under these
assumptions, the authors are able to conclude that

Ind(g(L; ·), q ; [0, λ∞]) = Ind(g(·; 0), q ; [δ, L])−m.

Here, the index on the left-hand side is a signed count of the number of eigenvalues that
(1.1)-(3.3) (with the specified boundary conditions) has on the interval [0, λ∞], and so cannot
exceed a direct count of these eigenvalues; i.e., it must be the case that

N#([0, λ∞]) ≥ | Ind(g(L; ·), q ; [0, λ∞])|.

In addition, the authors’ choice of ω2, given here in (3.4) ensures that all crossing points for
Ind(g(·; 0), q ; [δ, L]) are positively directed, so that

Ind(g(·; 0), q ; [δ, L]) = #{x ∈ (δ, L] : g(x; 0) ∩ q 6= {0}},

where the count on the right-hand side is taken without multiplicity. Finally, the value λ∞
is taken large enough so that (1.1)-(3.3) (with the specified boundary conditions) has no
eigenvalues on the interval [λ∞,∞), and the value δ > 0 is chosen sufficiently small so that

g(x; 0) ∩ q = {0}, ∀x ∈ (0, δ).

In this way, the conclusion of Theorem 4.1 of [2] can be expressed as

N#([0,∞)) ≥ |#{x ∈ (0, L] : g(x; 0) ∩ q 6= {0}}+ m|.

This result is a natural generalization of standard oscillation results for Sturm-Liouville
systems, for which it’s well known that in the case of a Dirichlet boundary condition on
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the right-hand side all crossing points as the independent variable increases will have the
same sign. (See, e.g,. [1, 4, 5, 6, 7, 8, 9, 15, 16, 21]). On the other hand, in both the
Hamiltonian and non-Hamiltonian settings, if the target space is not Dirichlet then such
monotonicity is not assured. As shown in [17, 18], renormalized oscillation theory in the
case of linear Hamiltonian systems leads naturally to a Maslov index for which all crossings
as the independent variable increases have the same sign, and so it’s natural to ask if the same
holds true in the current non-Hamiltonian setting. The primary observation of Theorem 1.1
in the current analysis is that it does.

4 Proof of Theorem 1.1

We begin by fixing λ1, λ2 ∈ I, λ1 < λ2, and letting G(x;λ) and H(x;λ2) respectively denote
the frames specified in (1.11) and (1.12), noting that H is evaluated at the fixed value λ2.
If F(x;λ) is specified as in (1.13) then F(x;λ) is a matrix solution to the ODE

F′ = A(x;λ, λ2)F, A(x;λ, λ2) :=

(
A(x;λ) 0n×n

0n×n A(x;λ2)

)
, (4.1)

though not to any particular initial value problem since G(x;λ) is initialized at x = 0 and
H(x;λ2) is initialized at x = 1. Here, for each (x, λ) ∈ [0, 1]× I, F(x;λ) ∈ R2n×n is a frame
for a subspace f (x;λ) ∈ Grn(R2n), allowing us to compute the generalized Maslov index for
the pair g(x;λ) and h(x;λ2) by computing the generalized Maslov index for f (x;λ) with

target ∆̃ =
(−In
In

)
. (The frame F(x;λ) also depends on λ2, but λ2 remains fixed throughout

the analysis, so this dependence is suppressed.)
As discussed in the introduction, we define the skew-symmetric n-linear map

ω1(f1, f2, . . . , fn) := det(F ∆̃), F = (f1, f2, . . . , fn), (4.2)

and recalling our convention described in (2.1), the associated function

ω̃1(x;λ) := det(F(x;λ) ∆̃)

= det

(
G(x;λ) 0n×(n−m) −In
0n×m H(x;λ2) In

)
= det(G(x;λ) H(x;λ2)).

(4.3)

Next, we let ω2 denote any skew-symmetric n-linear map with kerω2 6= ∆̃ (though see
Remark 1.3), and we set

ω̃2(x;λ) := ω2(f1(x;λ), f2(x;λ), . . . , fn(x;λ)). (4.4)

4.1 Proof of Theorem 1.1: First Claim

We will establish the first part of Theorem 1.1 by computing the generalized Maslov index
for the pair g(x;λ) and h(x;λ2) along the following sequence of contours, often referred to
as the Maslov box: (1) fix x = 0 and let λ increase from λ1 to λ2 (the bottom shelf); (2) fix
λ = λ2 and let x increase from 0 to 1 (the right shelf); (3) fix x = 1 and let λ decrease from
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x

λ λ1 λ2

1

0

Ind(g(0; ·), h(0;λ2); [λ1, λ2])

In
d
(g

(·;
λ

2
),

h(
·;
λ

2
);

[0
,1

])

− Ind(g(1; ·), h(x;λ2); [λ1, λ2])

−
In

d
(g

(·;
λ

1
),

h(
·;
λ

2
);

[0
,1

])

Figure 4.1: The Maslov Box.

λ2 to λ1 (the top shelf); and (4) fix λ = λ1 and let x decrease from 1 to 0 (the left shelf). See
Figure 4.1.

The right shelf. We begin with the right shelf, observing that for any x ∈ [0, 1], ω1(x;λ2)
will be zero if and only if λ2 is an eigenvalue of (1.1) (because ω1(x;λ2) will be zero if and
only if g(x;λ2) and h(x;λ2) intersect non-trivially). If λ2 is not an eigenvalue of (1.1) then
there can be no crossings along the right shelf, and so trivially

Ind(g(·;λ2), h(·;λ2); [0, 1]) = 0. (4.5)

On the other hand, if λ2 is an eigenvalue of (1.1) then every point on the right shelf is a
crossing point. Since the Maslov index only increases or decreases at arrivals and departures,
this means that in fact (4.5) holds in this case as well. We emphasize here that by our
assumption of invariance along the boundary of the Maslov box, if λ2 is an eigenvalue of
(1.1) so that ω1(x;λ2) = 0 for all x ∈ [0, 1], then it must be the case that ω2(x;λ2) 6= 0 for
all x ∈ [0, 1].

The bottom shelf. For the bottom shelf, G(0;λ) = P for all λ ∈ [λ1, λ2], so ω1(0;λ) and
ω2(0;λ) do not vary with λ. In particular, ω1(0;λ) and ω2(0;λ) can both be evaluated at
λ = λ2 for all λ ∈ [λ1, λ2], and in this way we see, as in our discussion of the right shelf,
that if λ2 is not an eigenvalue of (1.1) then no point on the bottom shelf is a crossing point,
while if λ2 is an eigenvalue of (1.1) then every point on the bottom shelf is a crossing point.
In either case,

Ind(g(0; ·), h(0;λ2); [λ1, λ2]) = 0.

The top shelf. Each crossing point along the top shelf corresponds with an eigenvalue
of (1.1), counted with direction, but not with multiplicity. Some crossing points may be
positively directed while others are negatively directed, so there may be cancellation among
these, leading to a value of the generalized Maslov index below (never above) the total
number of eigenvalues. If we let N#([λ1, λ2]) denote the total number of eigenvalues that
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(1.1) has on [λ1, λ2], counted without multiplicity, then

N#([λ1, λ2]) ≥ | Ind(g(1; ·), h(1;λ2); [λ1, λ2])|. (4.6)

As discussed in the introduction, we allow for the possibility that the left-hand side of (4.6)
is +∞, in which case we take (4.6) to hold trivially, regardless of the value of the right-hand
side (which cannot be infinite by compactness of [λ1, λ2], and the observation that the point
p(1;λ) ∈ S1 that we track in computing the generalized Maslov index must complete a full
loop of S1 before adding a contribution to the generalized Maslov index with the same sign
as the previous contribution).

The left shelf. For the first part of Theorem 1.1, the generalized Maslov index along the
left shelf appears precisely in the original form

Ind(g(·;λ1), h(·;λ2); [0, 1]),

so nothing additional is required until we turn to monotonicity in Section 4.2 below.
Using path additivity, we can compute the generalized Maslov index along all four shelves

of the Maslov box to obtain the sum

m = − Ind(g(1; ·), h(1;λ2); [λ1, λ2])− Ind(g(·;λ1), h(·;λ2); [0, 1]),

Upon combining this relation with (4.6), we immediately obtain the first claim of Theorem
1.1,

N#([λ1, λ2]) ≥ | Ind(g(·;λ1), h(·;λ2); [0, 1]) + m|.

4.2 Proof of Theorem 1.1: Monotonicity

Using the development of Section 2.1, we see that the direction associated with a crossing

point x∗ on the left shelf of the Maslov box is determined by the sign of
ω̃′1(x∗;λ1)

ω̃2(x∗;λ1)
. Following

the strategy of [2], we can ensure monotonicity of crossings by using our freedom with ω2 to
choose it in such a way that ω̃′1(x∗;λ1) and ω̃2(x∗;λ1) have the same sign for each crossing
point x∗ ∈ [0, 1]. As a starting point toward making such a selection, we observe that for
any λ ∈ [λ1, λ2], we have the relation

∂xω1(f1(x;λ), . . . , fn(x;λ)) = ∂x det(g1(x;λ), . . . , gm(x;λ), h1(x;λ2), . . . , hn−m(x;λ2)).
(4.7)

Remark 4.1. Here, and in subsequent calculations, notation such as

det(f1(x;λ), . . . , fn(x;λ))

will indicate the determinant of the matrix comprising the vectors {fi(x;λ)}ni=1 as its columns
in the indicated order.

Our approach to calculating derivatives of determinants of n× n matrices will primarily
be to sum the n terms obtained by putting a derivative on each of the n different rows. For
notational convenience we will write

∂xω1(f1(x;λ), . . . , fn(x;λ)) =
n∑
i=1

Di(x;λ, λ2),
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where Di(x;λ, λ2) is the determinant of the matrix obtained by replacing the ith row of
(G(x;λ) H(x;λ2)) with the associated row of derivatives (in x),(

g′i1(x;λ) · · · g′im(x;λ) h′i1(x;λ2) · · · h′i(n−m)(x;λ2)
)
.

For calculations of this type, we will make use of the relations

g′ij(x;λ) = aik(x;λ)gkj(x;λ)

h′ij(x;λ2) = aik(x;λ2)gkj(x;λ2),
(4.8)

where we’ve streamlined notation slightly by assuming summation over the repeated index
k. This allows us to replace the ith row of (G(x;λ) H(x;λ2)) with(

aikgk1(x;λ) · · · aikgkm(x;λ) aikhk1(x;λ2) · · · aikhk(n−m)(x;λ2)
)
. (4.9)

where we’ve made the additional reduction of notation aik(x;λ)gk1(xλ) = aikgk1(x;λ), and
similarly for the other sums. We can now use row operations to eliminate from column j,
j = 1, 2, . . . ,m, the sums

∑
k 6=i aik(x;λ)gkj(x;λ). For the remaining columns j = m+1, . . . , n

these row operations will lead to difference expressions, and combining these observations
we can express Di(x;λ, λ2) as the determinant of the matrix obtained by replacing the ith

row of (G(x;λ) H(x;λ2)) with(
aiigi1 · · · aiigim aiihi1 + Si(λ, λ2)h1 · · · aiihi(n−m) + Si(λ, λ2)hn−m

)
, (4.10)

where dependence on λ and λ2 has been suppressed for typesetting purposes (each term
aiigij is evaluated at (x;λ) and each term aiihij is evaluated at (x;λ2)), and additionally we
have introduced the notation

Si(λ, λ2)hj :=
∑
k 6=i

(aik(x;λ2)− aik(x;λ))hkj, i ∈ {1, · · · , n}, j ∈ {1, . . . , n−m}. (4.11)

We note that in (4.10) triply-repeated indices do not indicate summation
Under Assumption (B), the entries aii(x;λ) and aii(x;λ2) agree for each i ∈ {1, 2, . . . , n},

and additionally the differences aik(x;λ) − aik(x;λ2), i, k ∈ {1, 2, . . . , n}, j 6= k, in the
specification of Si(λ, λ2)hj, j = 1, 2, . . . , n −m are independent of x. These considerations
allow us to write

Di(x;λ, λ2) := aii(x;λ)ω̃1(x;λ) + ω̃i2(x;λ, λ), (4.12)

where the slightly more general function ω̃i2(x;λ, ν) is the determinant of the matrix obtained
by replacing the ith row of (G(x;λ) H(x;λ2)) with(

0 0 · · · 0 Si(ν, λ2)h1 . . . Si(ν, λ2)hn−m
)
. (4.13)

Recalling our notation ω̃1(x;λ) := ω1(f1(x;λ), . . . , fn(x;λ)), we see that

ω̃′1(x;λ) =
n∑
i=1

Di(x;λ, λ2) = (
n∑
i=1

aii(x;λ))ω̃1(x;λ) +
n∑
i=1

ω̃i2(x;λ, λ). (4.14)
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At a crossing point x∗, ω̃1(x∗;λ) = 0, so that

ω̃′1(x∗;λ) =
n∑
i=1

ω̃i2(x∗;λ, λ). (4.15)

Focusing now on the left shelf (i.e., λ = λ1), in order to fix the sign of
ω̃′1(x∗;λ1)

ω̃2(x∗;λ1)
, we would

like to choose ω2 based on the right-hand side of (4.15) (with λ = λ1), but we need to take
care that ω2 is a properly defined skew-symmetric n-linear map. For this, we specify ω2

precisely as in (1.16), and we additionally set

ω̃2(x;λ) := ω2(f1(x;λ), . . . , fn(x;λ)).

We emphasize here the important point that ω2 has no explicit dependence on either x
or λ. Nonetheless, computing as above, except with A(λ, λ2) replaced by Ã(λ1, λ2) (from
(1.15)), we find that if {fj(x;λ)}nj=1 are columns of the matrix F(x;λ) specified in (1.13)
then (using Assumption (B))

ω̃2(x;λ) =
n∑
i=1

ω̃i2(x;λ, λ1). (4.16)

Combining this last relation with (4.15), we see that with ω1, ω̃1, ω2, and ω̃2 as specified
above, we have

ω̃′1(x∗;λ1)

ω̃2(x∗;λ1)
= 1,

providing the claimed monotonicity. It follows from this monotonicity that the general-
ized Maslov index Ind(g(·;λ1), h(·;λ2); [0, 1]) is a monotonic (positive) count of the number
of times the subspaces g(x;λ1) and h(x;λ2) intersect (counted without multiplicity) as x
increases from 0 to 1. This count can be expressed as

#{x ∈ (0, 1] : g(x;λ1) ∩ h(x;λ2) 6= {0}},

where the omission of x = 0 in the interval (0, 1] is because positively-oriented crossing points
don’t increment the Maslov index on departures. This completes the proof of Theorem 1.1.

5 Invariance Framework

Before turning to applications, we develop a framework for checking the invariance specified
in Definition 1.2 (and assumed in the statement of Theorem 1.1). Here, we distinguish
between invariance assumed along the boundary of the Maslov box (as in the statement
of Theorem 1.1) and invariance throughout the interior of the Maslov box (which implies
m = 0). This latter condition provides substantially more information, and so it will be our
primary focus.

With the vector functions {fj(x;λ)}nj=1 continuing to denote the columns of the frame
F(x;λ) specified in (1.13), we introduce the normalization factor

d(x;λ) := |f1(x;λ) ∧ · · · ∧ fn(x;λ)| =
√

detF(x;λ), (5.1)
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where F(x;λ) denotes the Gram matrix with entries (F(x;λ))ij = (fi(x;λ), fj(x;λ)). Due to
the specific form of F(x;λ), we see that

d(x;λ) = dg(x;λ)dh(x;λ2), (5.2)

where
dg(x;λ) := |g1(x;λ) ∧ · · · ∧ gm(x;λ)| =

√
detG(x;λ),

dh(x;λ2) := |h1(x;λ2) ∧ · · · ∧ hn−m(x;λ2)| =
√

detH(x;λ2),
(5.3)

with G(x;λ) denoting the Gram matrix with entries (G(x;λ))ij = (gi(x;λ), gj(x;λ)), and
H(x;λ2) denoting the Gram matrix with entries (H(x;λ2))ij = (hi(x;λ2), hj(x;λ2)). Since
the elements {gj(x;λ)}mj=1 are linearly independent, we have dg(x;λ) > 0 for all (x, λ) ∈
[0, 1] × [λ1, λ2], and similarly for dh(x;λ2) for all x ∈ [0, 1]. As a measure of how far these
values remain bounded away from 0, we introduce the constants

cg := min
x∈[0,1]
λ∈[λ1,λ2]

dg(x;λ)

|g1(x;λ)| · · · |gm(x;λ)|

ch := min
x∈[0,1]

dh(x;λ2)

|h1(x;λ2)| · · · |hn−m(x;λ2)|
.

(5.4)

The values of ch can reasonably be obtained by computation, but we would generally like to
estimate cg by other means.

Remark 5.1. For our applications, our point of view will be that the generalized Maslov
index

Ind(g(·;λ1), h(·;λ2); [0, 1])

is to be obtained by computation (possibly analytic, but more generally numerical), and so for
most of this discussion we take G(x;λ1) and H(x;λ2) to be effectively known for all x ∈ [0, 1].
For invariance throughout the Maslov box, this leaves the problem of understanding G(x;λ)
for all (x, λ) ∈ [0, 1]× (λ1, λ2].

Following the set-up in Section 2.2, we specify the normalized functions

ψi(x;λ) :=
ω̃i(x;λ)

d(x;λ)
, i = 1, 2. (5.5)

In order to establish invariance, we will set

ρ(x;λ) :=
1

2
(ψ1(x;λ)2 + ψ2(x;λ)2), (5.6)

and our goal is to show that for all (x, λ) ∈ [0, 1] × [λ1, λ2] we have ρ(x;λ) > 0. Following
[2], our approach is to check that ρ(0;λ) > 0, and to show that ρx(x;λ) is bounded below
such that ρ(x;λ) can never become 0. As noted in Remark 5.1, our aim is to use only
values generated for the evaluation of Ind(g(·;λ1), h(·;λ2); [0, 1]); i.e., values of G(x;λ1) and
H(x;λ2) for all x ∈ [0, 1]. See Remark 6.1 below regarding the advantage of introducing the
values d(x;λ) for this part of the analysis.
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To start, we observe that, by construction, neither G(0;λ) nor H(0;λ2) depends on λ,
so ρ(0;λ) is constant for all λ ∈ [λ1, λ2]. In particular, for all λ ∈ [λ1, λ2], ρ(0;λ) can be
computed from the frames G(0;λ) = P and H(0;λ2), the latter of which will generally be
obtained by computation.

Turning to ρx(x;λ), we can write

ρx = ψ1∂xψ1 + ψ2∂xψ2,

from which we see that we need to understand

∂xψj(x;λ) =
ω̃′j(x;λ)

d(x;λ)
− d′(x;λ)

d(x;λ)
ψj(x;λ), j = 1, 2. (5.7)

For j = 1, we would like to use (4.14) to relate ω̃′1(x;λ) to ω̃2(x;λ), but we must take
care in this, because the former includes a sum of values ω̃i2(x;λ, λ) and the latter a sum of
values ω̃i2(x;λ, λ1). We will see that in many important cases, including those arising from
eigenvalue problems such as (1.5), we have the straightforward relation

ω̃i2(x;λ, λ) =
λ2 − λ
λ2 − λ1

ω̃i2(x;λ, λ1), (5.8)

for all i = 1, 2, . . . , n. In this case (i.e., when (5.8) holds), we have the useful relation
(combining (4.14) and (4.16))

ω̃′1(x;λ) =
( n∑
i=1

aii(x;λ)
)
ω̃1(x;λ) +

λ2 − λ
λ2 − λ1

ω̃2(x;λ). (5.9)

We will assume (5.8) holds throughout this section (and it will hold for our applications).
We note, however, that (5.8) is not a requirement of Theorem 1.1, but rather characterizes
a family of cases for which invariance is more readily verified.

Proposition 5.1. For (1.1)-(1.2), let Assumptions (A) and (B) hold, and with {ω̃i2(x;λ, ν)}ni=1

specified via (4.13) suppose (5.8) holds. In addition, set

Ca := max
x∈[0,1]

∣∣∣ n∑
i=1

aii(x)
∣∣∣, (5.10)

and let Cd, δ, and C be constants so that

max
x∈[0,1]
λ∈[λ1,λ2]

∣∣∣d′(x;λ)

d(x;λ)

∣∣∣ ≤ Cd

max
x∈[0,1]
λ∈[λ1,λ2]

∣∣∣∂xω̃2(x;λ)

d(x;λ)

∣∣∣ ≤ δ

C := 2Cd + max{2Ca, 1}+ 1.

If

ρ(0;λ) >
δ2

2C
(eC − 1), (5.11)

then ρ(x;λ) > 0 for all (x, λ) ∈ [0, 1] × [λ1, λ2]. In particular, the triple (f (·; ·), ω1, ω2) is
invariant on [0, 1]× [λ1, λ2] in the sense of Definition 1.2.
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Proof. First, combining (5.7) (with j = 1) and (5.9), we see that

ψ1(x;λ)∂xψ1(x;λ) =
(

(
n∑
i=1

aii(x;λ))− d′(x;λ)

d(x;λ)

)
ψ1(x;λ)2 +

λ2 − λ
λ2 − λ1

ψ1(x;λ)ψ2(x;λ),

and we can also write

ψ2(x;λ)∂xψ2(x;λ) = ψ2(x;λ)
ω̃′2(x;λ)

d(x;λ)
− d′(x;λ)

d(x;λ)
ψ2(x;λ)2.

Combining these observations, we arrive at the relation

ρ′(x;λ) = (
n∑
i=1

aii(x;λ))ψ2
1 −

d′

d
(ψ2

1 + ψ2
2) +

λ2 − λ
λ2 − λ1

ψ1ψ2 +
ω̃′2
d
ψ2. (5.12)

Using the estimates ∣∣∣ λ2 − λ
λ2 − λ1

ψ1ψ2

∣∣∣ ≤ ρ

| ω̃
′
2

d
ψ2| ≤

1

2
(δ2 + ψ2

2),

both holding for all (x, λ) ∈ [0, 1]× [λ1, λ2], along with the definitions of Ca and Cd we obtain
the differential inequality

ρ′ ≥ −Caψ2
1 − (2Cd + 1)ρ− 1

2
δ2 − 1

2
ψ2

2

≥ −(2Cd + max{2Ca, 1}+ 1)ρ− 1

2
δ2,

(5.13)

which we can express as

ρ′ ≥ −Cρ− 1

2
δ2.

Upon expressing this final inequality as (eCxρ)′ ≥ −1
2
δ2eCx and integrating both sides on

[0, x], we obtain the relation

eCxρ(x;λ) ≥ ρ(0;λ)− δ2

2C
(eCx − 1) ≥ ρ(0;λ)− δ2

2C
(eC − 1).

The claim follows immediately.

We see from Proposition 5.1 that invariance can be established from the three values
ρ(0;λ), Cd, and δ (along with the easily obtained value Ca). We have already seen that the
value of ρ(0;λ) can be obtained in a natural way by computation of H(0;λ2), so we turn
next to the value Cd, for which we first observe from (5.2) the relation

d′(x;λ)

d(x;λ)
=
d′g(x;λ)

dg(x;λ)
+
d′h(x;λ2)

dh(x;λ2)
. (5.14)

Taking a maximum on both sides of this relation leads to the inequality

max
x∈[0,1]
λ∈[λ1,λ2]

∣∣∣d′(x;λ)

d(x;λ)

∣∣∣ ≤ max
x∈[0,1]
λ∈[λ1,λ2]

∣∣∣d′g(x;λ)

dg(x;λ)

∣∣∣+ max
x∈[0,1]

∣∣∣d′h(x;λ2)

dh(x;λ2)

∣∣∣.
We have the following proposition.
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Proposition 5.2. For (1.1)-(1.2), let Assumptions (A) and (B) hold, and with {ω̃i2(x;λ, ν)}ni=1

specified via (4.13) suppose (5.8) holds. In addition, set

CA := max
x∈[0,1]
λ∈[λ1,λ2]

‖A(x;λ)‖. (5.15)

Then

max
x∈[0,1]
λ∈[λ1,λ2]

∣∣∣d′g(x;λ)

dg(x;λ)

∣∣∣ ≤ m!CA
c2
g

max
x∈[0,1]

∣∣∣d′h(x;λ2)

dh(x;λ2)

∣∣∣ ≤ (n−m)!

c2
h

max
x∈[0,1]

‖A(x;λ2)‖,

and also
d(x;λ) ≥ cgch|g1(x;λ)| · · · |gm(x;λ)||h1(x;λ2)| · · · |hn−m(x;λ2)|,

for all (x, λ) ∈ [0, 1]× [λ1, λ2].

Proof. Beginning with dg(x;λ), we recall (5.3) and use Jacobi’s formula to compute

d′g(x;λ) =
1

2dg(x;λ)

∂

∂x
detG(x;λ)

=
1

2
dg(x;λ) tr(G(x;λ)−1G′(x;λ)),

from which we see that
d′g(x;λ)

dg(x;λ)
=

1

2
tr(G(x;λ)−1G′(x;λ)). (5.16)

Likewise,
d′h(x;λ2)

dh(x;λ2)
=

1

2
tr(H(x;λ2)−1H′(x;λ2)), (5.17)

and so our goal becomes to estimate values for the constants

Cg := max
x∈[0,1]
λ∈[λ1,λ2]

1

2

∣∣∣ tr(G(x;λ)−1G′(x;λ))
∣∣∣

Ch := max
x∈[0,1]

1

2

∣∣∣ tr(H(x;λ2)−1H′(x;λ2))
∣∣∣. (5.18)

As with ch, the value of Ch can reasonably obtained by computation, but we would generally
like to estimate Cg by other means.

Toward this end, we begin by recalling that (G(x;λ))ij = (gi(x;λ), gj(x;λ)), and so

(G′(x;λ))ij = (A(x;λ)gi(x;λ), gj(x;λ)) + (gi(x;λ), A(x;λ)gj(x;λ)),

from which we see that for all i, j ∈ {1, 2, . . . , n}

|(G′(x;λ))ij| ≤ 2‖A(x;λ)‖|gi(x;λ)||gj(x;λ)|, (5.19)

21



for all (x, λ) ∈ [0, 1] × [λ1, λ2]. Next, if we let M(x;λ) = (mij(x;λ)) denote the adjugate

matrix for G(x;λ), then G(x;λ)−1 = M(x;λ)
dg(x;λ)2

, and we can bound the entries of M as follows:

for any collection of distinct indices {ik}mk=1

|mi1i1(x;λ)| ≤ (m− 1)!|gi2(x;λ)|2 · · · |gim(x;λ)|2

|mi1i2(x;λ)| ≤ (m− 1)!|gi1(x;λ)||gi2(x;λ)||gi3(x;λ)|2 · · · |gim(x;λ)|2.
(5.20)

We can compute

(G(x;λ))−1G′(x;λ))ii =
m∑
k=1

((G(x;λ))−1)ik(G′(x;λ))ki

=
1

dg(x;λ)2

m∑
k=1

mik(x;λ)(G′(x;λ))ki,

and combining (5.19) and (5.20) we can conclude that for all i, k ∈ {1, 2, . . . ,m}

|mik(x;λ)(G′(x;λ))ki| ≤ 2(m− 1)!‖A(x;λ)‖|g1(x;λ)|2 · · · |gm(x;λ)|2.

In this way, we see that

|
d′g(x;λ)

dg(x;λ)
| ≤ (m− 1)!

dg(x;λ)2

m∑
k=1

‖A(x;λ)‖|g1(x;λ)|2 · · · |gn(x;λ)|2

=
m!

dg(x;λ)2
‖A(x;λ)‖|g1(x;λ)|2 · · · |gn(x;λ)|2.

(5.21)

According to the specification of cg in (5.4), we obtain the estimate

|
d′g(x;λ)

dg(x;λ)
| ≤ m!‖A(x;λ)‖

c2
g

,

for all (x, λ) ∈ [0, 1]× [λ1, λ2], allowing us to write

Cg ≤
m!CA
c2
g

. (5.22)

The estimate on
d′h(x;λ2)

dh(x;λ2)
follows by an essentially identical calculation, and the final

inequality in Proposition 5.2 is an immediate consequence of (5.2) and (5.4).

These considerations still leave the critical term
ω̃′2(x;λ)

d(x;λ)
to be evaluated. In general, the

evaluation of this ratio is quite cumbersome, so we will only analyze it in detail for the two
specific classes of equations addressed in our section on applications.

6 Applications

Our development, including monotonicity, is widely applicable to any system of form (1.1)
for which Assumptions (A) and (B) hold, with one substantial caveat: invariance is often
problematic to check. Nonetheless, we start with an important family of examples for which
invariance is especially tractable.
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6.1 Single Higher Order Equations

In this section, we consider eigenvalue problems with the form

(αn(x;κn)φ(n−1))′ +
n−1∑
j=2

αj(x;κj)φ
(j) + α1(x)φ′ + α0(x)φ = λφ, (6.1)

x ∈ (0, 1), φ(x;λ) ∈ R, for some integer n ≥ 2, and for which we assume α0, α1 ∈ C([0, 1],R),
{αj(·;κj)}n−1

j=2 ⊂ C([0, 1],R), and αn(·;κn) ∈ C1([0, 1],R), with αn(x;κn) ≥ α0
n > 0 for all

x ∈ [0, 1] for some fixed value α0
n. Here, φ(j) denotes the jth derivative of φ with respect to x,

and the non-zero parameters {κj}nj=2 have been introduced in anticipation of our discussion
of invariance, and can be viewed as fixed values for other parts of the discussion. Generally,
for each j ∈ {2, 3, . . . , n}, we view κj as capturing the size of the coefficient αj(x;κj); often,
we have in mind αj(x;κj) = κj for at least some indices j ∈ {2, . . . , n}. The analysis does not
require flexibility in adjusting the sizes of a0(x) and a1(x), so no constants are incorporated
into those terms.

Our interest in such equations is particularly motivated by the linearization of dispersive–
diffusive PDE such as

ut + f(u)x = (b(u)ux)x + (c(u)uxx)x (6.2)

about stationary solutions ū(x), and similarly for fourth-order equations of generalized Cahn-
Hilliard form

ut = (b(u)ux)x − (c(u)uxxx)x (6.3)

(primarily on unbounded domains in both cases). See, e.g., [19] for a discussion of the
former, [14] for a discussion of the latter, and [20] for a broader view of the spectral analysis
of nonlinear waves arising in single equations of higher order (via the Evans function rather
than the Maslov index).

We express (6.1) as a first order system by introducing a vector function y ∈ Rn with
coordinates y1 = φ, y2 = κ2φ

′, y3 = κ3φ
′′, ..., yn−1 = κn−1φ

(n−2), yn = αn(x;κn)φ(n−1). In
this way, we obtain (1.1) with

A(x;λ) =



0 1
κ2

0 0 . . . 0 0

0 0 κ2
κ3

0 . . . 0 0

0 0 0 κ3
κ4

. . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 κn−1

αn(x;κn)

λ− α0(x) −α1(x)
κ2

−α2(x;κ2)
κ3

−α3(x;κ3)
κ4

. . . −αn−2(x;κn−2)
κn−1

−αn−1(x;κn−1)
αn(x;κn)


,

(6.4)
for which we immediately see that Assumption (A) is satisfied. (Here, we recognize that
expressions such as (6.4) are quite cumbersome, but in certain places they seem to provide
greater clarity than their counterpart forms expressed with more compact notation.) In
addition, it’s clear by inspection that we have the relations

aii(x;λ) =

{
0 i ∈ {1, 2, . . . , n− 1}
−αn−1(x;κn−1)

αn(x;κn)
i = n,

23



and

aij(x;λ2)− aij(x;λ) =

{
λ2 − λ (i, j) = (n, 1)

0 otherwise,

and we can conclude that Assumption (B) holds as well. It follows that we can apply
Theorem 1.1 as long as we can check the invariance condition of Definition 1.2. Following
our general discussion of invariance in Section 5, the main thing we have left to understand

is the ratio
ω̃′2(x;λ)

d(x;λ)
.

In order to understand ω̃′2(x;λ), we begin by observing from the definition of Si(λ, λ2)hj
in (4.11) that in this case

Si(λ, λ2)hj =

{
(λ2 − λ)h1j (i, j) ∈ {n} × {1, . . . , n−m},
0 otherwise,

where m is specified from the boundary conditions (1.2). It’s now clear from (4.13) that
ω̃i2(x;λ, λ1) ≡ 0 for all i ∈ {1, 2, . . . , n − 1} so that (from (4.16)) ω̃2(x;λ) = ω̃n2 (x;λ, λ1),
where ω̃n2 (x;λ, λ1) is the determinant of the matrix obtained by replacing the final row of
(G(x;λ) H(x;λ2)) with(

0 . . . 0 (λ2 − λ1)h11(λ2) . . . (λ2 − λ1)h1(n−m)(λ2)
)
.

With this characterization of ω̃n2 (x;λ, λ1) it’s clear that condition (5.8) holds.
Upon differentiating this last determinant, we obtain a sum of n determinants, each with

a derivative on all the entries in exactly one row. It’s straightforward to see that the first
n− 2 summands will be 0, leaving only the final two, namely

(λ2 − λ1)κn−1

αn(x;κn)
det



g11(λ) . . . g1m(λ) h11(λ2) . . . h1(n−m)(λ2)
g21(λ) . . . g2m(λ) h21(λ2) . . . h2(n−m)(λ2)

...
...

...
...

...
...

g(n−2)1(λ) . . . g(n−2)m(λ) h(n−2)1(λ2) . . . h(n−2)(n−m)(λ2)
gn1(λ) . . . gnm(λ) hn1(λ2) . . . hn(n−m)(λ2)

0 . . . 0 h11(λ2) . . . h1(n−m)(λ2)


, (6.5)

and

λ2 − λ1

κ2

det


g11(λ) . . . g1m(λ) h11(λ2) . . . h1(n−m)(λ2)
g21(λ) . . . g2m(λ) h21(λ2) . . . h2(n−m)(λ2)

...
...

...
...

...
...

g(n−1)1(λ) . . . g(n−1)m(λ) h(n−1)1(λ2) . . . h(n−1)(n−m)(λ2)
0 . . . 0 h21(λ2) . . . h2(n−m)(λ2)

 . (6.6)

Applying Hadamard’s inequality for the determinant of a matrix to each of these last
two determinants, we obtain the estimate

|ω̃′2(x;λ)| ≤ (λ2 − λ1){ κn−1

αn(x;κn)
+

1

κ2

}|g1(x;λ)| · · · |gm(x;λ)||h1(x;λ2)| · · · |hn−m(x;λ2)|,

(6.7)

24



for all (x, λ) ∈ [0, 1] × [λ1, λ2]. Combining (6.7) with the final assertion of Proposition 5.2,
we obtain the estimate

| ω̃
′
2(x;λ)

d(x;λ)
| ≤ λ2 − λ1

cgch
{ κn−1

αn(x;κn)
+

1

κ2

}. (6.8)

Remark 6.1. In the absence of normalization by d(x;λ), we would need to obtain estimates
directly on (6.7), which is problematic since we prefer to avoid computing the values of
{gi(x;λ)}mi=1. The use of normalization allows us to use the right-hand side of (6.8) as our
estimate.

6.1.1 The Case m = 1

The case m = 1 is especially amenable to analysis, because in that case we have simply
G(x;λ) = |g1(x;λ)|2, from which it follows immediately from (5.4) that cg = 1, and (from
(5.22)) Cg ≤ CA (with CA as defined in Proposition 5.2). Combining these observations, we
see that in this case, the constants C and δ from Proposition 5.1 can be taken to be

C = 2(CA + Ch) + max{2 max
x∈[0,1]

∣∣∣αn−1(x;κn−1)

αn(x;κn)

∣∣∣, 1}+ 1

δ =
λ2 − λ1

ch
{max
x∈[0,1]

κn−1

αn(x;κn)
+

1

κ2

}.
(6.9)

Each of these values can be determined by computation along the left shelf (see Section 6.1.3
for a detailed example case).

6.1.2 The Case m > 1

In the case m > 1, determination of the value cg becomes substantially more challenging.
Nonetheless, we can make a general observation, adapted from [2]. It’s clear from (6.8) that
by taking κn−1

αn(x;κn)
and 1

κ2
small, we can reduce δ as long as cg and ch remain uniformly

bounded away from 0. As αn(x;κn) becomes large relative to the other coefficients, (6.1) is
approximated by

(αn(x;κn)φ(n−1))′ = 0,

allowing us to employ regular perturbation theory to show that indeed cg and ch can be
uniformly bounded away from 0. If, in addition, ρ(0;λ) remains uniformly bounded away
from 0, we can conclude invariance. We record the details of this observation in the fol-
lowing proposition, in which f (x;λ) denotes the Grassmannian subspace with frame F(x;λ)
specified in (1.13), ω1 is specified in (1.14), and ω2 is specified in (1.16).

Proposition 6.1. Let λ1, λ2 ∈ R, λ1 < λ2 be fixed. In (6.1), assume α0, α1 ∈ C([0, 1],R),
and that for each j ∈ {2, 3, . . . , n}, αj(x;κj) = κjα̃j(x;κj), with α̃j(·;κj) ∈ C([0, 1],R). In
addition, assume there exist constants {Cj}nj=2, along with a constant cn > 0, all independent
of the values of {κj}nj=2, so that

max
x∈[0,1]

|α̃j(x;κj)| ≤ Cj ∀ j ∈ {2, . . . , n}, and max
x∈[0,1]

|α̃n(x;κn)| ≥ cn,
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for all {κj}nj=2 for which

r := max{ 1

κ2

,
κ2

κ3

, . . . ,
κn−1

κn
} (6.10)

is sufficiently small. For boundary frames

P =

P1

P̃
Pn

 , Q =

Q1

Q̃
Qn

 , (6.11)

with P1, Pn ∈ R1×m, P̃ ∈ R(n−2)×m, and likewise Q1, Qn ∈ R1×(n−m), Q̃ ∈ R(n−2)×(n−m),
suppose either

det

P1 Q1

P̃ Q̃

Pn Qn − (
∫ 1

0
(λ2 − α0(ξ))dξ)Q1

 6= 0, or det

P1 Q1

P̃ Q̃
0 Q1

 6= 0. (6.12)

Then there exists a value r0 > 0 sufficiently small so that for any values {κj}nj=2 for which
r ≤ r0 we have ρ(x;λ) > 0 for all (x, λ) ∈ [0, 1] × [λ1, λ2]. In particular, the invariance
condition specified in Definition 1.2 is satisfied for the triple (f (·; ·), ω1, ω2) on [0, 1]×[λ1, λ2],
so m = 0 in Theorem 1.1.

Proof. Under our assumptions, we can apply regular perturbation theory to see that with
A(x;λ) specified as in (6.4) solutions to (1.1) will satisfy

y(x;λ) = y0(x;λ) + O(r),

where y0(x;λ) solves the system y′0 = A0(x;λ)y0, with A0(x;λ) the n × n matrix with only
a single non-zero entry, an1(x;λ) = λ− a0(x) and O(r) uniform for x ∈ [0, 1]. If we express
a generic initial vector as p = (p1, p̃, pn)T with p1 ∈ R, p̃ ∈ Rn−2, and pn ∈ R, and solve
y′0 = A0(x;λ)y0 subject to y0(0) = p, we find y(x;λ) = (p1, p̃, pn +p1

∫ x
0

(λ−a0(ξ))dξ). Using
this, and proceeding similarly for y′0 = A0(x;λ2)y0 initialized at x = 1 with y0(1) = q =
(q1, q̃, qn)T , we find that our frames G(x;λ) and H(x;λ2) specified respectively in (1.11) and
(1.12) satisfy the relations

G(x;λ) =

 P1

P̃
Pn + (

∫ x
0

(λ− a0(ξ))dξ)P1

+ O(r),

H(x;λ2) =

 Q1

Q̃

Qn − (
∫ 1

x
(λ2 − a0(ξ))dξ)Q1

+ O(r).

(6.13)

Since the lowest order frames are independent of r, we see that the constants cg and
ch specified in (5.4) can be bounded below for r sufficiently small by positive constants
independent of the values {κj}nj=2. With this observation, along with (6.8), we see that
we can make δ as small as we like by choosing r0 sufficiently small. In addition, using the
estimates from Proposition 5.2, we see that the value of the constant C in Proposition 5.1
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can be bounded above, independently of r (as long as r ≤ r0). In order to conclude that
(5.11) from Proposition 5.1 holds, we need only show that ρ(0;λ) can be bounded below,
again independently of r. For this, we can write

ω̃1(0;λ) = det

P1 Q1

P̃ Q̃

Pn Qn − (
∫ 1

0
(λ2 − a0(ξ))dξ)Q1

+ O(r),

and

ω̃2(0;λ) = (λ2 − λ1) det

P1 Q1

P̃ Q̃
0 Q1

+ O(r).

The conditions stated in the proposition are precisely that at least one of these determinants
is non-zero, ensuring that ω̃1(0;λ)2 + ω̃2(0;λ)2 > 0. In addition, since the columns of
the lowest order matrices in G(0;λ) and H(0;λ2) are necessarily linearly independent and
independent of the values {κj}nj=2, we can conclude that the values dg(0;λ) and dh(0;λ2) are
both bounded below independently of the values {κj}nj=2. The necessary bound below on
ρ(0;λ) follows, and this completes the proof.

Remark 6.2. Condition (6.12) in Proposition 6.1 is easily seen to hold in many important
cases. As a specific family of examples, suppose n is even and the boundary frames are
P =

(
0
I

)
and Q =

(
I
Φ

)
for some n

2
× n

2
matrix Φ. ThenP1 Q1

P̃ Q̃

Pn Qn −
∫ 1

0
(λ2 − a0(ξ))dξQ1

 =

(
0 I
I · · ·

)
, (6.14)

where the dots indicate that the lower right n
2
× n

2
matrix is irrelevant for this calculation.

Since the determinant of the right-hand side of (6.14) is non-zero, condition (6.12) is satisfied
in this case. On the other hand, it’s clear that if the boundary frames P and Q are both
Dirichlet (i.e., P = Q =

(
0
I

)
), then both determinants in (6.12) are 0, and the condition is

not satisfied.

6.1.3 Example Case

As a specific example case, we consider the single third-order equation

α3φ
′′′ + α2φ

′′ + α1(x)φ′ + α0(x)φ = λφ, (6.15)

with coefficient values

α0(x) = .2 cos(10x)− .5 cos(x/10); α1(x) = 2 sin(5x); α2 = 10; α3 = 60, (6.16)

and boundary conditions

φ′(0) = 0; φ′′(0) = 0; φ′′(1) = 0.
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(This example is purely for purposes of illustration and doesn’t correspond with any partic-
ular physical problem.) In this case, it’s natural to take κi = αi, i = 2, 3, and we see from
(6.4) that

A(x;λ) =

 0 1
α2

0

0 0 α2

α3

λ− α0(x) −α1(x)
α2

−α2

α3

 .

Referring to our general framework, this corresponds with the case m = 1, and we can
take the frames for p and q to respectively be

P =

1
0
0

 and Q =

1 0
0 1
0 0

 . (6.17)

We search for eigenvalues on the interval [λ1, λ2] = [−1, 0].
In order to check the invariance condition of Lemma 5.1, we compute C and δ using (6.9),

along with ρ(0;λ). For this, we need values for CA (from (5.15)), Ch (from (5.18)), and ch
(from (5.4)). The value CA can be determined directly (i.e., without solving (6.15)), and we
find CA = .7481. The values Ch and ch are both computed by numerical evaluation of the
frame H(x;λ2), and we find Ch = .2621 and ch = .9975. With these values, we compute

C = 2(CA + Ch) + max{2α2

α3

, 1}+ 1 = 2(.7481 + .2621) + 1 + 1 = 4.0202,

and

δ =
λ2 − λ1

ch

{1

6
+

1

10

}
=

1

.9975
· 4

15
= .2673.

We evaluate ρ(0;λ) from the exact frame G(0;λ) and the numerically generated frame
H(0;λ2), and we find ρ(0;λ) = .5000. It follows that

ρ(0;λ)− δ2

2C
(eC − 1) = .0136 > 0,

verifying that our invariance criterion is satisfied.
We are now justified in using Theorem 1.1 with m = 0 to compute a lower bound on the

number of eigenvalues that (6.15) has on the interval [−1, 0]. We proceed by numerically
computing the generalized Maslov index Ind(g(·;−1), h(·; 0); [0, 1]). The flow is necessarily
monotonic, and we find a single crossing point at about x = .535 (with a stepsize in the
computation of .005). We can conclude that (6.15) has at least one eigenvalue on the interval
[−1, 0]. Although this conclusion requires only a computation along the left shelf, the entire
Maslov box for this example is depicted in Figure 6.1. In this case, we see that (6.15) has
only a single eigenvalue on the interval [−1, 0], located at about λ = −.513 (with a stepsize
in the computation of .001).

6.2 Second-Order Systems

In this section, we consider eigenvalue problems of the general form

−Bφ′′ +W (x)φ′ + V (x)φ = λφ, x ∈ (0, 1), φ(x;λ) ∈ Rl, l ∈ N, (6.18)
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Figure 6.1: Full Maslov Box and spectral curve for (6.15).

for which we take W,V ∈ C([0, 1],Rl×l) and assume for simplicity of the invariance verifica-
tion that B is a constant diagonal matrix with positive diagonal entries {bi}li=1. As noted
in the introduction, such equations arise naturally when we linearize a viscous conservation
law (1.3) about a viscous profile ū(x− st).

In order to place this system in the setting of (1.1), we write y =
(
y1
y2

)
with y1 = φ and

y2 = Bφ′, giving (1.1) with n = 2l and

A(x;λ) =

(
0 B−1

V (x)− λI W (x)B−1

)
, (6.19)

from which it’s clear that our Assumption (A) holds in this case. Computing directly, we
see that

aij(x;λ2)− aij(x;λ) =

{
−(λ2 − λ) (i, j) = (l + k, k), k ∈ {1, . . . , l}
0 otherwise,

allowing us to conclude that (B) holds as well. It follows that we can apply Theorem 1.1 as
long as we can verify the invariance condition specified in Definition 1.2.

Following our general development, we fix any m ∈ {1, 2, . . . , 2l − 1} and let G(x;λ) ∈
R2l×m and H(x;λ) ∈ R2l×(2l−m) be as specified respectively in (1.11) and (1.12). Then

ω̃1(x;λ) = det(G(x;λ) H(x;λ2)),

and

ω̃2(x;λ) =
2l∑
i=1

ω̃i2(x;λ, λ1),
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where the functions {ω̃i2(x;λ, λ1)}2l
i=1 are as in (4.13).

For invariance, we will focus on the case m = l, for which the boundary spaces p and
q from (1.2) both have the same dimension l, and we will consider two cases of boundary

conditions. For this we will refer to p or q as a Robin space if it has a frame of the form
(
I
Φ

)
for some l × l matrix Φ.

In the following proposition, f (x;λ) denotes the Grassmannian subspace with frame
F(x;λ) specified in (1.13), ω1 is specified in (1.14), and ω2 is specified in (1.16).

Proposition 6.2. In (6.18), assume W,V ∈ C([0, 1],Rl×l) and that B is a constant diagonal
matrix with positive diagonal entries {bi}li=1. For boundary spaces p and q as specified in
(1.2), suppose p is Dirichlet and q is Robin, or alternatively suppose q is Dirichlet and p
is Robin. Then there exists a value r0 > 0 sufficiently small so that for any values {bi}li=1

satisfying

r := max{ 1

b1

,
1

b2

, . . . ,
1

bn
} ≤ r0,

we have ρ(x;λ) > 0 for all (x, λ) ∈ [0, 1] × [λ1, λ2]. In particular, the invariance condition
specified in Definition 1.2 is satisfied for the triple (f (·; ·), ω1, ω2) on [0, 1]× [λ1, λ2], so m = 0
in Theorem 1.1.

Proof. Since the analysis is similar for each case, we carry out details only for the case in
which (6.18) has Dirichlet boundary conditions at x = 1 and Robin boundary conditions at
x = 0.

Following the general development of Section 5, we see immediately that the values Ca
and CA can be bounded independently of the values {bi}li=1 (for r ≤ r0). In order to apply
our general framework, we additionally need to verify that the values cg and ch specified
in (5.4) are bounded below uniformly as the values {bi}li=1 grow, and that by choosing the

values {bi}li=1 sufficiently large we can make
ω̃′2(x;λ)

d(x;λ)
as small as we like (without increasing

the value of C).
Beginning with the values cg and ch, we notice that by regular perturbation theory for

large values of {bi}li=1 the lowest order expression in a perturbation expansion for solutions
of (1.1) with (6.19) solves the equation

y′0 = A0(x;λ)y0, A0(x;λ) =

(
0 0

V (x)− λI 0

)
.

For G(x;λ), we take the boundary condition G(0;λ) =
(
I
Θ

)
, and if we let G0(x;λ) =

(
G0(x;λ)
G00(x;λ)

)
denote the lowest order term in a perturbation expansion for G(x;λ), then

G′0(x;λ) = 0; G0(0;λ) = I; G′00(x;λ) = (V (x)− λI)G0(x;λ); G00(0;λ) = Θ.

Solving this system by integration, we conclude that

G0(x;λ) =

(
I

G(x;λ)

)
, G(x;λ) = Θ +

∫ x

0

(V (ξ)− λI)dξ, (6.20)

for all x ∈ [0, 1].
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Likewise, for H(x;λ2), we take the boundary condition H(1;λ2) =
(

0
I

)
, and if we let

H0(x;λ2) =
(
H0(x;λ2)
H00(x;λ2)

)
denote the lowest order term in a perturbation expansion for H(x;λ2),

then

H ′0(x;λ2) = 0; H0(0;λ2) = 0; H ′00(x;λ2) = (V (x)− λ2I)H0(x;λ2); H00(0;λ2) = I.

Solving this system by integration, we conclude that

H0(x;λ2) =

(
0
I

)
, (6.21)

for all x ∈ [0, 1].
Similarly as in the proof of Proposition 6.1, we can conclude that the values cg and ch,

viewed as functions of the values {bi}li=1, can be bounded below by positive constants that
are independent of the value r specified in Proposition 6.2 (as long as r ≤ r0), and likewise
we can conclude that there exists a value dmin > 0, independent of the values {bi}ni=1, so that

d(x;λ) ≥ dmin, ∀ (x, λ, r) ∈ [0, 1]× [λ1, λ2]× [0, r0].

Turning now to the ratio
ω̃′2(x;λ)

d(x;λ)
, we first observe that in this case,

Si(λ, λ2)hj :=

{
−(λ2 − λ)hi−l,j (i, j) ∈ {l + 1, . . . , 2l} × {1, . . . , l}
0 otherwise,

(6.22)

from which we immediately see from (4.13) that ω̃i2(x;λ, λ1) ≡ 0 for all i ∈ {1, 2, . . . , l}.
In order to understand the remaining functions {ω̃i2(x;λ, λ1)}2l

i=l+1 in this case, we focus on
i = l+ 1 for which (from (4.13)) ω̃l+1

2 (x;λ, λ1) is the determinant of the matrix obtained by
replacing the (l + 1)th row of (G(x;λ) H(x;λ2)) with(

0 . . . 0 Sl+1(λ1, λ2)h1(λ2) . . . Sl+1(λ1, λ2)hl(λ2)
)

=
(
0 . . . 0 −(λ2 − λ1)h11(x;λ2) . . . −(λ2 − λ1)h1l(x;λ2)

)
.

From this relation, and similar relations for {ω̃i2(x;λ, λ1)}2l
i=l+2 and {ω̃i2(x;λ, λ)}2l

i=l+1, we see
that (5.8) is satisfied.

As in previous calculations along these lines, we compute the derivative of ω̃l+1
2 (x;λ, λ1)

as the sum of 2l determinants, each with a derivative on each entry in exactly one row. The
first of these determinants is

det



g′11(λ) . . . g′1l(λ) h′11(λ2) . . . h′1l(λ2)
...

...
...

...
...

...
gl1(λ) . . . gll(λ) hl1(λ2) . . . hll(λ2)

0 . . . 0 −(λ2 − λ1)h11(λ2) . . . −(λ2 − λ1)h1l(λ2)
g(l+2)1(λ) . . . g(l+2)l(λ) h(l+2)1(λ2) . . . h(l+2)l(λ2)

...
...

...
...

...
...

g(2l)1(λ) . . . g(2l)l(λ) h(2l)1(λ2) . . . h(2l)l(λ2)


. (6.23)
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In this case,

g′1j =
1

b1

g(l+1)j, h′1j =
1

b1

h(l+1)j, ∀ j ∈ {1, 2, . . . , l},

and we see that (6.23) becomes

(λ2 − λ1)

b1

det



g(l+1)1(λ) . . . g(l+1)l(λ) h(l+1)1(λ2) . . . h(l+1)l(λ2)
...

...
...

...
...

...
gl1(λ) . . . gll(λ) hl1(λ2) . . . hll(λ2)

0 . . . 0 −h11(λ2) . . . −h1l(λ2)
g(l+2)1(λ) . . . g(l+2)l(λ) h(l+2)1(λ2) . . . h(l+2)l(λ2)

...
...

...
...

...
...

g(2l)1(λ) . . . g(2l)l(λ) h(2l)1(λ2) . . . h(2l)l(λ2)


. (6.24)

Using Hadamard’s inequality for determinants, we can bound this term by

λ2 − λ1

b1

|g1(x;λ)| · · · |gl(x;λ)||h1(x;λ2)| · · · |hl(x;λ2)|. (6.25)

For the next (l − 1) summands of ∂xω̃
l+1
2 (x;λ, λ1), we similarly start with a derivative

on the jth row (j ∈ {2, . . . , l}) of the matrix under determinant in ω̃l+1
2 (x;λ, λ1). In each of

these cases, the jth row becomes linearly dependent with the (l+ j)th row, and the resulting
determinant is 0. This brings us to the summand obtained by differentiating the (l + 1)st

row of the matrix under determinant in ω̃l+1
2 (x;λ, λ1), and it’s straightforward to see that

this term can again be estimated by (6.25).
In order to understand the determinants with derivatives on rows l + 2 through 2l, we

focus on the first. For this, we have

det



g11(λ) . . . g1l(λ) h11(λ2) . . . h1l(λ2)
...

...
...

...
...

...
gl1(λ) . . . gll(λ) hl1(λ2) . . . hll(λ2)

0 . . . 0 −(λ2 − λ1)h11(λ2) . . . −(λ2 − λ1)h1l(λ2)
g′(l+2)1(λ) . . . g′(l+2)l(λ) h′(l+2)1(λ2) . . . h′(l+2)l(λ2)

...
...

...
...

...
...

g(2l)1(λ) . . . g(2l)l(λ) h(2l)1(λ2) . . . h(2l)l(λ2)



= det



g11(λ) . . . g1l(λ) h11(λ2) . . . h1l(λ2)
...

...
...

...
...

...
gl1(λ) . . . gll(λ) hl1(λ2) . . . hll(λ2)

0 . . . 0 −(λ2 − λ1)h11(λ2) . . . −(λ2 − λ1)h1l(λ2)
a(l+2)kgk1(λ) . . . a(l+2)kgkl(λ) a(l+2)khk1(λ2) . . . a(l+2)khkl(λ2)

...
...

...
...

...
...

g(2l)1(λ) . . . g(2l)l(λ) h(2l)1(λ2) . . . h(2l)l(λ2)


,

where for typesetting considerations we’re using the convention of summing over any index
appearing twice in an expression. E.g., written out in full

a(l+2)kgk1(λ) =
2l∑
k=1

a(l+2)k(x;λ)gk1(x;λ),
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and similarly for other such entries.
We can use row operations to eliminate all except two of the summands involving com-

ponents of G(x;λ) in row (l + 1). In particular, we can eliminate all summands except

a(l+2)(l+1)(x;λ)g(l+1)j(x;λ) + a(l+2)(l+2)(x;λ)g(l+2)j(x;λ), j = 1, 2, . . . , l.

For summands involving components of H(x;λ2), we correspondingly obtain sums of the
form

a(l+2)(l+1)(x;λ2)h(l+1)j(x;λ2) + a(l+2)(l+2)(x;λ2)h(l+2)j(x;λ2)

+
∑

k/∈{(l+1),(l+2)}

(a(l+2)k(x;λ2)− a(l+2)k(x;λ))hk1(x;λ2), j = 1, 2, . . . , l.

Using (6.19), we see that

a(l+2)(l+1)(x;λ) = (W (x)B−1)21 =
W21(x)

b1

, a(l+2)(l+2)(x;λ) = (W (x)B−1)22 =
W22(x)

b2

,

(6.26)
and similarly∑
k/∈{(l+1),(l+2)}

(a(l+2)k(x;λ2)− a(l+2)k(x;λ))hkj(x;λ2) = −(λ2 − λ)h2j, j = 1, 2, . . . , l. (6.27)

The terms (6.26) lead to an estimate by( |W21(x)|
b1

+
|W22(x)|

b2

)
|g1(x;λ)| · · · |gl(x;λ)||h1(x;λ2)| · · · |hl(x;λ2)|, (6.28)

while the remaining terms (6.27) lead to the determinant

det



g11(λ) . . . g1l(λ) h11(λ2) . . . h1l(λ2)
...

...
...

...
...

...
gl1(λ) . . . gll(λ) hl1(λ2) . . . hll(λ2)

0 . . . 0 −(λ2 − λ1)h11(λ2) . . . −(λ2 − λ1)h1l(λ2)
0 . . . 0 −(λ2 − λ)h21(λ2) . . . −(λ2 − λ)h2l(λ2)

g(l+3)1(λ) . . . g(l+3)l(λ) h(l+3)1(λ2) . . . h(l+3)l(λ2)
...

...
...

...
...

...
g(2l)1(λ) . . . g(2l)l(λ) h(2l)1(λ2) . . . h(2l)l(λ2)


. (6.29)

To lowest order in r, we can compute this determinant with G(x;λ) and H(x;λ2) re-
spectively approximated by G0(x;λ) and H0(x;λ2) as in (6.20) and (6.21). In this way, we
obtain a determinant of the form

det

(
I 0

G̃(x;λ) Ĩ

)
= det(Ĩ).

where the temporary notation G̃(x;λ) signifies the matrix obtained by taking the first two
rows of G(x;λ) to be identically zero while leaving all other rows unchanged, and likewise
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Ĩ signifies the matrix obtained by taking the first two rows of I to be identically zero while
leaving all other rows unchanged. Since det(Ĩ) = 0, we can conclude that the full determinant
(6.29) is order r.

These details have been carried out for the single term ω̃l+1
2 (x;λ, λ1), and only for the

cases in which derivatives appear on one of the first l + 2 rows. However, the analysis of
the terms with derivatives on the remaining rows, and the analysis of the remaining terms
{ω̃i2(x;λ, λ1)}2l

i=l+2 introduces no additional complications, and we can conclude that there
exists a constant K > 0, independent of the values {bi}li=1, so that

ω̃′2(x;λ) ≤ Kr,

and consequently

| ω̃
′
2(x;λ)

d(x;λ)
| ≤ Kr

dmin

.

In our general invariance relation (5.11), we can now take C as specified in Lemma 5.1,
with

Cd =
l!CA
c2
g

+
l!

c2
h

max
x∈[0,1]

‖A(x;λ2)‖

δ =
Kr

dmin

keeping in mind that Ca and CA can both be bounded independently of the values {bi}li=1.
Since C can be taken independent of the values {bi}li=1, and δ can be taken as small as we
like by decreasing r, we can ensure (5.11) holds so long as we can show that ρ(0;λ) remains
bounded away from 0 as r decreases.

For this final point, we recall that ρ(0;λ) can be expressed as

ρ(0;λ) =
1

2d(0;λ)2
(ω̃1(0;λ)2 + ω̃2(0;λ)2).

We can compute this value to lowest order in r by using the frames G(0;λ) =
(
I
Θ

)
and

H(0;λ2) =
(

0
I

)
. We see immediately that

ω̃1(0;λ) = det

(
I 0
Θ I

)
= det I = 1,

from which we can conclude that to lowest order in r

ρ(0;λ) ≥ 1

2d2
min

.

6.2.1 Example Case with Invariance

In this section, we will apply Theorem 1.1 to (6.18) with l = 2, taking specifically B to be
the 2× 2 identity matrix and

V (x) =

(
10 sin(10x) cos(10x) 25 sin(10x)

x(1− x) 10 cos(10x)

)
, W (x) =

(
5x(1− x) 0

0 5x(1− x)

)
, (6.30)
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along with Neumann boundary conditions at both x = 0 and x = 1. For Neumann conditions,
it’s natural to take the frames for p and q to both be

(
I
0

)
. For this example, we are not taking

the entries of B to be large, and in addition we are not using boundary conditions allowed by
Proposition 6.2, so we do not have an a priori guarantee of invariance. Nonetheless, we will
(numerically) check invariance by computing ρ(x;λ) throughout (a grid on) the full Maslov
box (including the interior). Indeed, one of our goals with this example is to illustrate that
there is an enormous gap between systems for which we have rigorously verified invariance
and systems for which invariance holds.

We will count the number of eigenvalues the system (6.18)–(6.30) has on the interval
[λ1, λ2] = [−5, 1]. For this, we compute Ind(g(·;−5), h(·; 1); [0, 1]), and we find two crossing
points, at about x = .043 and x = .455 (with a stepsize in the computation of .001). If the
system is known to be invariant on [0, 1] × [−5, 1] then we can conclude that (6.18)–(6.30)
has at least two eigenvalues on the interval [−5, 1]. This is the most information that we can
get out of Theorem 1.1 for this example, but computationally, we find approximately that

min
x∈[0,1]
λ∈[λ1,λ2]

ρ(x;λ) = .6279,

suggesting that invariance indeed holds. The full Maslov box for this example is depicted in
Figure 6.2. The eigenvalues are at roughly λ = −1.385 and λ = .735 (with a stepsize in the
computation of .0025).

Figure 6.2: Full Maslov Box and spectral curves for (6.18)–(6.30).

6.2.2 Example Case without Invariance

An enormous amount remains to be said about invariance, and as a point of interest, we
compute the full Maslov box for a case in which invariance fails to hold at precisely two
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points in the interior of the Maslov box. For this example, we’ll take (6.18) with l = 2,
taking again B to be the 2× 2 identity matrix and choosing

V (x) =

(
10 sin(10x) cos(10x) 25 sin(10x)

x(1− x) 10 cos(10x)

)
, W (x) =

(
5x(1− x) 10 sin(10x)

10 cos(10x) 5x(1− x)

)
,

(6.31)
along with Neumann boundary conditions at both x = 0 and x = 1.

For the system (6.18)–(6.31), we find by numerical computation that ρ(x;λ) has two zeros
in the interior of the Maslov box [0, 1]× [−5, 1], approximately at the points (.875,−3.348)
and (.875,−.130). This suggest that invariance fails in this case. The full Maslov box for
this example is depicted in Figure 6.3. On the left-hand side of the figure, the Maslov box is
drawn for [λ1, λ2] = [−5, 1], and we see that the associated spectral curve is a loop contained
entirely in the interior of the Maslov box, with left-most and right-most points corresponding
precisely with zeros of ρ(x;λ). Since no spectral curves intersect the boundary of the Maslov
box, it’s clear that m = 0, and it’s interesting to understand how we can see this from the
local considerations discussed in Section 2.2. To this end, we consider the contribution to
m from each of the points at which invariance is lost. First, at (.875,−3.348), Figure 6.3
suggests that the spectral curve can be expressed as a functional relation λ = λ(x), with
λ′(.875) = 0, and we have precisely the situation of the middle plot in Figure 2.1 (with λ now
in place of s and x in place of t). As in the discussion in Section 2.2, we can conclude that
the contribution to m from this point is +2. The second point at which invariance is lost is
(.875,−.130), and again we see that near this point the spectral curve can be expressed as a
functional relation λ = λ(x), with λ′(.875) = 0. In this case, we have precisely the situation
of the left-side plot in Figure 2.1, and can conclude that the contribution to m from this
point is −2. Since there are no other points of invariance, the total generalized Maslov index
along the boundary is m = +2 + (−2) = 0. Using this information in our application of
Theorem 1.1, we can write

N#([−5, 1]) ≥ |#{x ∈ (0, L] : g(x; 0) ∩ q 6= {0}}+ m| = 0.

In fact, it’s clear from the full Maslov box that N#([−5, 1]) = 0.
Turning to the Maslov box on the right-hand side of Figure 6.3, we see again that we

have invariance along the boundary of the Maslov box. (Here, we recall that invariance is
only lost on the right and left endpoints of the spectral curves.) By monotonicity, each of
the crossing points along the left shelf gives a contribution to the generalized Maslov index
of −1, so m = −2. Again, it’s interesting to see that we can identify this value from local
information. In this case, the only point in the Maslov box at which invariance is lost is
(.875,−.130), and we have already seen that its contribution to m will be −2. Since there are
no other contributions to m in this case, we conclude that m = −2. Using this information
in our application of Theorem 1.1, we can write

N#([−3, 1]) ≥ |#{x ∈ (0, L] : g(x; 0) ∩ q 6= {0}}+ (−2)| = 0.

In fact, it’s clear from the full Maslov box that N#([−3, 1]) = 0.

Acknowledgements. The author is grateful to Graham Cox for patiently answering numerous
questions about [2].
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Figure 6.3: Spectral curves for the system (6.18)–(6.31).
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