
POINTWISE ESTIMATES ON THE GREEN'S FUNCTION FOR A

SCALAR LINEAR CONVECTION-DIFFUSION EQUATION

Peter Howard

April 8, 1998

Abstract. Pointwise estimates are found on Green's functions for the scalar linear

convection-di�usion equations that arise when a scalar conservation law with non-

constant di�usion is linearized about a viscous shock pro�le of arbitrary strength.

The estimates take the form of Gaussian kernels centered around paths determined

by the (typically di�erent) asymptotic states of the convection function. The analysis

extends the spectral transform method to the non-constant coe�cient case.

1. Introduction

In this paper we obtain pointwise bounds on Green's functions for scalar linear

convection-di�usion equations of the forms

(1:1) vt + (a(x)v)x = (b(x)vx)x u; x; t 2 R; t > 0

and

(1:2) vt + a(x)vx = b(x)vxx u; x; t 2 R; t > 0;

with a(x); b(x) 2 CK(R) for some K � 1, a(x); b(x) asymptotically constant at

x = �1 and b(x) � b0 > 0.

Our analysis is motivated by the study of nonlinear stability of viscous shock

waves. Equation (1:1) is precisely the form of equation that arises from linearizing

the conservation law

(1:3) ut + f(u)x = (b(u)ux)x

about a stationary scalar viscous shock pro�le. Also, for weak shocks in systems,

equations of form (1:1) approximately govern each characteristic �eld [G, L.1, SX].

Equations of form (1:2) arise when (1:1) is written in terms of the integrated variable

V (x; t) =
R x
0
v(�; t)d� [G]. Additionally, the adjoint of (1:1) can be put into form

(1:2) simply by rearranging terms. We obtain pointwise estimates on the Green's

function for (1:1) because in [L.2] Liu has shown the need for such estimates in order

to get sharp rates of nonlinear decay for solutions of (1:3), even for perturbations

of the constant state. Further, pointwise bounds appear to be necessary in order

to show any decay for general shocks and rarefactions [SX, LZ.1-2, SZ, L.3].

As a further motivation, there is also an interesting connection between equation

(1:1) and the Schr�odinger equation, by which pointwise bounds on the Green's

function of (1:1) lead to pointwise estimates on the time-propagator for appropriate
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Schr�odinger potentials. And, while there have been a number of results published

on direct evaluation and bounds in various norms on the energy dependent Green's

function for the Laplace transformed Schr�odinger equation, there are relatively few

for the time propagator (see comments in [GS]). As usual, through the Feynman-

Kac formula we can also obtain estimates on moment generating functions for the

Brownian bridge process.

In the constant coe�cient case of (1:1), or (1:2), a general method by way of

Fourier analysis and Paley-Wiener estimates has been introduced for �nding point-

wise Green's function bounds [Ze, LZe, HZ.1-2], but no standard procedure for the

nonconstant coe�cient case has yet been put forward. Three notable approaches

that have been brought to bear on this case are the re�ned parametrix method for

shocks [SX] and rarefactions [SZ], the method of approximate Green's functions

[L.3], and the weighted norm approach of Sattinger [S, JGK]. However, the former

two approaches are so far limited to the quasi-decoupled case of a constant identity

viscosity coe�cient and weak shock strength, while the latter applies essentially

only in the scalar case (see discussion, [LZ.2]).

The method introduced here employs the spectral approach of [LZe], extending it

to the nonconstant coe�cient case using the semigroup framework of [S, JGK] (but

without weighted norms). This method of analysis works for nonconstant viscosity

coe�cient and arbitrary shock strength.

Our assumptions, made throughout the paper, will be as follows:

(I) The convection function, a(x), and the viscosity function, b(x), satisfy, for all

k � K;K � 1:

(i) a(x); b(x) 2 Ck(R)

(ii) j @
k

@xk
(a(x)� a�)j; j @

k

@xk
(b(x)� b�)j = O(e��jxj) � > 0;

(iii) a� 6= 0;

(iv) b(x) � b0 > 0;

where limx!�1 a(x) = a� and limx!�1 b(x) = b�.

(II) All eigenvalues, denoted by �, of the operator L, de�ned by

(1:4) Lv := (b(x)vx)x � (a(x)v)x in the case of equation (1:1);

or

(1:5) Lv := b(x)vxx � a(x)vx in the case of equation (1:2)

lie in the strict negative-real half-plane, Re(�) < 0.

(III) W (0) 6= 0, where W is the Wronskian associated with L, as de�ned in Section

2, below.

Before stating our main result, we make a number of observations about these

assumptions. Condition (I)(iv) corresponds to strict parabolicity, while (I)(iii), in
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the context of viscous shock waves, precludes degenerate \sonic" shocks, which also

fail (I)(ii) since they decay as 1=x only [MN,N]. Conditions (II) and (III) restrict our

attention to the case for which solutions v of (1.1)-(1.2) decay time-asymptotically

to zero in L2 norm. In condition (III), the Wronskian,Wy(�), is precisely the Evans

function associated with the operator L � � [E,AGJ]. Though we do not prove it

here, (III) is necessary and su�cient, given (II), for v to decay in time. This and

other issues related to the Evans function are discussed at length in [ZH].

It should be noted that assumption (II) holds true in all cases of (1.1)-(1.2)

except for equation (1:1) with a� > 0 and a+ < 0|the compressive case. This can

be shown by a maximum principle argument in the case of equation (1:2) or in the

case of equation (1:1) by the L1 contraction principle. It is not di�cult to see that

either of these principles implies that all eigenvalues must have negative real parts,

with the possible exception of the origin. Observing that the exact solution of the

zero eigenvalue equation is either exp(
R x
0

a
b
d�) in the unintegrated case or else the

integral of this function in the integrated case, we see that this is bounded precisely

in the unintegrated, compressive case of equation (1:1). A similar argument gives

that condition (III) holds in all cases except for the unintegrated compressive case

(because in this case zero is an eigenvalue) and its adjoint, the integrated expansive

case (a� < 0, a+ > 0). These omitted cases exhibit only bounded stability of

solutions, and consequently have more complicated Green's functions. Such cases

can be treated by similar methods, but at the expense of further e�ort [ZH].

A consequence of Assumptions (I) and (II) is that the entire point spectrum of

L must lie strictly to the left of a parabola in the complex plane opening to the left

and crossing the real axis at a negative number, say, �d. We will call this contour

�c and write it as

(1:6) �c(k) = �ck2 � d+ ik;

where c; d 2 R
+ ; c < min(ja�j; ja+j); d < min(a2�=4b�; a

2
+=4b+): The goal of this

paper is, with these three assumptions made, to prove the following theorem:

Theorem 1.1. Under assumptions (I), (II) and (III) and for some constants, C,

Cn, M , n � K�1 and � > 0 depending on the asymptotic behavior of a(x) and b(x)

and also on the eigenvalues of L, that is, the values of c and d in (1:6), the Green's

function G(t; x; y) for equation (1:1), or (1:2), satis�es the following estimates for

(x > 0) (symmetric estimates hold in the case x < 0):

(i) For y > 0; a+ > 0 and also for x > y > 0; a+ < 0

jG(t; x; y)j � Ce
� (x�y�a+t)

2

4tb+Mp
tb+

; j @
n

@xn
G(t; x; y)j � Cne

� (x�y�a+t)
2

4tb+M

(tb+)
n+1
2

:

(ii) For y > x > 0; a+ < 0

jG(t; x; y)j � Ce
� (x�y�a+t)

2

4tb+Mp
tb+

;
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j @
n

@xn
G(t; x; y)j � Cne

� (x�y�a+t)
2

4tb+Mp
tb+

e��jxj +
Cne

� (x�y�a+t)
2

4tb+M

(tb+)
n+1
2

:

The remaining cases are for y < 0.

(iii) For a+ > 0; a� < 0

jG(t; x; y)j � Ce
� (x�y�a+t)2

4tb+Mp
tb+

e��jyj; j @
n

@xn
G(t; x; y)j � Cne

� (x�y�a+t)
2

4tb+M

(tb+)
n+1
2

e��jyj:

(iv) For a+ < 0; a� > 0

jG(t; x; y)j � Ce
� (x�y�a�t)2

4tb�Mp
tb�

e��jxj;

j @
n

@xn
G(t; x; y)j � Ce

� (x�y�a�t)2

4tb�Mp
tb�

e��jxj +
Ce

� (x�y�a�t)2

4tb�M

(tb�)
n+1
2

e��jxj:

(v) For a+ > 0; a� > 0

jG(t; x; y)j � Ce
�

(x�
a+
a�

y�a+t)
2

4tb+Mp
tb+

;

j @
n

@xn
G(t; x; y)j � Cne

�
(x�

a+
a�

y�a+t)
2

4tb+M

(tb+)
n+1
2

+
Cne

�
(x�

a+
a�

y�a+t)
2

4tb+Mp
tb+

:

(vi) For a+ < 0; a� < 0

jG(t; x; y)j � Ce
� (x�y�a�t)2

4tb�Mp
tb�

; j @
n

@xn
G(t; x; y)j � Cne

� (x�y�a�t)2

4tb�M

(tb�)
n+1
2

:

Before proceeding with the analysis we make a few remarks about this theorem

and its applications. Note �rst that in each case the estimates consist simply of a

Gaussian kernel centered about a path determined by the asymptotic values of the

convection function a(x). These estimates are sharp when compared to known exact

solutions [Z,LZ.1]. For short time, they reduce to the standard parabolic estimates

of, e.g., [F], in which convection is neglected. The signi�cance of the estimates

of Theorem 1.1 is that they remain valid for all time, incorporating convective

e�ects in the description of the central path. Such global estimates, especially

the localization of the solutions, are essential in the study of nonlinear stability of

viscous shock waves [LZ.1-2,SZ, L.3].

It should be noted that the reduced algebraic decay in the derivative estimates

of cases (ii), (iv) and (v) is expected, as it agrees with exact known solutions.
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However, we also point out that in the noncompressive cases this reduced algebraic

decay is contingent on the relative sizes of the asymptotic states of a(x) and b(x),

an e�ect seen in the proof of Theorem 1.1 but not explicitly stated. For example,

in case (v) in which all mass is moving to the right, if b� = b+ and a+ < a�, mass

will accumulate at the origin, leading to the diminished algebraic decay in time.

On the other hand, if a+ > a� then no mass accumlates and we see the additional

algebraic decay in time. In general this e�ect seems to be governed by the relation

(4:32).

This path-dependence on only the asymptotic values of a(x) leads to some inter-

esting observations. In the case with a� > 0 and a+ > 0, where the path is given by

x = (a+=a�)y+ a+t, we see that the kernel moves, in general, with speed a� while

to the left of the origin and with speed a+ while to the right of the origin. Thus

its overall speed is a simple average as intuition would have us expect. Perhaps

less intuitively, in case (iii), where a+ > 0; a� < 0 and y < 0 we see the possibility

for mass to move across the origin, though tempered by exponential y-decay|a

phenomenon akin to quantum tunneling. Finally, we remark that in the last case,

a+ < 0; a� < 0, since x; y and �a�t are all positive, the decay is (when the constant
M is taken into account) path independent. We chose to state the path above in

order to highlight the similarity between cases (iv) and (vi).

In Theorem 1.1 we have contented ourselves with stating derivative estimates

only with respect to x. We justify this by noting that estimates on y-derivatives of

G(t; x; y) follow from the x-derivative estimates and the observation that if G(t; x; y)

is the Green's function for the equation vt = Lv, then G(t; y; x) is the Green's

function for the equation vt = L�v, L� the adjoint operator for L. Thus, since our
approach works for both L and L�, we need only estimate derivatives with respect

to x.

Finally, we mention a few applications. First, we recover the weighted norm

results of [JGK] and have an alternate and slightly more general method of obtaining

Liu's estimates in [L.3]. Further, initial studies indicate that the same methods

applied herein may be suitable for the analysis of equations with dispersion also.

Most importantly, the approach taken in the paper can be generalized to the case

of systems as will be shown in [ZH].
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2. Preliminaries

For de�niteness we will carry out all computations in this paper for (1:1) only,

as those for (1:2) follow similarly. Our approach will be to consider the eigenvalue
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equation

(2:1) Lv = �v;

where L has been de�ned in (1:4). In particular we solve the associated Green's

function equation

(2:2) (L� �)v = �y(x):

If we let R(�) := (L � �)�1 denote the resolvent operator, then (2:2) is solved by

the Green's function

G�(x; y) = R(�)�y(x)

wherever R(�) is de�ned (whenever � =2 �(L) := spectrum of L).

The computation of G�(x; y) is standard [CH] for the operator L � � in terms

of the solutions of the eigenvalue ODE, (2:1). Our notation will be to let ' denote

the (unique) decay modes associated with (2:1), so that '+ decays at +1 and '�

decays at �1. On the other hand,  will denote the growth modes associated with

(2:1), so that  + grows at +1 and  � grows at �1. Since growth modes are not

unique we will choose a speci�c representative when necessary.

We can easily compute the asymptotic growth and decay rates of ' and  from

(2:1) by noting that at �1 (2:1) becomes

(2:3) b�uxx � a�ux � �u = 0;

so that solutions of the form u � e�x give

b��
2 � a��� � = 0:

This last equation can readily be solved for �, leading to

� =
a� �

q
a2� + 4b��

2b�
:

We take the negative real axis as our branch cut for the radical, so that the real

part of our radicals will always be positive. Our notation on � will be ��j , where �
indicates which asymptotic value of a(x) and b(x) to use, and Re(��1 ) < Re(��2 ),
that is, ��1 represents the case in which the radical is subtracted and ��2 represents

the case in which the radical is added. Throughout the analysis, we will make

use of the observation that �+j (�) is analytic for all � except on the negative real

strip � < �a2+=(4b+), and similarly that ��j (�) is analytic for all � except on the

negative real strip � < �a2�=(4b�).
In terms of the above notation the Green's function G�(x; y) for (2:1) becomes

[CH]

(2:4) G�(x; y) =

8<
:

'+(x)'�(y)

W (y)b(y)
x > y

'+(y)'�(x)
W (y)b(y)

x < y;
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where W (y) denotes the usual Wronskian,

(2:5) W (y) = '+ 0(y)'�(y)� '+(y)'� 0(y)

and consequently satis�es Abel's equation,

(2:6) W 0(y) =
�a(y)
b(y)

� b0(y)
b(y)

�
W (y):

We note here that in the scalar case the Wronskian is precisely the Evans function.

Finally, we will achieve the desired estimate on G(t; x; y) from Dunford's integral

[Y], which gives

(2:7) G(t; x; y) =
1

2�i

Z
�

e�tG�(x; y) dx;

where � is a contour enclosing the entire spectrum of L (possibly passing through

the point at 1).

Before beginning the analysis we make a brief remark about notation. In all that

follows, the terms O(�) will be uniform in all variables other than the argument.

Constants, C, will be independent of x; y; t and �, but will often change without

comment or relabeling from one expression to the next. We also note that the

values of c and d for the contour �c will be chosen during the course of the proof

of Theorem 1:1, chosen smaller than the values given above so that at all times �c
will be an appropriate bound on the spectrum of the operator, L (see Lemma 3.3).

3. Bounds on G�(x;y)

In this section we state and prove �ve lemmas fundamental to the proof of

Theorem 1.1. The �rst two pertain to the behavior of the solutions, ' and  , of the

ODE (2:1). The third addresses the behavior of the Wronskian (or Evans function),

especially its analyticity and its set of zeros, and the �nal two give bounds on the

Green's function, G�(x; y) for (2:1).

In particular Lemma 3:1 gives the existence of growth and decay mode solutions,

 and ', to (2:1) that are analytic in � (for an appropriate region of �). The lemma

also precisely speci�es the asymptotic behavior of these modes. The arguments

made in the proof of Lemma 3:1 are similar to those in [C, JGK].

Lemma 3.1. Let j�j < Ms for some constant Ms, and also let � lie on or to the

right of �c. Under assumptions (I), (II) and (III), there exist solutions of (2:1), '

and  , satisfying the following asymptotic estimates (n � K�1; '+;  + for x > 0;

'�;  � for x < 0):

(i) '�(x) = e�
�

1 x(1 +O(e��jxj));

@n

@xn
'�(x) = e�

�

1 x((��1 )
n +O(e��jxj)):

(ii)  �(x) = e�
�

2 x(1 +O(e��jxj));

@n

@xn
 �(x) = e�

�

2 x((��2 )
n +O(e��jxj)):
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Moreover, '� and  � are analytic in � for � on or to the right of �c.

Proof: The analysis follows similarly for each case, so we give the details only

for (i) with x < 0, that is, for '�. We begin by writing (2:1) as a system, letting

V1(x) := v(x) and V2(x) := v0(x) so that

V =

�
V1

V2

�
=

�
v

v0(x)

�
:

This leads to the matrix equation

(3:1)

�
V1

V2

�0
=

�
0 1

a0(x)

b(x)
+ �

b(x)

a(x)

b(x)
� b0(x)

b(x)

��
V1

V2

�
:

In order to simplify the analysis we will make the following de�nitions:

A(x; �) :=

�
0 1

a0(x)
b(x)

+ �
b(x)

a(x)
b(x)

� b0(x)
b(x)

�
;

A� := lim
x!�1

A(x; �) =

�
0 1
�
b�

a�
b�

�

and

E�(x; �) := A(x; �)� A�

=

�
0 0

a0(x)
b(x)

+ �( 1
b(x)

� 1
b�
) � b0(x)

b(x)
+ (

a(x)
b(x)

� a�
b�
)

�
:

We note in particular that, with b(x) > 0, by assumption (I) we get

E�(x; �) = O(e��jxj) � > 0; x < 0:

It is also an important observation that E�(x; �) is e�ectively O(1) in � for j�j
bounded. In matrix form, equation (3:1) becomes

(3:2) V 0 = AV:

We look for solutions of (3:2) satisfying V (x) = Z(x)e�
�

2 x, Z(x) =
�
Z1(x)
Z2(x)

�
. That

is, what we wish to bound is the deviation of V (x) from the asymptotic constant

coe�cient solution. Substituting V (x) = Z(x)e�
�

2 x into (3:2) gives the matrix

equation

Z(x)��2 e
��2 x + Z 0(x)e�

�

2 x = A(x; �)Z(x)e�
�

2 x;

so that multiplying by e��
�

2 x gives

��2 Z(x) + Z 0(x) = A(x; �)Z(x):

We may add and subtract A�Z to the right-hand side to get

��2 Z(x) + Z 0(x) = A(x; �)Z(x)� A�Z(x) +A�Z(x);
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which is the same as

(3:3) ��2 Z(x) + Z 0(x)�A�Z(x) = E(x; �)Z(x):

From (3:3) Duhamel's Principle gives

(3:4) Z(x) = V �2 +

Z x

�1
e(�

�

2 I�A�)(��x)E(�; �)Z(�) d�;

where V �
2 =

�
1
��2

�
is the eigenvector of A� associated with the eigenvalue ��2 . We

note here that ke(��2 �A�)(��x)k = O(1) for x > � and any matrix norm k � k, as can
be seen directly from the following analysis.

We now show by a contraction mapping argument that a solution to the integral

equation (3:4) exists. We begin by searching for a solution in the class of functions

L1(�1;�N ] for some integer N to be determined shortly. De�ne the integral

operator T on L1(�1;�N ] by

TZ := V �
2 +

Z x

�1
e(�

�

2 I�A�)(��x)E(�; �)Z(�) d�:

We note that by the analyticity of ��2 in the region under consideration the tran-

formation, T , preserves analyticity. Therefore, as we iterate, each new function will

also be analytic in the region under consideration. In order to show that T is a

contraction mapping on L1(�1;�N ], let Z; ~Z 2 L1(�1;�N ] and look at

T (Z � ~Z) =

Z x

�1
e(�

�

2 I�A�)(��x)E(�; �)(Z(�)� ~Z(�)) d�:

Taking the L1(�1;�N ] norm of this last expression leads to

(3:5) kT (Z � ~Z)kL1(�1;�N ] � CkZ � ~ZkL1(�1;�N ]O(e
��jxj);

for x < �N , some N . Thus we choose N large enough so that T is a contraction

mapping on (�1;�N ] and get Z(x) 2 L1(�1;�N ] as a �xed point solution of

(3:4). Since our convergence is in L1(�1;�N ] it is uniform, so that Z(x) must

also be analytic in our region of interest. In fact, since Ms may be taken as large

as we like, analyticity will not be limited by distance from the origin, and we get

in particular that Z(x) is analytic as long as � lies on or to the right of �c.

We can now take estimates on Z(x) componentwise directly from (3:4). We note

that with V �1 =
�

1
�
�

1

�
, the eigenvector of A� associated with the eigenvalue ��1 ,

standard matrix theory gives (with �� := ��2 � ��1 )

e(�
�

2 I�A�)(��x) =

�
V �2

...V �
1

� �
1 0

0 e(�
�

2 ���1 )(��x)

� �
V �2

...V �
1

��1

=

�
1 1

��2 ��1

� �
1 0

0 e(�
�

2 ���1 )(��x)

�
1

��

����1 1

��2 �1
�

=
1

��

� ���1 + ��2 e
(��2 ���1 )(��x) 1� e(�

�

2 ���1 )(��x)

���1 ��2 + ��1 �
�
2 e

(��2 ���1 )(��x) ��2 � ��1 e
(��2 ���1 )(��x)

�
:
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Hence we get

e(�
�

2 I�A�)(��x)E(x; �) =

1

��

�
(1� e(�

�

2 ��
�

1 )(��x))O(e��j�j) (1� e(�
�

2 ��
�

1 )(��x))O(e��j�j)

(��2 � ��1 e
(��2 ��

�

1 )(��x))O(e��j�j) (��2 � ��1 e
(��2 ��

�

1 )(��x))O(e��j�j)

�
;

so that by substituting into (3:4) and observing that in the region of � under

consideration 1� e(��2 ���1 )(��x) and ��2 ���1 e(�
�

2 ��
�

1 )(��x) are O(1) in � and x, we

arrive at

Z1(x) = 1 +
1

��

h
Z1(x)O(e

��jxj) + Z2(x)O(e
��jxj)

i
and

Z2(x) = ��2 +
1

��

h
Z1(x)O(e

��jxj) + Z2(x)O(e
��jxj)

i
:

Combining these last two equations and using that Z(x) 2 L1(�1;�N ] we see

that

Z1(x) = 1 +O(e��jxj) x 2 (�1;�N ]

and

Z2(x) = ��2 +O(e��jxj) x 2 (�1;�N ]

where, again, the terms O(e��jxj) are O(1) in j�j because we've assumed j�j < Ms.

Finally, we can extend these estimates on Z(x) to x 2 (�1; 0] for � inside a

bounded set by continuous dependence on � and standard existence/continuance

ODE results, which are applicable because of our smoothness assumptions on a(x)

and b(x).

We thus have case (i) of the lemma for n = 1 and x < 0. For higher derivatives,

say of order n, we take the appropriate number of derivatives of equation (2:1) (so

that the n + 1 = K derivative appears) and study the resulting (n + 1) � (n + 1)

�rst order system.

We now prove a lemma that gives large j�j estimates on ' and  . The proof

hinges on a rescaling argument similar to those of [AGJ, GZ].

Lemma 3.2. Under assumptions (I), (II) and (III) '+ and '� satisfy the following

estimates in �: For � both outside a large enough ball around the origin, say j�j >
Ml, and also on or to the right of �c, we have:

'�(x) = k�(x)(1 +O(j�j� 1
2 )) x 2 R; k� 2 C(R); bounded in �; jk�(x)j 6= 0

@k

@xk
'�(x) = (�p�=b(x))kk�(x)(1 +O(j�j� 1

2 )) x 2 R.

Proof: As in the proof of Lemma 3.1 we will restrict our attention to the case of

'� (but x 2 (�1;+1)). Again we start with the matrix equation (3:1). Making

the change of variable x 7! x=
p
j�j and rede�ning V (x) according to

�
V1(x)

V2(x)

�
:=

�
v(x=

pj�j)
(1=
pj�j)v0(x=pj�j)

�



POINTWISE ESTIMATES ON THE GREEN'S FUNCTION 11

, we arrive at the new matrix equation�
V1

V2

�0
=

 
0 1

a0(x=
p
j�j)

b(x=
p
j�j)j�j

+
~�

b(x=
p
j�j)

a(x=
p
j�j)

b(x=
p
j�j)
p
j�j
� b0(x=

p
j�j)

b(x=
p
j�j)
p
j�j

!�
V1

V2

�
;

where ~� = �=j�j. It will be useful to rewrite the above matrix in the form 
0 1
~�

b(x=
p
j�j)

0

!
+O(j�j� 1

2 ):

We now let P (x) diagonalize

 
0 1
~�

b(x=
p
j�j)

0

!
, i.e.,

(3:6) P (x) =

�
1 1q

~�=b(x=
pj�j) �

q
~�=b(x=

pj�j)
�
;

and note that while P (x) does depend on x it is O(1) in x and � (since b(x) is O(1)

in x and j~�j = 1), and further that P�1 0

(x) is O(j�j� 1
2 ). Thus the transformation

W := P�1(x)V gives

W 0 = P�1V 0 + P�1 0

V

= P�1

 
0 1
~�

b(x=
p
j�j)

0

!�
V1

V2

�
+ P�1O(j�j� 1

2 )

�
V1

V2

�
+ P�1 0

�
V1

V2

�

= P�1

 
0 1
~�

b(x=
p
j�j)

0

!
P

�
W1

W2

�
+ P�1O(j�j� 1

2 )P

�
W1

W2

�
+ P�1 0

P

�
W1

W2

�

=

0
@
q
~�=b(x=

pj�j) 0

0 �
q
~�=b(x=

p
j�j)

1
A�W1

W2

�
+O(j�j� 1

2 )

�
W1

W2

�
:

The idea will be to get an appropriate estimate on z := W2=W1, where W1

is known to be nonzero at negative in�nity and will consequently be found to be

bounded away from zero always from the following estimates on z. We write

z0 =
W1W2

0 �W2W1
0

W 2
1

=
W2

0

W1

� W2

W1

W1
0

W1

=
�
q
~�=b(x=

pj�j)W2 +O(j�j� 1
2 )W1 +O(j�j� 1

2 )W2

W1

� z

q
~�=b(x=

pj�j)W1 +O(j�j� 1
2 )W1 +O(j�j� 1

2 )W2

W1

= �z
q
~�=b(x=

p
j�j) +O(j�j� 1

2 ) + zO(j�j� 1
2 )

� z

q
~�=b(x=

p
j�j) + zO(j�j� 1

2 ) + z2O(j�j� 1
2 )

= �2z
q
~�=b(x=

p
j�j) +O(j�j� 1

2 ) + zO(j�j� 1
2 ) + z2O(j�j� 1

2 );
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so that we get the equation for z

z0 = �2z
q
~�=b(x=

p
j�j) +O(j�j� 1

2 ) + zO(j�j� 1
2 ) + z2O(j�j� 1

2 ):

Duhamel's Principle then gives the integral equation

(3:7) z(x) =

Z x

�1
e
�
R
x
�
2

q
~�=b(s=

p
j�j)ds

(O(j�j� 1
2 ) + zO(j�j� 1

2 ) + z2O(j�j� 1
2 )) d�:

We now apply a contraction mapping argument to (3:7). As usual de�ne

Tz :=

Z x

�1
e
�
R
x
�
2

q
~�=b(s=

p
j�j)ds

(O(j�j� 1
2 ) + zO(j�j� 1

2 ) + z2O(j�j� 1
2 )) d�

and take z; ~z 2 L1(�1;+1). Now consider

T (z � ~z) =

Z x

�1
e
�
R
x
�
2

q
~�=b(s=

p
j�j)ds

h
(z � ~z)O(j�j� 1

2 ) + (z2 � ~z2)O(j�j� 1
2 )
i
d�:

We want to show that for j�j large enough this is a contraction mapping. We

note that, by assumption, jz + ~zj is bounded so that we may write

kT (z � ~z)kL1(�1;+1)

� kz � ~zkL1(�1;+1)C

Z x

�1
e
�Re

R
x
�
2

q
~�=b(s=

p
j�j)ds

O(j�j� 1
2 ) d�:

Since b(s) is bounded above, we get (with bs := sups2[�;x]b(s=
pj�j))

kT (z � ~z)kL1(�1;+1)

� kz � ~zkL1(�1;+1)C

Z x

�1
e(�1=

p
bs)Re

R
x

�
2

p
~�ds
O(j�j� 1

2 ) d�

= Ckz � ~zkL1(�1;+1)

O(j�j� 1
2 )

Re
p
~�
:

By allowing j�j to be su�ciently large and on or to the right of �c we can facillitate

the inequality
O(j�j� 1

2 )

Re(~�)
< 1

C
, making T a contraction mapping. Thus we have a

�xed point solution of the integral inquation (3:7), from which we can see that

W2=W1 = z = O(j�j� 1
2 ).

Since V = PW we get, using (3:6),

V =W1(x)

�
1q

~�=b(x=
pj�j)

�
+W2(x)

�
1

�
q
~�=b(x=

pj�j)
�

=W1(x)

�
1q

~�=b(x=
p
j�j)

�
(1 +O(

W2

W1

))

=W1(x)

�
1q

~�=b(x=
pj�j)

�
(1 +O(j�j� 1

2 ));
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giving the result for '�. W1(x) becomes k(x) from the statement of the lemma,

a function O(1) in � that is necessarily bounded away from zero. Going back to

the original coordinates gives the claimed result. As in Lemma 3:1 we get higher

derivatives, as usual, by augmenting our system of ODEs.

We next observe, as in [JGK], that the Wronkian (or Evans function), Wy(�), is

analytic for the doman of � we're considering and hence therein has a discrete set

of zeros. Bounds on the point spectrum follow directly from this.

Lemma 3.3. Under assumptions (I), (II) and (III), we have (1) for � on or to

the right of �c, Wy(�) is analytic in �, and (2) for c and d appropriately chosen in

(1:6), the zeroes of Wy(�) lie strictly to the left of �c.

Proof: (1) is immediate since analyticity of Wy(�) comes directly through (2:5)

from the analyticity in � of '�(y) and '� 0(y).
As for (2) the essential spectrum of L as de�ned in either (1:4) or (1:5) is always

bounded on the right by a parabola opening to the left and passing through the

origin, speci�cally the widest of the family of four parabolas, Re(��j ) = 0. Thus any

zeros of the Wronskian, W�(y), lying to the right of this parabola must be point

spectrum and consequently eigenvalues of L, limiting them to the negative real

half-plane. Further, there can be only �nitely many of these zeros in a ball around

the origin, because, by (1), in the domain of eigenvalues under consideration, the

Wronskian is a non-zero analytic function of � and hence can have only isolated

zeros in any bounded neighborhood. An energy estimate, or the large j�j estimate

of Lemma 3:5, su�ces to show that all such zeros are con�ned to a bounded domain.

Also, by assumption (III), Wy(0) 6= 0 so there is a neighborhood around � = 0 in

which W�(y) 6= 0. Therefore, we can enclose all zeros of Wy(�) by a parabola in

the negative half{plane that does not pass through the origin. We choose c and d

so that �c lies to the right of this parabola.

Lemma 3.4. (Small j�j behavior for the Green's function.) Under assumptions

(I), (II) and (III) and for j�j bounded above, say j�j � Ms for some constant Ms,

and � on or to the right of �c we get the following estimates on the Green's function

for (2:1):

(i) x > y > 0 G�(x; y) =
O(1)

W0(�)
e�

+
1 (x�y)

@n

@xn
G�(x; y) =

O(1)

W0(�)
(�+1 )

ne�
+
1 (x�y) +

O(e��jxj)

W0(�)
e�

+
1 (x�y)

(ii) y > x > 0 G�(x; y) =
O(1)

W0(�)
e�

+
2 (x�y)

@n

@xn
G�(x; y) =

O(1)

W0(�)
(�+2 )

ne�
+
2 (x�y) +

O(e��jxj)

W0(�)
e�

+
2 (x�y)

(iii) x > 0 > y G�(x; y) =
O(1)

W0(�)
e�

+
1 xe��

�

1 y

@n

@xn
G�(x; y) =

O(1)

W0(�)
(�+1 )

ne�
+
1 xe��

�

1 y +
O(e��jxj)

W0(�)
e�

+
1 xe��

�

1 y;
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with symmetric estimates for x < 0. Notice that for j�j bounded, W0(�) must be

bounded away from 0 since we have no point spectrum to the right of �c.

Proof: Since we've assumed j�j bounded we are at liberty to apply Lemma 3.1.

Consider �rst case (i) for which from (2:4),

G�(x; y) =
'+(x)'�(y)
W (y)b(y)

:

Since Lemma 3.1 does not give us an estimate on '�(y) for y > 0 we must write

'�(y) as a linear combination of '+(y) and  +(y). That is,

'�(y) =  +(y) + B(�)'+(y) y > 0;

where B(�) isO(1) in � as long as j�j is bounded, and we've scaled out the coe�cient
in front of  +(y) by appropriately scaling '�(y).

According then to Lemma 3.1

'�(y) = e�
+
2 y(1 +O(e��

+
2 jyj)) +B(�)e�

+
1 y(1 +O(e��

+
1 jyj))

= e�
+
2 y
�
1 +O(e��

+
2 jyj) +B(�)e(�

+
1 ��+2 )y(1 +O(e��

+
1 jyj))

�
= e�

+
2 yO(1):

By Lemma 3.1 '+(x) = e�
+
1 xO(1) so that (with 1=b(y) = O(1))

G�(x; y) =
e�

+
1 xe�

+
2 yO(1)

W (y)
:

Recalling that W (y) = W0(�)e
R
y

0
(
a(s)

b(s)
� b0(s)

b(s)
) ds

, we get

G�(x; y) =
O(1)

W0(�)
e
�
R
y

0
(
a(s)

b(s)
� b0(s)

b(s)
)ds
e�

+
1 (x�y)e(�

+
1 +�+2 )y:

We note that �+1 + �+2 =
a+�

p
a2
+
+4b+�

2b+
+

a++
p
a2
+
+4b+�

2b+
=

a+
b+
, so that we get

G�(x; y) =
O(1)

W0(�)
e
�
R
y

0
((
a(s)

b(s)
� b0(s)

b(s)
)� a+

b+
) ds
e�

+
1 (x�y):

By assumption (I), e
�
R
y
0
((
a(s)

b(s)
� b0(s)

b(s)
)� a+

b+
) ds

= O(1), leading to the claimed estimate.

Next we consider case (ii), returning shortly to the derivatives. Now, G�(x; y) =
'+(y)'�(x)

W (y)b(y)
so that we must use

'�(x) = e�
+
2 xO(1):
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Hence we get

G�(x; y) =
e�

+
1 ye�

+
2 xO(1)

W (y)
=

O(1)

W0(�)
e�

+
2 (x�y);

in the same manner as above.

In case (iii) we get

G�(x; y) =
e�

+
1 xe�

�

2 y

W (y)
O(1)

=
O(1)e�

+
1 xe

a�+
p

a2
�
+4b��

2b�
y

W0(�)
e
�
R
y

0
(
a(s)

b(s)
� b0(s)

b(s)
) ds

=
O(1)

W0(�)
e�

+
1 xe

�a�+
p

a2
�
+4b��

2b�
y+

a�
b�

y
e
�
R
y
0
(
a(s)

b(s)
� b0(s)

b(s)
) ds

=
O(1)

W0(�)
e�

+
1 xe��

�

1 ye
�
R
y

0
(
a(s)

b(s)
� b0(s)

b(s)
)� a�

b�
ds

=
O(1)

W0(�)
e�

+
1 xe��

�

1 y:

We now prove the three derivative estimates associated with the cases analyzed

above. For case (i) we have again G�(x; y) =
'+(x)'�(y)

W (y)
so that

@n

@xn
G�(x; y) =

�
@n

@xn
'+(x)

�
'�(y)

W (y)b(y)
;

which by virtue of Lemma 3.1 is

@n

@xn
G�(x; y) =

e�
+
1 x((�+1 )

n +O(e��jxj))e�
+
2 yO(1)

W (y)

=
O(1)e�

+
1 xe�

+
2 y(�+1 )

n

W (�)
+
O(e��jxj)e�

+
1 xe�

+
2 y

W (�)
:

The Wronskian is dealt with as before, leading to the claimed estimate.

Case (ii) involves one new aspect so we include details even though it is very

similar to case (i). The problem again is that for y > x > 0 we have

G�(x; y) =
'+(y)'�(x)
W (y)b(y)

and no information from Lemma 3:1 about the behavior of '�(x) for x > 0.

As before we resolve this by writing '�(x) in terms of the growing and decaying

modes at +1. That is, we write

'�(x) =  +(x) + B(�)'+(x) x > 0;
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where B(�) = O(1) in � (for j�j bounded). Thus we get
@n

@xn
'�(x) =

@n

@xn
 +(x) +B(�)

@n

@xn
'+(x);

which, according to lemma 3.1, becomes

@n

@xn
'�(x) = e�

+
2 x((�+2 )

n +O(e��jxj))

+ B(�)e�
+
1 x((�+1 )

n +O(e��jxj))

= e�
+
2 x
�
(�+2 )

n +O(e��jxj))

+ B(�)e(�
+
1 ��

+
2 )x((�+1 )

n +O(e��jxj)
�

= (�+2 )
ne�

+
2 xO(1) + e�

+
2 xO(e��jxj):

Now,

@nG�(x; y)

@xn
=
'+(y) @n

@xn
'�(x)

W (y)b(y)

so that
@nG�(x; y)

@xn
=
O(1)(�+2 )

ne�
+
1 ye�

+
2 x

W (y)
+
O(e��jxj)e�

+
1 ye�

+
2 x

W (y)
:

Bringing the Wronskian into play in the usual manner leads to the claimed estimate.

Last, we analyze the case x > 0 > y for which, proceeding as above, we get

@n

@xn
G�(x; y) =

@n

@xn
'+(x)'�(y)

W (y)b(y)
;

which by Lemma 3.1 becomes

@n

@xn
G�(x; y) =

e�
+
1 x((�+1 )

n +O(e��jxj))e�
�

2 yO(1)

W (y)
:

Taking the Wronskian into account as above we arrive at the derivative estimate of

(iii).

Lemma 3.5. (Large j�j estimates for the Green's function.) Under assumptions

(I), (II) and (III) and for j�j bounded below, say j�j � Ml for some su�ciently

large constant, Ml, and � on or to the right of �c, with also n � K � 1, we have

the following estimates on G�(x; y) (bs := sups2[x;y] b(s)):

(i) jG�(x; y)j � O(j�j� 1
2 )e�Re

p
�=bs
2

jx�yj

(ii)

���� @n@xnG�(x; y)

���� � O(j�jn�1
2 )e�Re

p
�=bs
2

jx�yj:

We remark before proving this theorem that here we get the same result for all

three x > 0 cases of Lemma 3.4 as well as for x < 0.
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Proof: Because of the similarity in the arguments we will only give here an

analysis of the single case y > x > 0. From (2:4) for the case x < y we have

G�(x; y) =
'�(x)'+(y)

W (y)b(y)
;

which can be rewritten as

G�(x; y) =
'�(x)

'�(y)
� '

�(y)'+(y)

W (y)b(y)
:

We �rst show that
'�(y)'+(y)

W (y)b(y)
is bounded above. For large j�j we have, according

to (2:5) and Lemma 3.2,

W (y) = �
p
�=b(y)k+(y)(1 +O(j�j� 1

2 )k�(y)(1 +O(j�j� 1
2 ))

� k+(y)(1 +O(j�j� 1
2 )(
p
�=b(y))k�(y)(1 +O(j�j� 1

2 ))

= �2
p
�=b(y)k+(y)k�(y)(1 +O(j�j� 1

2 )):

Therefore we have����'�(y)'+(y)

W (y)

���� =
����� k�(y)k+(y)(1 +O(j�j� 1

2 ))

2b(y)
p
�=b(y)k�(y)k+(y)(1 +O(j�j� 1

2 ))

����� = O(j�j� 1
2 ):

We next bound the growth of '�(x)='�(y). According to Lemma 3.2 '� 0(x)
can only di�er from '�(x) by a term of the form

p
�=b(x)(1+O(j�j�1

2 )). Thus we

have the relation

'� 0(x) =
p
�=b(x)'�(x)(1 +O(j�j� 1

2 ));

an ordinary di�erential equation. We can solve this ODE in terms of initial data

given at x = y to get

'�(x) = '�(y)e
R
x

y

p
�=b(s)(1+O(j�j� 1

2 )) ds
;

where O(j�j� 1
2 ) has (bounded) s dependence. We get then for x < y����'�(x)'�(y)

���� = e
R
x

y
Re
p
�=b(s)(1+O(j�j� 1

2 )) ds � e�Re
p
�=bsjx�yj(1�O(j�j� 1

2 )):

Thus, for j�j large enough, we have����'�(x)'�(y)

���� � e�Re
p
�=bs
2

jx�yj:

We conclude that in this large j�j region we have

jG�(x; y)j � O(j�j� 1
2 )e�Re

p
�=bs
2

jx�yj;
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where the 2 could be any constant larger than 1, depending on how large j�j is to
be taken initially, that is, on how large Ml is to be taken.

The x-derivatives follow immediately since

@k

@xk
G�(x; y) =

@k

@xk
'�(x)'+(y)

W (y)
=

@k

@xk
'�(x)

@k

@yk
'�(y)

�
�
@k

@yk
'�(y)

�
'+(y)

W (y)
;

and the @k

@xk
'�(x) are given in Lemma 3.2 as

@k

@xk
'�(x) =

�p
�=b(x)

�k
k�(x)(1 +O(j�j� 1

2 ));

so that we have

d

dx

@k

@xk
'�(x) =

p
�=b(x)

@k

@xk
'�(1 +O(j�j� 1

2 )):

This is an ODE for '�
(k)

(x) with solution

@k

@xk
'�(x) =

@k

@yk
'�(y)e

R
x

y

p
�=b(s)(1+O(j�j� 1

2 )) ds;

which as above yields the estimate

�����
@k

@xk
'�(x)

@k

@yk
'�(y)

����� � e�Re
p
�=bs
2

jx�yj :

Also,

������
�
@k

@yk
'�(y)

�
'+(y)

W (y)

������ =
����� (
p
�=b(y))kk�' (y)k

+
' (y)(1 +O(j�j� 1

2 ))

2b(y)
p
�=b(y)k�' (y)k

+
' (y)(1 +O(j�j� 1

2 ))

����� = O(j�j k�1
2 )

so that ���� @k@xkG�(x; y)

���� � O(j�j k�1
2 )e�Re

p
�=bs
2

jx�yj;

�nishing o� the case, y > x > 0.

4. Proof of Main Theorem

Proof of Theorem 1.1. Case (i) overview. As the analysis of each subcase of (i)

is similar, we give the details only in the single subcase, x > y > 0; a+ > 0; a� < 0.

According to Lemma 3.4 the Green's function for L� �I in this case is

G�(x; y) =
O(1)

W0(�)
e�

+
1 (x�y)
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for j�j bounded by Ms. Therefore by Dunford's integral we have

(4:1) G(t; x; y) =
1

2�i

Z
�

e�t
O(1)

W0(�)
e�

+
1 (x�y) d�;

as long as there exists a contour � surrounding the spectrum of L which remains

inside the Ms-ball.

We must do two things to get an estimate on G(t; x; y). First, we need to choose

an appropriate contour along which Dunford's integral can either be evaluated

explicitly or sharply estimated, and, second, we must avoid the region of eigenvalues

that are bounded to the left of �c.

So as to limit our discussion to choosing an appropriate contour, we will �rst

ignore the point spectrum and the fact that our estimates change when for large j�j.
Motivated by an analysis of the constant coe�cient case, we use the same contour

that was appropriate there. We will denote this contour by �+. Parametrized by

the real variable, k, �+ has the form

(4:2) �+(k) = �b+(k + i�+)
2 � ia+(k + i�+);

where �+ :=
x�y�a+t

2b+t
. Along this contour, we note that �+1 satis�es

(4:3) �+1

���
�+

= ��+ + ik:

A brief analysis along �+ will allow us to investigate the basic approach taken in

the proof of Theorem 1.1 in a simple setting. Taking absolute value of (4:1) along

�+ gives

jG(t; x; y)j � 1

2�

Z
�+

��� O(1)
W0(�)

���eRe(�t+�+1 (x�y)) jd�j;

where, on �+,

Re(�t+ �+1 (x� y)) = �b+k2t� �2
+tb+:

Hence, we have

jG(t; x; y)j � e��
2
+tb+

2�

Z +1

�1
jO(1)je�b+k2t j � 2b+(k + i�+)� ia+j

jW0(�+(k))j dk:

We note that the term
j�2b+(k+i�+)�ia+j

jW0(�+(k))j is O(1) in k since, for y �xed, we've seen

in the proof of Lemma 3.5 that W0(�) = O(
p
j�j) = O(k) for large values of j�j.

Thus for j�+j bounded above (usually associated with j�j bounded|the estimate

we've employed) we have

(4:4) jG(t; x; y)j � C
e��

2
+tb+p
tb+

= C
e
�(x�y�a+t)2

4b+tp
tb+

;

as expected.
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The di�erence between (4:4) and the claim from Theorem 4.1 is that in (4:4) the

exponential decay rate is not reduced by the constant M . In the following analysis

we will see explicitly how the value ofM depends on where the point spectrum lies,

that is, on the constants c and d.

We begin by modifying �+ in such a way that it avoids the allowed point spec-

trum. The forthcoming exposition will be clari�ed by the following two �gures:

| x - y |

Region I

Region II

| x - y | = t b / c+

| x - y | = a t+

| x - y | = t (a - 2b (d - )/a )+ + +ε

t

Region III

Region IV

Figure 1. Regions I-IV

Reλ

Imλ

M -balls

M -balll

Region I

ΓλΓc

Γ0

-d

Po

Pi

Region II

Regions III, IV

Γ+
c

Γε
c

Figure 2. Contours in the complex plane
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We note that along �+ we have (from (4:2))

(4:5) Re�+ = �b+
� t

x� y

�2�
Im�+

�2
+
(x� y)2 � (a+t)

2

4t2b+
:

Case (i), Region I.We will look at each of the four regions in Figure 1, beginning

with Region I in which we have the inequality

(4:6) jx� yj > t
p
b+=c:

The Region I analysis will be similar for each case of Theorem 1:1, so we will work

through it once carefully, and later often refer back. We see from (4:5) and (4:6)

that c may be chosen small enough so that each contour in Region I lies entirely

outside the Ml-ball, crossing the real axis to the right of this ball. (In Figure 2,

��0 is an example of such a Region I contour.) Thus our analysis of Region I will

begin by combining Lemma 3:5 and Dunford's integral to get

(4:7) jG(t; x; y)j � C

Z
��0

eRe(�t)O(j�j� 1
2 )e�

Re
p
�=bs
2

jx�yjjd�j;

where ��0 is a contour to be appropriately chosen below. Inequality (4:6) leads us

to expect that a new contour can be found (also lying entirely outside the Ml-ball)

in which the jx � yj exponent will dominate the integrand of (4:7). Since Region

I is the small-t region, we expect the di�usion term to dominate so that we get

behavior akin to that of the heat equation. Motivated by this observation, we take

in Region I the contour that arises when analyzing the equation, ut = (b(x)ux)x by

the method of Laplace transforms with respect to t. This contour, denoted by ��0 ,

has the form (Re
p
�=bs =

p
�0)

(4:8) �(k) = bs(�0 � k2) + bs2ik
p
�0;

from which we obtain

(4:9) Re� = �( 1

4�0bs
)(Im�)2 + �0bs:

In (4:9) �0 must be chosen in such a way that ��0 will remain outside the Ml-ball

where Lemma 3.5 is valid.

Along the contour ��0 we have

(4:10)

Z
��0

O(j�j� 1
2 )eRe(�t)e�Re

p
�=bs
2

jx�yjjd�j

�
Z +1

�1
O(j�(k)j� 1

2 )ebs�0t�bsk
2te�

p
�0
2
jx�yjj � 2bsk + 2ibs

p
�0jdk

� Cebs�0t�
p
�0
2
jx�yj

Z +1

�1
O(j�(k)j� 1

2 )j � 2bsk + 2ibs
p
�0je�bsk

2tdk:
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In order to obtain the claimed decay, we take bs�0t = (
p
�0=4)jx � yj so that

�0 =
jx�yj2
16t2b2s

is chosen. We need to insure that the contour ��0 with this de�nition of

�0 lies entirely outside the Ml-ball. But we have j�j =
p
b2s(�0 � k2)2 + b2s4k

2�0 =

bs(�0 + k2), a quantity always larger than bs�0. In Region I
jx�yj
t
p
b+

> 1p
c
, so to get

bs�0 =
jx�yj2
16t2bs

> Ml, we need only take c small enough so that 16c(bs=b+)Ml < 1.

Also, from the above explicit expression for j�j, j�j� 1
2 � C=(

p
�0 + jkj). Thus,

continuing from (4:10), we get

(4:11) Ce
bst

jx�yj2

16t2b2s
� jx�yj

8tbs
jx�yj

Z +1

�1

jkj+p�0p
�0 + jkj

e�bsk
2tdk � C

e�
jx�yj2

16tbsp
tbs

:

We then arrive at the exponential decay given in the statement of case (i) through

the following computation:

(4:12)
jx� y � a+tj � jx� yj+ ja+tj

� jx� yj+ a+
p
c=bsjx� yj � (1 + a+

p
c=bs)jx� yj:

By changing the scaling constant, M , we can write the result in terms of b+ rather

than bs so that it will match our analysis below in the region where Lemma 3:4

applies.

Case (i), Region II. In order to make the transition from Region I to Region II

smooth we will now replace c in the de�nition of �c with c=2. Since all �+ contours

not in Region I have quadratic coe�cient less than �c, all contours in Region II

will eventually intersect �c. In replacing c with c=2 we have set a bound on how

far from the origin the points of intersection can lie. Thus, since we may take Ms

as large as we like, we will be able to take Ms > Ml su�ciently, to insure that in

Region II the small j�j estimates are applicable until �+ intersects �c. In this way

the analysis will be simpli�ed, as it will only be on �c that we will have to have

both Lemma 3:4 and Lemma 3:5 apply.

In Region II, jx�yj > a+t, so that from (4:5) we see that �+ crosses the real axis

at a positive point. We also have in Region II, as noted above, that �+ necessarily

intersects �c at some k, say k+ for �+ and kc for �c. Thus in Region II we may

follow �+ until it intersects �c and from there follow �c to the point at in�nity,

avoiding the allowed point spectrum. We will denote this new combined contour

by �c+, as our Region II example contour is labeled in Figure 2. We already have

estimate (i) along �+, so we need only concern ourselves further with obtaining the

estimate along �c. Thus we consider the integralZ
�sc

eRe(�(k)t+�
+
1 (x�y)) d�

W0(�)
;

where �sc is the part of �c we must follow in the ball j�j �Ml < Ms. We will make

use here of the fact that along �c, (jd�j=jW0(�)j) � Cjdkj in all cases.

It is important to notice that along the dashed-in contour in Figure 2, �0, de�ned

by �0(k) = �b+k2 � ia+k, we have Re(�
+
1 )
���
�0

= 0. Further, from (4:3) and (4:5),
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we see that at any point, Po, on the outside of this contour we have Re(�+1 ) < 0,

and at any point, Pi, on the inside of this contour we have Re(�+1 ) > 0. In general,

Re(�+1 ) becomes more negative as we move away from �0 up and to the right, as

can be seen by comparing (4:3) and (4:5).

Recalling that �c(k) = �ck2 � d + ik, we get, in the region where Re(�+1 ) < 0,

which includes all of Region II,

Re(�ck2t� dt+ ikt+ �+1 (x� y)) � �ck2t� dt;

so that

Z
�sc

eRe(�c(k)t+�
+
1 (x�y)) jd�j

jW0(�)j � C

Z +1

�1
e�ck

2te�dtdk =
Cp
t
e�dt:

But from our constraint on Region II,

(4:13) jx� yj � t
p
b+=c;

we get

(4:14) jx� y � a+tj � jx� yj+ a+t � t
p
b+=c+ a+t = t(

p
b+=c+ a+);

so that

(4:15)
jx� y � a+tj2

4tb+M
� t(

p
b+=c+ a+)

2

4b+M
� td;

forM su�ciently large. Thus in Region II (and in Regions III and IV, where t is yet

more dominant) exponential t-decay is su�cient to give us the claimed estimate.

We �nally show that the above estimates persist outside the ball where our small

j�j estimate holds. In this case, since Ms > Ml, our large j�j estimates apply. We

get, with �lc denoting the part of �c on which Lemma 3:4 fails to hold,

Z
�lc

O(j�j� 1
2 )eRe(�t)e�Re

p
�=bs

jx�yj

2 d� �
Z +1

�1
e�ck

2te�tddk � Cp
t
e�td;

which leads to the claimed estimate exactly as above.

Case (i), Region III. We now move into Region III by taking, for any 0 < � < d,

the parabolic contour,

(4:16) ��(k) = �b+k2 � ik
�
2
�� d

a+
b+ + a+

�
+ (�� d)

h�� d

a2+
b+ + sgn(a+)

i
;

denoted by ��. In particular, this contour has been chosen so that Re(�+1 )
���
��

=

+d��
a+

> 0.
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We check what relationship between x; y and t gives rise to this ��. By setting

real parts equal, we get ��+ = (d� �)=a+, leading to

(4:17) x� y = a+t� 2
d� �

a+
b+t:

Notice that (4:17) is the equation describing the line separating Region III from

Region IV in Figure 1.

Until �+ intersects �c the previous analysis (leading to (4:4)) holds, as we're still

in the small j�j region and away from all eigenvalues. We then need only notice

that on �c we get (for j�j < Ms)Z
�sc

eRe(�t+�
+
1 (x�y)) jd�j

jW0(�)j � C

Z +1

�1
e�ck

2te�dte
d��
ja+j

(x�y)
dk;

where we have used that Re(�+1 )
���
�sc

� d��
ja+j , by our observation that Re�

+
1 decreases

as we move to the right of ��. In Region III, where jx� yj < ta+, this leads to

C

Z +1

�1
e�ck

2te�dte
d��
ja+j

(x�y)
dk � C

Z +1

�1
e�ck

2te�dte(d��)t dk =
Cp
t
e��t;

exponential t-decay, as before. We consequently arrive at the claimed estimate by

virtue of (4:14) and (4:15), with � replacing d. A similar computation leading to

t-decay follows on �lc. Hence, as in Region II, we get (i), but with a possibly large

scaling factor M .

Case (i), Region IV. At last, we extend our analysis into Region IV. The strategy

in Region IV will be to use one particular contour that yielded the estimate in

Region III, even when the values of x; y and t would suggest a contour further to

the left.

In Region IV we have the inequality

(4:18) jx� yj < t

�
a+ � 2(d� �)

a+
b+

�
:

As in Region III, jx�yj � ta+, so that the estimates made along �c still hold. Thus

we need only concern ourselves with the portion of �c+ before �c is intersected, a

�nite contour we will denote by ��+. We have, along ��+,

Z k+

�k+
eRe(�(k)t+�

+
1 (x�y))dk =

Z k+

�k+
e�b+k

2te
(��d)

h
��d

a2
+

b++ sgn(a+)

i
t+ d��

a+
(x�y)

dk

�
Z k+

�k+
e�b+k

2te
b+t

(��d)2

a2
+

+(��d)t
e
d��
a+

(x�y)

� Cp
tb+

e
b+t

(��d)2

a2
+

+(��d)t+ d��
a+

t(a+� 2(d��)

a+
b+)

=
Cp
tb+

e
b+t

(��d)2

a2
+

+(��d)t+(d��)t� 2(d��)2

a2
+

tb+
=

Cp
tb+

e

�(d��)2

a2
+

tb+
;
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which, having exponential time decay, leads to the result as noted previously.

Case (i), Derivative Estimates. We now complete case (i) by achieving the

claimed derivative estimates. We have, for j�j < Ms, from Lemma 3:4,

(4:19)
@n

@xn
G�(x; y) =

O(1)

W0(�)
(�+1 )

ne�
+
1 (x�y) +

O(e��x)
W0(�)

e�
+
1 (x�y);

and for j�j > Ml, from Lemma 3:5,

(4:20)
@n

@xn
G�(x; y) = O(j�jn�1

2 )e�Re
p
�=bs
2

jx�yj:

Therefore an application of Lebesgue's dominated convergence theorem to Dun-

ford's integral leads to

(4:21)

�� @n
@xn

G(t; x; y)
�� � 1

2�

Z
�\B(0;Ms)

eRe�t
O(1)

W0(�)
j�+1 jneRe�

+
1 (x�y) jd�j

+
1

2�

Z
�\B(0;Ms)

e�t
O(e��x)

W0(�)
e�

+
1 (x�y) jd�j

+
1

2�

Z
�nB(0;Ms)

eRe�tO(j�jn�1
2 )e�

Re
p
�=bs
2

jx�yjjd�j:

We see from (4:21) that there are three new elements introduced into the above

analysis, the term (�+1 )
n in the �rst integral, the O(e��x) in the second and the

term O(j�jn�1
2 ) in the third.

Again we must consider each of our four regions of analysis in Figure 1. In

Region I, (4:20) always holds so that we will follow the large j�j analysis of case (i)
with O(j�jn�1

2 ) replacing O(j�j� 1
2 ). We arrive, through a computation similar to

(4:10) and (4:11), at

(4:22)

j @
n

@xn
G�(x; y)j � 1

2�

Z
��0

eRe�tO(j�jn�1
2 )e�

Re
p
�=bs
2

jx�yjjd�j

� Ce�
jx�yj2

16tbs

Z +1

�1
[bs(�0 + k2)]

n�1
2 j � 2kbs + 2ibs

p
�0je�bsk

2tdk

� Ce�
jx�yj2

16tbs

Z +1

�1
(j�0jn2 + jkjn)e�bsk

2tdk

� Ce�
jx�yj2

16tbs

h j�0jn2p
bst

+
1

(bst)
n+1
2

i
:

We now take advantage of the fact that for any n there exists some constant Cn,

depending only on n, such that x
n
2 e�x � Cne

� x
2 , to arrive at a bound by

(4:23) Ce�
jx�yj2

16tbs

h (j�0jbst)n2
(bst)

n+1
2

+
1

(bst)
n+1
2

i
� Ce�

jx�yj2

32tbs

(tbs)
n+1
2

;
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which, as in (4:12), is equivalent to the claimed estimate.

Derivative estimates, Region II. In Region II we follow �c+ and consequently

arrive in the same manner as in the Region II analysis above at the estimate

(4:24)

��� @n
@xn

G(t; x; y)
��� � Ce��

2
+tb+

Z
fk:�(k)2��

+
g
e�k

2b+t(j�+1 (k)jn + e��jxj) dk

+ Ce�dt
Z
fk:�(k)2�scg

e�ck
2t(j�+1 (k)jn + e��jxj)dk

+ Ce�dt
Z
fk:�(k)2�lcg

e�ck
2tO(j�(k)jn�1

2 )dk:

In all of these integrals, nothing essential will be lost by extending them over all real

k. From (4:3), we have �+1

���
�+

= ik � �+, so that on �+, that is, for the �rst sum-

mand of the �rst integral above, j�+1 j � jkj+ j�+j, and hence by Young's inequality

j�+1 jn � Cn(jkjn + j�+jn), for Cn an appropriately large constant dependent only

on n. In the latter two integrals, k is bounded away from zero, so that, since �+1 (k)

grows at most linearly in k (a consequence of its de�nition), j�+1 jn � Cjkjn and

O(j�jn�1
2 )jd�j � Cjkjndk on these contours for some appropriately large constant

C. These two integrals can be combined, then, into a single much simpler integral.

Accordingly, we arrive at

��� @n
@xn

G(t; x; y)
��� � Ce��

2
+b+t

Z +1

�1
e�k

2b+t(jkjn + j�+jn + e��jxj) dk

+ Ce�dt
Z +1

�1
e�ck

2tjkjndk:

Integrating out k yields a bound by

Ce��
2
+tb+

"
1

(tb+)
n+1
2

+
j�+jnp
tb+

+
O(e��x)p

tb+

#
+
� Ce�td

(tb+)
n+1
2

�
;

where the b+ has been added in the term from the last integral by appropriately

changing the constant, C. The t-decay in the fourth term is, as shown in (4:14) and

(4:15), equivalent to the expected decay, the additional algrebraic t-decay coming

from the exponential t-decay. In the third term, we note that for x > y > 0,

jxj � jx � yj � pb+=t, so that we have exponential time decay, leading again to

the derivative estimate of (i). For the second term, we again employ the inequality,

x
n
2 e�x < Cne

�x=2 for some Cn and for all x > 0, to arrive at

(4:25)
C(�2

+tb+)
n
2 e��

2
+tb+

(tb+)
n+1
2

� CCn
e��

2
+tb+=2

(tb+)
n+1
2

:

Finally, we note that the �rst term of the expression is already in the appropriate

form.
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Derivative estimates, Region III. A similar analysis will also be appropriate in

Region III, using �� as before. In this region, we again take �c+, for jx� yj � a+t,

but such that Re(�+1 )
��
��

= d��
a+

> 0: As before, we bound the nth x-derivative of

G by the sum of integrals over three domains, ��+, �
s
c and �lc. The analysis along

��+ and �lc follows almost exactly as before. Along �sc, we have a partial bound on

j @n
@xn

G(t; x; y)j by

Ce�tde
d��
a+

jx�yj
Z
fk:�(k)2�scg

e�ck
2t(jkjn + j�+jn + e��x)dk

� Ce�td+t(d��)
h 1

(ct)
n+1
2

+
j�+jnp
ct

+
e��xp
ct

i

= Ce�t�
h 1

(ct)
n+1
2

+
j�+jnp
ct

+
e��xp
ct

i
:

Through a computation similar to (4:14) and (4:15) and the derivative estimates of

Region II we arrive at the claimed estimate.

Derivative estimates, Region IV. In Region IV we remain on a Region III contour,

denoting it now by �c�. Of the three domains of integration previously considered,

only the analysis along ��� (:= �c�n�c) gives rise to essentially new analysis. We

notice that in Region IV there exists some constant, say 
 > 0, so that j�+j > 


in the entire region. Thus along the �xed (independent of x; y or t) contour ��� ,
j�+1 j � C(jkj+1) � C(jkj+C1j�+j), for some constants C and C1. This allows the

computation

Ce
�(d��)2

ja+j
2 tb+

Z
fk:�(k)2���g

e�b+k
2t(j�+1 jn + e��x) dk

� Ce
�(d��)2

ja+j
2 tb+

Z
fk:�(k)2���g

e�b+k
2t(jkjn + j�+jn + e��x)dk;

which leads to the claimed estimate similarly to (4:14), (4:15) and (4:25). With

this computation we have completed our analysis of the �rst case of Theorem 1.1.

In the remainder of the proof of Theorem 1.1 we will avoid repeating computa-

tions whenever possible by refering back to those carried out in case (i).

Case (ii), Derivative estimates. The only fundamental di�erence between the

anlaysis of case (i) and the analysis of case (ii) is in the derivative estimates. In

case (ii) we have less algebraic time decay, a phenomenon consistent with known

exact solutions.

Our proof in this case follows exactly as before except that with y > x > 0,

exponential x-decay does not give rise to exponential time decay as in the case

when x > y > 0. Thus the analysis of case (i) remains valid, except where this

exponential t-decay was used to obtain the additional algebraic t-decay.

Case (iii), Region I. In case (iii) we have x > 0 > y with a+ > 0; a� < 0. As

before, in Region I the large j�j estimates of Lemma 3:5 hold. The same analyis as

given in case (i) ((4:10) and (4:11)) leads to the estimate,

jG(t; x; y)j � C
e�

jx�yj2

16tbsp
tbs

:
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The di�erence in this case is that we actually expect what appears to be more,

additional exponential y-decay. In fact, in Region I, where jx� yj � t=
p
b+=c, this

exponential y-decay follows from the above decay as illustrated in the following

computation.

(4:26) jG(t; x; y)j � Cp
tbs

e�
jx�yj2

16tbs =
Cp
tbs

e�
jx�yj2

32tbs e�
jx�yj2

32tbs ;

where one of the exponents in this last expression can be used as in (4:12) to obtain

�jx� y�a+tj2=tb+M exponential decay, and the other to get exponential y-decay,

through (using x > 0 > y)

(4:27)
jx� yj2
32tbs

� jx� yj
32bs

p
b+=c � jyj

32bs

p
b+=c:

Case (iii), Region II. In Region II we must again analyze the three integrals over

the domains, ��+, �
s
c and �lc. We begin with

Z
��
+

O(1)

W0(�)
e�te�

+
1 xe��

�

1 y d�:

We rearrange the terms in the above integrand to get

Z
��+

O(1)

W0(�)
e�te�

+
1 (x�y)e(�

+
1 ���1 )y d�:

A di�culty encountered here is that ��1 cannot be easily evaluated along ��+.
However, we can see that

f(�) := �+1 � ��1 =
a+ �

q
a2+ + 4b+�

2b+
�
a� �

q
a2� � 4b��

2b�

satis�es f(0) =
ja�j
b�

> 0, so that by the analyticity of f in a neighborhood of the

origin, there exist constants �; � > 0 so that Re(f(�)) > � for j�j < �: We let �c
be close enough to the origin (d small enough) so that any ��+ that strikes the real

axis within this �-ball also strikes �c within this �-ball. If, as usual, k+ represents

the value of k where �+ meets �c we get, for �
c
+ crossing the real axis in this small

neighborhood of the origin,

jG(t; x; y)j � Ce��jyj
Z +k+

�k+
eRe(�(k)t+�

+
1 (k)(x�y))dk

+ C

Z
fk:�(k)2�scg

eRe(�(k)t+�
+
1 (k)x���1 (k)y)dk

+ C

Z
fk:�(k)2�lcg

eRe(�(k)t�
p
�(k)=bs

2
jx�yj)dk:
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The integrand of the �rst term in the above expression is now in the same form

as the same term was in case (i) of this theorem. As for the second integral, we

need only note that Re(��1 ) � � ja�j
2b�

(always for case (iii)) and Re(�+1 )
��
�sc
< 0 (in

Region II for case (iii)) so that

C

Z
fk:�(k)2�scg

eRe(�(k)t+�
+
1 (k)x���1 (k)y)dk � Ce

� ja�j

b�
jyj
Z +1

�1
e�ck

2t�dtdk;

from which the claimed decay follows as in (4:14) and (4:15). The third integral

is almost exactly the same as the large j�j integral along �c for case (i). We need

only note that in order to obtain the additional y-decay, we may take advantage of

the inequality in this case, jx� yj � jyj, and the fact that there exists some 
 > 0

such that Re(

p
�=bs

2
)
��
�lc
� 
.

What now remains in Region II is to obtain the result for the gap between our

�-ball and the large j�j estimates. We will accomplish this by using one particular

contour within the �-ball even as our values of x; y and t would have us take another,

further to the right (crossing the positive real axis at a greater value). That is, for

a particular � > 0 we will use the contour, denoted ��,

��(k) = �b+k2 + b+�
2 + a+� + ik(�a+ � 2b+�);

i.e., the contour satisfying Re�+1 = ��. We have, then, in this middle region,

�+ � � so that
x�y�a+t

2b+t
� �, which gives jx� yj � t(2b+� + a+). Thus on ���, the

portion of �� before �� intersects �c, we have the bound

Z k+

�k+
e�b+k

2t+b+�
2t+a+�t��(x�y)dk �

Z k+

�k+
e�b+k

2t+b+�
2t+a+�t��t(2b+�+a+)dk

=

Z k+

�k+
e�b+k

2t+b+�
2t+a+�t�2�2tb+��ta+dk

= e��
2tb+

Z k+

�k+
e�b+k

2tdk � Ce��
2tb+p
tb+

:

This exponential t-decay leads, as always, (in all regions except Region I) to the

claimed decay. We note �nally that as our contours move to the right our estimates

along �c continue to hold as before, �nishing o� the analysis for Region II.

Since in Region III we employed in case (i) a contour arbitrarily close to j�j = 0,

nothing essential changes in the case (iii) analysis of Region III from that of case (i).

The same analysis holds for Region IV also, where we simply remain on a contour

appropriate for Region III. What is now left is to obtain the claimed derivative

estimates for this case.

Case (iii), Derivative estimates. In Region I we obtain, as in (4:22) and (4:23),

���@nG(t; x; y)
@xn

��� � C
e
� jx�yj2

16tb+

(tb+)
n+1
2

:
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As in (4:26) and (4:27), by breaking this exponent into two equivalent pieces, we

can obtain the the claimed estimate.

In Region II we will again commence our analysis in the ball j�j � �. Here, we

get from Lemma 3:4 and the above analysis,

���@nG(t; x; y)
@xn

��� � Ce��jyj
Z +k+

�k+
(j�+1 (k)jn + e��jxj)eRe(�(k)t+�

+
1 (k)(x�y))dk

+ Ce
� ja�j

b�
jyj
e�dt

Z
fk:�(k)2�scg

e�ck
2t(j�+1 (k)jn + e��jxj)dk

+ C

Z
fk:�(k)2�lcg

jkjne�ck2�dte
p
�(k)=bs

2
jx�yjdk:

Each term on the right of this inequality is exactly the same as a term dealt with in

the �rst case of this theorem except that we see the additional exponential y-decay

appearing. In the third integral this y-decay comes, as before, from the exponentp
�(k)=bs

2
jx� yj. The one di�erence in the analysis here, is that where in case (i),

with x > y > 0, exponential x-decay led to exponential t-decay, now, since we

have in the O(e��jxj) terms both exponential x-decay and exponential y-decay, we

obtain exponential jx� yj-decay, which is equivalent to exponential t-decay. Thus

we again achieve the higher order algebraic t-decay as a trivial consequence.

We now move to the right, the rest of the way across Region II by noting that

outside this �-ball we have the relationship �+ � � so that, on ���, we have a bound
by

Ce��jyje��
2tb+

Z +1

�1
(j�+1 jn + e��x)e�b+k

2tdk

� C 0e��
2tb+

Z +1

�1
(j�+jn + e��x)e�b+k

2tdk;

which we've seen, as in (4:25), leads to the claimed decay. Again nothing essential

changes in Regions III and IV from the analysis of case (i) above, as long as our

Region III contour, ��, lies inside the j�j � � ball until �� intersects �c.

Case (iv). In the fourth case we have a+ < 0; a� > 0 with x > 0 > y. As before

the large j�j estimates of Lemma 3:5 lead to the result in Region I.

Over domains in which we have the the small j�j estimates, we consider the

integral
1

2�i

Z
�

e�t
O(1)

W0(�)
e�

+
1 xe��

�

1 y d�;

which can be rewritten as

1

2�i

Z
�

e�t
O(1)

W0(�)
e�

�

1 (x�y)e(�
+
1 ���1 )x d�:

Note that we've taken a new tack here than in case (iii), as we now expect

additional exponential x-decay rather than additional exponential y-decay. In this

case we take the contour ��, a contour de�ned by

(4:28) ��(k) := �b�(k + i��)
2 � a�(k + i��);
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where �� :=
x�y�a�t

2b�t
. Following �c� rather than �c+ leads to the claimed estimate

exactly as in case (iii), except with x and y switched|the expected result since the

two cases are adjoints of one another.

Case (iv), derivatives. The derivative estimate for case (iv) contains less al-

gebraic t-decay than case (iii). We can easily gain intuition about this e�ect by

considering the estimate on G in case (iv) to be an equality. In this case, the com-

putation of derivatives via the product rule would always leave a term with 1=
p
t

algebraic decay. We see this arise in the proof because in case (iv) we no longer

have exponential y-decay, so we cannot make the argument of case (iii) in which

a combination of exponential x-decay and exponential y-decay led to exponential

t-decay. Otherwise, the proof of case (iv) follows as in case (iii), except that we

take the contour �c� rather than �c+.

Case (v), Region I. The analysis of the �fth case of Theorem 1.1 is more subtle

than the others, as it is the only case for which signi�cant mass crosses the origin.

As mentioned in the introduction we now expect the bulk of this mass to move at

a di�erent speed on either side of the origin and thus for our peak to appear when

x =
a+
a�
y + a+t. For this analysis we will use in lieu of Figure 1, Figure 3, below.

| x - (a / a ) y |+ -

Region I

Region III

Region IV

| x - (a / a ) y| = t b / c+ - +

| x - (a / a ) y | = a t+ - +

| x - (a / a ) y | = t (a - 2b (d - )/a )+ - + + +ε

t

Region II

Figure 3. Regions I-IV.

In Region I, we now have the inequality

(4:29) jx� (a+=a�)yj � t
p
b+=c:

We note that for x;�y � 0 and a+; a� > 0, we have C1jx � yj � jx � (a+=a�)yj,
for some constant, C1, depending only on a+ and a�. We can thus again take c

small enough so that the contour ��0 lies entirely outside the Ml-ball. This leads
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in the usual manner to the estimate

jG(t; x; y)j � Cp
bst

e�
jx�yj2

16tbs :

Thus, we have

jG(t; x; y)j � Cp
bst

e
�
jx�

a+
a�

yj2

16tbsC1 � Cp
bst

e�
jx�

a+
a�

y�a+tj
2

16tbsM

for some constantM appropriately chosen through a computation similar to (4:12).

By changing the constants C1 and M if necessary, we obtain (v).

Case (v), Region II. In Region II, in the domain in which the small j�j estimates

hold, we have the integral

(4:30)

Z
�

O(1)

W0(�)
eRe(�t+�

+
1 x���1 y)d�:

In this case, we �nd an appropriate contour through use of the following observation,

given as a lemma.

Lemma 4.1:. For any point P 2 R satisfying P > max(�a2�=(4b�);�a2+=(4b+)),
there exists a contour, say �P , so that either Re(�+1 ) or Re(�

�
1 ) is constant on the

length of �P and such that

Re(�+1 x� ��1 y)
���
�P
� Re(�+1 (P )x� ��1 (P )y):

Proof: Given any such point P there exists exactly one contour passing through

P such that Re(�+1 ) = constant along that contour and exactly one contour passing

through P such that Re(��1 ) = constant along that contour. If Re(��1 ) = �C�,
then these contours will have the form

(4:31) Re(�) = �b� 1

(2b�C� + a�)2
Im(�)2 + b�C

2
� + a�C�:

Of these two, let �P denote the contour that lies farthest to the right. If the two

contours lie one atop the other then either contour may be chosen as �P . For

de�niteness suppose this right-most contour is the contour for which Re(�+1 ) =

constant (see Figure 4). By symmetry, the analysis would be the same if the

Re(��1 ) = constant contour were the appropriate one. Notice that from (4:31),

we can see that as C� increases, the two contours move to the right and open

more rapidly. Thus, we have that Re(��1 )
���
�P

� Re(��1 (P )). Since Re(�+1 )
���
�P

=

Re(�+1 (P )), this gives the result.
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Reλ

Imλ

P

ΓP

Re = constantµ1

+

Re = constantµ1

-

Figure 4. The contours of Lemma 4.1.

Using Lemma 4.1 our approach will be to obtain the claimed estimate in a

neighborhood of the origin by �nding the optimal point, P , through which to extend

a contour. Thus, we want the value of P in the region outlined in Lemma 4.1 for

which

f(P ) := Pt+ �+1 (P )x� ��1 (P )y

= Pt+
a+ �

q
a2+ + 4Pb+

2b+
x�

a� �
q
a2� + 4Pb�

2b�
y

is minimized. Since we are only concerned with a su�ciently small ball around the

origin, we will Taylor expand f around P = 0 in order to arrive at a more tractable

(though approximate) function to minimize. This leads to

f(P ) = [t� x

a+
+

y

a�
]P + [

2b+x

a3+
� 2b�y

a3�
]P 2 +O(P 3):

We �nd the value of P that minimizes the �rst two terms of f(P ) to be

P = �
�
t� x

a+
+

y

a�

�
=
�4b+x
a3+

� 4b�y

a3�

�
:

In particular, as expected, sgn(P ) = sgn(��+) and P = 0 i� ��+ :=
x� a+

a�
y�a+t

2b+t
= 0.

Again, for de�niteness, we will assume that the contour for which Re(�+1 ) =

constant lies farthest to the right. In our small neighborhood of the origin, where

this constant is necessarily small, we see from (4:31) that this is the same as as-

suming

(4:32) b+=a
2
+ < b�=a

2
�
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(and again if b+=a
2
+ = b�=a2�, either contour will su�ce). A nice intuitive way of

looking at this inequality is in the case when b+ = b�, where it simply observes

that a+ > a�, i.e., that the mass convects more rapidly to the right of the origin

than to the left.

If we let �+ := �a+�
p
a2++4Pb+

2b+
, then we will be taking the contour given by

�P (k) := �b+(k + i�+)
2 � ia+(k + i�+);

which satis�es Re�+1 = ��+. We now need only show that for P su�ciently small,

that is, in a neighborhood of ��+ = 0, this contour leads to the claimed estimate.

Following our previous notation, we will let �cP denote the contour constructed by

following �P until it intersects with �c and then following �c out to the point at

in�nity. We further de�ne ��P := �cP n�c and note that along �P in Region II,

Re(�+1 ); Re(�
�
1 ) < 0, as before. Thus from (4:30) and Lemma 4.1 we have (in

Region II)

jG(t; x; y)j � C

Z
fk:�(k)2��P g

e
�b+k2t+b+�2+t+a+�+t��+x�

a��
p

a2
�
+4Pb�

2b�
y
dk

+
Cp
t
e�td;

where the second term follows from the previous analysis along �c. The �rst term

is bounded by

(4:33)
Cp
b+t

e
b+�

2
+t+a+�+t��+x�

a��
p

a2
�
+4Pb�

2b�
y
:

Thus, in order to obtain the estimate in a su�ciently small ball around the origin,

we need only show that the exponent of (4:33) leads to the appropriate decay. In

order to see this, let h(P ) denote the argument of the exponential divided by t.

That is, let

h(P ) := b+�
2
+(P ) + a+�+(P )� �+(P )�x(P )�

a� �
q
a2� + 4Pb�

2b�
�y;

where �x = x=t and �y = y=t. Note that we will think of �y as �xed so that �x will

depend only on P . An expression for �x(P ) can easily be obtained by inverting the

expression for P (x) above, giving,

�x(P ) =
�
1 +

�y

a�
� 4Pb��y

a3�

�
=
� 1

a+
� 4Pb+

a3+

�
:

An important remark at this point is that both �x and �y are bounded in this region

because �+ is bounded, so there exists some constant, say M1, so that ��+ =

x� (a+=a�)y � a+t=2b+t �M1, which gives that �x� (a+=a�)�y � 2b+M1 � a+, a

relationship that, with x and �y both positive, gives a bound on both �x and �y.
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We next note that for �y �xed, h(P ) satis�es the following derivative conditions:

h(0) = 0; h0(0) = 0; h00(0) = �6b+

a2+
+

6�y

a�

h b�
a2�

� b+

a2+

i
:

Since we are in the case b+=a
2
+ < b�=a2� and �y < 0, we have h00(0) � �6b+=a2+

and thus a strict local maximum of h(P ) at P = 0. Consequently, in a su�ciently

small neighborhood of the origin (say j�+j � �, ��+ � �) h(P ) = 0 i� P = 0 i�

��+ = 0, and, moreover, h(P ) < 0 in a neighborhood of P = 0, so that there exists

a su�ciently large constant M such that h(P ) � � ��2+b+

M
in that neighborhood. It

should be remarked that this last inequality is valid because there is no t dependence

involved, and because �x and �y are both bounded so that an M can be chosen

independently of �x and �y. Substituting this estimate into (4:33) gives the claimed

estimate in a a su�ciently small ball around ��+ = 0.

Next, we extend this estimate to the remainder of ��+ � 0 between our small and

large ��+ estimates by remaining on a �xed contour passing through a point, P�,

which satis�es j�+(P�)j � �, even as our values of x; y and t would suggest contours

farther to the right. We will denote this contour by �� and de�ne it through

�� := �b+(k + i�)2 � ia+(k + i�):

We now employ the relationship in this region, P > P�, which gives

x � �4P�b�ya�3
� + ya�1

� + t

�4P�b+a�3
+ + a�1

+

;

an expression positive for P� su�ciently small, since
jyj
a�

� t is necessary for the

kernel to have crossed the origin. As before we have (4:33), where the second

integral is treated as usual and the �rst becomes bounded by

Cp
b+t

e
b+�

2t+a+�t��
�
�4P�b�ya

�3
�

+ya
�1
�

+t

�4P�b+a
�3
+

+a
�1
+

�
�
a��

p
a2
�
+4P�b�

2b�
y

:

The point P� was chosen so that the above exponent is strictly less than zero.

Therefore on the bounded region � � ��+ � (
p
b+=c� a+)=(2b+), the bound on ��+

between Region I and Region II, we get the same bound as before, by compactness.

Case (v), Regions III and IV. We now carry the analysis into Regions III and

IV by noting that the Region III analysis only occurs in a su�ciently small ball

around the origin and consequently follows from the analysis of Region II. Extension

to Region IV is carried out as before by using a contour appropriate in Region III

even as our values of x; y and t would suggest we employ a contour farther to the

left. The analysis then follows precisely as in the Region II analysis of this case,

except that now P < 0 and � < 0, and we have x bounded above.

Case (v), Derivative estimates. The claimed estimates on the derivatives of

G(t; x; y) are obtained as before in the large j�j region (Region I).
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Again, for Region II we consider a su�ciently small ball around the origin (�+ �
�). In such a ball, we have by virtue of the previous analysis

j @
n

@xn
G(t; x; y)j

� C

Z +k+

�k+
(j�+1 jn + e��jxj)e

�b+k2t+b+�2+t+a+�+t��+x�
a��

p
a2
�
+4Pb�

2b�
y
dk

+ C

Z +1

�1
jkjne�ck2t�dtdk:

On �P , Re(�
+
1 ) =

a+�
p
a2
+
+4Pb+

2b+
, which is zero when P = 0 (��+ = 0), so that

for some constant C we have jRe(�+1 )j � Cj��+j for P (and thus ��+) bounded.

Also, since Im(�+1 ) = 0 if k = 0, we have Im(�+1 ) � Cjkj for some constant C for

bounded jkj. Hence, j�+1 j � Cj��+j+ Cjkj, and so j�+1 jn � C(j��+jn + jkjn). This,
along with the preceding analysis, gives the result for the �rst summand of the �rst

integral, with stronger algebraic t-decay than claimed in the statement of Theorem

1.1. For the second summand of the �rst integral, we achieve only 1=
p
t decay, but

with additional exponential x-decay. For the second integral we need only note that

with jkj bounded away from zero and j�+1 j having at most growth of rate linear in

jkj along �P , there exists a constant C so that j�+1 j � Cjkj for k 2 [�kc; kc]c which,
as in previous cases, leads to the claimed result. Derivative estimates in Regions

III and IV follow similarly.

We note �nally that the weaker algebraic time decay stated in Theorem 1.1

for this case occurs (without additional exponential x-decay) in the case b+=a
2
+ >

b�=a2�, when there is a build-up of mass at the origin. In the analysis this becomes

clear as we take the contour on which Re(��1 ) = constant as �P .

Case (vi). The �nal case, a� < 0; a+ < 0 with x > 0 > y, has exponential jxj; jyj
and t decay and hence is e�ectively independent of path. In the case of large j�j
this decay is easily seen in the usual way.

The analysis in Regions II through VI in this case is simpli�ed by the strength

of our jxj and jyj decay. In fact, we can content ourselves with taking �c in each of

these regions. We get

jG(t; x; y)j � C

Z
fk:�(k)2�c\B(0;Ms)g

e�ck
2�dteRe(�

+
1 x)eRe(��

�

1 y)dk

+ C

Z
fk:�(k)2�cnB(0;Ms)g

e�ck
2�dtdk:

Noting that in this case Re(�+1 ) < 0 and Re(���1 ) > 0 everywhere, we get in all

regions

jG(t; x; y)j � C

Z +1

�1
e�ck

2�dtdk;

which leads in Regions II through IV to the stated result through (4:14) and (4:15),

the t-decay giving us decay along any path we choose.
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Derivative bounds follow immediately from the previous large j�j analysis and
the fact that we have exponential time decay in all other regions, leading trivially

to the claimed algebraic time decay.

This completes the proof of Theorem 1.1.

References

[AJG] J. Alexander, R. Gardner and C.K.R.T. Jones, A topological invariant

arising in the analysis of traveling waves, J. Reine Angew. Math. 410 (1990)

167-212.

[C] Coppel, W. A., Stability and Asymptotic Behavior of Di�erential Equations,

D.C. Heath and Co., Boston (1965).

[CH] R. Courant, D. Hilbert, Methods of mathematical physics, Volume I, In-

terscience, New York (1953).

[E] J.W. Evans, Ind. Univ. Math. J. 21 (1972) 877-955, 75-90 and 577-594; 724

(1975) 1169-1190.

[F] A. Friedman, Partial di�erential equations of parabolic type, Prentice-Hill,

Inc., Englewood Cli�s, N.J. 1964.

[G] J. Goodman, Nonlinear asymptotic stability of viscous shock pro�les for

conservation laws, Arch. Rat. Mech. 95 (1986), 325-344.

[GS] B. Gaveau and S. Schulman, Explicit time-dependent Schro�dinger propa-

gators, J. Phys. A Math. Gen. 19 (1986) 1833-1846.

[GZ] R. Gardner and K. Zumbrun, The Gap Lemma and geometric criteria for

instability of viscous shock waves, to appear, CPAM.

[HZ.1] D. Ho� and K. Zumbrun, Multi-dimensional di�usion waves for the

Navier-Stokes equations of compressible 
ow, Ind. Univ. Math. Journal v. 44,

no. 2 (1995) 603-675.

[HZ.2] D. Ho� and K. Zumbrun, Pointwise decay estimates for mulidimensional

Navier-Stokes di�usion waves, ZAMP 48 (1997) 597-614.

[J] C.K.R.T. Jones, Stability of the traveling wave solution of the FitzHugh-

Nagumo system. Trans. Amer. Math. Soc. 286 (1984), no. 2, 431-469.

[JGK] C.K.R.T. Jones, R. Gardner, and T. Kapitula, Stability of travelling waves

for nonconvex scalar viscous conservation laws. Comm. Pure Appl. Math. 46

(1993), no. 4, 505{526.

[K] T. Kapitula, On the stability of travelling waves in weighted L1 spaces, J.

Di�. Eqn. 112 (1992), no.1, 179{215.

[PW] R. L. Pego and M.I. Weinstein, Eigenvalues, and instabilities of solitary

waves. Philos. Trans. Roy. Soc. London Ser. A 340 (1992), no. 1656, 47{94.

[L.1] T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws,

Memoirs AMS 56, no. 328 (1985).

[L.2] T.P. Liu, Interaction of nonlinear hyperbolic waves, Nonlinear Analysis

(F.C. Liu and T.P. Liu, eds.), World Scienti�c, Singapore (1991) 171{184.

[L.3] T.P. Liu, Pointwise convergence to shock waves for the system of viscous

conservation laws, to appear, CPAM (1997).

[LZe] T.P. Liu and Y. Zeng, Large time behavior of solutions of general quasi-

linear hyperbolic-parabolic systems of conservation laws, Archives for Rat. Mech.

599 (1994).



38 PETER HOWARD

[LZ.1] T.P. Liu and K. Zumbrun, Nonlinear stability of an undercompressive

shock of complex Burgers equation, Comm. Math Phys. 168 (1993) 163{186.

[LZ.2] T.P. Liu and K. Zumbrun, On Nonlinear Stability of General Undercom-

pressive Viscous Shock Waves, Comm. Math. Phys. 174 (1995) 319{345.

[MN] A. Matsumura, K. Nishihara, Asymptotic stability of traveling waves for

scalar viscous conservation laws with non-convex linearity. Comm. Math. Phys.

165 (1994) no. 1, 83{96.

[N] K. Nishihara, Stability of traveling waves with degenerate shock for systems

of one-dimensional viscoelastic model. J. Di�erential Equations 120.

[S] D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv.

Math. V 22 (1976) 312{355.

[SX] A. Szepessy and Z. Xin, Nonlinear stability of viscous shock waves, Arch.

Rat. Mech. Anal., v. 122 no. 1 (1993), 53-103.

[SZ] A. Szepessy and K. Zumbrun, Stability of rarefaction waves in viscous media,

Archives for Rat. Mech. 133 (1996) 249-298.

[Y] K. Yosida, Functional Analysis (Springer-Verlag)

[Ze] Y. Zeng, L1 asymptotic behavior of compressible, isentropic, viscous 1d 
ow,

to appear CPAM 47 (1994) 1-53-1082.

[ZH] K. Zumbrun and P. Howard, Pointwise semigroup methods for stability of

viscous shock waves, in preparation.


