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Abstract

We consider the spectrum associated with three types of bounded stationary solu-
tions for the Cahn–Hilliard equation on Rd, d ≥ 2: radial solutions, saddle solutions
(only for d = 2), and planar periodic solutions. In particular, we establish spectral
instability for each type of solution. The important case of multiply periodic solutions
does not fit into the framework of our approach, and we do not consider it here.

1 Introduction

We consider the Cahn–Hilliard equation on Rd, d ≥ 2,

ut = ∆(F ′(u)−∆u), (1.1)

where throughout the analysis we will make the following standard assumption on F :

(H) F ∈ C4(R) has a double-well form: there exist real numbers α1 < α2 < α3 < α4 < α5

so that F is strictly decreasing on (−∞, α1) and (α3, α5) and strictly increasing on (α1, α3)
and (α5,+∞), and additionally F is concave up on (−∞, α2)∪ (α4,+∞) and concave down
on (α2, α4).

We observe at the outset that for each F satisfying assumptions (H), there exists a unique

pair of values u1 and u2 (the binodal values) so that F ′(u1) = F (u2)−F (u1)
u2−u1

= F ′(u2) and the
line passing through (u1, F (u1)) and (u2, F (u2)) lies entirely on or below F .

For a general discussion of the Cahn–Hilliard equation, its history and some of its appli-
cations, see the review in J. W. Cahn’s 1967 Institute of Metals Lecture, printed as [7]. For
an overview of results on unbounded domains Rd see the series of papers [17, 18, 19, 20],
which will be referred to throughout. Our interest in bounded stationary solutions, and
in particular with the spectrum associated with such solutions, is motivated in part by a
suggestion of Langer’s, described in [22] (p. 71) as follows: “1. A decomposing alloy, at least
during the late stages of coarsening, spends most of its time in configurations which are very
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nearly stationary solutions of the generalized diffusion equation. 2. The rate of decay of one
of these stationary solutions is determined primarily by thermal fluctuations.” According to
this point of view, we expect solutions of (1.1) to evolve as follows: at each time t, u(t, x)
will be a perturbation of a stationary solution, with the perturbation determined by thermal
fluctuations in the material. In the event that u(t, x) is a perturbation of an unstable sta-
tionary solution, the rate at which u(t, x) moves away from this solution will be determined
by these thermal fluctuations and by the leading eigenvalue of the linear operator obtained
upon linearization of (1.1) about the stationary solution.

For the Cahn–Hilliard equation in one space dimension (d = 1) there are precisely three
types of bounded non-constant stationary solutions: periodic solutions, pulse-type rever-
sal solutions, and monotonic transition waves. As shown in [17, 19] these can be classified
according to their stability properties as follows: each reversal solution is unstable with a
positive real eigenvalue, while each transition wave is spectrally and non-linearly (phase-
asymptotically) stable. The periodic solutions are spectrally unstable to general perturba-
tions, with a positive real eigenvalue, but appear to be stable to perturbations with the same
period as the wave.

In the case d ≥ 2, each of these one-dimensional waves can be regarded as a planar solu-
tion, and in addition there are several more complicated stationary solutions. For example, in
all cases d ≥ 2 there exist radial solutions ū(r), r = |x|, that satisfy ū′(0) = 0, ū′(r) < 0, for
r > 0, and limr→∞ = u∞ (see [5] and Section 2 of the current paper). Moreover, in the case
d = 2 there exist saddle solutions which (after an appropriate change of variables; see below)
have infimum u1 and supremum u2 (the binodal values) and which have the same sign as xy
(see [10, 31] and Section 2 of the current paper), doubly periodic solutions with rectangular
nodal domains [12, 21], and doubly periodic solutions with non-rectangular nodal domains
[12, 25]. (This list is not intended to be exhaustive.) Regarding stability of these solutions,
planar reversals inherit spectral instability from the case d = 1, while it has been shown in
[18, 20] that planar transition fronts are both spectrally and nonlinearly stable. Generally
speaking, planar periodic waves also inherit spectral instability from the case d = 1, though
not to perturbations with the same period as the wave.

In the current paper, we consider the spectrum associated with radial solutions, saddle
solutions, and with planar periodic solutions under perturbations periodic in the direction of
the wave, with the same period as the wave. In particular, we establish spectral instability
for each type of solution. The important case of multiply periodic solutions does not fit into
the framework of our approach, and we do not consider it here.

We note for convenience that for any linear function G(u) = Au + B, we can replace
F (u) in (1.1) with H(u) = F (u)−G(u). If we take

G(u) =
F (u2)− F (u1)

u2 − u1

u+ F (uh)−
F (u2)− F (u1)

u2 − u1

uh,

where uh is the unique value for which both F ′′(uh) < 0 and F ′(uh) = (F (u2)−F (u1))/(u2−
u1), then H(u) has a local maximum H = 0 and local minima at the binodal values H(u1) =
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H(u2). Finally, replacing u with u+uh, we can shift H so that the local maximum is located
at u = 0. We will refer to a double well function F (u) for which the local maximum occurs
at u = 0 and with equivalent local minima as standard form.

Upon linearization of (1.1) about a bounded stationary solution ū, and dropping higher
order terms, we obtain the linear perturbation equation

vt = Lv = ∆Hv, (1.2)

where
H := −∆ + F ′′(ū). (1.3)

The eigenvalue problem associated with (1.2) is

∆Hφ = λφ. (1.4)

It is important in what follows that the Cahn–Hilliard equation can be regarded as an
H−1 (constrained) gradient flow associated with the energy functional

E(u) =

∫
Ω

F (u) +
1

2
|∇u|2dx. (1.5)

(See, for example, [11] for a development of (1.1) as a contrained gradient flow.) More
precisely, (1.1) can be written in the form

ut = ∆
δE

δu
,

and stationary solutions can be viewed either as critical points of the energy ( δE
δu

= 0) or as
critical points associated with an appropriate Lagrange multiplier ( δE

δu
= c, for some constant

c). In either case, it is natural to consider the second variational derivative of E(u) evaluated
at such stationary solutions; that is, to consider the operator H := δ2E

δu2 (ū) (equivalent to H
as defined above). These considerations lead to a natural definition of variational stability,
taken from [8]:

Definition 1.1. We will say that a bounded stationary solution ū(x) of (1.1) is variationally
stable if

〈Hφ, φ〉 :=

∫
Rd

φHφdx ≥ 0

for all φ ∈ C∞c (Rd) (i.e., the space of infinitely differentiable functions with compact support).
If ū(x) is not variationally stable then we say it is variationally unstable.

We note that while our source for this terminology was [8], the importance of 〈Hφ, φ〉 in
analyzing the spectrum for (1.4) has been observed in [1, 3, 22] and others.

Our main concern in studying radial and saddle solutions to (1.1) will consist in showing
that variational instability implies spectral instability, defined as follows:
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Definition 1.2. We will say that ū is spectrally unstable as a solution to (1.1) if (1.4) admits
a positive L2(Rd) eigenvalue.

We note that it is immediate that if ū(x) is variationally stable then it is spectrally stable
as a solution of the Allen–Cahn equation ut = ∆u−F ′(u) (i.e., the gradient flow of E in L2).
It is the implication regarding ū(x) as a stationary solution of (1.1) that requires justification.
In the case that (1.1) is specified on a bounded domain Ω, with natural boundary conditions

∂u

∂ν
=
∂∆u

∂ν
= 0 on ∂Ω, (1.6)

the relationship between variational stability and spectral stability has been studied in [3].
(The authors point out in [3] that the essential feature of this connection was exploited by
Langer in [22].) In particular, our analysis of radial solutions here is closely related to the
analysis of spike layer solutions in [4]. (Spike layer solutions are approximately constant in
most of Ω, with several spikes at locations either in the interior of Ω or on its boundary.
Each individual spike can be constructed as an approximate scaling of some radial solution
of the problem on Rd. See, for example, [2, 4, 6] and the references therein.) Generally
speaking, our approach is quite similar to that of [3] in that we we show that the spectral
min–max principle can be used to relate eigenvalues of the fourth-order problem (1.4) to the
action of the second-order Hamiltonian-type operator H. We note two primary differences,
however: first, in connecting the problem (1.4) with H we must consider the map (−∆)1/2

and its inverse, and this is generally quite delicate in unbounded domains. For example,
we note in Section 3 that for φ ∈ C∞c (R2) the Hardy–Littlewood–Sobolev estimate does not
imply (−∆)−1/2φ ∈ L2(R2), which would be natural for the analysis. Second, since mass is
naturally conserved for Ω bounded (i.e.,

∫
Ω
u(x, t)dx = c for all t ≥ 0), the eigenfunctions in

that case have zero mass, ∫
Ω

φ(x)dx = 0.

In the case Ω = Rd the concept of mass is ill-defined, and L2(Rd) eigenfunctions of a fixed
sign naturally arise. Indeed, it’s clear from our analysis that the eigenfunctions associated
with the unstable eigenvalues identified here for both radial and saddle solutions have fixed
signs. Heuristically, our point of view is that when we consider the problem on Rd we are
effectively taking a region in the bounded-domain problem that is far from the boundary
and magnifying it (i.e., regarding it as the inner solution for an appropriate perturbation
expansion). From this point of view it isn’t natural to restrict our eigenspace to zero-mass
eigenfunctions. On the other hand, the question of stability in this restricted question is
quite interesting.

Our second interest in this paper is with planar periodic solutions ū(x1), and more pre-
cisely with perturbations of such solutions that are periodic in x1 with the same period as
ū(x1). It is known from [19] that for d = 1 ū(x) is generally unstable as a solution to (1.1),
and this instability is inherited by the planar solution ū(x1). On the other hand, ū(x) appears
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stable to perturbations that have the same period as the wave (this appearance is suggested
both by a positive stability index, consistent with stability, and by numerical evidence),
and so it is natural to ask whether ū(x1) is stable to transverse perturbations; that is, to
perturbations with the same period as ū(x1) but otherwise relatively general. The natural
tools for such an analysis are the standard Floquet theory and the Evans function, the latter
of which we adapt from work of Gardner [13, 14, 15] and of Oh and Zumbrun [26, 27]. In
keeping with the analysis in [20] of the spectrum associated with planar transition fronts,
we work in this case with the more general Cahn–Hilliard equation

ut = ∇ · {M(u)∇(−κ∆u+ F ′(u))}, (1.7)

for which we make assumption (H) from above and add the following:

(Hp) M ∈ C2(R) and M(u) ≥ M0 > 0 for all u ∈ [u1, u2], where u1 and u2 are the
binodal values.

Upon linearization of (1.7) about about a planar stationary solution ū(x1) (assumed to
solve −κ∆ū+ F ′(ū) = c for some constant c), we obtain the linear equation

vt = L̃v := ∇ · {M(ū)∇(F ′′(ū)v − κ4v)}, (1.8)

with associated eigenvalue problem
L̃ϕ = λϕ. (1.9)

(Our use of ˜ serves only to distinguish L̃ from the previously defined linearized operator.)
Observing that the coefficients of L̃ depend only on the distinguished variable x1, we take a
Fourier transform in the transverse coordinates x̃ := (x2, x3, ..., xd) (scaling the transform as
(2π)(1−d)/2

∫
Rd−1 e

−iξ·x̃dx̃). If we adopt the notation r = |ξ|2, and for simplicity let Lr denote
the transformed linear operator, we obtain the transformed eigenvalue problem

Lrφ = λφ, (1.10)

where Lr = −DrHr, with
Drφ := −(M(ū)φ′)′ + rM(ū)φ (1.11)

and
Hrφ := −κφ′′ + F ′′(ū)φ+ κrφ. (1.12)

Specializing now to periodic solutions, we proceed by looking for Floquet solutions of the
form

φ(x1) = eiωx1p(x1), (1.13)

where p(x1) is periodic with the same period as ū(x1) and ω ∈ R. Generally speaking, we
would search for values λ for which there exists some ω ∈ R so that the eigenvalue problem

Lωp = λp; p(k)(0) = p(k)(X), k = 0, 1, 2, 3, (1.14)
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where
Lω := e−iωx1Lre

iωx1 . (1.15)

has a solution. It is already known, however, from [19] that for a given planar periodic
solution ū(x1) there exists some ω ∈ R that corresponds with a positive real eigenvalue.
Here, rather, we are interested in a specific class of perturbations, those with the same
period as ū(x1) in x1. As discussed in [26] (the discussion following Remark 3.3), values
ω = 2π

n
, n = 1, 2, . . . correspond with perturbations that have period nX in x1, where X is

the period of ū(x1). The case n = 1, equivalent to ω = 0, corresponds with perturbations
with period X in x1. In this case, the Floquet eigenvalue problem becomes

−DrHrp = λp,

p(k)(0) = p(k)(X); k = 0, 1, 2, 3.
(1.16)

We will be concerned with the following question: Given that ū(x1) is spectrally stable to
periodic perturbations in the case d = 1, is it spectrally stable to perturbations in d ≥ 2
that are periodic in the direction x1? Our answer to this is negative.

Theorem 1.1. For equation (1.1), under conditions (H) and (Hp), let u3 and u4 denote real
numbers fixed between the binodal values such that u1 < u3 < u4 < u2, and such that

F ′(u3) >
F (u4)− F (u3)

(u4 − u3)
> F ′(u4).

Then there exists a planar periodic solution to (1.1) with minimum value u3 and maximum
value u4. Under the additional assumption M(u) ≥ m0 > 0 for all u ∈ R, this categorizes
all possible periodic solutions to (1.1).

Suppose, in addition to the above conditions, that F (4)(u) > 0 for all u ∈ R. Then each
of these planar periodic solutions is spectrally unstable in the following senses: (1) (General
perturbations) There exists some ω ∈ R so that the eigenvalue problem (1.14) with r = 0 has
a real positive eigenvalue; and (2) (Periodic perturbations) In the case ω = 0 there exists
some value r ≥ 0 so that the eigenvalue problem (1.16) has a real positive eigenvalue.

Remark 1.1. We observe that the restriction F (4)(y) > 0 is mild in this case and trivially
covers, for example, the case in which F is a fourth order polynomial (in double-well form).
Also, it will be clear from the analysis in Section 4 that this is not a necessary condition,
and functions that fail to satisfy it can be tested with techniques similar to those developed
here.

2 Radial and Saddle Solutions

In this section we review known results regarding the existence and structure of radial and
saddle solutions, and we also discuss what is known about the variational stability of such
solutions.
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2.1 Radial Solutions

We will state an existence result for radial solutions of the PDE

−∆u+ F ′(u) = c, (2.1)

where c is some constant value. Letting r = |x|, we have that radial solutions ū(r) of (2.1)
must satisfy the ODE

−ū′′ − d− 1

r
ū′ = c− F ′(u), (2.2)

where we recall that d is the dimension of the space. We will look for monotonic solutions to
the boundary value problem with ū(0) = u4 and limr→∞ ū(r) = u3, for some finite values u3

and u4 that remain to be selected. Clearly, if such a solution exists, we must have c = F ′(u3).
The following proposition is an immediate consequence of Theorem I.1 from [5]. We recall
that u1 and u2 are the binodal values and we let α2 and α4 denote the spinodal values, which
satisfy

(α2, α4) = {u : F ′′(u) < 0}. (2.3)

(These are the same values for α2 and α4 specified in (H).)

Proposition 2.1. Given any value u3 ∈ (u1, α2), let ζ0 be the unique value so that u3 + ζ0 <
u2 and

F ′(u3) =
F (u3 + ζ0)− F (u3)

ζ0

,

and let β be the unique value so that β > u2 and

F ′(u3) = F ′(u3 + β).

Then there exists u4 ∈ (ζ0, β) so that there is a monotonic (ū′(r) < 0, r > 0) radial solution
ū ∈ C2(R+) to the ODE

−ū′′ − d− 1

r
ū′ = F ′(u3)− F ′(ū),

ū(0) = u4; ū′(0) = 0

lim
r→∞

ū(r) = u3.

Moreover, there exist constants C > 0 and η > 0 so that u(x) = ū(|x|) satisfies

|Dαu(x)| ≤ Ce−η|x|,

for all multiindices |α| ≤ 2.

If we write v = u− u3 and set

g(v) := F ′(u3)− F ′(u3 + v), (2.4)
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then (2.1) becomes
∆v + g(v) = 0, (2.5)

and g satisfies the following assumptions, taken along with labeling from [6]:

(g1) There exists b > 0 so that g(0) = g(b) = 0, g(v) < 0 for v ∈ (0, b), g′(0) < 0 and
g′(b) > 0.

(g2) There exists θ > b so that g(u) > 0 in (b, θ] and
∫ θ

0
g(v)dv = 0.

(g3B) There exists some c > θ so that g(v) > 0 for all v ∈ (b, c) and g(v) < 0 for all v > c.

We can conclude, then, from Theorem 5.4 of [6] that the linear operator H = −∆+F ′′(ū)
has a simple negative principal eigenvalue with a corresponding eigenfunction φ of constant
sign. In particular, for this eigenfunction

〈Hφ, φ〉 < 0,

and so we see that the radial solutions guaranteed by Proposition 2.1 are all variationally
unstable in the sense of Definition 1.1.

2.2 Saddle Solutions

In this section we take F (u) to be in standard form, and additionally we require that F be
an even function. In this case the binodal values u1, u2 satisfy u1 = −u2, and by a choice
of scale we can take u2 = 1. Consequently, this scaled choice of F ′(u) satisfies the following
conditions from [10]:

(DFP1) F ′ ∈ C2[0, 1] is odd and F ′(0) = F ′(±1). Also, F ′′(0) < 0 and F ′′(1) > 0.

(DFP2) The mapping u 7→ F ′(u)
u

is strictly increasing on (0, 1).

Under these conditions it is shown in [10] that there exists a unique solution u ∈ C2(R2)
of

−∆u+ F ′(u) = 0,

so that |u(x)| ≤ 1 for all x ∈ R2, and u has the same sign as the product x1x2. Such a
solution is referred to as a saddle solution. It is shown in [16] that the second condition
(DFP2) can be dropped, and for convenience we summarize this latter result as Proposition
2.2 (it appears as Proposition 3.1 in [16]).

Proposition 2.2. Let (DFP1) hold. Then there exists a saddle solution to the equation

−∆u+ (F ′(u)− F ′(−1)) = 0,

and more precisely
u(x1, x2) = −u(x1,−x2) = −u(−x1, x2)

sgn(x) = x1x2,
(2.6)

for all x ∈ R2.
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We observe that since F ′(u) appears only under differentiation in (1.1) the saddle so-
lutions guaranteed in Proposition 2.2 are certainly saddle solutions for (1.1). Regarding
the variational stability of saddle solutions, we have the following result from [30]. (This
summarizes Lemmas 3.4 and 3.6 and Corollary 3.5 from [30].)

Proposition 2.3. Let (DFP1)–(DFP2) hold, and let ū(x) denote the saddle solution guar-
anteed by Proposition 2.2. Then the operator H = −∆ + F ′′(ū) has a strictly negative
eigenvalue with corresponding eigenfunction φ(x) of constant sign. Moreover, there exist
constants C > 0 and η > 0 so that

|Dαφ(x)| ≤ Ce−η|x|,

for |α| ≤ 2 and all x ∈ R2.

We note that it follows immediately from Proposition 2.3 that under the conditions
(DFP1)–(DFP2) the saddle solutions guaranteed by Proposition 2.2 are variationally unsta-
ble in the sense of Definition 1.1.

3 Instability of Radial and Saddle Solutions

In order to work with a self-adjoint operator, we will proceed by considering the eigenvalue
problem

Lϕ := (−∆)1/2H(−∆)1/2ϕ = −λϕ. (3.1)

where we recall
H := −∆ + F ′′(ū). (3.2)

We remark at the outset that a much more general analysis along these lines has been carried
out in the case of bounded domains by Bates and Fife [3].

Remark 3.1. We note that if ϕ ∈ H4(Rd) is an eigenfunction for L, with eigenvalue λ
then ϕ ∈ Hk(Rd) for k = 5, 6, ... by bootstrapping and Sobolev interpolation. Setting, then,
φ = (−∆)1/2ϕ, we can conclude that φ is an H4(Rd) eigenfunction for L = ∆H with
eigenvalue λ.

Lemma 3.1. Suppose V (x) and all its first and second order partial derivatives are bounded
on Rd. Then the operator T : L2(Rd)→ L2(Rd) defined by

T := (−∆)1/2(−∆ + V (x))(−∆)1/2

is self-adjoint (densely defined on H4(R)) and bounded below.

Proof. We will apply the Kato–Rellich Theorem (see [28], p. 162), which can be stated in
the following form, useful here: Suppose A is a self-adjoint linear operator on a Hilbert space
X, densely defined on D(A), and that B is a symmetric linear operator on the same Hilbert
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space, densely defined on D(B). If D(A) ⊆ D(B) and there exist values a < 1 and b ∈ R so
that

‖Bφ‖2
X ≤ a‖Aφ‖2

X + b‖φ‖2
X , (3.3)

then the operator A + B is self-adjoint in X, densely defined on D(A). Moreover, if A is
bounded below, then so is A+B.

Accordingly, we write

T = (−∆)2 + (−∆)1/2V (x)(−∆)1/2,

and make the identifications A = (−∆)2 and B = (−∆)1/2V (x)(−∆)1/2. The following
facts are straightforward: (−∆)2 : L2(Rd) → L2(Rd) is self-adjoint, densely defined on
H4(Rd), and bounded below. Similarly, (−∆)1/2V (x)(−∆)1/2 is densely defined (in L2(Rd))
on H2(Rd) and symmetric. Since H4(Rd) ⊂ H2(Rd), we need only establish (3.3). Toward
this, we compute as follows: For φ ∈ H4(Rd),

‖(−∆)1/2V (x)(−∆)1/2φ‖2
L2 = 〈(−∆)1/2V (x)(−∆)1/2φ, (−∆)1/2V (x)(−∆)1/2φ〉

= 〈V (x)(−∆)1/2φ, (−∆)V (x)(−∆)1/2φ〉 ≤ ‖V (−∆)1/2φ‖L2‖(−∆)V (x)(−∆)1/2φ‖L2

≤ 1

2
‖V (−∆)1/2φ‖2

L2 +
1

2
‖(−∆)V (x)(−∆)1/2φ‖2

L2

=
1

2
‖V (−∆)1/2φ‖2

L2 +
1

2
‖V (−∆)3/2φ+ (−∆V )(−∆)1/2φ− 2(∇V ) · ∇(−∆)1/2φ‖2

L2

≤ C1‖(−∆)1/2φ‖2
L2 + C2‖(−∆)3/2φ‖2

L2 + C3‖|∇(−∆)1/2φ|‖2
L2 .

By Plancherel isometry, we can take a Fourier transform inside each of these L2 norms to
obtain the estimate

‖(−∆)1/2V (x)(−∆)1/2φ‖2
L2 ≤ C‖(|ξ|+ |ξ|3)φ̂‖2

L2 . (3.4)

Likewise,
a‖(−∆)2φ‖2

L2 + b‖φ‖2
L2 = a‖|ξ|4φ̂‖2

L2 + b‖φ̂‖2
L2 . (3.5)

Estimate (3.3) now follows from the observation that for any ε > 0 there exists a Cε so that
|ξ|+ |ξ|3 ≤ (ε|ξ|4 + Cε). �

Lemma 3.1 justifies applying the min–max principle (see, for example, Theorem XIII.1
of [29]) to the operator L, so long as F ′′(ū(x)) is a potential satisfying the assumptions on
V (x). For F in the double-well form described in (H) this requires only boundedness for
ū(x) and its first and second derivatives.

Lemma 3.2. Suppose V (x) is as specified in Lemma 3.1, and additionally that there exists
a function φ ∈ C∞c (Rd) so that

〈Hφ, φ〉 < 0, (3.6)

where H = −∆ + V (x). Then for T = (−∆)1/2H(−∆)1/2, we have

inf
ϕ∈H4(Rd)\{0}

〈T ϕ, ϕ〉
〈ϕ, ϕ〉

< 0.
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Proof. According to Lemma 3.1 the operator T is self-adjoint on L2(Rd) (densely defined
on H4(Rd)), and bounded below. Consequently the min–max principle applies, and we have
that the lowest eigenvalue of T (denoted −λ) satisfies

−λ = inf
ϕ∈H4\{0}

〈T ϕ, ϕ〉
〈ϕ, ϕ〉

= inf
ϕ∈H4\{0}

〈H(−∆)1/2ϕ, (−∆)1/2ϕ〉
〈ϕ, ϕ〉

. (3.7)

We proceed now by setting ϕ = (−∆)−1/2φ, where the assumption φ ∈ C∞c (Rd) justifies
representation by the Riesz potential

ϕ(x) = (−∆)−1/2φ = cn

∫
Rd

φ(y)

|x− y|
dy, (3.8)

where cn = Γ(n−1
2

)/(2π(n+1)/2). (See, for example, [24])
Case (i), d ≥ 3. In the event that d ≥ 3, the Hardy–Littlewood–Sobolev estimate (see,

for example, [32]) ensures that ϕ ∈ L2(Rd). By construction, (−∆)1/2ϕ ∈ C∞c (Rd), and so
in fact ϕ ∈ Hk(Rd) for any 0 ≤ k < ∞. This establishes, then, by direct substitution of ϕ
into the Rayleigh quotient that

inf
ϕ∈H4\{0}

〈H(−∆)1/2ϕ, (−∆)1/2ϕ〉
〈ϕ, ϕ〉

= −γ, (3.9)

for some γ > 0.
Case (ii), d = 2. The case d = 2 is complicated by the fact that the Hardy–Littlewood–

Sobolev estimate implies only that (−∆)−1/2φ ∈ Lp(R2) for all p > 2, which isn’t sufficient
for the argument used in the case d ≥ 3. On the other hand, since φ has compact support,
we have (−∆)−1/2φ = O(|x|−1), as |x| → ∞. In this case, rather than substituting a
particular test function into the Rayleigh quotient, we proceed by considering a sequence of
functions. To this end, we set ϕ = (−∆)−1/2φ and consider the sequence of C∞c (R2) functions
ϕj(x) = ρj(x)ϕ, j = 1, 2, ..., where ρj(x) = ρ(x/j), and ρ(x) ∈ C∞(R2) is a standard cut-off
function that is 1 for |x| ≤ K (some fixed K > 0) and is only supported on a disk of radius
2K centered at the origin.

We have, then

〈T ϕj, ϕj〉 = 〈(−∆)ϕj, (−∆)ϕj〉+ 〈V (−∆)1/2ϕj, (−∆)1/2ϕj〉,

where the operator (−∆)1/2 can be understood as a principal value integral

(−∆)1/2ϕj(x) = − 1

2π
lim
ε→0

∫
|x−y|≥ε

ϕj(x)− ϕj(y)

|x− y|3
dy.

(See, for example, the recent study [9] or the standard reference [23].) Computing directly,
we find that

lim
j→∞
〈T ϕj, ϕj〉 = 〈T ϕ, ϕ〉,

and it follows that we can choose an integer J sufficiently large so that 〈T ϕj, ϕj〉 < 0 for all
j ≥ J . Since ϕJ ∈ H4(R2) this completes the proof. �
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Proposition 3.1. Let (H) hold, and let ū(x) denote a radial stationary solution as described
in Proposition 2.1. If ū(x) is variationally unstable then it is spectrally unstable to (1.1) with
a positive real eigenvalue.

Proof. It is immediate from Lemma 3.2 and our definition of variational instability that
if ū(x) is variationally unstable then the lowest value in the spectrum of L, denoted −λ,
satisfies

−λ1 = inf
ϕ∈H4\{0}

〈Lϕ, ϕ〉
〈ϕ, ϕ〉

< 0.

It only remains to show that −λ1 is an eigenvalue and not the bottom of the essential
spectrum.

First, we observe that the essential spectrum of H = −∆+F ′′(ū(x)) is determined in the
radial case by the essential spectrum of the |r| → ∞ asymptotic operator H∞ = −∆+F ′′(u3),
which satisfies σess(H∞) ⊆ [F ′′(u3),∞), where F ′′(u3) > 0 for any radial solution as specified
in Proposition 2.1. Now let S denote the subspace spanned by the H2 eigenfunctions of H
and note

inf
φ∈S⊥\{0}

〈Hφ, φ〉
〈φ, φ〉

= F ′′(u3). (3.10)

Denote the eigenfunctions of H φ1, φ2, etc. and note that each φj is an H2(Rd) eigenfunction
and so by bootstrapping and Sobolev interpolation is an Hk eigenfunction for k = 2, 3, . . . .
Setting now ϕj = (−∆)1/2φj for each j, we consider the Rayleigh quotient

sup
{ψ1,ψ2,... }∈H4

inf
ϕ∈H4\{0}
〈ϕ,ψj〉=0∀j

〈Lϕ, ϕ〉
〈ϕ, ϕ〉

≥ inf
ϕ∈H4\{0}

〈ϕ,(−∆)1/2φj〉=0∀j

〈Lϕ, ϕ〉
〈ϕ, ϕ〉

= inf
ϕ∈H4\{0}

〈(−∆)1/2ϕ,φj〉=0∀j

〈Lϕ, ϕ〉
〈ϕ, ϕ〉

= inf
ϕ∈H4\{0}

〈(−∆)1/2ϕ,φj〉=0∀j

〈H(−∆)1/2ϕ, (−∆)1/2ϕ〉
〈ϕ, ϕ〉

> 0,

(3.11)
where this final inequality follows from (3.10) and the observation that (−∆)1/2φ ∈ S⊥. �

Proposition 3.2. For x ∈ R2, let ū(x) be a saddle solution of (1.1)–(H) as described in
Proposition 2.2. Then ū(x) is spectrally unstable as a solution of (1.1) with a positive real
eigenvalue.

Proof. The proof is almost identical to that of Proposition 3.1, and we remark only on the
difference, which involves the essential spectrum of H = −∆ + F ′′(ū). In the case of saddle
solutions Schatzman has shown that

σess(H) ⊆ [0,+∞)

(see Corollary 3.3 of [30]; more precisely, Schatzman’s analysis is carried out under less gen-
eral conditions than those described above from [31], but this part of Schatzman’s argument
generalizes immediately). In light of this the final inequality in (3.11) is not strict in this
case. �

12



4 Planar Periodic Solutions

In this section we consider the case of planar periodic solutions, and more precisely the
following question: Given that a periodic solution ū(x) is spectrally stable in d = 1 to
perturbations with the same period as ū(x), is the corresponding planar periodic solution
ū(x1) (taken now as a solution to (1.1) with d ≥ 2) stable to perturbations that are periodic
in x1 with the same period as ū(x1) but otherwise relatively general. This analysis follows
closely the development of [19, 20]; in particular, [19] specifies a number of references from
which ideas were taken.

We note at the outset that the planar periodic waves ū(x1) of Theorem 1.1 satisfy the
ODE

κū′′ = F ′(ū)− F (u4)− F (u3)

u4 − u3

, (4.1)

and that without loss of generality we will shift ū(x1) so that ū′′(0) = 0. This clearly ensures

F ′(ū(0)) =
F (u4)− F (u3)

u4 − u3

, (4.2)

where we recall from Theorem 1.1 that u3 is the minimum value obtained by ū(x1) and u4

is the maximum value obtained by ū(x1).
Following [19] (and the references cited there), we construct the monodromy (or Floquet)

matrix

M(λ;X) =


φ1(X;λ) φ2(X;λ) φ3(X;λ) φ4(X;λ)

(bφ1)′(X;λ) (bφ2)′(X;λ) (bφ3)′(X;λ) (bφ4)′(X;λ)
φ′′1(X;λ) φ′′2(X;λ) φ′′3(X;λ) φ′′4(X;λ)
φ′′′1 (X;λ) φ′′′2 (X;λ) φ′′′3 (X;λ) φ′′′4 (X;λ)

 , (4.3)

where the {φj}4
j=1 form a basis of solutions to (1.16) (dependence on r is suppressed for

notational brevity), initialized by φ
(k−1)
j (0;λ) = δkj for k = 1, 3, 4, with (bφj)

′(0;λ) = δj2,

where b(x1) := M(ū(x1))F ′′(ū(x1)) and δkj denotes a standard Kronecker delta function. As
discussed in [19] eigenvalues of the operator −DrHr (see (1.11) and (1.12)) correspond with
zeros of the Evans function

E(λ, r) = det(M(λ,X)− I) = det


[φ1] [φ2] [φ3] [φ4]

[(bφ1)′] [(bφ2)′] [(bφ3)′] [(bφ4)′]
[φ′′1] [φ′′2] [φ′′3] [φ′′4]
[φ′′′1 ] [φ′′′2 ] [φ′′′3 ] [φ′′′4 ]

 , (4.4)

where our notation is [f ] = f(X)− f(0). Upon integration of (1.16) over the interval [0, X],
and rearrangement of terms, we obtain

[φk
′′′] =

1

κ
[(bφk)

′] + r[φk
′]− λ

κM0

∫ X

0

φkdx1 −
r

κM0

∫ X

0

M(ū)Hrφkdx1, (4.5)
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where M0 = M(ū(X)) = M(ū(0)). Substituting (4.5) into (4.4) for each k we obtain

E(λ, r) = − 1

κM0

det


[φ1] [φ2] [φ3] [φ4]

[(bφ1)′] [(bφ2)′] [(bφ3)′] [(bφ4)′]
[φ′′1] [φ′′2] [φ′′3] [φ′′4]
Iφ1 Iφ2 Iφ3 Iφ4

 , (4.6)

where for bevity of notation we have defined the integral operator

I(λ, r)φk = λ

∫ X

0

φkdx1 + r

∫ X

0

M(ū)Hrφkdx1. (4.7)

In what follows, we will understand the spectrum of −DrHr (for sufficiently small values of
|λ| and |r|) through careful consideration of the zeros of E(λ, r). More precisely, we proceed
by constructing terms in the Taylor series

E(λ, r) =
∑
|α|≥0

1

α!
(DαE)(0, 0)λα1rα2 , (4.8)

where α denotes a standard multiindex for d = 2. In what follows we will find that E(0, 0) =
Eλ(0, 0) = Er(0, 0) = 0, but that Eλλ(0, 0) and Err(0, 0) are generally not zero, so that for
sufficiently small values of |λ| and r, E(λ, r) is determined to order by the polynomial

P (λ, r) =
1

2
Eλλ(0, 0)λ2 + Eλr(0, 0)λr +

1

2
Err(0, 0)r2, (4.9)

with zeros satisfying

λ =
−Eλrr ±

√
(Eλr)2r2 − EλλErrr2

Eλλ
, (4.10)

where each derivative is evaluated at (λ, r) = (0, 0). We see immediately from (4.10) that
we will have an eigenvalue with positive real part so long as Eλλ(0, 0)Err(0, 0) < 0. That is,
in this case, we can fix a sufficiently small value of r and show that as λ increases from 0
E(λ, r) changes sign.

Before stating a lemma regarding the values of these second derivatives, we review some
observations made in [19] in the case d = 1 (which corresponds here to r = 0). First, for
(λ, r) = (0, 0) we have the second-order equations for the φk,

κφ′′1 − b(x1)φ1 = −b(0); φ1(0) = 1, (bφ1)′(0) = 0

κφ′′2 − b(x1)φ2 = −M0

∫ x1

0

dy

M(ū(y))
; φ2(0) = 0, (bφ2)′(0) = 1

κφ′′3 − b(x1)φ3 = κ; φ3(0) = 0, (bφ3)′(0) = 0

κφ′′4 − b(x1)φ4 = κM0

∫ x1

0

dy

M(ū(y))
; φ4(0) = 0, (bφ4)′(0) = 0.

(4.11)
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In addition to these relations, our analysis will make use of two important combinations,
m(x1) := κφ1(x1; 0) + b(0)φ3(x1; 0) and w(x1) = κφ2(x1; 0) + φ4(x1; 0), which respectively
satisfy

κm′′ − b(x1)m = 0; m(0) = κ,m′(0) = −κb
′(0)

b(0)

κw′′ − b(x1)w = 0; w(0) = 0, w′(0) =
κ

b(0)
.

(4.12)

By a standard variation of parameters representation, we can now understand each of the
φk in terms of two linearly independent solutions to the homogeneous problem

κφ′′ − b(x1)φ = 0. (4.13)

As is clear from (4.1), one solution to this equation is ū′(x1), while the second can be written
in terms of ū′(x1) by reduction of order:

ψ(x1) =


ū′(x1)

∫ x1

0
dy

ū′(y)2
0 ≤ x1 ≤ X1

ū′(x1)
∫ x

2X1

dy
ū′(y)2

+ 2K1

ū′′(X1)
ū′(x1) X1 ≤ x1 ≤ X2

−ū′(x1)
∫ X
x1

dy
ū′(y)2

+ 2ū′(x1)
(
ū′′(X1)K2−ū′′(X2)K1

ū′′(X1)ū′′(X2)

)
X2 ≤ x1 ≤ X

, (4.14)

where X1 < X2 denote the two values for which ū′(Xk) = 0, and

K1 :=
1

ū′(0)
+

∫ X1

0

ū′′(X1)− ū′′(x)

ū′(x)2
dx

K2 := − 1

ū′(0)
+

∫ X2

2X1

ū′′(X2)− ū′′(x)

ū′(x)2
dx+ 2K1

ū′′(X2)

ū′′(X1)
,

both of which are well defined. We note in particular, that ū′(x1) and ψ(x1) are the solutions
of (4.13) with initial conditions ū′(0) > 0, ū′′(0) = 0 (the second by our choice of shift) and
ψ(0) = 0, ψ′(0) = 1/ū′(0) > 0, and consequently W (ū′(x1), ψ(x1)) ≡ 1, where W denotes a
standard Wronskian.

With this notation established we can state our lemma regarding derivatives of E(λ, r),
evaluated at (0, 0).

Lemma 4.1. For E(λ, r) as specified in (4.4) we have

E(0, 0) = Eλ(0, 0) = Er(0, 0) = 0

sgnEλλ(0, 0) = −sgn
[
ψ(X)

∫ X

0

ψ(y)(ū(y)− ū(0))dy +
ū′(X)

2

(∫ X

0

ψ(y)dy
)2]

sgnErr(0, 0) = sgnψ(X).

(4.15)
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Proof. First, by variation of parameters, we have

φ3(x1; 0) = −ū′(x1)

∫ x1

0

ψ(y)dy + ψ(x1)(ū(x1)− ū(0)), (4.16)

from which differentiation reveals the useful relation [φ′3] = 0. Likewise, we can show

[φ′2] =
ψ′(X)M0

κ

∫ X

0

ū(y)− ū(0)

M(ū(y))
dy. (4.17)

Additionally, we observe that w(x1) = κū′(0)
b(0)

ψ(x1), from which we find [w′] = 0. (To verify

the relation w(x1) = κū′(0)
b(0)

ψ(x1) compare the IVP solved by w(x1) with the IVP solved by

ψ(x1).) Since m(x1) and w(x1) constitute a complete basis for (4.13), we have

ū′(x1) =
ū′(0)

κ
m(x1) +

b′(0)ū′(0)

κ
w(x1)

= ū′(0)φ1(x1; 0) + b′(0)ū′(0)φ2(x1; 0) +
b(0)

κ
ū′(0)φ3(x1; 0) +

b′(0)ū′(0)

κ
φ4(x1; 0).

(4.18)
We can immediately conclude the linear dependencies∫

φ1 + b′(0)

∫
φ2 +

b(0)

κ

∫
φ3 +

b′(0)

κ

∫
φ4 = 0

[φ
(k)
1 ] + b′(0)[φ

(k)
2 ] +

b(0)

κ
[φ

(k)
3 ] +

b′(0)

κ
[φ

(k)
4 ] = 0,

(4.19)

for differentiation up to any order k = 0, 1, 2, .... For notational brevity we have adopted the
convention of [26, 27], ∫

f :=

∫ X

0

f(y)dy.

We are now in a position to begin evaluating the (DαE)(0, 0). First, since I(0, 0) = 0,
we clearly have E(0, 0) = 0. Upon setting r = 0 in (4.6) we reduce the problem to the d = 1
analysis considered in [19], from which we have Eλ(0, 0) = 0 and

Eλλ(0, 0) = 2
b(X)ψ′(X)

ū′(0)κ3
det

(∫
φ3

∫
w

[φ3] [w]

)
×
[( ∫ X

0

ū(x)− ū(0)

M(ū(x))
dx
)2

−
∫ X

0

dx

M(ū(x))

∫ X

0

(ū(x)− ū(0))2

M(ū(x))
dx
]
.

(4.20)

Here, b(X) < 0, ψ′(X) = 1/ū′(X) > 0, and an application of the Cauchy–Schwartz inequality
establishes that the quantity in square brackets is negative. We have, then, that

sgnEλλ(0, 0) = sgn det

(∫
φ3

∫
w

[φ3] [w]

)
.
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According to (4.16) and the relation w(X) = κū′(0)
b(0)

ψ(X), we find

sgnEλλ(0, 0) = −sgn
[
ψ(X)

∫ X

0

ψ(y)(ū(y)− ū(0))dy +
ū′(X)

2

(∫ X

0

ψ(y)dy
)2]

.

Next, we set λ = 0 in (4.6) and focus on E(0, r). For the first derivative, we find

Er(0, 0) = − 1

κM0

det


[φ1] [φ2] [φ3] [φ4]

[(bφ1)′] [(bφ2)′] [(bφ3)′] [(bφ4)′]
[φ′′1] [φ′′2] [φ′′3] [φ′′4]∫
MH0φ1

∫
MH0φ2

∫
MH0φ3

∫
MH0φ4

 . (4.21)

Observing that H0ū
′(x1) = 0, we see from (4.18) that∫

MH0φ1 + b′(0)

∫
MH0φ2 +

b(0)

κ

∫
MH0φ3 +

b′(0)

κ

∫
MH0φ4 = 0,

from which we immediately conclude Er(0, 0) = 0.
We proceed now with the calculation of Err(0, 0). We have

Err(0, 0) = − 2

κM0

∂

∂r
det


[φ1] [φ2] [φ3] [φ4]

[(bφ1)′] [(bφ2)′] [(bφ3)′] [(bφ4)′]
[φ′′1] [φ′′2] [φ′′3] [φ′′4]∫
MHrφ1

∫
MHrφ2

∫
MHrφ3

∫
MHrφ4

∣∣∣r=0
. (4.22)

The determinant derivative can be expanded as a sum of four derivatives, each with a
derivative on exactly one column. If we then use (4.19), to replace all occurrences of φ1

except those differentiated with respect to r, we find

Err(0, 0) =
2

κM0ū′(0)
det


∫
M(H0q + κū′)

∫
MH0φ2

∫
MH0φ3

∫
MH0φ4

[q] [φ2] [φ3] [φ4]
[(bq)′] [(bφ2)′] [(bφ3)′] [(bφ4)′]
[q′′] [φ′′2] [φ′′3] [φ′′4]

 , (4.23)

where

q(x1) = ū′(0)∂rφ1 + b′(0)ū′(0)∂rφ2 +
b(0)ū′(0)

κ
∂rφ3 +

b′(0)ū′(0)

κ
∂rφ4, (4.24)

where ∂rφk = (∂rφk)(x1; 0, 0). In order to understand q(x1), we differentiate the equation
−DrHrφk = 0 with respect to r and evaluate the result at r = 0 to obtain

(M(ū)(H0∂rφk)
′)′ = −κ(M(ū)φ′k)

′M(ū)H0φk.

If we now sum over k we find

−D0H0q = −κ(M(ū)ū′′)′,

q(k)(0) = 0; k = 0, 1, 2, 3,
(4.25)
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where the initial condition arises because the initial conditions of the φk are independent of
r. Integrating (4.25), we can add to (4.11) the relation

−κq′′ + b(x1)q = −κ(ū′(x1)− ū′(0)), (4.26)

and the resulting statement q′′(X) = 1
κ
b(X)q. Combining (4.26) with (4.23) and (4.11) we

obtain

Err(0, 0) =
2

κM0ū′(0)
det


∫
M(H0q + κū′)

∫
MH0φ2

∫
MH0φ3

∫
MH0φ4

[q] [φ2] [φ3] [φ4]
[(bq)′] [(bφ2)′] [(bφ3)′] [(bφ4)′]

0 −M0

κ

∫ X
0

dx1

M(ū(x1))
0 M0

∫ X
0

dx1

M(ū(x1))

 ,

(4.27)
which can be expanded as

Err(0, 0) =
2

κ2ū′(0)

∫ X

0

dx1

M(ū(x1))
det

∫ M(H0q + κū′)
∫
MH0w

∫
MH0φ3

[q] [w] [φ3]
b(X)[q′] b(X)[w′] b(X)[φ′3]

 . (4.28)

We now find appropriate expressions for q′(X), w′(X), and φ′3(X). For q, we solve (4.26) by
variation of parameters to obtain

q(x1) = −ū′(x1)

∫ x1

0

ψ(y)(ū′(y)− ū′(0))dy + ψ(x1)

∫ x1

0

ū′(y)(ū′(y)− ū′(0))dy, (4.29)

so that

q′(X) = ψ′(X)

∫ X

0

ū′(y)2dy,

where we have used the choice ū′′(X) = 0. Likewise, we have [w′] = 0, and according to
(4.16) φ′3(X) = 0. Combining these observations, we conclude

Err(0, 0) =
2

κ2ū′(0)

∫ X

0

dx1

M(ū(x1))
det


∫
M(H0q + κū′(x1))

∫
MH0w

∫
MH0φ3

[q] [w] [φ3]

b(X)ψ′(X)
∫ X

0
ū′(y)2dy 0 0


=

2b(X)ψ′(X)

κ2ū′(0)

∫ X

0

dy

M(ū(y))

∫ X

0

ū′(y)2dy det

(∫
MH0w

∫
MH0φ3

w(X) φ3(X)

)
.

(4.30)
In order to simplify this determinant, we recall from (4.11) that H0φ3 = −κ and H0w = 0.

Finally, from (4.16) and the following discussion φ3(X) = −ū′(X)
∫ X

0
ψ(y)dy, while w(X) =

κū′(0)
b(X)

ψ(X). In summary, we have

Err(0, 0) = 2ψ′(X)ψ(X)

∫ X

0

dy

M(ū(y))

∫ X

0

ū′(y)2dy

∫ X

0

M(ū(y))dy. (4.31)
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Recalling now that ψ′(X) = 1/ū′(X) > 0, we find

sgnErr(0, 0) = sgnψ(X). (4.32)

This completes the proof of Lemma 4.1. �

Remark 4.1. It is clear from the relation

sgnErr(0, 0) = sgnψ(X)

that for Eλλ(0, 0) > 0 stability is determined by the sign of ψ(X), where ψ solves the ODE

κψ′′ − bψ = 0; ψ(0) = 0, ψ′(0) = 1/ū′(0) > 0.

This condition can readily be checked numerically.

Next, working under the additional restriction F (4)(y) > 0 for all y ∈ [u1, u2] we establish

a sign on the term
∫ X

0
ψ(x)(ū(x)− ū(0))dx.

Lemma 4.2. Under the assumptions of Theorem 1.1, and under the additional restriction
F (4)(y) > 0, we have ∫ X

0

ψ(x)(ū(x)− ū(0))dx > 0. (4.33)

Proof. Proceeding by a direct calculation using (4.14), and taking advantage of the sym-
metry of ū(x1) around X1 for x1 ∈ [0, 2X1] and around X2 for x1 ∈ [2X1, X], we find∫ X

0

ψ(x)(ū(x)− ū(0))dx =

∫ X1

0

(ū(X1)− ū(0))2 − (ū(x)− ū(0))2

ū′(x)2
dx

+

∫ X2

2X1

(ū(X2)− ū(0))2 − (ū(x)− ū(0))2

ū′(x)2
dx

+ c1
(ū(X2)− ū(0))2 − (ū(X1)− ū(0))2

2
+ c2

(ū(X2)− ū(0))2

2
,

(4.34)
where c1 and c2 are given by

c1 =
2K1

ū′′(X1)
; c2 = c1 −

2K2

ū′′(X2)
. (4.35)

For notational brevity, we define

G(y) := (F (y)− [F ]

[u]
y)− (F (u2)− [F ]

[u]
u2), (4.36)
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for which we observe the important relations G′(u0) = 0 (from (4.2), with ū(0) = u0),
G′(u2) < 0 < G′(u1) (from the inequality in Theorem 1.1), ū′′(x1) = κ−1G′(ū), and ū′(x1)2 =
2
κ
G(ū) (the final two both from (4.1)).

In this new notation, K1 and K2 become

K1 =

√
κ

2

[ 1√
G(u0)

+
1

2

∫ u2

u0

G′(u2)−G′(y)

G(y)3/2
dy
]
, (4.37)

and

K2 =

√
κ

2

[
− 1√

G(u0)
+

1

2

∫ u0

u1

G′(u1)−G′(y)

G(y)3/2
dy
]

+ 2K1
ū′′(X2)

ū′′(X1)
. (4.38)

Upon substitution of these expressions into (4.34), we obtain∫ X

0

ψ(x)(ū(x)− ū(0))dx

=
(κ

2

)3/2{∫ u0

u1

(u1 − u0)2 − (y − u0)2

G(y)3/2
+

∫ u2

u0

(u2 − u0)2 − (y − u0)2

G(y)3/2

}
− κ3/2(u2 − u0)2

√
2G′(u2)

[ 1√
G(u0)

+
1

2

∫ u2

u0

G′(u2)−G′(y)

G(y)3/2
dy
]

− κ3/2(u1 − u0)2

√
2G′(u1)

[
− 1√

G(u0)
+

1

2

∫ u0

u1

G′(u1)−G′(y)

G(y)3/2
dy
]
.

(4.39)

Combining the integrals, we find∫ X

0

ψ(x)(ū(x)− ū(0))dx =
(κ

2

)3/2 1

G′(u1)

∫ u0

u1

G′(y)(u1 − u0)2 −G′(u1)(y − u0)2

G(y)3/2
dy

+
(κ

2

)3/2 1

G′(u2)

∫ u2

u0

G′(y)(u2 − u0)2 −G′(u2)(y − u0)2

G(y)3/2
dy

+
κ3/2√
2G(u0)

[(u1 − u0)2

G′(u1)
− (u2 − u0)2

G′(u2)

]
.

(4.40)
Recalling the inequality G′(u2) < 0 < G′(u1), we see that the summand on the third line
of (4.40) is clearly positive. In order to understand the signs of the two integrals, we focus
(with a change of sign since G′(u2) < 0) on the numerator of the second

Φ(y) := G′(u2)(y − u0)2 −G′(y)(u2 − u0)2, u ∈ [u0, u2],

for which we have Φ(u0) = Φ(u2) = 0. Moreover, Φ′(u0) > 0, and so all that remains to
show is that Φ(y) does not cross 0 for y ∈ (u0, u2). In order to see this, we observe that by
our condition F (4)(y) > 0, the function

Φ′′(y) = 2G′(u2)−G′′′(y)(u2 − u0)2
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has precisely one zero, and so Φ has only one change in concavity. If Φ(y) has a zero in
(u0, u2), one concavity change will be required so that Φ returns to 0 at y = u2, while a
second will be required since Ψ(y) goes to −∞ as y → +∞. A similar argument holds for
the first integral on the right-hand side of (4.40), and this concludes the proof of Lemma
4.2. �

As discussed in [19], in the event that ū(x1) is stable in d = 1 to perturbations with the
same period as ū, we must have Eλλ(0, 0) > 0. (This follows from an analysis of the stability
index for this problem.) We close this section by establishing that if ū(x1) is such a wave
then it is unstable to perturbations that have the same period as ū(x1) in the x1 direction
but are otherwise relatively general.

Proposition 4.1. Let the assumptions of Lemma 4.2 hold and suppose Eλλ(0, 0) > 0. Then
there exists a positive real λ and a function p(x1) so that p is a solution of (1.16).

Proof. First, we have seen in the discussion immediately following (4.10) that an eigenvalue
with positive real part is guaranteed by the condition Eλλ(0, 0)Err(0, 0) < 0. In the event
that Eλλ(0, 0) > 0, this condition reduces to the requirement that Err(0, 0) < 0, which by
Lemma 4.1 reduces to the requirement ψ(X) < 0.

On the other hand, we observe from our expression for the sign of Eλλ(0, 0) in Lemma
4.1 that Eλλ(0, 0) can only be positive if

ψ(X)

∫ X

0

ψ(y)(ū(y)− ū(0))dy < 0. (4.41)

In addition, we know from Lemma 4.2 that
∫ X

0
ψ(y)(ū(y) − ū(0))dy > 0, and consequently

ψ(X) < 0.
This completes the proof. �
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[12] P. C. Fife, H. Kielhöfer, S. Maier–Paape, and T. Wanner, Perturbation of doubly periodic
solution branches with applications to the Cahn–Hilliard equation, Physica D 100 (1997)
257–278.

[13] R. A. Gardner, On the structure of the spectra of periodic travelling waves, J. Math.
Pures Appl. 72 (1993) 415–439.

[14] R. A. Gardner, Instability of oscillatory shock profile solutions of the generalized
Burgers–KdV equation, Physica D 90 (1996) 366–386.

[15] R. A. Gardner, Spectral analysis of long wavelength periodic waves and applications, J.
Reine Angew. Math. 491 (1997) 149–181. 415–439.

[16] C. Gui, Hamiltonian identities for elliptic partial differential equations, J. Functional
Analysis 254 (2008) 904–933.

[17] P. Howard, Asymptotic behavior near transition fronts for equations of generalized
Cahn–Hilliard form, Commun. Math. Phys. 269 (2007) 765–808.

[18] P. Howard, Asymptotic behavior near planar transition fronts for the Cahn–Hilliard
equation, Physica D 229 (2007) 123–165.

22



[19] P. Howard, Spectral analysis of stationary solutions of the Cahn–Hilliard equation, Ad-
vances in Differential Equations 14 (2009) 87–120.

[20] P. Howard, Spectral analysis of planar transition fronts for the Cahn–Hilliard equation,
J. Differential Equations 245 (2008) 594–615.
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