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Abstract

We consider nonlinear stability for planar transition front solutions ū(x1) arising
in multidimensional (i.e., x ∈ Rn) Cahn-Hilliard systems. In previous work the author
has established conditions under which such waves are spectrally and linearly stable,
and in this analysis it is shown that linear stability implies nonlinear stability for such
systems.

1 Introduction

We consider Cahn-Hilliard systems on x ∈ Rn,

∂uj
∂t

= ∇ ·
{ m∑
k=1

Mjk(u)∇
(

(−Γ∆u)k + Fuk(u)
)}
, (1.1)

for j = 1, 2, . . . ,m. Here, F : Rn → R, and Γ and M are m ×m matrices. For notational
convenience, we will often use the tensor form

ut = ∇ ·
{
M(u)Dx

(
− Γ∆u+DuF

)}
, (1.2)

where the operator D is a Jacobian operator as described, for example, in [4].
For convenient reference, we collect some assumptions that will be made throughout the

analysis.

(H0) (Assumptions on Γ) Γ denotes a constant, symmetric, positive definite m×m matrix.

(H1) (Assumptions on F ) F ∈ C4(Rm), and F has at least two distinct local minimizers
at which the Hessian matrix D2

uF (u) is positive definite and (by subtracting an appropriate
hyperplane from F if necessary) we can take F to be zero. We denote this class of values

M := {u ∈ Rm : F (u) = 0, DuF (u) = 0, D2
uF (u) is positive definite}.
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(H2) (Transition front existence) There exists a transition front solution to (1.1) ū(x1) so
that

−Γū′′ + F ′(ū) = 0, (1.3)

with ū(±∞) = u±, u± ∈M.

(H3) (Assumptions on M) M ∈ C2(Rm); M is uniformly positive definite along the wave;
i.e., there exists θ > 0 so that for all y ∈ Rm and all x1 ∈ R we have

yTM(ū(x1))y ≥ θ|y|2;

and M± = M(u±) are symmetric.

(H4) (Endstate Assumptions) We set B± := D2
uF (u±) (a symmetric, positive definite ma-

trix) and assume one of the following holds: (H4a) the matrices M±B± have distinct eigen-
values, as do the matrices Γ−1B±; or (H4b) one or more of these matrices has a repeated
eigenvalue, but the solutions µ = µ(σ) of

det
(
− µ4M±Γ + µ2(M±B± + 2σκ0M±Γ)− σ(λ0I + κ0M±B± + σκ2

0M±Γ)
)

= 0 (1.4)

can be strictly divided into two cases: if µ(0) 6= 0 then µ(σ) is analytic in σ for |σ| sufficiently
small, while if µ(0) = 0 µ(σ) can be written as µ(σ) =

√
σh(σ), where h is analytic in σ for

|σ| sufficiently small. Here |(λ0, κ0)| = 1, and (σλ0, σκ0) ∈ Sε for ε > 0 sufficiently small.
(The set Sε is defined in Definition 2.1.)

Regarding (H2), we note that Alikakos and others have established that transition front
solutions arise precisely as minimizers of the energy functional

E(ū) =

∫ +∞

−∞
F (ū) +

1

2
〈Γū, ū〉dx1, (1.5)

where 〈·, ·〉 denotes Euclidean inner product. (See [1, 2, 25]).
The system (1.1) is a standard model of certain phase separation processes, and its

physicality is discussed in detail in [16] and the references cited there. Our interest in this
analysis is to establish that ū(x1) is stable for an appropriate class of initial perturbations.

It is well known that for the case of one space dimension solutions u(x, t) of Cahn–Hilliard
systems initialized by u(x, 0) near a standing wave solution ū(x) will not generally approach
ū(x) time-asymptotically, but rather will approach a translate of ū(x) determined by an
integral of the initial perturbation. In [17, 18], a local tracking function δ(t) was employed
to track shifts so that at each time the shapes of u(x, t) and ū(x) were compared, not the
relative positions. In the case n ≥ 2, u(x, t) does not approach a shifted wave asymptotically,
but local shifts along the transition front serve to hinder the analysis (they reduce the rate of
decay of the perturbations and consequently nonlinearities become more difficult to control).
In the current analysis, we employ a shift function that depends both on t and the transverse
variable x̃ = (x2, x3, . . . , xn), defining our perturbation as in [9, 21] by

v(x, t) := u(x, t)− ū(x1 − δ(x̃, t)), (1.6)
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where δ(x̃, t) denotes a shift function to be chosen during the analysis.
Upon substitution of (1.6) into (1.1) we obtain

(∂t − L)v = (∂t − L)(δū′(x1)) +∇ · Q, (1.7)

where
Lv := ∇ ·

{
M̄(x1)Dx

(
− Γ∆v + B̄(x1)v

)}
, (1.8)

with
M̄(x1) := M(ū(x1))

B̄(x1) := D2
uF (ū(x1)),

(1.9)

and Q is a (matrix-valued) collection of nonlinear terms that will be specified below.
The eigenvalue problem for L can be expressed as Lφ = λφ, and we take the Fourier

transform of this equation in the transverse variable x̃, using the scaling

φ̂(x1, ξ) =
1

(2π)
n−1
2

∫
Rn−1

e−ix̃·ξφ(x1, x̃)dx̃. (1.10)

The eigenvalue problem transforms to

Lξφ̂ = −AξHξφ̂ = λφ̂, (1.11)

where
Aξ := −∂x1M̄(x1)∂x1 + |ξ|2M̄(x1)

Hξ := −Γ∂2
x1x1

+ B̄(x1) + |ξ|2Γ.
(1.12)

We note that under our current assumptions Aξ and Hξ are both self-adjoint (though of
course Lξ is not). For convenient reference, we collect here a set of conditions on (1.11) that
follow from our assumptions (H0)-(H4).

For convenient reference, we collect here a set of conditions on (1.8) that follow from our
assumptions (H0)-(H4).

(C0) Same as (H0).

(C1) B̄ ∈ C2(R) is symmetric; there exists a constant αB > 0 so that

∂jx1(B̄(x1)−B±) = O(e−αB |x1|), x1 → ±∞,

for j = 0, 1, 2; B± are both positive definite matrices.

(C2) M̄ ∈ C2(R); there exists a constant αM > 0 so that

∂jx1(M̄(x1)−M±) = O(e−αM |x1|), x1 → ±∞,

for j = 0, 1, 2; M̄(x1) is uniformly positive definite on R. We will set α := min{αB, αM}.
(C3) Same as (H4).

Before recalling the spectral theorem of [13], we clarify our terminology for the spectrum
of Lξ (which follows [15]; see particularly the appendix to Chapter 5).
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Definition 1.1. We define the point spectrum of Lξ, denoted σpt(Lξ), as the set

σpt(Lξ) = {λ ∈ C : Lξφ = λφ for some φ ∈ H2(R)}.

We define the essential spectrum of Lξ, denoted σess(Lξ), as the values in C that are not in
the resolvent set of Lξ and are not isolated eigenvalues of finite multiplicity.

We note that σ(Lξ) = σpt(Lξ) ∪ σess(Lξ), but the sets σpt(Lξ) and σess(Lξ) are not
necessarily disjoint. We will see that for real values of ξ the spectrum of Lξ is confined to the
real line (though Lξ is not self-adjoint), and is bounded above. We will refer to the largest
(right-most) eigenvalue of Lξ as its leading eigenvalue, and we will denote this eigenvalue
λ∗(ξ).

The assumptions for the spectral theorem of [13] are all straightforward, except for a
condition associated with the stability of ū with respect to (1.1) in R. That is, since ū is a
function of only one variable, it can be viewed as a stationary solution for a Cahn-Hilliard
system on R,

ut =
{
M(u)(−Γuxx +DuF )x

}
x
. (1.13)

In [16], the authors identify a spectral stability criterion for ū as a solution of (1.13), and
verify that it is satisfied for certain example systems. In [17, 18], the authors establish that
this spectral condition is sufficient to imply nonlinear stability for ū as a solution of (1.13).

Although we will postpone our full discussion of this condition until Section 2, we will
denote it (D0) in the statement of our theorem, and we note here that it is ultimately
a transversality condition in the following sense. When (1.3) (in (H2)) is written as a first
order autonomous ODE system, our condition ensures that ū arises as a transverse connection
either from the m-dimensional unstable linearized subspace for u−, denoted U−, to the m-
dimensional stable linearized subspace for u+, denoted S+, or (by isotropy) vice versa. (We
recall that since our ambient manifold is R2m, the intersection of U− and S+ is referred to
as transverse if at each point of intersection the tangent spaces associated with U− and S+

generate R2m. In particular, in this setting a transverse connection is one in which the the
intersection of these two manifolds has dimension 1; i.e., our solution manifold will comprise
shifts of ū.)

Theorem 1.1 (From [13, 14]). Let Assumptions (H0)-(H4) hold, with κ0 = 0 in (H4), and
additionally assume M is a constant matrix. Assume Condition (D0) holds, and that ū
minimizes the energy (1.5). The spectrum of the operator Lξ satisfies the following:

I. For real values of ξ:

1. The spectrum σ(Lξ) lies entirely on R.

2. The essential spectrum of Lξ lies in the union of the two intervals

(−∞,−m±b±|ξ|2 −m±γ|ξ|4],

where m±, b±, and γ respectively denote the smallest eigenvalues of M±, B±, and Γ.
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3. There exists a constant θ0 > 0 so that the point spectrum of Lξ is confined to the interval
(−∞,−θ0|ξ|4].

4. There exists a constant r > 0 sufficiently small so that for |ξ| < r the leading eigenvalue
of Lξ, denoted λ∗(ξ), satisfies

λ∗(ξ) = −c3|ξ|3(1 + o(|ξ|)),

where

c3 = 4

∫ +∞
−∞ F (ū(x1))dx1

〈M̄−1[u], [u]〉
> 0.

Here, o(·) denotes standard “little-O” notation, and [·] denotes jump, so that [u] = u+− u−.
Moreover, for any 0 < |ξ0| < r, there exists 0 < r0 < r sufficiently small so that λ∗(ξ) is
analytic on |ξ − ξ0| < r0.

5. The constant r > 0 from Part 4 can be taken sufficiently small so that there exists
a constant θ1 > 0 so that for |ξ| < r the set σpt(Lξ)\{λ∗(ξ)} is confined to the interval
(−∞,−θ1|ξ|2].

II. Moreover, if we allow complex values of ξ (ξ = ξR + iξI) so that |ξ|2 becomes

ζ = |ξR|2 − |ξI |2 + 2i〈ξR, ξI〉,

then:

6. There exist constants c1 and θ1 sufficiently small, and a constant Cθ1 sufficiently large,
so that the essential spectrum for Lξ is bounded to the left of a wedge contour described by

Reλ+ c1|Imλ| = −θ1

(
|ξR|2 + |ξR|4

)
+ Cθ1

(
|ξI |2 + |ξI |4

)
.

The designation Cθ1 indicates that θ1 and Cθ1 are chosen together, and one can be varied at
the expense of a change in the other.

7. The perturbation expression for λ∗(ξ) given in Part 4 continues to hold for complex values
of ξ (with |ξ|3 replaced by ζ3/2), and there exist constants c2 and θ2 sufficiently small, and a
constant Cθ2 sufficiently large, so that the remainder of the point spectrum is bounded for |ζ|
sufficiently small to the left of a contour described by

Reλ+ c2|Imλ| = −θ2|ξR|2 + Cθ2|ξI |2.

8. There exist constants c3 and θ3 sufficiently small, and a constant Cθ3 sufficiently large,
so that the point spectrum for Lξ is bounded to the left of a contour described by

Reλ+ c3|Imλ| = −θ3|ξR|4 + Cθ3

(
1 + |ξR|2 + |ξI |2 + |ξI |4

)
.
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The main observations summarized in Theorem 1.1 are as follows: Part I asserts that for
real values of ξ the spectrum of Lξ lies entirely in the stable (i.e., negative-real) half-plane,
and indeed the leading eigenvalue moves into the stable half-plane like |ξ|3. Moreover, the
remainder of the spectrum (both point and essential) separates from λ∗(ξ) by moving into
the stable half-plane at the faster rate |ξ|2 (faster for |ξ| small). Part II asserts that similar,
if more complicated, dynamics continue to hold for complex values of ξ. Parts I is proven in
[13], while Part II is proven in [14]. Finally, we note that only Parts 4, 7, and 8 require M
to be constant.

If we let G(x, t; y) denote a Green’s function for L so that

(∂t − L)G = 0; G(x, 0; y) = δy(x)I, (1.14)

where in this case δy(x) denotes a Dirac delta function, then we can express solutions of (1.7)
as

v(x, t)− ū′(x1)δ(x̃, t) =

∫
Rn
G(x, t; y)v0(y)dy +

∫ t

0

∫
R
G(x, t− s; y)∇ · Q(y, s)dyds. (1.15)

As we’ll clarify in Theorem 1.2 we can express G as

G(x, t; y) = ū′(x1)e(x̃, t; y) + G̃(x, t; y), (1.16)

where, roughly speaking, e(x̃, t; y) encodes information associated with the shift δ(x̃, t), and
G̃(x, t; y) encodes information away from the transition layer. We obtain

v(x, t)− ū′(x1)δ(x̃, t) = ū′(x1)

∫
Rn
e(x̃, t; y)v0(y)dy +

∫
Rn
G̃(x, t; y)v0(y)dy

+ ū′(x1)

∫ t

0

∫
Rn
e(x̃, t− s; y)∇ · Q(y, s)dyds+

∫ t

0

∫
Rn
G̃(x, t− s; y)∇ · Q(y, s)dyds.

(1.17)
We now choose δ(x̃, t) so that

δ(x̃, t) = −
∫
Rn
e(x̃, t; y)v0(y)dy −

∫ t

0

∫
Rn
e(x̃, t− s; y)∇ · Q(y, s)dyds. (1.18)

Upon combining (1.17) and (1.18), and integrating the nonlinear terms by parts, we obtain
the system of m+ 1 integral equations

v(x, t) =

∫
Rn
G̃(x, t; y)v0(y)dy −

∫ t

0

∫
Rn

n∑
j=1

G̃yj(x, t− s; y)Qj(y, s)dyds

δ(x̃, t) = −
∫
Rn
e(x̃, t; y)v0(y)dy +

∫ t

0

∫
Rn

n∑
j=1

eyj(x̃, t− s; y)Qj(y, s)dyds.
(1.19)

6



In addition, we can augment this system with integral equations for derivatives of v
and δ as necessary by differentiating through the integral signs, which will be justified by
estimates on G̃(x, t; y) and e(x̃, t; y). Our primary goal in this analysis is to use nonlinear
iteration to establish existence and asymptotic behavior of solutions to this system. In order
to accomplish this, we require detailed estimates on G̃(x, t; y) and e(x̃, t; y), as established
in [14].

In order to efficiently describe some logarithmic behavior that arises in a theorem from
[14], we make the following definition.

Definition 1.2. We define a function hp,n(t) for all 1 ≤ p ≤ ∞, n = 2, 3, . . . , and t > 0.
Precisely, we take hp,2(t) ≡ 1 for all 1 ≤ p ≤ ∞, and for n = 3, 4, . . . we set

hp,n(t) =

{
ln(e+ t) p = 1

1 p > 1.

In addition, for 1 ≤ p <∞ we will denote the Lp norm in the transverse variable as

‖u(x, t)‖Lpx̃ :=
(∫

Rn
|u(x1, x̃, t)|pdx̃

) 1
p
,

and we define ‖u(x, t)‖L∞x̃ in an analogous fashion.
Finally, for positive constants K and T that arise in the statement of Theorem 1.2, we

will let χII(x, t; y) denote the characteristic function for the set

SII := {(x, t; y) : t ≥ T, |x− y| ≤ Kt},

and we will let χIII(x, t; y) denote the characteristic function for the complement of SII (in
Rn × R+ × Rn). We can then write

G̃(x, t; y) = G̃II(x, t; y) + G̃III(x, t; y),

where
G̃II(x, t; y) = G̃(x, t; y)χII(x, t; y)

G̃III(x, t; y) = G̃(x, t; y)χIII(x, t; y).

The following theorem is established in [14]; we note that the spectral condition (Dξ) will
be stated precisely in Section 2.

Theorem 1.2 (From [14]). Suppose Conditions (C0)-(C3) hold, along with spectral condition
(Dξ), and suppose the conclusions of Theorem 1.1 hold, possibly under weaker hypotheses.
Then given any time T > 0 there exist constants η > 0 (sufficiently small), and C > 0,
K > 0, M > 0 (sufficiently large) so that the Green’s function described in (1.2) can be
bounded as follows: there exists a splitting

G(x, t; y) = ū′(x1)e(x̃, t; y) + G̃(x, t; y),
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so that:
(I) Transition layer terms.

‖e(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−
n−1
3

(1− 1
p

)hp,n(t)e−
y21
Mt

‖ey1(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−
1
3
−n−1

3
(1− 1

p
)hp,n(t)e−

y21
Mt ,

‖et(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−1−n−1
3

(1− 1
p

)hp,n(t)e−
y21
Mt

‖ety1(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−
4
3
−n−1

3
(1− 1

p
)hp,n(t)e−

y21
Mt ,

and for any multiindex β in x̃ and ỹ, with |β| ≤ 3,

‖∂βe(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−
|β|
3
−n−1

3
(1− 1

p
)hp,n(t)e−

y21
Mt

‖∂βey1(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−
1+|β|

3
−n−1

3
(1− 1

p
)hp,n(t)e−

y21
Mt

‖∂βet(x̃, t; y)‖Lpx̃ ≤ C(1 + t)−
3+|β|

3
−n−1

3
(1− 1

p
)hp,n(t)e−

y21
Mt .

(II) Asymptotic terms. For |x− y| ≤ Kt, t ≥ T

‖G̃II(x, t; y)‖Lpx̃ ≤ C
(
t−

1
2
−n−1

2
(1− 1

p
) + t−

2
3
−n−1

3
(1− 1

p
)hp,n(t)

)
e−

(x1−y1)
2

Mt

‖G̃II
x1

(x, t; y)‖Lpx̃ ≤ C
(
t−1−n−1

3
(1− 1

p
)hp,n(t) + t−

1
2
−n−1

2
(1− 1

p
)e−η|x1|

+ t−
2
3
−n−1

3
(1− 1

p
)hp,n(t)e−η|x1|

)
e−

(x1−y1)
2

Mt

‖G̃II
y1

(x, t; y)‖Lpx̃ ≤ Ct−1−n−1
3

(1− 1
p

)hp,n(t)e−
(x1−y1)

2

Mt

‖G̃II
x1y1

(x, t; y)‖Lpx̃ ≤ C
(
t−

4
3
−n−1

3
(1− 1

p
)hp,n(t) + t−1−n−1

3
(1− 1

p
)hp,n(t)e−η|x1|

)
e−

(x1−y1)
2

Mt ,

and for any multiindex β in x̃ and ỹ, with |β| ≤ 3,

‖∂βG̃II(x, t; y)‖Lpx̃ ≤ Ct−
2+|β|

3
−n−1

3
(1− 1

p
)hp,n(t)e−

(x1−y1)
2

Mt

‖∂βG̃II
x1

(x, t; y)‖Lpx̃ ≤ C
(
t−

3+|β|
3
−n−1

3
(1− 1

p
)hp,n(t) + t−

2+|β|
3
−n−1

3
(1− 1

p
)hp,n(t)e−η|x1|

)
e−

(x1−y1)
2

Mt

‖∂βG̃II
y1

(x, t; y)‖x2 ≤ Ct−
3+|β|

3
−n−1

3
(1− 1

p
)hp,n(t)e−

(x1−y1)
2

Mt .

(III) Local terms. For |x− y| ≥ Kt or 0 < t < T , and for any multiindex α in x and y with
|α| ≤ 3

‖∂αG̃III(x, t; y)‖Lpx̃ ≤ Ct−
1+|α|

4
− 1

4
(1− 1

p
)e
− (x1−y1)

4/3

Mt1/3 .

Moreover, precisely the same estimates hold if the L2 norm in x̃ is replaced by the transverse
L2 norm in ỹ.
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Both for the statement of our main theorem and for the analysis to follow, it will be
convenient to set notation for some unwieldy expressions that will commonly occur. We
define:

Θ(x1, t) := (1 + t)−1/2e−
x21
Lt + (1 + |x1|+

√
t)−3/2;

A0(x1, t; p) :=
(

(1 + t)−
n−1
2

(1− 1
p

) + (1 + t)−
n−1
3

(1− 1
p

)− 1
6hp,n(t)

)
Θ(x1, t);

A1(x1, t; p) :=
(
t−1/4(1 + t)−

n−1
3

(1− 1
p

)− 1
4 + t−1/4(1 + t)−

n−1
2

(1− 1
p

)+ 1
4 e−η|x1|

+ t−1/4(1 + t)−
n−1
3

(1− 1
p

)+ 1
12hp,n(t)e−η|x1|

)
Θ(x1, t),

(1.20)

and

Ak(x1, t; p) := t−1/4(1 + t)−
n−1
3

(1− 1
p

)+ 1
12
− 1

3hp,n(t)Θ(x1, t); k = 2, 3, . . . , n;

Bβ(t; p) := (1 + t)−
n−1
3

(1− 1
p

)− |β|
3 hp,n(t); |β| ≤ 3

Ḃ(t; p) := (1 + t)−
n−1
3

(1− 1
p

)−1hp,n(t).

(1.21)

Here, L is some sufficiently large constant.
The primary goal of the current analysis is to show that the estimates stated in Theorem

1.2 lead to the following theorem.

Theorem 1.3. Let ū(x1) be a planar transition front solution to (1.1). Suppose that con-
ditions (H0)-(H4) hold, along with spectral condition (Dξ), and that the conclusions of The-
orem 1.1 hold, possibly under weaker hypotheses. Then for Hölder continuous initial data
u0 ∈ Cγ(Rn), 0 < γ < 1, with

‖u0(x)− ū(x1)‖L1
x̃

+ ‖u0(x)− ū(x1)‖L∞x̃ ≤
ε

(1 + |x1|)
3
2

,

for ε > 0 sufficiently small, there exists a unique solution to (1.1)

u ∈ C4+γ,1+ γ
4 (Rn × (0,∞)) ∩ Cγ, γ

4 (Rn × [0,∞))

and a shift
δ ∈ C3,1(Rn−1 × [0,∞))

so that
‖v(x, t)‖Lpx̃ ≤ CA0(x1, t; p);

‖∂xiv(x, t)‖Lpx̃ ≤ CAi(x1, t; p); i = 1, 2, . . . , n,

and
‖Dβ

x̃δ(x̃, t)‖Lpx̃ ≤ CBβ(t; p); |β| ≤ 3;

‖∂tδ(x̃, t)‖Lpx̃ ≤ CḂ(t; p).
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The remainder of the paper is organized as follows. In Section 2 we describe spectral
condition (Dξ). In Section 3, we analyze and describe the nonlinearity Q, and in Section 4
we establish estimates on the linear and nonlinear integrtals in (1.19). In Section 5 we carry
out the nonlinear iteration that proves Theorem 1.3.

2 Spectral Condition Dξ
The purpose of this section is to review enough material from [13] and [14] so that we
can state spectral condition (Dξ). We express the Evans function for (1.11) in terms of
asymptotically growing and decaying solutions for this equation. As x1 → ±∞ this equation
is asymptotically close to the constant coefficient equations

−M±Γφ′′′′ + (M±B± + 2|ξ|2M±Γ)φ′′ − (λI + |ξ|2M±B± + |ξ|4M±Γ)φ = 0. (2.1)

If we search for solutions of the form φ(x1) = eµx1r, where µ is a scalar constant and r ∈ Cm

is a constant vector (constant in x1) we obtain the associated eigenvalue problem{
− µ4M±Γ + µ2(M±B± + 2|ξ|2M±Γ)− (λI + |ξ|2M±B± + |ξ|4M±Γ)

}
r = 0. (2.2)

In this last expression, it will be convenient to set κ := |ξ|2 to get{
− µ4M±Γ + µ2(M±B± + 2κM±Γ)− (λI + κM±B± + κ2M±Γ)

}
r = 0. (2.3)

At this stage, we introduce a radial variable σ defined so that

(λ, κ) = σ(λ0, κ0), (2.4)

where |(λ0, κ0)| = 1, which allows us to express our asymptotic eigenvalue problem as{
− µ4M±Γ + µ2(M±B± + 2σκ0M±Γ)− σ(λ0I + κ0M±B± + σκ2

0M±Γ)
}
r = 0. (2.5)

(Our use of this radial variable follows particularly [27, 29].) Following [16] we set the
notation

σ(M±B±) = {β±j }mj=1

σ(M±Γ) = {γ±j }mj=1,

σ(Γ−1B±) = {ν±j }mj=1,

(2.6)

where σ(·) denotes the collection of eigenvalues and we choose our ordering so that j < k
implies β±j ≤ β±k , γ±j ≤ γ±k , and ν±j ≤ ν±k . The fact that the eigenvalues for these matrices
are all real and positive follows from symmetry and positivity of Γ, B±, and M±, as discussed
in more detail in [16].
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As shown in [14] we can express the {µ±j }4m
j=1 analytically as functions of the variable

s :=
√
σ = (|λ|2 + |ξ|4)1/4, (2.7)

and we summarize relations derived in [14] as follows, for j = 1, 2, . . . ,m:

µ±j (s) = −
√
ν±m+1−j + O(s2)

µ±m+j(s) = −
√

λ

β±j
+ κ+ O(|s|3)

µ±2m+j =

√
λ

β±m+1−j
+ κ+ O(|s|3)

µ±3m+j(s) = +
√
ν±j + O(s2).

(2.8)

(As discussed in [14], these relations are true under additional assumptions on λ and ξ that
won’t play a direct role here.)

In the following lemma, we collect estimates on solutions to (1.11). First, we define
a domain of applicability, which is simply specified to avoid branches that arise in the
specifications of {µ±j }4m

j=1. For κ ∈ C (i.e., allowing for complexification of ξ, as discussed in

[14]), we must remain away from branches λ/β±j +κ ∈ (−∞, 0], which we denote bκ,±j . Given
any κ ∈ C, we denote the collection of all such branches

Bκ = ∪j,±bκ,±j .

Definition 2.1. For ε > 0, we will denote by Sε the following set:

Sε :=
{

(λ, κ) : |s| < ε, λ /∈ Bκ
}
.

Lemma 2.1 (From [13]). Under Conditions (C0)-(C3), there exist constants ε, η > 0 so
that the following estimates hold uniformly in (λ, κ) ∈ Sε on a choice of linearly independent
solutions of the eigenvalue problem (1.11):

(I) For x1 ≤ 0, k = 0, 1, 2, 3, and j = 1, 2, . . . ,m,

∂kx1φ
−
j (x1; s) = eµ

−
2m+j(s)x1

(
(µ−2m+j)

kr−2m+1−j + O(e−η|x1|)
)

; (slow)

∂kx1φ
−
m+j(x1; s) = eµ

−
3m+j(s)x1

(
(µ−3m+j)

kr−m+1−j + O(e−η|x1|)
)

; (fast)

and

∂kx1ψ
−
j (x1; s) = eµ

−
j (s)x1

(
(µ−j )kr−j + O(e−η|x1|)

)
; (fast)

∂kx1ψ
−
m+j(x1; s) =

1

µ−m+j

(
(µ−m+j)

keµ
−
m+j(s)x1 − (−µ−m+j)

ke−µ
−
m+j(s)x1

)
r−m+j

+ O(e−η|x1|). (slow)
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(II) For x1 ≥ 0, k = 0, 1, 2, 3, and j = 1, 2, . . . ,m,

∂kx1φ
+
j (x1; s) = eµ

+
j (s)x1

(
(µ+

j )kr+
j + O(e−η|x1|)

)
; (fast)

∂kx1φ
+
m+j(x1; s) = eµ

+
m+j(s)x1

(
(µ+

m+j)
kr+
m+j + O(e−η|x1|)

)
; (slow)

and

∂kx1ψ
+
j (x1; s) =

1

µ+
2m+j

(
(µ+

2m+j)
keµ

+
2m+j(s)x1 − (−µ+

2m+j)
ke−µ

+
2m+j(s)x1

)
r+

2m+1−j

+ O(e−η|x1|); (slow)

∂kx1ψ
+
m+j(x1; s) = eµ

+
3m+j(s)x1

(
(µ+

3m+j)
kr+
m+1−j + O(e−η|x1|)

)
. (fast)

Throughout the statement, we have suppressed dependence on λ0 and κ0.

Remark 2.1. Since ū′(x1) decays at exponential rate as x1 → ±∞, it must be the case
that ū′(x1) is a linear combination of the fast-decaying solutions {φ−m+j(x1; 0)}mj=1 and of the
fast-decaying solutions {φ+

j (x1; 0)}mj=1. Focusing for specificity on the latter, we note that
the linear combination will not contain any solutions that decay at a slower rate than ū′(x1),
We are justified then in letting J+ denote the index of the slowest decaying solution that
appears in the linear combination, or if multiple solutions have the same rate one of these
indices. Noting that the faster decaying solutions can be subsumed into the exponential errors
in Lemma 2.1, we can write

ū′(x1) = φ+
J+(x1; 0),

where in the case of multiple solutions with the same decay rate we may have to revise our
original (arbitrary) selection of the eigenvector r+

J+. Proceeding similarly for x1 < 0 and
appealing to analyticity in σ, we conclude

φ−J−(x1; s) = ū′(x1) + O(s2e−η|x1|)

φ+
J+(x1; s) = ū′(x1) + O(s2e−η|x1|).

(2.9)

We now set some convenient notation.

Definition 2.2. Suppose {φj}Nj=1 denote N vectors, each of length M ≤ N , and dependent
on a single independent variable, and suppose N/M = l, where l is an integer. Then we set
the Wronskian notation

W (φ1, φ2, . . . , φN) := det


φ1 φ2 . . . φN
φ1
′ φ2

′ . . . φN
′

...
...

...
...

φ1
(l−1) φ2

(l−1) . . . φN
(l−1)

 , (2.10)

where ′ and (l−1) denote usual differentiation with respect to the independent variable.
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We will define a Wronskian that might appropriately be regarded as an Evans type
function for this problem. This function will depend on s, with λ0 and κ0 regarded as
parameters. First, we set

D(λ, κ) := W (φ+
1 , . . . , φ

+
m︸ ︷︷ ︸

fast

,

slow︷ ︸︸ ︷
φ+
m+1, . . . , φ

+
2m,

slow︷ ︸︸ ︷
φ−1 , . . . , φ

−
m, φ

−
m+1, . . . , φ

−
2m︸ ︷︷ ︸

fast

),

and then with s =
√
σ set

D(s) := D(λ0σ, κ0σ), (2.11)

where the dependence on λ0 and κ0 has been suppressed on the left hand side.
If we take κ = 0 in D, we obtain precisely the Evans function associated with ū(x1)

viewed as a solution to the scalar system (1.13). In [16], the authors analyze this function,
and following the notation used there we specify it as Da(ζ) = D(λ, 0), where ζ =

√
λ. In

particular, it is shown in [16] That under the assumptions (H0)-(H4), with κ0 = 0 in (H4),

we have D
(k)
a (0) = 0 for k = 0, 1, . . . ,m, and transversality (as described in the paragraph

immediately preceding Theorem 1.1) is determined by the following condition.

Condition (D0).
dm+1Da

dζm+1
(0) 6= 0.

Remark 2.2. As discussed in Remark 3.1 of [14], the lowest (possible) order non-zero deriva-
tive of D(s) will be the (m+ 1)st derivative, with two derivatives on exactly one of φ−J− and
φ+
J+ and one derivative on each of m − 1 slow-decaying solutions. Similarly as in [16] we

denote these terms

2

(m+ 1)!
D(m+1)(0) =

(2m)∑
j1,j2,...,jm−1=1

W̃j1,j2,...,jm−1 , (2.12)

where the notation
∑(2m)

j1,j2,...,jm−1=1 denotes summation for which j1 goes from 1 to m+ 2, j2

goes from j1 + 1 to m+ 3, and so on until jm−1 goes from jm−2 + 1 to 2m.
We note that there are precisely 2m slow decay modes, {φ−j }mj=1 and {φ+

j }2m
j=m+1, and so

we can refer to them unambiguously with a set of indices running from 1 to 2m. In this way,
the summand W̃j1,j2,...,jm−1 refers to the term in D(m+1)(0) for which derivatives appear on
the slow modes with indices j1, j2, . . . , jm−1. For example, for m = 2 we only have one index
and it ranges from 1 to 4. For m = 3 we have two indices, and j1 ranges from 1 to 5 while
j2 ranges from 2 to 6.

We conclude this remark by noting that we use tildes on W here to distinguish it from
the coefficients in [16], which will also play a role in our analysis, and will be designated as
in [16] without tildes.
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2.1 The Case m = 2

Before reviewing the general case, we focus on the case m = 2. For specificity we’ll assume
J− = 3 and J+ = 2, which is expected in the sense that ū′ will generally be a linear
combination of the solutions that decay at exponential rate when s = 0, and generically
these linear combinations will contain the slowest decaying solutions. First, for the case
n = 1 it’s shown in [16] that

1

3
D′′′a (0) =W1 +W2 +W3 +W4,

and the transversality condition in one space dimension is precisely that this sum be nonzero.
Correspondingly, in multiple space dimensions we have

1

3
D′′′(0) = λ0

(
W1

√
λ0 + β−2 κ0 +W2

√
λ0 + β−1 κ0 +W3

√
λ0 + β+

1 κ0 +W4

√
λ0 + β+

2 κ0

)
,

which corresponds with

1

3
D′′′(0)s3 = λ

(
W1

√
λ+ β−2 |ξ|2 +W2

√
λ+ β−1 |ξ|2 +W3

√
λ+ β+

1 |ξ|2 +W4

√
λ+ β+

2 |ξ|2
)
.

In this case, the condition D′′′a (0) 6= 0 does not provide enough information about D′′′(0),
and we make the stronger assumption that the {Wj}4

j=1 are all non-zero, and all have the
same sign. This has been verified for an example case in [16], and we also note that in the
framework of [16] each of the {Wj}4

j=1 has to be computed individually, so there is no extra
work associated with checking this stronger condition. This condition will be stated more
precisely in the next subsection.

2.2 The General Case m ≥ 3

For the general case, it is shown in [13] that

2

(m+ 1)!
D(m+1)(0) = λ0

(2m)∑
j1,j2,...,jm−1=1

Wj1,j2,...,jm−1

√
λ0 + β(j1)κ0 · · ·

√
λ0 + β(jm−1)κ0,

and correspondingly

2

(m+ 1)!
D(m+1)(0)sm+1 = λ

(2m)∑
j1,j2,...,jm−1=1

Wj1,j2,...,jm−1

√
λ+ β(j1)|ξ|2 · · ·

√
λ+ β(jm−1)|ξ|2,

(2.13)
where β(ji) denotes the value β±j corresponding with φ±ji . Here, the coefficients Wj1,j2,...,jm−1

are precisely the values from [16] from the relation

2

(m+ 1)!
D(m+1)
a (0) =

(2m)∑
j1,j2,...,jm−1=1

Wj1,j2,...,jm−1 .
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Similarly as in the case m = 2, we make the following assumption.

Condition (Dξ). We assume that at least one of the coefficients Wj1,j2,...,jm−1 in (2.13) is
non-zero, denoted WJ , and that the remaining coefficients are either 0 or of the same sign
as WJ .

3 The Nonlinearity

In this section, we derive the precise form of our nonlinearity Q. As a start, we rearrange
(1.6) and differentiate with respect to t to obtain

ut = ū′(x1 − δ(x̃, t))(−δt) + vt, (3.1)

and additionally we note

ū′(x1 − δ(x̃, t)) = ū′(x1) + O(e−η|x1|δ). (3.2)

Notice in particular that we can express the O(·) term as a derivative, allowing us to conclude

ut = vt − ū′(x1)δt +
∂

∂x1

Q0(x1, δ), (3.3)

where
|Q0| ≤ Ce−η|x1||δδt|. (3.4)

I.e.,
Q0 = (ū(x1)− ū(x1 − δ(x̃, t)))δt(x̃, t),

which satisfies (3.4).
Equation (3.3) will become the left-hand side of (1.2), and for the right-hand side we

begin by observing that

∆ū(x1 − δ) = ū′′(x1 − δ) +
n∑
k=2

(
ū′′(x1 − δ)(δxk)2 − ū′(x1 − δ)δxkxk

)
= ū′′(x1 − δ)− ū′(x1)∆̃δ +Q∆,

(3.5)

where

∆̃ =
n∑
k=2

∂2

∂x2
k

|Q∆| ≤ Ce−η|x1|
n∑
k=2

(δ2
xk

+ |δδxkxk |)

|∂Q∆

∂x1

| ≤ Ce−η|x1|
n∑
k=2

(δ2
xk

+ |δδxkxk |)

|∂Q∆

∂xj
| ≤ Ce−η|x1|

n∑
k=2

(δxkδxkxj + |δxjδxkxk |+ |δδxkxkxj |),

(3.6)
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for j = 2, 3, . . . , n. Likewise, we can write

DuF (ū(x1 − δ) + v) = DuF (ū(x1 − δ)) +D2
uF (ū(x1))v +QF , (3.7)

where
|QF | ≤ C(|v|2 + e−η|x1||δv|)

|∂QF

∂x1

| ≤ C(|v||vx1|+ e−η|x1|(|v|2 + |δv|))

|∂QF

∂xj
| ≤ C(|v||vxj |+ e−η|x1|(|δxjv|+ |δvxj |)), j = 2, 3, . . . , n.

(3.8)

Finally,
M(ū(x1 − δ) + v) = M(ū(x1)) +QM , (3.9)

where
|QM | ≤ C(|v|+ e−η|x1||δ|)

|∂QM

∂x1

| ≤ C
(
|vx1|+ e−η|x1|(|v|+ |δ|)

)
|∂QM

∂xj
| ≤ C

(
|vxj |+ e−η|x1|(|δxj |)

)
, j = 2, 3, . . . , n.

(3.10)

Upon direct substitution of (3.3), (3.5), (3.7), and (3.9) into (1.2) we find

vt − ū′(x1)δt +
∂

∂x1

Q0(x1, δ)

= ∇ ·
{(
M̄(x1) +QM

)
Dx

(
− Γū′′(x1 − δ) + Γū′(x1)∆̃δ

− Γ∆v − ΓQ∆ +DuF (ū(x1 − δ)) + B̄(x1)v +QF

)}
.

(3.11)

We observe from (1.3) that

−Γū′′(x1 − δ) +DuF (ū(x1 − δ)) = 0,

so that

vt − ū′(x1)δt +
∂

∂x1

Q0(x1, δ)

= ∇ ·
{(
M̄(x1) +QM

)
Dx

(
Γū′(x1)∆̃δ − Γ∆v − ΓQ∆ + B̄(x1)v +QF

)}
.

(3.12)

In this way, we can express our equation for v as

(∂t − L)(v − ū′(x1)δ) = ∇ ·Q− ∂Q0

∂x1

, (3.13)
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where

Q = M̄(x1)Dx(−ΓQ∆ +QF ) +QMDx

(
Γū′(x1)∆̃δ − Γ∆v + B̄(x1)v − ΓQ∆ +QF

)
. (3.14)

We will denote the ith column of Q by Qi, and likewise we will denote the entry in the jth

row of the ith column by Qji. In our definition of Q, we see that Qi will consist of terms with
an xi-derivative from the Jacobian operator, and since x1 has a distinguished role it follows
that Q1 will have a different form from Qj, j = 2, 3, . . . , n. Finally, in order to incorporate
Q0, we’ll let Q denote the matrix obtained by taking Q1 − Q0 as the first column, and Qi,
i = 2, 3, . . . , n for the remaining columns. With this notation, we can express our nolinearity
as ∇ · Q, where

∇ · Q =
n∑
i=1

∂Qi
∂xi

,

and {Qi}ni=1 denote the columns of Q.
Combining (3.4), (3.6), (3.8), and (3.10) we find

|Q1| ≤ C1

(
|v||vx1|+ |v||∆vx1|

)
+ C2e

−η|x1|
(
|δδt|+

n∑
j=2

(δ2
xj

+ δδxjxj) + |v|2 + |δv|+ |δ∆vx1|+ |v∆̃δ|
)

|Qi| ≤ C1

(
|v||vxi |+ |v||∆vxi |

)
+ C2e

−η|x1|
( n∑
j=2

(δxjδxjxi + δxiδxjxj + δδxjxjxi)

+ |δxiv|+ |δvxi |+ |δ∆vxi |+ |δ∆̃δxi |+ |v∆̃δxi |
)
,

(3.15)

for i = 2, 3, . . . , n.

4 Integral Estimates

In this section, we obtain estimates on integrals arising in the linear and nonlinear terms in
the equations of (1.19).

4.1 Linear Estimates

Associated with the linear integrals in (1.19), we define

vl(x, t) :=

∫
R2

G̃(x, t; y)v0(y)dy, (4.1)
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and

δl(x̃, t) := −
∫
Rn
e(x̃, t; y)v0(y)dy. (4.2)

Here, the subscript l is simply notation designating linear.

Lemma 4.1. Let G̃(x, t; y) and e(x̃, t; y) denote any functions satisfying the estimates stated
in Theorem 1.2, let vl(x, t) and δl(x̃, t) be as defined in (4.1) and (4.2), and suppose

‖v0(y)‖L1
ỹ
≤ (1 + |y1|)−3/2.

Then there exists a constant C > 0 sufficiently large so that the following estimates hold:

‖vl(x, t)‖Lpx̃ ≤ CA0(x1, t; p);

‖∂xivl(x, t)‖Lpx̃ ≤ CAi(x1, t; p); i = 1, 2, . . . , n,

and for 0 ≤ |β| ≤ 3,

‖∂βx̃δl(x̃, t)‖Lpx̃ ≤ CBβ(t; p)

‖∂tδl(x̃, t)‖Lpx̃ ≤ CḂ(t; p),

with {Ai}ni=0, {Bβ}|β|≤3, and Ḃ as defined in (1.20) and (1.21).

Remarks on the proof. For the first estimate on vl(x, t), we begin with the inequality

‖vl(x, t)‖Lpx̃ ≤
∫ +∞

−∞
sup

ỹ∈Rn−1

‖G̃(x, t; y)‖Lpx̃‖v0‖L1
ỹ
dy1.

At this point, we take advantage of the observation that our estimates on ‖G̃‖p from Theorem
1.2 differ only by powers of t from the estimates of Theorem 1.1 from [17]. In this way, the
proof of Lemma 4.1 in the current analysis follows immediately from the proof of Lemma
5.1 in [17]. �

4.2 Nonlinear Estimates

We now turn to estimates on the nonlinear integrals arising in (1.19),

vn(x, t) = −
∫ t

0

∫
Rn

n∑
j=1

G̃yj(x, t− s; y)Qlj(y, s)dyds, (4.3)

and

δn(x2, t) =

∫ t

0

∫
Rn

n∑
j=1

eyj(x̃, t− s; y)Qlj(y, s)dyds, (4.4)

where the nonlinearities Qlj are obtained by substituting vl and δl in for v and δ in the
expressions for Qj, j = 1, 2, . . . , n.
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We observe at the outset that for s ∈ [0, t/2] the time decay will be determined by G̃
and e, while for s ∈ [t/2, t] it will be determined by Qlj(y, s). In light of this, for s ∈ [0, t/2],
we will use the inequality∥∥∥∫

Rn
G̃yj(x, t− s; y)Qlj(y, s)dy

∥∥∥
Lpx̃

≤
∫ +∞

−∞
sup

ỹ∈Rn−1

‖G̃yj(x, t− s; y)‖Lpx̃‖Q
l
j(y, s)‖L1

ỹ
dy1,

(4.5)

while for s ∈ [t/2, t] we will use the inequality∥∥∥∫
Rn
G̃yj(x, t− s; y)Qlj(y, s)dy

∥∥∥
Lpx̃

≤
∫ +∞

−∞
sup

ỹ∈Rn−1

‖G̃yj(x, t− s; y)‖
1
p

L1
x̃

sup
x̃∈Rn−1

‖G̃yj(x, t− s; y)‖
1
q

L1
ỹ
‖Qlj(y, s)‖Lpỹdy1.

(4.6)

Here, and in the remainder of the analysis, we will often simplify calculations by using
sufficiently large constants C, even when more precise constants could be identified (with
more work). We will often arrange a series of inequalities for which a new constant will be
appropriate at each step, and we’ll designate these constants C1, C2, etc. Finally, we will
recycle this notation, so that the next calculation will begin again with C1, unrelated to C1

from the previous calculation.
It’s clear from our linear estimates of Lemma 4.1 that for large t, vl decays much faster

than δl in t, and likewise derivatives of vl and δl decay at least as fast, respectively, as vl
and δl in t. This observation allows us to focus on the terms in Ql that will determine the
estimates. For Ql1 these are

|vl||∂x1vl|+ e−η|x1|((∂xjδl)
2 + δl∂

2
xjxj

δl),

while for Qlj these are

|vl||∂xjvl|+ e−η|x1|((∂xjδl)∂
2
xjxj

δl + δl∂
3
xjxjxj

δl).

I.e., if we can control these individual terms, we will have control over the full nonlinearity
Q.

For |vl||∂x1vl|, we find

‖|vl||∂x1vl|‖Lpx̃ ≤ ‖vl‖L∞x̃ ‖∂x1vl‖Lpx̃ ≤ C1A0(x1, t;∞)A1(x1, t; p)

≤ C2

{
t−

1
4 (1 + t)−

n−1
3

(2− 1
p

)− 5
12hp,n(t) + t−

1
4 (1 + t)−

n−1
3
−n−1

2
(1− 1

p
)+ 1

12 e−η|x1|

+ t−
1
4 (1 + t)−

n−1
3

(2− 1
p

)− 1
12hp,n(t)e−η|x1|

}
Θ(x1, t)

2.
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Likewise, for e−η|x1|(∂xjδl)
2 we find

‖e−η|x1|(∂xjδl)2‖Lpx̃ ≤ e−η|x1|‖∂xjδl‖L∞x̃ ‖∂xjδl‖Lpx̃ ≤ C1e
−η|x1|Bβj(t;∞)Bβj(t; p)

≤ C2(1 + t)−
n−1
3

(2− 1
p

)− 2
3hp,n(t)e−η|x1|,

where βj denotes the multiindex with 1 in the j-th position and zeros otherwise. Clearly,
e−η|x1|δl∂

2
xjxj

δl leads to the same estimate, and we see that our preliminary estimate on the

nonlinearity Ql1 is

‖Ql1‖Lpx̃ ≤ C
(
t−

3
4 (1 + t)−

n−1
3

(2− 1
p

)+ 1
12hp,n(t)Θ(x1, t)

2 + t−
3
4 (1 + t)−

n−1
3

(2− 1
p

)+ 1
12hp,n(t)e−η|x1|

)
.

(4.7)
Turning to Qlj, j = 2, 3, . . . , n, we observe a slight advantage in the terms involving our

shift δl. Proceeding otherwise as for Ql1 we find

‖Qlj‖Lpx̃ ≤ C
(
t−

3
4 (1 + t)−

n−1
2

(2− 1
p

)+ 1
12hp,n(t)Θ(x1, t)

2 + t−
3
4 (1 + t)−

n−1
3

(2− 1
p

)− 1
4hp,n(t)e−η|x1|

)
.

(4.8)

Lemma 4.2. Let G̃(x, t; y) and e(x̃, t; y) denote any functions satisfying the estimates stated
in Theorem 1.2, and let Qlj(x, t), j = 1, 2, . . . , n satisfy the estimates (4.7) and (4.8). Then
there exists a constant C > 0 sufficiently large so that for 1 ≤ p ≤ ∞, the following estimates
hold:

‖vn(x, t)‖Lpx̃ ≤ CA0(x1, t; p)

‖∂xjvn(x, t)‖Lpx̃ ≤ CAj(x1, t; p); j = 1, 2, . . . , n,

and
‖∂βx̃δn(x̃, t)‖Lpx̃ ≤ CBβ(t; p); |β| ≤ 3

‖∂tδn(x̃, t)‖Lpx2 ≤ CḂ(t; p).

We observe that the key observation of Lemma 4.2 is that the nonlinear integrals vn(x, t)
satisfy precisely the same estimates as the linear integrals.
Proof. In order to establish the estimates of Lemma 4.2, it’s useful to observe that

‖Qlj‖Lpx2 ≤ C(Ψ1(x1, t; p) + Ψ2(x1, t; p) + Ψ3(x1, t; p)), j = 1, 2, . . . , n,

where

Ψ1(x1, t; p) = t−
3
4 (1 + t)−

n−1
3

(2− 1
p

)− 11
12hp,n(t)e−

2x21
Lt

Ψ2(x1, t; p) = t−
3
4 (1 + t)−

n−1
3

(2− 1
p

)+ 1
12hp,n(t)(1 + |x1|+

√
t)−3

Ψ3(x1, t; p) = t−
3
4 (1 + t)−

n−1
3

(2− 1
p

)+ 1
2hp,n(t)e−η|x1|.

In fact, it follows from our estimates so far that for j = 2, . . . , n the estimates are slightly
better,

‖Qj1‖Lpx2 ≤ C(Ψ1(x1, t; p) + Ψ2(x1, t; p) + (1 + t)−
1
4 Ψ3(x1, t; p)); j = 2, 3, . . . , n,
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but we won’t need to take advantage of this, and the improvement is lost when we incorporate
our small-time theory for estimates on higher order derivatives of v.

Beginning with the estimates on δn, we observe that similarly as with (4.5) and (4.6) we
will use the inequality∥∥∥∫

Rn
eyj(x̃, t− s; y)Qlj(y, s)dy

∥∥∥
Lpx̃

≤
∫ +∞

−∞
sup

ỹ∈Rn−1

‖eyj(x̃, t− s; y)‖Lpx̃‖Q
l
j(y, s)‖L1

ỹ
dy1

(4.9)

for s ∈ [0, t/2], while for s ∈ [t/2, t] we will use the inequality∥∥∥∫
Rn
eyj(x̃, t− s; y)Qlj(y, s)dy

∥∥∥
Lpx̃

≤
∫ +∞

−∞
sup

ỹ∈Rn−1

‖eyj(x̃, t− s; y)‖
1
p

L1
x̃

sup
x̃∈Rn−1

‖eyj(x̃, t− s; y)‖
1
q

L1
ỹ
‖Qlj(y, s)‖Lpỹdy1.

(4.10)

For j = 1 we have three terms to consider for each of (4.9) and (4.10) (corresponding
with Ψ1, Ψ2, and Ψ3). Starting with (4.9)-Ψ1, we obtain integrals of the form

I1 :=

∫ t
2

0

∫ +∞

−∞
(1 + (t− s))−

n−1
3

(1− 1
p

)− 1
3hp,n(t− s)e−

y21
M(t−s)

× s−
1
4 (1 + s)−

n−1
3

(2− 1
p

)− 17
12hp,n(s)e−

2y21
Ls dy1ds.

Integrating the exponential e−
2y21
Ls , we see that

I1 ≤ C1

∫ t
2

0

(1 + (t− s))−
n−1
3

(1− 1
p

)− 1
3hp,n(t− s)s+ 1

4 (1 + s)−
n−1
3
− 17

12hp,n(s)ds

≤ C2(1 + t)−
n−1
3

(1− 1
p

)− 1
3hp,n(t)

∫ t
2

0

s+ 1
4 (1 + s)−

n−1
3
− 17

12hp,n(s)ds

≤ C3(1 + t)−
n−1
3

(1− 1
p

)− 1
3hp,n(t),

where we have observed that the integrand after the first inequality is integrable. In fact,
we see that aside from the logarithmic multiplier hp,n(t) we obtain a decay rate better than
required by a factor t−1/3.

Similarly, using (4.10) we obtain integrals of the form

I2 :=

∫ t

t
2

∫ +∞

−∞
(1 + (t− s))−

1
3hp,n(t− s)e−

y21
M(t−s) s−

1
4 (1 + s)−

n−1
3

(2− 1
p

)− 17
12hp,n(s)e−

2y21
Ls dy1ds,
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for which we obtain (now integrating e−
y21

M(t−s) )

I2 ≤ C1

∫ t

t
2

(t− s)+ 1
2 (1 + (t− s))−

1
3hp,n(t− s)s−

1
4 (1 + s)−

n−1
3

(2− 1
p

)− 17
12hp,n(s)ds

≤ C2t
− 1

4 (1 + t)−
n−1
3

(2− 1
p

)− 17
12hp,n(t)

∫ t

t
2

(t− s)+ 1
2 (1 + (t− s))−

1
3hp,n(t− s)ds

≤ C3t
− 1

12 (1 + t)−
n−1
3

(2− 1
p

)− 17
12 (hp,n(t))2,

which is much better than required.
The remaining estimates on δn(x̃, t) are established in a nearly identical fashion, and we

omit the details.
Turning now to the estimates on vn(x, t), we note at the outset that we have different

estimates on G̃(x, t − s; y) for different values of x, y, t, and s. For t − s ≤ T we have the
estimate stated in Part III of Theorem 1.2 (with t replaced by t−s) for all x and y, while for
t− s > T we have different estimates for the cases |x− y| > K(t− s) and |x− y| ≤ K(t− s).

We’ll start with the case t ≤ T , and it will be convenient to fix T = 2. In this case, we
certainly have t− s ≤ T , and so our estimate is

‖G̃III
yj

(x, t− s; y)‖Lpx̃ ≤ C(t− s)−
1
2
− 1

4
(1− 1

p
)e
− (x1−y1)

2

M(t−s)1/3 .

In principle, we need to integrate this estimate against each of Ψ1(y1, s; p), Ψ2(y1, s; p), and
Ψ3(y1, s; p), but the calculations are similar for each case, so we carry out the details only
for Ψ1(y1, s; p). In this case, we can use (4.5) to obtain estimates

I1 =

∫ t

0

∫ +∞

−∞
(t− s)−

1
2
− 1

4
(1− 1

p
)e
− (x1−y1)

4/3

M(t−s)1/3 s−
1
4 (1 + s)−

n−1
3
− 17

12hp,n(s)e−
2y21
Ls dy1ds.

The key observation to make here is that for t ≤ T , the terms

e
− (x1−y1)

4/3

M(t−s)1/3 ; and e−
2y21
Ls

both decay exponentially in some scaling of the space coordinates. If |y1| ≤ |x1|/2 then

e
− (x1−y1)

4/3

M(t−s)1/3 ≤ e
−

x
4/3
1

24/3MT1/3 ,

while for |y1| > |x1|/2
e−

2y21
Ls ≤ e−

x21
2LT .

In either case, we obtain exponential decay in |x1|, and for bounded times this is more than
sufficient. (I.e., it can be effectively viewed as exponential decay in both x1 and t, which
gives estimates smaller than A0(x1, t; p).)
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For t > 2, we divide our integrals first as∫ t

0

∫ +∞

−∞
=

∫ t−1

0

∫ +∞

−∞
+

∫ t

t−1

∫ +∞

−∞
=: I1 + I2.

For I2 we have t − s ≤ 1, and so we can again proceed with the estimates of Part III of
Theorem 1.2. In this case, we do not get exponential decay in time, but we get sufficient
t-decay from the nonlinearities since s ≥ t− 1.

For I1, we use the inequality

‖G̃yj(x, t− s; y)‖Lpx̃ ≤ ‖G̃
II
yj

(x, t− s; y)‖Lpx̃ + ‖G̃III
yj

(x, t− s; y)‖Lpx̃ .

For the estimates involving G̃III
yj

, we again proceed with the estimates from Part III of

Theorem 1.2, while for the estimates involving G̃II
yj

, we proceed with the estimates from
Part II of Theorem 1.2. Focusing on the latter, we can view the analysis as divided into 36
different cases. It’s perhaps convenient to organize these cases at four levels:

a) vn; ∂x1vn; ∂xkvn, k = 2, 3, . . . , n;

b) j = 1; j = 2, 3, . . . , n;

c) s ∈ [0, t/2]; s ∈ [t/2, t− 1];

d) Ψ1; Ψ2; Ψ3.

We can now refer to cases by an ordered sequence of four numbers. For example Case
1.1.2.2 refers to vn, j = 1, s ∈ [t/2, t− 1], and Ψ2. The various arguments we use will all be
apparent from three cases, 1.1.1.1-2 and 1.1.2.1, so these are the only cases we consider in
detail.

Case 1.1.1.1. We begin with Case 1.1.1.1 (i.e., vn, j = 1, s ∈ [0, t/2], and Ψ1), for which
we use (4.5) to obtain integrals of the form

J1 =

∫ t
2

0

∫ +∞

−∞
(t− s)−1−n−1

3
(1− 1

p
)hp,n(t− s)e−

(x1−y1)
2

Mt s−
1
4 (1 + s)−

n−1
3
− 17

12h1,n(s)e−
2y21
Ls dy1ds.

(4.11)
In evaluating integrals of this form, we will make use of the following equality from [17]:∫ +∞

−∞
e−

(x1−y1)
2

M(t−s) e−
2y21
Ls dy1 =

√
(L/2)Ms(t− s)

(L/2)s+M(t− s)
e−

x21
(L/2)s+M(t−s) , (4.12)

which implies the inequality∫ +∞

−∞
e−

(x1−y1)
2

M(t−s) e−
2y21
Ls dy1 ≤ Ct−

1
2 (t− s)

1
2 s

1
2 e−

x21
Mt , (4.13)
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where we’ve taken L
2
≤M .

Using (4.13) we see that

J1 ≤ C1t
− 1

2 e−
x21
Mt

∫ t
2

0

(t− s)−
1
2
−n−1

3
(1− 1

p
)hp,n(t− s)s+ 1

4 (1 + s)−
n−1
3
− 17

12h1,n(s)ds

≤ C2t
−1−n−1

3
(1− 1

p
)hp,n(t)e−

x21
Mt

∫ t
2

0

s+ 1
4 (1 + s)−

n−1
3
− 17

12h1,n(s)ds

≤ C3t
−1−n−1

3
(1− 1

p
)hp,n(t)e−

x21
Mt ,

using integrability in s.
Case 1.1.1.2. Likewise, for Case 1.1.1.2 we have integrals of the form

J2 =

∫ t
2

0

∫ +∞

−∞
(t− s)−1−n−1

3
(1− 1

p
)hp,n(t− s)e−

(x1−y1)
2

M(t−s)

× s−
1
4 (1 + s)−

n−1
3
− 5

12h1,n(s)(1 + |y1|+
√
s)−3dy1ds.

In this case, it’s convenient to divide the integration over y1 into two cases, |x1− y1| ≤ γ|x1|
and |x1 − y1| > γ|x1|, for some 0 < γ < 1, which will be chosen close to 1. In the case
|x1 − y1| > γ|x1| we have

e−
(x1−y1)

2

Mt ≤ e−γ
2 x

2
1

Mt ≤ e−
x21
Lt ,

where we’ve taken L ≥M/γ2 (so that M/γ2 ≤ L ≤ 2M , which is possible for γ close to 1).
On the other hand, if |x1 − y1| ≤ γ|x1|, then we must have |y1| ≥ (1− γ)|x1|, in which case

(1 + |y1|+
√
s)−3 ≤ (1 + (1− γ)|x1|+

√
s)−3.

First, if we denote by K1 the part of J2 associated with |x1 − y1| ≤ γ|x1|, we integrate
the kernel to find

K1 ≤ C1

∫ t
2

0

(t− s)−
1
2
−n−1

3
(1− 1

p
)hp,n(t− s)s−

1
4 (1 + s)−

n−1
3
− 5

12h1,n(s)(1 + |x1|+
√
s)−3ds

≤ C2t
− 1

2
−n−1

3
(1− 1

p
)hp,n(t)

∫ t
2

0

s−
1
4 (1 + s)−

n−1
3
− 5

12h1,n(s)(1 + |x1|+
√
s)−3ds

≤ C3t
− 1

2
−n−1

3
(1− 1

p
)hp,n(t)(1 + |x1|)−3/2,

in which we’ve been able to use (1 +
√
s)−3/2 in order to get integrability in s (much more

than we needed). For |x1| ≥
√
t this decay in |x1| provides decay in

√
t as well, while for

|x1| <
√
t we can subsume this into the kernel decay.
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Likewise, we denote by K2 the part of J2 associated with |x1− y1| > γ|x1|, and integrate
the algebraic decay to find

K2 ≤ C1

∫ t
2

0

(t− s)−1−n−1
3

(1− 1
p

)hp,n(t− s)e−γ2
x21
Mt s−

1
4 (1 + s)−

n−1
3
− 5

12h1,n(s)(1 +
√
s)−2ds

≤ C2t
−1−n−1

3
(1− 1

p
)hp,n(t)e−γ

2 x
2
1

Mt

∫ t
2

0

s−
1
4 (1 + s)−

n−1
3
− 5

12h1,n(s)(1 +
√
s)−2ds

≤ C3t
−1−n−1

3
(1− 1

p
)hp,n(t)e−γ

2 x
2
1

Mt ,

which can be subsumed into the kernel estimate.
Case 1.1.2.1. Since the nonlinearities are generally smaller than the kernels, the claimed

estimates are much easier to obtain for s ∈ [t/2, t− 1], and we only consider one case.
For Case 1.1.2.1 we use (4.6) to obtain integrals of the form

J3 =

∫ t−1

t
2

∫ +∞

−∞
(t− s)−1hp,n(t− s)e−

(x1−y1)
2

M(t−s)

× s−
1
4 (1 + s)−

n−1
3

(2− 1
p

)− 17
12hp,n(s)e−

2y21
Ls dy1ds,

and using (4.13) we can estimate these as

J3 ≤ C1t
− 1

2 e−
x21
Mt

∫ t−1

t
2

(t− s)−
1
2h1,n(t− s)s+ 1

4 (1 + s)−
n−1
3

(2− 1
p

)− 17
12hp,n(s)ds

≤ C2t
− 1

4 (1 + t)−
n−1
3

(2− 1
p

)− 17
12hp,n(t)e−

x21
Mt

∫ t−1

t
2

(t− s)−
1
2h1,n(t− s)ds

≤ C3t
+ 1

4 (1 + t)−
n−1
3

(2− 1
p

)− 17
12 (hp,n(t))2e−

x21
Mt ,

which is much better than required.

5 Nonlinear Iteration

In analyzing the nonlinearitiesQ, we must keep track of the following quantities: v, {∂xkv}nk=1,
{∂αx v}|α|=3, δ, δt, and {Dβ

x̃δ}|β|≤3. The third order estimates on v will be accommodated by a
short time analysis, but the remaining terms will be carried through the nonlinear iteration.

The goal is simply to show that we (at least) recover the linear estimates, and one
relatively straightfoward way to think about this process is in terms of ratios such as

‖v(x, t)‖Lpx̃
A0(x1, t; p)

.
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We will show that such ratios are bounded, and Theorem 1.3 will be an immediately conse-
quence.

We define

ζ(t) := sup
1≤p≤∞

(y1,s)∈R×[0,t]

{‖v(y, s)‖Lpỹ
A0(y1, s)

+
n∑
k=1

‖∂ykv(y, s)‖Lpỹ
Ak(y1, s)

+
∑
|β|≤3

‖∂βỹ δ(ỹ, s)‖Lpỹ
Bβ(s)

+
‖∂sδ(ỹ, s)‖Lpỹ

Ḃ(s)

}
.

(5.1)

5.1 Short-time Theory for the Solution

For our short-time theory, we verify that equation (1.1) satisfies the uniform parabolicity
described in [13], and then apply the results of that reference. To begin, we observe that
(1.1) can be expressed as

∂uj
∂t

=
n∑
l=1

∂

∂xl

{ m∑
k=1

Mjk(u)
(
−

m∑
i=1

Γki∆∂xlui +DuFuk(u)∂xlu
)}
,

from which we see that the highest order term on the right-hand side (which determines
parabolicity) can be expressed as

n∑
l=1

∂

∂xl

{ m∑
i=1

(−M(u)Γ)ji

n∑
q=1

∂3
xqxqxl

ui

}
=

n∑
l=1

∂

∂xl

{ m∑
i=1

∑
|α|=3

−Ajiα,lD
αui

}
,

where Aαl is either the matrix M(u)Γ or 0 depending on the values of α and l. Precisely, if
l = 1, it is the matrix M(u)Γ for α = (3, 0, . . . , 0), (1, 2, 0, . . . , 0), . . . , (1, 0, . . . , 0, 2), while
for l = 2 it is the matrix M(u)Γ for α = (2, 1, 0, . . . , 0), (0, 3, 0, . . . , 0), . . . , (0, 1, . . . , 0, 2),
and similarly for l = 3, . . . , n. For uniform parabolicity as defined in [12] (following [5], p.
239), we compute

n∑
l=1

∑
|α|=3

−Aα,l(iξ)αiξl = −M(u)Γ
n∑
l=1

n∑
q=1

ξ2
qξ

2
l = −|ξ|4M(u)Γ.

Uniform parabolicity is determined by evaluation at |ξ| = 1; in particular, our equation is
uniformly parabolic if all eigenvalues of the resulting matrix have negative real part. Since
Γ is positive definite, and M(u) is uniformly positive definite, that is the case here.

We conclude from Theorem 5.1 in [12] that for any τ ≥ 0, if u(·, τ) ∈ Cγ(Rn) for some
0 < γ < 1 (i.e., Hölder continuity) then on some sufficiently small interval [τ, T̃ ] we have

u ∈ Cγ, γ
4 (Rn × [τ, T̃ ]) ∩ C4+γ,1+ γ

4 (Rn × [σ, T̃ ]),
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for any σ ∈ (τ, T ). Moreover, there exists a Green’s function G(x, t; ξ, τ) so that

u(x, t) =

∫
Rn
G(x, t; ξ, τ)u(ξ, τ)dξ,

where for any multiindex |α| ≤ 3 there exist constants c and C so that

|Dα
xG(x, t; ξ, τ)| ≤ C(t− τ)−

n+|α|
4 e

−c |x−ξ|
4/3

(t−τ)1/3 . (5.2)

for t ∈ [τ, T̃ ].
In the following calculations, we’ll use two straightforward lemmas that are stated here

without proof.

Lemma 5.1. Let γ > −1, α,m > 0. Then∫ +∞

0

τ γe−ατ
m

dτ =
1

m
α−

1+γ
m Γ(

γ + 1

m
).

Lemma 5.2. Let η, α,m > 0. Then for any ε > 0

τ ηe−ατ
m ≤ Cα−η/me−(α−ε)τm ,

where C depends on η, m, and ε, but not on α.

Fixing τ ≥ 0 and t ∈ [τ, T̃ ], we observe that

u(x, t) =

∫
Rn
G(x, t; ξ, τ)u(ξ, τ)dξ

=

∫
Rn
G(x, t; ξ, τ)u(x, τ)dξ +

∫
Rn
G(x, t; ξ, τ)(u(ξ, τ)− u(x, τ))dξ

=: I1 + I2.

As noted in [12], we have the identity∫
Rn
G(x, t; ξ, τ)dξ = I, (5.3)

and it follows that I1 = u(x, τ). For I2, we have

|I2| ≤ C1

∫
Rn
|ξ − x|γ(t− τ)−

n
4 e
−c |x−ξ|

4/3

(t−τ)1/3 dξ

≤ C2(t− τ)
γ−n
4

∫
Rn
e
−c̃ |x−ξ|

4/3

(t−τ)1/3 dξ ≤ C3(t− τ)
γ
4 .
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We see that
u(x, t) = u(x, τ) + O((t− τ)

γ
4 ).

Likewise,

Dα
xu(x, t) =

∫
Rn
Dα
xG(x, t; ξ, τ)u(ξ, τ)dξ

=

∫
Rn
Dα
xG(x, t; ξ, τ)u(x, τ)dξ +

∫
Rn
Dα
xG(x, t; ξ, τ)(u(ξ, τ)− u(x, τ))dξ

=: J1 + J2.

We observe from (5.3) that J1 = 0, and proceeding similarly as in the previous calculation,
we find

|Dα
xu(x, t)| ≤ C(t− τ)

γ−|α|
4 ; 1 ≤ |α| ≤ 3.

5.2 Short-time Theory for the Shift

We now have a solid understanding of the short-time behavior of u(x, t). Recalling that

u(x, t) = ū(x1 − δ(x̃, t)) + v(x, t), (5.4)

we see that if we additionally obtain information about δ(x̃, t) we can make conclusions about
v(x, t) as well. Following [17] we proceed as follows: we carry out an iteration argument in
δ in an appropriate function space, and for estimates involving v we use our estimates on u,
the function space for δ, and (5.4).

As a start, we observe that for any 0 ≤ τ ≤ t we can write

δ(x̃, t) = δ(x̃, τ)−
∫
Rn

(
e(x̃, t; y)− e(x̃, τ ; y)

)
v0(y)dy

+

∫ τ

0

∫
Rn

n∑
j=1

(
eyj(x̃, t− s; y)− eyj(x̃, τ − s; y)

)
Qj(y, s)dyds

+

∫ t

τ

∫
Rn

n∑
j=1

eyj(x̃, t− s; y)Qj(y, s)dyds.

Fix any τ ≥ 0, and suppose δ(x̃, s) and v(x, s) exist up to time s = τ with δ ∈ C3,1(Rn−1 ×
[0, τ ]) and v satisfying the estimates

|Dα
xv(x, t)| ≤ C1(t− τ)

γ−|α|
4 + C2, (5.5)

for 0 ≤ |α| ≤ 3. For constants C and T , and define the space of functions

S =
{
δ ∈ C3,1(Rn−1 × [τ, τ + T ]) : δ(x̃, τ) = δτ (x̃), ‖δ‖3,1 ≤ C

}
,
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where ‖δ‖3,1 denotes the usual C3,1 norm.
For the purpose of an iteration, we define the map

T δ := δ(x̃, τ)−
∫
Rn

(
e(x̃, t; y)− e(x̃, τ ; y)

)
v0(y)dy

+

∫ τ

0

∫
Rn

n∑
j=1

(
eyj(x̃, t− s; y)− eyj(x̃, τ − s; y)

)
Qj(y, s)dyds

+

∫ t

τ

∫
Rn

n∑
j=1

eyj(x̃, t− s; y)Qj(y, s)dyds.

We will show that T is a contraction on S.
It’s important to be clear that when δ ∈ S the nonlinear terms Qj can be characterized

by our short-time theory for u and relation (5.4). That is, we can write

v(x, t) = u(x, t)− ū(x1 − δ(x̃, t))
vx1(x, t) = ux1(x, t)− ū′(x1 − δ(x̃, t))
vxj(x, t) = uxj(x, t)− ū′(x1 − δ(x̃, t))(−δxj); j = 2, 3, . . . , n,

and similarly for higher order derivatives. We see that v inherits the continuity from u and
δ, and that

|Dα
xv(x, t)| ≤ C1(t− τ)

γ−|α|
4 + C2, (5.6)

for 0 ≤ |α| ≤ 3. Since the terms in Qj that blow up fastest as s goes to 0 are those associated
with third order derivatives on v, we conclude that

|Qj(y, s)| ≤ K1s
γ−3
4 +K2.

In order to check that T is invariant on S, we note that clearly T δ(x̃, τ) = δτ (x̃), leaving
for verification the condition ‖T δ‖3,1 ≤ C. In order to indicate how we check this condition,
we note that we have the inequality

|T δ| ≤ |δ(x̃, τ)|+ ‖e(x̃, t; y)− e(x̃, τ ; y)‖L1
y
‖v0(y)‖L∞y

+

∫ τ

0

n∑
j=1

‖eyj(x̃, t− s; y)− eyj(x̃, τ − s; y)‖L1
y
‖Qj(y, s)‖L∞y ds

+

∫ t

τ

n∑
j=1

‖eyj(x̃, t− s; y)‖L1
y
‖Qj(y, s)‖L∞y ds

=: |δ(x̃, τ)|+ I1 + I2 + I3.

For I1, we observe that

e(x̃, t; y) = e(x̃, τ ; y) + et(x̃, τ
∗; y)(t− τ),
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for some τ ∗ ∈ (τ, t). In this way, we see that

‖e(x̃, t; y)− e(x̃, τ ; y)‖L1
y
≤ C1(1 + τ)−1− 1

3

∫ +∞

−∞
e−

y21
Mtdy1 ≤ C2(1 + τ)−1− 1

3

√
t.

We deduce,
|I1| ≤ C2(1 + τ)−1− 1

3

√
t(t− τ)‖v0‖L∞y .

Likewise, for I2,∫ τ

0

‖eyj(x̃, t− s; y)− eyj(x̃, τ − s; y)‖L1
y
‖Qj(y, s)‖L∞y ds

≤ C1(t− τ)

∫ τ

0

(1 + (τ − s))−
4
3
− 1

3

∫ +∞

−∞
e−

y21
M(t−s)dy1(K1s

γ−3
4 +K2)ds

≤ C2(t− τ),

with the main point being integrability in s despite the blow-up as s → 0. The remaining
integral I3 can be analyzed in almost precisely the same way as I2, and by choosing t − τ
small, we can ensure |T δ(x̃, t)| is as small as we like.

Proceeding similarly, we verify that for t− τ sufficently small, T δ ∈ S.
Next, we check that T is a contraction on S. For this calculation, we’ll take δ1, δ2 ∈ S, and

we’ll let Qδij denote the nonlinearity associated with δi. In particular, we take u(x, t) fixed
from Section 5.1, so that v(x, t) is determined from δ via (5.4). In this way, δi determines
perturbation Qδij . Also, Qδ1j and Qδ2j will coincide for s ≤ τ , so we have

T δ1 − T δ2 =

∫ t

τ

∫
Rn

n∑
j=1

eyj(x̃, t− s, y)(Qδ1j −Q
δ2
j )dyds. (5.7)

If we let vδi denote the perturbation associated with δi, then the perturbation Qδij can

be expressed as a polynomial in δi, v
δi and derivatives of these quantities, with coeffecients

depending on x1. In this way, we can express the difference Qδ1j − Q
δ2
j in terms of δ1 − δ2,

vδ1 − vδ2 , and derivatives of these quantities up to third order in space, and including δt. In
order to express the differences vδ1 − vδ2 in terms of δ1 − δ2, we use (5.4) to write

vδ1(x, t)− vδ2(x, t) = ū(x1 − δ2(x̃, t))− ū(x1 − δ1(x̃, t)) = ū′(ζ)(δ1 − δ2),

for some ζ between x1 − δ2(x̃, t) and x1 − δ1(x̃, t). Since ū′ is bounded,

|vδ1 − vδ2| ≤ C|δ1 − δ2|,

for
C = sup

x1∈R
|ū′(x1)|.
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Proceeding similarly for derivatives of v, we find that for s ∈ [τ, τ + T ]

‖Qδ1j −Q
δ2
j ‖L∞y (Rn) ≤ C‖δ1 − δ2‖3,1(K̃1(s− τ)

γ−3
4 + K̃2). (5.8)

Recalling that

‖eyj(x̃, t− s; y)‖L1
y
≤ C1

∫ +∞

−∞
(1 + (t− s))−

1
3h1,n(t− s)e−

y21
M(t−s)dy1

≤ C2(1 + (t− s))−
1
3h1,n(t− s)(t− s)

1
2 ,

we set

Ij :=

∫ t

τ

∫
Rn
eyj(x̃, t− s, y)(Qδ1j −Q

δ2
j )dyds

and compute

|Ij| ≤
∫ t

τ

‖eyj(x̃, t− s, y)‖L1
y
‖Qδ1j −Q

δ2
j ‖L∞y ds

≤ C1‖δ1 − δ2‖3,1

∫ t

τ

(1 + (t− s))−
1
3h1,n(t− s)(t− s)

1
2 (K̃1(s− τ)

γ−3
4 + K̃2)ds

≤ C2(t− τ)3/4‖δ1 − δ2‖3,1.

We see that the multiplier C2(t−τ)3/4 can be made arbitrarily small by choosing t−τ small.
Proceeding similarly for derivatives, we find

‖T δ1 − T δ2‖3,1 ≤ C(t− τ)3/4‖δ1 − δ2‖3,1,

for some constant C, and so for t− τ sufficiently small T is a contraction.
We conclude that if δ(x̃, s) exists up to time s = τ with δ ∈ C3,1(Rn−1 × [0, τ ]), then for

t ∈ [τ, τ + T ] we can extend δ as a function in S.

5.3 Short-time Theory for the perturbation

Ultimately, our short-time theory has been developed so that we can avoid carrying third or-
der derivatives of v through the iteration. In this section, we establish estimates on Dαv(x, t)
for short times (t ≤ 1). We note that for these values of t we already have (5.6), and the
goal here is to understand decay in ‖Dαv(x, t)‖Lpx̃ in x1.

For t ≤ 1 it’s useful to rearrange our perturbation equation (1.7) as

vt − Lv = N (v), (5.9)

where

Lv := ∇ ·
{
M(v + ū)

(
−DxΓ∆v +D2

uF (v + ū)H(x1, t, v)v
)}

N (v) := ū′(x1 − δ)δt −∇ ·
{
M(v + ū)Dx(Γ∆̃ū))

}
,

H(x1, t, v)v :=
(
D2F (v + ū)−D2F (ū)

)
Dxū,
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and in all instances ū is evaluated at x1−δ(x̃, t). In particular, we can check that every term
in N decays at exponential rate in x1 and includes some combination of derivatives of δ. In
order to see this we note that every term involves either δt or ∆̃ū(x1− δ(x̃, t)), and we recall

∆̃ū(x1 − δ(x̃, t)) =
n∑
k=2

ū′(x1 − δ)δ2
xk
− ū′(x1 − δ)δxkxk .

Using the fact that δ ∈ S and v is Lipschitz-Hölder continuous we can proceed similarly
as in Section 5.1 and solve (5.9) with a local Green’s function

v(x, t) =

∫
Rn
Gv(x, t; ξ, 0)v(ξ, 0)dξ +

∫ t

0

∫
Rn
Gv(x, t; ξ, τ)

(
N (ξ, τ) + ū′(y1 − δ)δτ

)
dydτ,

where Gv satisfies the estimates (5.2), and the superscript is intended to clarify that difference
between this Green’s function and the Green’s function from Section 5.1. As with our analysis
for u, we are justified in bringing derivatives under the integral sign, and we have

Dαv(x, t) =

∫
Rn
Dα
xGv(x, t; ξ, 0)v(ξ, 0)dξ

+

∫ t

0

∫
Rn
Dα
xGv(x, t; ξ, τ)

(
N (ξ, τ) + ū′(y1 − δ)δτ

)
dydτ

=: I1 + I2.

For I1, we have

‖v(ξ, 0)‖Lpx̃ ≤ ζ(t)A0(ξ1, 0) = ζ(t)(1 + |ξ1|)−
3
2 .

Adapting (4.6) we obtain an estimate by

‖I1‖Lpx̃ ≤ C1

∫ +∞

−∞
t−

1+|α|
4 e

− (x1−ξ1)
4/3

Mt1/3 ζ(t)(1 + |ξ1|)−
3
2dξ1

≤ C2ζ(t)t−
|α|
4 (1 + |x1|)−

3
2 .

Likewise, for I2 the key point about the nonlinearity N is that it decays at exponential rate
in x1. Since each term can be analyzed similarly, we consider ū′(x1 − δ)δt, which can be
expressed as

ū′(x1 − δ)δt = ū′(x1)δt + O(δe−η|x1|)δt.

Using our inequality
‖δt‖Lpx̃ ≤ ζ(t)Ḃ(t; p),

we see that
‖ū′(x1 − δ)δt‖Lpx̃ ≤ Cζ(t)(1 + t)−

n−1
3

(1− 1
p

)−1hp,n(t)e−η|x1|.
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Adapting (4.6), we find

‖I2‖Lpx̃ ≤ C1

∫ t

0

∫ +∞

−∞
(t− τ)−

1+|α|
4 e

− (x1−ξ1)
4/3

M(t−τ)1/3 ζ(s)(1 + s)−
n−1
3

(1− 1
p

)−1hp,n(s)e−η|ξ1|dξdτ

≤ C2t
1/4e−η̃|x1|,

for some constant η̃.

5.4 Large time estimates for Derivatives of the Perturbation

In this section, we link derivatives Dαv, for |α| = 3 to first order derivatives of v. The main
issue here is that if we estimate Dαv in terms of v (as we did in the short-time theory), we
only obtain decay in t at the rate that v decays, which is not sufficient. (We recall that we
expect derivatives to decay at a faster rate in t.) In light of this, we will estimate third order
derivatives of v in terms of first order derivatives of v. In order to accomplish this, we begin
by differentiating our perturbation equation (1.7) with respect to xj. In component form,
we obtain

∂xj(−ū′i(x1 − δ)δt) + (∂xjvi)t

= ∇ ·
{ m∑
k=1

DMik(ū+ v)(∂xj ū(x1 − δ) + ∂xjv)∇
(
− (Γ∆̃ū(x1 − δ))k − (Γ∆v)k + Ek

)}
+∇ ·

{ m∑
k=1

Mik(ū+ v)∇
(
− (Γ∆̃(∂xj ū(x1 − δ)))k − (Γ∆vxj)k + ∂xjEk

)}
,

(5.10)
where

Ek = Ak(x, t)v; Ak =

∫ 1

0

DuFuk(ū+ γv)dγ.

For this analysis, it’s important to keep in mind how we designate inhomogeneous terms.
From our previous considerations, we already understand short-time existence and qual-
itative behavior of v and its derivatives, and so these quantities can be incorporated as
coefficients. For example, a term of the form vi∂xjvi would not be considered part of the in-
homogeneity, because vi serves as a coefficient for ∂xjvi. On the other hand, ∂xj(−ū′i(x1−δ)δt)
certainly constituates part of the inhomogeneity. We see that this term decays at exponential
rate in |x1|, and indeed (as in Section 5.3) this will be the case for all inhomogeneous terms.
Moreover, in light of (5.1) we see that

‖∂x1(−ū′i(x1 − δ)δt‖Lpx̃ ≤ Cζ(t)(1 + t)−
n−1
3

(1− 1
p

)−1hp,n(t)e
−η|x1|,

with better decay for j = 2, 3, . . . , n.
We note particularly that

Ek =
(∫ 1

0

DuFuk(ū(x1 − δ) + γv)dγ
)
v,
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so that

∂x1Ek =

∫ 1

0

D2
uFuk(ū(x1 − δ) + γv)(ū′(x1 − δ) + γvx1)dγv +Ak(x, t)vx1 .

We notice that the term Ak(x, t)vx1 should not be incorporated into the inhomogeneity, while
the first term should. In addition, we see that the first term decays at exponential rate in
x1, and we have

‖Ak(x, t)v‖Lpx̃ ≤ Cζ(t)A0(x1, t; p)e
−η|x1|. (5.11)

Proceeding similarly for the remaining terms in (5.10) we find that (5.11) is the determining
estimate.

We can now form a vector W of length mn whose components are the derivatives ∂xjvi,
and we can express this vector in terms of an appropriate Green’s function Gw as

W (x, t) =

∫
Rn
Gw(x, t; y, τ)W (y, τ)dy +

∫ t

τ

∫
Rn
Gw(x, t; y, s)N (y, s)dyds,

where
‖N (y, s)‖Lpỹ ≤ Cζ(t)(1 + s)−

n−1
3

(1− 1
p

)− 2
3hp,n(s)e−η|y1|.

In order to estimate third derivatives of v in terms of first derivatives of v, we compute
second derivatives of W ,

Dα
xW (x, t) =

∫
Rn
Dα
xGw(x, t; y, τ)W (y, τ)dy +

∫ t

τ

∫
Rn
Dα
xGw(x, t; y, s)N (y, s)dξds

= I1 + I2,

for |α| = 2. For the linear term, we employ (4.6) to see that

‖I1‖Lpx̃ ≤
∫ +∞

−∞
(t− τ)−

3
4 e
−c (x1−ξ1)

4/3

(t−τ)1/3 ζ(t)A1(ξ1, τ)dy1dτ.

Since t− τ is small we have exponential decay in |x1 − ξ1|, and using this we find

‖I1‖Lpx̃ ≤ Cζ(t)(t− τ)1/2A1(x1, τ).

We note in particular that since derivatives with respect to all {xj}nj=1 appear in W , we get
the bound on vx1 , which is the largest.

Likewise, using (4.6) we find that

‖I2‖Lpx̃ ≤ ζ(t)

∫ t

τ

∫ +∞

−∞
(t− s)−

3
4 e
−c (x1−y1)

4/3

(t−s)1/3 (1 + s)−
n−1
3

(1− 1
p

)− 2
3hp,n(s)e−α|y1|dy1ds

≤ C1ζ(t)(t− τ)1/2e−η̃|x1|(1 + τ)−
n−1
3

(1− 1
p

)− 2
3hp,n(τ)

= C1ζ(t)T 1/2e−η̃|x1|(1 + τ)−
n−1
3

(1− 1
p

)− 2
3hp,n(τ),
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and since t = τ + T for T chosen sufficiently small we can replace τ in this inequality with t
(increasing C). We conclude that for |α| = 3 and t ≥ 1

|Dα
xv(x, t)|Lpx̃ ≤ C2ζ(t)A1(x1, t; p).

In this way we can complete our nonlinearity up to third order derivatives on v, noting that
for all third order derivatives we have decay at the rate of an x1 derivative, which is slower
than the others.

5.5 Proof of Theorem 1.3

We now complete the proof of Theorem 1.3 by obtaining a bound on ζ(t) for all times t ≥ 0.
As a start, we claim that there exists a constant C sufficiently large so that for any ε > 0 if

‖v0(y)‖L∞x̃ + ‖v0(y)‖L1
x̃
<

ε

(1 + |x1|)3/2
,

then
ζ(t) ≤ C(ε+ ζ(t)2). (5.12)

To see this, let ζ(t) be as defined in (5.1), and note that from (1.19) and the definition
of ζ(t) we have

‖v(x, t)‖Lpx̃ ≤ ε‖vl(x, t)‖Lpx̃ + Cζ(t)2‖vn(x, t)‖Lpx̃
≤ C1εA0(x1, t; p) + C2ζ(t)2A0(x1, t; p) ≤ C3(ε+ ζ(t)2)A0(x1, t; p),

where we have used Lemmas 4.1 and 4.2). Proceeding similarly for derivatives of v and for
δ and its derivatives we obtain the claim.

As verified in [8] (see Claim 4.1 on p. 799) we can conclude from (5.12) that

ζ(t) ≤ 2Cε, (5.13)

for all t ≥ 0. Theorem 1.3 follows from (5.13) and our definition of ζ. �
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