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Abstract

We consider the spectrum of the linear operator that arises upon linearization of the
Cahn–Hilliard equation in dimensions d ≥ 2 about a planar transition front (a solution
that depends on only one distinguished space variable and that has different values at
±∞). In previous work the author has established conditions on this spectrum under
which such planar transition fronts are asymptotically stable, and we verify here that
those conditions hold for all such waves arising in a general form of the Cahn–Hilliard
equation.

1 Introduction

We consider the Cahn–Hilliard equation on R
d, d ≥ 2,

ut = ∇ · {M(u)∇(F ′(u) − κ△u)}, (1.1)

where κ > 0 is assumed constant, and throughout the analysis we will make the following
assumptions:

(H0) M ∈ C2(R) and F ∈ C4(R).

(H1) F has a double-well form: there exist real numbers α1 < α2 < α3 < α4 < α5 so
that F is strictly decreasing on (−∞, α1) and (α3, α5) and strictly increasing on (α1, α3) and
(α5,+∞), and additionally F is concave up on (−∞, α2) ∪ (α4,+∞) and concave down on
(α2, α4).

We note that for each F satisfying assumptions (H0)–(H1), there exists a unique pair

of values u1 and u2 (the binodal values) so that F ′(u1) = [F ]
[u]

= F ′(u2) and the line passing

through (u1, F (u1)) and (u2, F (u2)) lies entirely on or below F . (Here, [u] = (u2 − u1) and
[F ] = F (u2) − F (u1).) We assume additionally:

(H2) For u ∈ [u1, u2], M(u) ≥ m0 > 0.
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For a discussion of the physicality of (1.1) and of the assumptions (H0)–(H2) the reader
is referred to the discussion in [7] and more generally to the references therein. We note here
that for any linear function G(u) = Au + B, we can replace F (u) in (1.1) without loss of
generality with F (u) −G(u). If we take

G(u) =
[F ]

[u]
u+ F (uh) −

[F ]

[u]
uh,

where uh is the unique value for which both F ′′(uh) < 0 and F ′(uh) = [F ]/[u], then F can
be assumed to be 0 at its local maximum and to have local minima at the binodal values
F (u1) = F (u2). Finally, replacing u with u− uh, we can shift F so that the local maximum
is located at u = 0.

Definition 1. We will say that a double well function F (u) for which the local maximum is
0 and occurs at u = 0 and for which the local minima u1 and u2 satisfy F (u1) = F (u2) is in
standard form.

Our first result regards the existence of planar transition front solutions ū(x1) to (1.1);
that is, the existence of solutions ū(x1) that satisfy the asymptotic relationship ū(±∞) = u±,
where u− 6= u+ and both values are bounded. This theorem is an immediate consequence of
Theorem 1.1 of [7].

Theorem 1.1 (Planar wave existence.). For equation (1.1), under conditions (H0)–(H2),
there exist two planar transition front solutions ū(x1) and ū(−x1), both of which are strictly
monotonic, and both of which approach the binodal values u1 < u2:

lim
x1→−∞

ū(x1) = u1; lim
x1→+∞

ū(x1) = u2.

Moreover, if M(u) > 0 for all u ∈ R, then these are the only two transition front solutions
for the associated F .

Upon linearization of (1.1) about ū(x1), we obtain the linear equation

vt = Lv := ∇ · {M(ū)∇(F ′′(ū)v − κ△v)}, (1.2)

with associated eigenvalue problem
Lϕ = λϕ. (1.3)

(The nonlinear terms dropped off in this linearization will not be considered here, but details
of the nonlinear analysis can be found in [8].) Observing that the coefficients of L depend
only on the distinguished variable x1, we take a Fourier transform in the transverse coordi-
nates x̃ := (x2, x3, ..., xd) (scaling the transform as

∫

Rd−1 e
−iξ·x̃). In this way, we obtain the

transformed operator
Lξ := −DξHξ, (1.4)
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where
Dξφ := −(M(ū)φ′)′ + |ξ|2M(ū)φ (1.5)

and
Hξφ := −κφ′′ + F ′′(ū)φ+ κ|ξ|2φ. (1.6)

Here, Lξ is clearly a sectorial operator, and it’s essential spectrum can be characterized by
its asymptotic behavior. That is, the essential spectrum of Lξ lies on or to the left of the
pair of contours described by

λess(l) := −|ξ|2M(u±)F ′′(u±)−κ|ξ|4M(u±)−M(u±)(F ′′(u±)+2κ|ξ|2)l2 −κM(u±)l4, (1.7)

with l ∈ [0,∞). For ξ ∈ R
d−1, the essential spectrum is clearly confined to the negative real

axis. We will also be interested in complexifications of ξ, with suitably small complex part,
and we note that in this case the essential spectrum can move away from the negative real
axis. In order for λ to be a point eigenvalue for Lξ there must exist some φ(x1;λ, ξ) ∈ L2(R)
such that

Lξφ = λφ. (1.8)

Letting φ−
1 (x1;λ, ξ) and φ−

2 (x1;λ, ξ) denote the two linearly independent asymptotically de-
caying solutions at −∞ of (1.8) (for λ away from essential spectrum), and φ+

1 (x1;λ, ξ) and
φ+

2 (x1;λ, ξ) similarly the two linearly independent asymptotically decaying solutions at +∞
(this decomposition is established in Lemma 3.1 of [8]), we note that the eigenfunction
φ(x1;λ, ξ) must be a linear combination of φ−

1 (x1;λ, ξ) and φ−
2 (x1;λ, ξ) and also of φ+

1 (x1;λ, ξ)
and φ+

2 (x1;λ, ξ). In this way, we only have an eigenvalue if there is linear dependence among
these four solutions; that is, if W (φ−

1 , φ
−
2 , φ

+
1 , φ

+
2 ) = 0, where W is the standard Wronskian

W (φ−
1 , φ

−
2 , φ

+
1 , φ

+
2 ) = det









φ−
1 φ−

2 φ+
1 φ+

2

φ−
1
′

φ−
2
′

φ+
1
′

φ+
2
′

φ−
1
′′

φ−
2
′′

φ+
1
′′

φ+
2
′′

φ−
1
′′′

φ−
2
′′′

φ+
1
′′′

φ+
2
′′′









.

Loosely following [1, 5, 11], we define the Evans function as

D(λ, ξ) := W (φ−
1 , φ

−
2 , φ

+
1 , φ

+
2 )

∣

∣

∣

x=0
. (1.9)

As observed in [8] (see also [12, 13]), this Evans function is not analytic in a neighborhood
of (λ, ξ) = (0, 0). Consequently, we will find it convenient to work with the variables

r := |ξ|2

ρ± =

√

λ+ b±r + c±r2

b± + 2c±r
,

(1.10)
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where b± = M(u±)F ′′(u±) and c± = κM(u±). The advantage of these variables is that if
(with a slight abuse of notation) we re-define the Evans function as

D(r, ρ−, ρ+) = W (φ−
1 (x1; r, ρ−), φ−

2 (x1; r, ρ−), φ+
1 (x1; r, ρ+), φ+

2 (x1; r, ρ+))
∣

∣

∣

x1=0
,

then there is a neighborhood of (r, ρ−, ρ+) = (0, 0, 0) in which D is analytic in each of its
arguments.

We are now in a position to state the main result of the paper.

Theorem 1.2 (Spectral stability). Suppose ū(x1) is a planar transition front solution to
(1.1) and suppose (H0)–(H2) hold, and additionally that F is in standard form, with ū(x1)
shifted so that ū(0) = 0. Then the eigenvalues of the operator Lξ, and equivalently the zeros
of the Evans function D(λ, ξ) satisfy the following:

1. There is a neighborhood V of the origin in complex ξ-space and a value δ > 0 so that for
all ξ ∈ V there exists an L2(R) eigenvalue λ∗(ξ) of Lξ that lies on the curve described by
the relations D(λ∗(ξ), ξ) = 0, λ(0) = 0 and is contained in the disk |λ| < δ. Moreover, for
ξ ∈ V , λ∗(ξ) is the only L2(R) eigenvalue of Lξ in this disk, and λ∗(ξ) satisfies

λ∗(ξ) = −λ3|ξ|3 + O(|ξ|4), (1.11)

where

λ3 =

√
2κ(M(u−) +M(u+))

[u]2

∫ min(u−,u+)

min(u−,u+)

√

F (x) − F (u−)dx. (1.12)

2. Outside the neighborhood described in Condition (1) (i.e., outside this region described by
ξ ∈ V and |λ| < δ), and for ξ = ξR+ iξI, with |ξI | sufficiently small, the point spectrum (i.e.,
L2(R) spectrum) of Lξ is contained to the left of a wedge in the λ complex plane described by

Re λ = −c1
(

|ξR|4 − C2|ξI |4 + |Im λ|
)

,

where c1 and C2 are both postive constants.

In the case of (1.1) with F (u) = 1
8
u4 − 1

4
u2, and M(u) ≡ 1, spectral conditions (1) and

(2) have been shown to hold in [12] (Lemma 1.3; see also [13]). These conditions have also
been established in [16], aside from one small gap in the analysis (see the final paragraph in
the first column of p. 806). Arguments based on perturbation methods appear in [3, 10]).
For the case M ≡ 1, the precise formulation (1.12) agrees with (2.14) of [16] and (27) of [3].

Combined with the nonlinear analysis of [8], we can conclude the following theorem on
the stability of planar transition front solutions.

Theorem 1.3. Suppose ū(x1) is a planar wave solution to (1.1) and suppose (H0)–(H2)
hold. Then for Hölder continuous initial perturbations (u(0, x) − ū(x)) ∈ C0+γ(Rd), γ > 0,
with

‖u(0, x) − ū(x)‖L1
x̃
≤ E0(1 + |x1|)−3/2, (1.13)
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for some E0 sufficiently small, there exists a function δ(t, x̃) so that

‖u(t, x) − ū(x1 − δ(t, x̃))‖Lpx̃
≤ CE0

[

(1 + t)−
d−1

2
(1− 1

p
) + (1 + t)−

d−1

3
(1− 1

p
)− 1

6
+σhd(t)

]

Θ(t, x1),

with
‖∂βx̃ δ(t, x̃)‖Lpx̃ ≤ CE0(1 + t)−

d−1

3
(1− 1

p
)−

|α̃|
3

+σ,

where |β| ≤ 1,

Θ(t, x1) = (1 + t)−1/2e−
x2
1
Lt + (1 + |x1| +

√
t)−

3

2 ,

and

hd(t) =

{

ln t d = 2

1 d ≥ 3,

where σ = 0 for d = 2, and the estimates are valid for any σ > 0 in the cases d ≥ 3.
Moreover, we have the derivative estimates

‖ux1
(t, x) − ū′(x1 − δ(t, x̃))‖Lpx̃

≤ CE0t
−1/4

[

(1 + t)−
d−1

3
(1− 1

p
)+ 1

12
+σΘ(t, x1) + (1 + t)−

d−1

3
(1− 1

p
)− 5

12hd(t)e
−η|x1|

]

and for k = 2, 3, ..., d,

‖∂xk
(

u(t, x) − ū(x1 − δ(t, x̃))
)

‖Lpx̃ ≤ CE0t
−1/4(1 + t)−

d−1

3
(1− 1

p
)+ 1

12 Θ(t, x1).

In the remainder of the paper, we give a proof of Theorem 1.2. The proof is divided
into two parts, corresponding with conclusions (1) and (2) of our theorem. In particular,
in Section 2, we employ a straightforward min–max estimate to establish estimates on the
spectrum of Lξ for ξ ∈ R

d−1, while in Section 3, we analyze the behavior of the leading
eigenvalue λ∗(ξ). Theorem 1.2 is established by a straightforward continuation argument for
complex values of ξ.

2 The Min–Max Principle Estimates

In this section, we employ the min–max principle argument of [12, 13] (Sections 1.2 and 4
respectively) to establish estimates on the spectrum of Lξ for ξ ∈ R

d−1. The following lemma
is a generalization of Lemma 1.3 of [12].

Lemma 2.1. Suppose ū(x1) is a planar wave solution to (1.1) and suppose (H0)–(H2) hold.
For ξ ∈ R

d−1, the point spectrum for the operator Lξ satisfies the following:

1. The point spectrum lies entirely on the real axis and is bounded to the left of −κm0|ξ|4,
where m0 = minu∈[u1,u2]M(u).
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2. For |ξ| ≤ δ, some δ > 0 sufficiently small, the leading eigenvalue of Lξ satisfies

λ∗(|ξ|) ≥ −c1|ξ|3,

for some constant c1 > 0, and the remainder of the point spectrum for Lξ lies to the left of
−c2|ξ|2, for some constant c2 > 0.

Proof. We begin by observing that for ξ = 0 the eigenvalue problem (1.8) reduces to

L0φ := (M(ū)(H0φ)′)′ = λφ; H0 := F ′′(ū) − κ∂xx, (2.1)

which is precisely the equation studied in [7] in the context of the Cahn–Hilliard equation
in one space dimension. In particular, it was shown in [7] that the spectrum (point and
essential) of L0 is contained in the negative real axis, and that the leading eigenvalue is at
λ = 0.

For ξ 6= 0, we proceed similarly as in the analyses of [4] and [12, 13] and write the
eigenvalue problem (1.8) in the form

DξHξφ = −λφ, (2.2)

where Dξ and Hξ are (for ξ ∈ R
d−1, ξ 6= 0) the positive self-adjoint operators defined in

(1.5) and (1.6). Since Dξ is positive and self-adjoint, it has a well-defined square root that is

also self-adjoint, and we set ϕ = D
−1/2
ξ φ. In this way, ϕ can be seen to solve the self-adjoint

eigenvalue problem
Lξ := D

1/2
ξ HξD

1/2
ξ ϕ = −λϕ. (2.3)

If φ is an L2 eigenfunction of (2.2) then ϕ is an L2 eigenfunction of (2.3). (This follows from
the observation that if φ is an L2 eigenfunction of (2.2) then it must decay at exponential

rate, and this exponential decay is inherited through D
−1/2
ξ by ϕ.) In practice, we can readily

compute D
−1/2
ξ by methods very similar to those of the nonlinear analysis of [8]. That is, we

can compute D
−1/2
ξ as the operator-valued Cauchy integral

D
−1/2
ξ =

1

2πi

∫

Γ

λ−1/2(λI −Dξ)
−1dλ, (2.4)

where the resolvent operator (λI −Dξ)
−1 can be computed in terms of the Green’s function

g(x, y;λ, ξ) for the operator (λI − Dξ). That is, if g solves the Green’s function equation
(λI −Dξ)g = δ(x− y), where δ denotes a standard Dirac delta function, then

(λI −Dξ)
−1φ =

∫ +∞

−∞

g(x, y;λ, ξ)φ(y)dy. (2.5)

The methods of [6], extended from the analyses of [9, 17], are sufficient for establishing the
required estimates on g.
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Letting now 〈·, ·〉 denote an inner product on L2(R), we have

〈ϕ,Lϕ〉 = 〈D1/2
ξ ϕ,HξD

1/2
ξ ϕ〉 = 〈D1/2

ξ ϕ,H0D
1/2
ξ ϕ〉 + κ|ξ|2〈D1/2

ξ ϕ,D
1/2
ξ ϕ〉,

where H0 is known from [7] to be a positive operator. Since L is a self-adjoint operator,
bounded from below, the min–max principle (see e.g. [14], Theorem XIII.1) gives that the
leading H2 eigenvalue −λ1(ξ) satisfies

−λ1(ξ) = inf
ϕ∈H2\{0}

〈ϕ,Lϕ〉
〈ϕ, ϕ〉 = inf

ϕ∈H2\{0}

[〈D1/2
ξ ϕ,H0D

1/2
ξ ϕ〉

〈ϕ, ϕ〉 + κ|ξ|2 〈Dξϕ, ϕ〉
〈ϕ, ϕ〉

]

= inf
ϕ∈H2\{0}

[〈D1/2
ξ ϕ,H0D

1/2
ξ ϕ〉

〈ϕ, ϕ〉 + κ|ξ|2 〈M(ū)ϕ′, ϕ′〉
〈ϕ, ϕ〉 + κ|ξ|4 〈M(ū)ϕ, ϕ〉

〈ϕ, ϕ〉
]

≥ κm0|ξ|4.
(2.6)

On the other hand, for |ξ| small, we recall H0ūx1
= 0, so that if we choose ϕ(x) = D

−1/2
ξ ūx1

,
we have

−λ1(ξ) ≤ κ|ξ|2 〈ūx1
, ūx1

〉
〈D−1

ξ ūx1
, ūx1

〉 , (2.7)

where

D−1
ξ ūx1

=

∫ +∞

−∞

g(x1, y1; 0, ξ)ūy1(y1)dy1.

From this representation, it is straightforward to see that the monotonicity of ū(x1) insures
that

〈D−1
ξ ūx1

, ūx1
〉 ≥ γ0|ξ|−1,

for some constant γ0 > 0. The first part of the second assertion of the lemma follows
immediately.

For the second part of the second assertion of the lemma, we observe that according to
the min–max principle, the second eigenvalue of Lξ satisfies

−λ2 = sup
v∈H2

inf
ϕ∈H2\{0}

〈ϕ,v〉=0

〈Lξϕ, ϕ〉
〈ϕ, ϕ〉 ≥ sup

v∈H2

inf
ϕ∈H2\{0}

〈ϕ,v〉=0

〈H0D
1/2
ξ ϕ,D

1/2
ξ ϕ〉

〈ϕ, ϕ〉 . (2.8)

If we now set ψ = D
1/2
ξ ϕ, then this last expression is equivalent to

sup
v∈H2

inf
ψ∈H1\{0}

〈D
−1/2
ξ ψ,v〉=0

〈H0ψ, ψ〉
〈D−1/2

ξ ψ,D
−1/2
ξ ψ〉

= sup
v∈H2

inf
ψ∈H1\{0}

〈ψ,D
1/2
ξ v〉=0

〈H0ψ, ψ〉
〈D−1/2

ξ ψ,D
−1/2
ξ ψ〉

= sup
w∈H1

inf
ψ∈H1\{0}

〈ψ,w〉=0

〈H0ψ, ψ〉
〈D−1/2

ξ ψ,D
−1/2
ξ ψ〉

.

(2.9)
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We can now obtain a lower bound on −λ2 by taking a particular choice of w. In particular,
it is observed in [7] (see also Section 5 of [2] and Section 2 of [15]) that for ψ ∈ H1(R)\{0},
with additionally 〈ψ, ūx1

〉 = 0, there holds 〈H0ψ, ψ〉 ≥ γ〈ψ, ψ〉, where γ > 0. Accordingly,
we choose w = ūx1

(x1) and obtain the inequality

−λ2 ≥ inf
ψ∈H1\{0}

〈ψ,ūx1 〉=0

〈H0ψ, ψ〉
〈D−1/2

ξ ψ,D
−1/2
ξ ψ〉

= inf
ψ∈H1\{0}

〈ψ,ūx1 〉=0

〈H0ψ, ψ〉
〈D−1

ξ ψ, ψ〉

= inf
ψ∈H1\{0}

〈ψ,ūx1 〉=0

〈H0ψ, ψ〉
〈ψ, ψ〉 · 〈ψ, ψ〉

〈D−1
ξ ψ, ψ〉 ≥ γ inf

ψ∈H1\{0}

〈ψ,ūx1 〉=0

〈ψ, ψ〉
〈D−1

ξ ψ, ψ〉 .

Finally, one can observe either from the asymptotic behavior of g(x, y; 0, ξ) or from spectral
considerations that

〈D−1
ξ ψ, ψ〉
〈ψ, ψ〉 ≤ C

|ξ|2 ,

from which we conclude −λ2 ≥ c|ξ|2 for some constant c. This establishes the second half
of Part (2) of Lemma 2.1, completing the proof. �

3 The Evans Function

In this section, we analyze the Evans function as defined in (1.9). For this analysis, it will
be convenient to write the operator Lξ in the expanded form

Lξφ = −(c(x1)φx1x1x1
)x1

+ (b(x1)φx1
)x1

− (a(x1)φ)x1

+ |ξ|2
[

(c(x1)φx1
)x1

+ c(x1)φx1x1

]

−
[

|ξ|2b(x1) + |ξ|4c(x1)
]

φ,
(3.1)

where
b(x1) = M(ū(x1))F

′′(ū(x1))

c(x1) = νM(ū(x1))

a(x1) = −M(ū(x1))F
′′′(ū(x1))ūx1

.

(3.2)

According to hypotheses (H0) and (H1), we have that a, b, c ∈ C1(R), and for k = 0, 1

|∂kx1
a(x1)| = O(e−α|x1|); |∂kx1

(b(x1) − b±)| = O(e−α|x1|); |∂kx1
(c(x1) − c±)| = O(e−α|x1|),

(3.3)
as x1 → ±∞, where α > 0 and ± denote the asymptotic limits as x1 → ±∞. We can now
write our eigenvalue problem (1.8) as a first order system

W ′ = A(x1;λ, ξ)W, (3.4)

8
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where

A(x1;λ, ξ) =









0 1 0 0
0 0 1 0
0 0 0 1

−λ+a′(x1)+|ξ|2b(x1)+|ξ|4c(x1)
c(x1)

+ b′(x1)−a(x1)+|ξ|2c′(x1)
c(x1)

b(x1)+2|ξ|2c(x1)
c(x1)

− c′(x1)
c(x1)









.

Under assumptions (H0) and (H1), A(x1;λ, ξ) has the asymptotic behavior

A(x1;λ, ξ) =

{

A−(λ, ξ) + E(x1;λ, ξ), x1 < 0

A+(λ, ξ) + E(x1;λ, ξ), x1 > 0,

where

A±(λ, ξ) := lim
x1→±∞

A(x1;λ, ξ) =









0 1 0 0
0 0 1 0
0 0 0 1

−λ+b±|ξ|2+c±|ξ|4

c±
0 b±+2|ξ|2c±

c±
0









, (3.5)

and for |λ| and |ξ| both bounded E(x1;λ, ξ) = O(e−α|x1|). The eigenvalues of the matrices
A±(λ, ξ), denoted here by µ± satisfy

c±µ
4
± − (b± + 2|ξ|2c±)µ2

± + (λ+ b±|ξ|2 + c±|ξ|4) = 0, (3.6)

or equivalently one of

µ2
± =

(b± + 2|ξ|2c±) −
√

b2± − 4c±λ

2c±
,

µ2
± =

(b± + 2|ξ|2c±) +
√

b2± − 4c±λ

2c±
.

In terms of the variables (1.10), we can write these eigenvalues as

µ±
1 = −

√

(
b±
2c±

+ r)

√

1 +
√

1 − 4c±ρ
2
±

µ±
2 = −

√

(
b±
2c±

+ r)
2
√
c±ρ±

√

1 +
√

1 − 4c±ρ2
±

µ±
3 = +

√

(
b±
2c±

+ r)
2
√
c±ρ±

√

1 +
√

1 − 4c±ρ2
±

µ±
4 = +

√

(
b±
2c±

+ r)

√

1 +
√

1 − 4c±ρ
2
±,

(3.7)
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where the slow eigenvalues µ±
2 and µ±

3 have been written in a form from which analyticity
in r and ρ± is apparent. (See the discussion of [6] just above Lemma 2.1. This development
follows closely the notation of [6]; the reader is also referred to the almost identical devel-
opment of [12], p. 11 and [13], p. 20, in which r is replaced by k2 and ρ± is replaced by
iτ .)

We are now in a position to state a lemma from [8] regarding the asymptotic behavior of
a choice of bases for the eigenvalue problem (1.8).

Lemma 3.1. For the eigenvalue problem (1.8), with Lξ as defined in (3.1) assume a, b, c ∈
C1(R), c(x1) ≥ c0 > 0, and additionally that (3.3) holds with finite values b± > 0 and
c± > 0. Then for some ᾱ > 0 and k = 0, 1, 2, 3, we have the following estimates on a choice
of linearly independent solutions of (1.8). For |λ| + |ξ|2 ≤ δ, some δ > 0 sufficiently small,
there holds:

(i) For x1 ≤ 0

∂kx1
φ−

1 (x1;λ, ξ) = eµ
−
3

(λ,ξ)x1(µ−
3 (λ, ξ)k + O(e−ᾱ|x1|))

∂kx1
φ−

2 (x1;λ, ξ) = eµ
−
4

(λ,ξ)x1(µ−
4 (λ, ξ)k + O(e−ᾱ|x1|))

∂kx1
ψ−

1 (x1;λ, ξ) = eµ
−
1

(λ,ξ)x1(µ−
1 (λ, ξ)k + O(e−ᾱ|x1|))

∂kx1
ψ−

2 (x1;λ, ξ) =
1

µ−
2 (λ, ξ)

(

µ−
2 (λ, ξ)keµ

−
2

(λ,ξ)x1 − µ−
3 (λ, ξ)keµ

−
3

(λ,ξ)x1

)

+ O(e−ᾱ|x1|).

(ii) For x1 ≥ 0

∂kx1
φ+

1 (x1;λ, ξ) = eµ
+

1
(λ,ξ)x1(µ+

1 (λ, ξ)k + O(e−ᾱ|x1|))

∂kx1
φ+

2 (x1;λ, ξ) = eµ
+

2
(λ,ξ)x1(µ+

2 (λ, ξ)k + O(e−ᾱ|x1|))

∂kx1
ψ+

1 (x1;λ, ξ) =
1

µ+
3 (λ, ξ)

(

µ+
3 (λ, ξ)keµ

+

3
(λ,ξ)x1 − µ+

2 (λ, ξ)keµ
+

2
(λ,ξ)x1

)

+ O(e−ᾱ|x1|)

∂kx1
ψ+

2 (x1;λ, ξ) = eµ
+

4
(λ,ξ)x1(µ+

4 (λ, ξ)k + O(e−ᾱ|x1|)).

We next state a technical lemma describing the behavior of the operator

T := −c(x1)∂
3
x1x1x1

+ b(x1)∂
2
x1

− a(x1)∂x1
(3.8)

(the integrated operator associated with L0) when acting on derivatives of the φ±
k with

respect to the parameters r and ρ±.

Lemma 3.2. Under the assumptions of Theorem 1.2, for the φ±
k as in Lemma 3.1, and

for T as defined in (3.8), we have the following relations, where for notational brevity we
have suppressed that the left hand side is evaluated in every case at the parameter values

10
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(r, ρ−, ρ+) = (0, 0, 0):

(i) T
∂φ−

1

∂ρ−
(x1) = b

3/2
−

(ii) T
∂φ+

2

∂ρ+
(x1) = −b3/2+

(iii) T
∂2φ−

2

∂ρ2
−

(x1) = 2b2−(ū(x1) − u−)

(iv) T
∂2φ+

1

∂ρ2
+

(x1) = −2b2+(u+ − ū(x1))

(v) T
∂φ−

2

∂r
(x1) = −b−(ū(x1) − u−) − c(x1)ūx1x1

(vi) T
∂φ+

1

∂r
(x1) = b+(u+ − ū(x1)) − c(x1)ūx1x1

(vii) T
(∂φ−

2

∂r
− ∂φ+

1

∂r

)

(x1) = −[bu] + [b]ū(x1).

Remark on the Proof. Though Lemma 3.2 is not stated in this useful form in [8], it is
proven in the course of the proof of Lemma 3.4 of that reference.

We next state a lemma regarding the Wronskian of (various combinations of) the φ±
k for

parameter values (r, ρ−, ρ+) = (0, 0, 0).

Lemma 3.3. Under the assumptions of Theorem 1.2, and for the φ±
k as in Lemma 3.1 we

have the following relations, where evaluation of the left hand side is taken at the parameter
values (r, ρ−, ρ+) = (0, 0, 0):

(i)W (φ−
1 , ūx1

)(x1) =
F ′′(u−)

κ
(ū(x1) − u−)

(ii)W (ūx1
, φ+

2 )(x1) =
F ′′(u+)

κ
(u+ − ū(x1)

(iii)W (φ−
1
′
, ūx1x1

)(x1) = −F
′′(u−)F ′′(u+)

κ2
[u] + O(e−η|x1|), x1 → +∞

(iv)W (φ−
1 , ūx1

, φ+
2 )(x1) = −F

′′(u−)F ′′(u+)

κ2
[u]

(v)W (∂ρ−φ
−
1 , ūx1

, φ+
2 )(x1) = −M(u−)1/2F

′′(u−)3/2F ′′(u+)

κ2
[u]x1 + O(e−η|x1|), x1 → −∞

(vi)W (∂ρ+φ
+
2 , φ

−
1 , ūx1

)(x1) = M(u+)1/2F
′′(u−)F ′′(u+)3/2

κ2
[u]x1 + O(e−η|x1|), x1 → +∞.

Proof. The proof of this lemma is quite similar to the proof of Theorem 1.1 of [7]. We begin
by more fully characterizing the functions φ±

k (x1, λ, ξ) at the point (r, ρ−, ρ+) = (0, 0, 0) (i.e.,

11
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(λ, ξ) = (0, 0)). At these parameter values, each of the φ±
k satisfies the equation

(

M(ū)(F ′′(ū)φ− κφ′′)′
)′

= 0, (3.9)

which can be integrated and divided by M so that

(F ′′(ū)φ− κφ′′)′ = 0. (3.10)

The solutions of (3.10) can be entirely characterized in terms of the three linearly independent

solutions ūx1
, φA(x1) := ūx1

∫ x1

0
dy

ūy(y)2
, and φB(x1) := ūx1

∫ x1

0
ū(y)
ūy(y)2

dy. In particular, for

(λ, ξ) = (0, 0) we can write

φ−
1 (x1) = α1φA(x1) + α2φB(x1)

φ+
2 (x1) = β1φA(x1) + β2φB(x1),

(3.11)

where by choice we can take the coefficient of ūx1
(x1) to be 0 (since any correction at this level

can be absorbed by the exponentially decaying error estimates of Lemma 3.1). Observing now
that φ−

1 (x1) remains bounded as x1 → −∞ and that φ+
2 (x1) remains bounded as x1 → +∞,

we can conclude the relations α1 = −u−α2 and similarly β1 = −u+β2. We have, then

φ−
1 (x1) = α2

(

− u−φA(x1) + φB(x1)
)

= α2ūx1
(x1)

∫ x1

0

ū(y) − u−
ūy(y)2

dy

φ+
2 (x1) = β2

(

− u+φA(x1) + φB(x1)
)

= β2ūx1
(x1)

∫ x1

0

ū(y) − u+

ūy(y)2
dy.

(3.12)

According to the normalization chosen in Lemma 3.1, we find α2 = −F ′′(u−)/κ and β2 =
−F ′′(u+)/κ. Given these exact expressions for φ−

1 (x1; 0, 0) and φ+
2 (x1; 0, 0), the first four

results of Lemma 3.3 become straightforward calculations.
For result (v), we begin by observing that the estimates of Lemma 3.1, along with ana-

lyticity in the variables (r, ρ−, ρ+), give the asymptotic relations

dk

dxk1

∂φ−
1

∂ρ−
(x1; 0, 0) =

dk

dxk1
(
√

b−x1) + O(e−η|x1|), x1 → −∞,

for k = 0, 1, 2. We have, then,

W (∂ρ−φ
−
1 , ūx1

, φ+
2 )(x1) = det





√

b−x1 ūx1
φ+

2 (x1)
√

b− ūx1x1
φ+

2
′
(x1)

0 ūx1x1x1
φ+

2
′′
(x1)



 + O(e−η|x1|), x1 → −∞,

and the result follows from an exact calculation involving (3.12).
The proof of (vi) is almost precisely the same as that of (v). �

We are now in a position to prove the main technical lemma of the section. This signifi-
cantly improves Lemma 3.4 of [8].

12
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Lemma 3.4. Under the assumptions of Theorem 1.2, for the φ±
k as in Lemma 3.1, there

exists a neighborhood V of (r, ρ−, ρ+) = (0, 0, 0) such that the Evans function
is analytic in V . Moreover, if (without loss of generality) we specify the choice

φ+
1 (x1; 0, 0) = ūx1

(x1) = φ−
2 (x1; 0, 0), (3.13)

there holds

D(r, ρ−, ρ+) = D(0, 0, 0)+

∞
∑

k=1

1

k!
(r∂r′ +ρ−∂ρ′− +ρ+∂ρ′

+
)kD(r′, ρ′−, ρ

′
+)

∣

∣

∣

(r′,ρ′−,ρ
′
+)=(0,0,0)

, (3.14)

with

D(0, 0, 0) =
∂D

∂ρ±
(0, 0, 0) =

∂D

∂ρ−∂ρ+
(0, 0, 0) = 0;

∂D

∂r
(0, 0, 0) = −F

′′(u−)F ′′(u+)

κ2c(0)
[bu][u]

∂2D

∂ρ±∂ρ±
(0, 0, 0) = ±F

′′(u−)F ′′(u+)

κ2c(0)
2[u]b2±u±.

(3.15)

In addition, we have the combination

A :=
1

√

b−
Drρ− +

1
√

b+
Drρ+ +

1

6b
3/2
−

Dρ−ρ−ρ− +
1

6b
3/2
+

Dρ+ρ+ρ+

+
1

2b−
√

b+
Dρ−ρ−ρ+ +

1

2b+
√

b−
Dρ−ρ+ρ+

=
F ′′(u−)F ′′(u+)

κ2M(0)
(M(u−) +M(u+))

∫ +∞

−∞

ūx1
(x1)

2dx1,

(3.16)

where the entire right hand side is evaluated at (r, ρ−, ρ+) = (0, 0, 0).

Proof. First, the statement regarding D(0, 0, 0), ∂D
∂ρ±

(0, 0, 0), ∂D
∂ρ−∂ρ+

(0, 0, 0) is taken directly

from Lemma 3.4 of [8]. For ∂D
∂r

(0, 0, 0) (for which the current claim improves on the result
of Lemma 3.4 of [8]), we begin by observing that a straightforward calculation gives

∂D

∂r
(0, 0, 0) = W (φ−

1 , ∂r(φ
−
2 − φ+

1 ), ūx1
, φ+

2 )
∣

∣

∣

x1=0
,

where evaluation of the right hand side at (r, ρ−, ρ+) = (0, 0, 0) is suppressed for notational
convenience. (More details on the first steps of the analysis are given in the proof of Lemma

13
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3.4 of [8].) We have now

W (φ−
1 , ∂r(φ

−
2 − φ+

1 ), ūx1
, φ+

2 )(x1) = det









φ−
1 ∂r(φ

−
2 − φ+

1 ) ūx1
φ+

2

φ−
1
′

∂r(φ
−
2 − φ+

1 )′ ūx1x1
φ+

2
′

φ−
1
′′

∂r(φ
−
2 − φ+

1 )′′ ūx1x1x1
φ+

2
′′

φ−
1
′′′

∂r(φ
−
2 − φ+

1 )′′′ ūx1x1x1x1
φ+

2
′′′









= det











φ−
1 ∂r(φ

−
2 − φ+

1 ) ūx1
φ+

2

φ−
1
′
∂r(φ

−
2 − φ+

1 )′ ūx1x1
φ+

2
′

φ−
1
′′
∂r(φ

−
2 − φ+

1 )′′ ūx1x1x1
φ+

2
′′

0 [bu]−[b]ū(x1)
c(x1)

0 0











,

where this final equality is a consequence of the observation made previously that for
(r, ρ−, ρ+) = (0, 0, 0), φ−

1 , ūx1
, and φ+

2 are all solutions of (3.10), while (φ−
2 − φ+

1 ) satis-
fies Lemma 3.2 (vii). This establishes the equality

W (φ−
1 , ∂r(φ

−
2 − φ+

1 ), ūx1
, φ+

2 )(x1) =
[bu] − [b]ū(x1)

c(x1)
W (φ−

1 , ūx1
, φ+

2 )(x1),

where W (φ−
1 , ūx1

, φ+
2 )(x1) is a Wronskian associated with (3.10) and is consequently constant

as a function of x1. In light of this, we have

W (φ−
1 , ūx1

, φ+
2 )(0) = lim

x1→+∞
W (φ−

1 , ūx1
, φ+

2 )(x1) = lim
x1→+∞





φ−
1 ūx1

1

φ−
1
′

ūx1x1
0

φ−
1
′′
ūx1x1x1

0



 , (3.17)

where in this last equality we have observed that derivatives of φ+
2 (x1) decay at exponential

rate as x1 → +∞, and that this decay, along with the exponential decay of ūx1
insures that

there is no contribution from φ+
2
′
(x1) and φ+

2
′′
(x1). The result on ∂D

∂r
(0, 0, 0) now follows

immediately from Lemma 3.3 (iii).
The expressions for ∂2D

∂ρ±∂ρ±
(0, 0, 0) can be derived with a calculation almost identical to

the one employed above for ∂D
∂r

(0, 0, 0), and we omit it.
The relation (3.16) is obtained by a tedious calculation in which we find expressions

for each of the derivatives involved. Since these derivations are all similar, we will include
the full analysis only for Drρ−(0, 0, 0) (though for completeness, we will state the individual
expression for each). Similarly as in our study of Dr(0, 0, 0), our starting point is the relation

Drρ−(0, 0, 0) = W (∂ρ−φ
−
1 , ∂r(φ

−
2 − φ+

1 ), ūx1
, φ+

2 )(0),

where

W (∂ρ−φ
−
1 , ∂r(φ

−
2 − φ+

1 ), ūx1
, φ+

2 )(x1) = det











∂ρ−φ
−
1 ∂r(φ

−
2 − φ+

1 ) ūx1
φ+

2

∂ρ−φ
−
1
′
∂r(φ

−
2 − φ+

1 )′ ūx1x1
φ+

2
′

∂ρ−φ
−
1
′′
∂r(φ

−
2 − φ+

1 )′′ ūx1x1x1
φ+

2
′′

− b
3/2
−

c(x1)
[bu]−[b]ū(x1)

c(x1)
0 0











,

14
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and where this final equality is a consequence of previous observations and also Lemma 3.2
(i). This final determinant can be written as

b
3/2
−

c(x1)
W (∂r(φ

−
2 − φ+

1 ), ūx1
, φ+

2 )(x1) +
[bu] − [b]ū(x1)

c(x1)
W (∂ρ−φ

−
1 , ūx1

, φ+
2 )(x1).

We now separately analyze each of the Wronskians in this last expression, beginning with
W (∂r(φ

−
2 − φ+

1 ), ūx1
, φ+

2 )(x1), which we further subdivide as

W (∂r(φ
−
2 − φ+

1 ), ūx1
, φ+

2 )(x1) = W (∂rφ
−
2 , ūx1

, φ+
2 )(x1) −W (∂rφ

+
1 , ūx1

, φ+
2 )(x1).

For the first of these last two Wronskians, we observe

lim
x1→−∞

W (∂rφ
−
2 , ūx1

, φ+
2 )(x1) = 0,

so that

W (∂rφ
−
2 , ūx1

, φ+
2 )(x1) =

∫ x1

−∞

d

dx1

W (∂rφ
−
2 , ūx1

, φ+
2 )(x1),

where

d

dx1

W (∂rφ
−
2 , ūx1

, φ+
2 )(x1) = det





∂rφ
−
2 ūx1

φ+
2

∂rφ
−
2
′

ūx1x1
φ+

2
′

∂rφ
−
2
′′′

ūx1x1x1x1
φ+

2
′′′





= det





∂rφ
−
2 ūx1

φ+
2

∂rφ
−
2
′

ūx1x1
φ+

2
′

ūx1x1
+ b−(ū(x1)−u−)

c(x1)
0 0



 =
[

ūx1x1
+
b−(ū(x1) − u−)

c(x1)

]F ′′(u+)

κ
(u+ − ū(x1)),

(3.18)
where for the last equality we have used Lemma 3.3 (ii). We conclude that

W (∂rφ
−
2 , ūx1

, φ+
2 )(0) =

∫ 0

−∞

[

ūx1x1
+
b−(ū(y) − u−)

c(y)

]F ′′(u+)

κ
(u+ − ū(y))dy. (3.19)

Proceeding similarly, we can show

W (∂rφ
+
1 , ūx1

, φ+
2 )(0) = −

∫ +∞

0

[

ūx1x1
− b+(u+ − ū(y))

c(y)

]F ′′(u+)

κ
(u+ − ū(y))dy. (3.20)

We next consider the Wronskian W (∂ρ−φ
−
1 , ūx1

, φ+
2 )(x1), for which one final aspect of the

analysis arises. Recalling from Lemma 3.3 (vi) that we understand this Wronskian as x1

approaches −∞, we write

W (∂ρ−φ
−
1 , ūx1

, φ+
2 )(x1) = W (∂ρ−φ

−
1 , ūx1

, φ+
2 )(x̄1) +

∫ x1

x̄1

d

dy
W (∂ρ−φ

−
1 , ūx1

, φ+
2 )(y)dy,

15
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where x̄1 can be any value in (−∞, x1]. Proceeding similarly as in (3.18), we can show that

d

dx1
W (∂ρ−φ

−
1 , ūx1

, φ+
2 )(x1) = − b

3/2
−

c(x1)

F ′′(u+)

κ
(u+ − ū(x1)).

If we combine this last expression with Lemma 3.3 (vi), we have

W (∂ρ−φ
−
1 , ūx1

, φ+
2 )(0) =

∫ 0

x̄1

b
1/2
− [u]

F ′′(u−)F ′′(u+)

κ2
− b

3/2
− F ′′(u+)

κc(x1)
(u+ − ū(x1))dx1.

Taking a limit now as x̄1 → −∞, we conclude

W (∂ρ−φ
−
1 , ūx1

, φ+
2 )(0) =

∫ 0

−∞

b
1/2
− [u]

F ′′(u−)F ′′(u+)

κ2
− b

3/2
− F ′′(u+)

κc(x1)
(u+ − ū(x1))dx1. (3.21)

Combining (3.19), (3.20), and (3.21), and recalling the definitions (3.2) we find

Drρ−(0, 0, 0) =
b
1/2
− M(u−)F ′′(u−)F ′′(u+)

κ3M(0)

[

κ

∫ +∞

−∞

ūx1
(x1)

2dx1 − b+

∫ +∞

0

(u+ − ū(x1))
2

M(ū(x1))
dx1

+

∫ 0

−∞

[bu][u]

M(u−)
− (b+u+ − b−ū(x1))(u+ − ū(x1))

M(ū(x1))
dx1

]

.

Proceeding similarly, we can establish each of the following:

Drρ+(0, 0, 0) =
b
1/2
+ M(u+)F ′′(u−)F ′′(u+)

κ3M(0)

[

κ

∫ +∞

−∞

ūx1
(x1)

2dx1 − b−

∫ 0

−∞

(ū(x1) − u−)2

M(ū(x1))
dx1

+

∫ +∞

0

[bu][u]

M(u+)
− (b+ū(x1) − b−u−)(ū(x1) − u−)

M(ū(x1))
dx1

]

.

Dρ−ρ−ρ−(0, 0, 0) =
6b

5/2
− M(u−)F ′′(u−)F ′′(u+)

κ3M(0)

∫ 0

−∞

[u]u−
M(u−)

− (u+ − ū(x1))ū

M(ū(x1))
dx1.

Dρ+ρ+ρ+(0, 0, 0) = −6b
5/2
+ M(u+)F ′′(u−)F ′′(u+)

κ3M(0)

∫ +∞

0

[u]u+

M(u+)
− (ū(x1) − u−)ū

M(ū(x1))
dx1.

Dρ−ρ−ρ+(0, 0, 0) =
2b

1/2
+ b2−M(u+)F ′′(u−)F ′′(u+)

κ3M(0)

[

∫ 0

−∞

(ū(x1) − u−)2

M(ū(x1))
dx1

+

∫ +∞

0

[u]u−
M(u+)

− (ū(x1) − u−)u−
M(ū(x1))

dx1

]

.

Dρ−ρ+ρ+(0, 0, 0) =
2b

1/2
− b2+M(u−)F ′′(u−)F ′′(u+)

κ3M(0)

[

∫ +∞

0

(u+ − ū(x1))
2

M(ū(x1))
dx1

−
∫ 0

−∞

[u]u+

M(u−)
− (u+ − ū(x1))u+

M(ū(x1))
dx1

]

.

The final claim of Lemma 3.4 can now be obtained by combining these expressions. �

We now state our main lemma on the behavior of λ∗(ξ).
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Lemma 3.5. Under the assumptions of Theorem 1.2, there exists a neighborhood V of the
origin in complex ξ-space and a value δ > 0 so that for all ξ ∈ V there exists an L2(R)
eigenvalue λ∗(ξ) of Lξ that lies on the curve described by the relations D(λ∗(ξ), ξ) = 0,
λ(0) = 0 and is contained in the disk |λ| < δ. Moreover, for ξ ∈ V , λ∗(ξ) is the only L2(R)
eigenvalue of Lξ in this disk, and λ∗(ξ) satisfies

λ∗(ξ) = −λ3|ξ|3 + O(|ξ|4), (3.22)

where

λ3 =

√
2κ(M(u−) +M(u+))

[u]2

∫ min(u−,u+)

min(u−,u+)

√

F (x) − F (u−)dx. (3.23)

Proof. First, we observe that since |ξ| appears only with lower order terms in the eigen-
value problem Lξφ = λφ, the existence of such a λ∗(ξ) follows from standard perturbation
techniques. In order to understand the precise form of λ∗(ξ) and to verify its uniqueness,
we observe that for |ξ| sufficiently small λ∗(ξ) must correspond with a zero of D(r, ρ−, ρ+).
Such zeros were analyzed in detail in [8] Lemma 3.5, where it was shown that

λ∗(ξ) = −λ3|ξ|3 + O(|ξ|4),

where

λ3 = 2b
3/2
−

A

B
,

where A is as defined in (3.16) and

B =
1

√

b−
Dρ−ρ−(0, 0, 0) +

b
3/2
−

b2+
Dρ+ρ+(0, 0, 0).

Combining these observations with Lemma 3.4 we conclude

λ3 =
κ

[u]2
(M(u−) +M(u+))

∫ +∞

−∞

ūx1
(x1)

2dx1.

If F (u) is in the standard form of Definition 1, then it is easy to see that

ū2
x1

=
2

κ
(F (ū) − F (u−)),

and consequently

λ3 =
2

[u]2
(M(u−) +M(u+))

∫ +∞

−∞

(F (ū(x1)) − F (u−))dx1.

For the case u− < u+, ū(x1) is a strictly increasing function of x1, and we are justified in
making the change of variables y = ū(x1), from which we conclude (3.23). Clearly, the same
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calculation works for u+ < u−, where in that case ū(x1) is a strictly decreasing function of
x1.

Finally, we note that there can be no other zeros of the Evans function for (r, ρ−, ρ+) in
a neighborhood of (0, 0, 0), giving uniqueness. �

Proof of Theorem 1.2. First, for ξ in the described neighborhood V , Lemma 3.5 en-
tirely characterizes the part of σpt(Lξ) that lies in |λ| < δ. (Here, σpt(Lξ) denotes the
point spectrum of Lξ; i.e., the eigenvalues for which there corresponds an L2(R) eigenfunc-
tion.) Since ξ ∈ R

d−1 implies (by Lemma 2.1) σpt(Lξ) ∈ R−, we have that for ξ ∈ R
d−1,

σpt\{λ∗(ξ)} ≤ −δ. For |ξ| away from V , there exists some δ1 > 0 so that |ξ| ≥ δ1. For
ξ ∈ R

d−1 the estimates of Lemma 2.1 insure that the spectrum of Lξ is bounded to the left
of −κm0δ

4
1, where m0 = minu∈[u1,u2]M(u). Regarding the complexification ξ = ξR + iξI now

as a perturbation of ξ, Condition (2) of Theorem 1.2 follows from continuity of the spectrum
of Lξ and from the observation that there is a value R > 0 sufficiently large so that for
|λ| + |ξ|2 ≥ R the operator Lξ has no eigenvalues (point spectrum). �
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