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Abstract. We study the pointwise behavior of perturbed degenerate (sonic) shock

waves for scalar conservation laws with non-constant diffusion. Building on the point-
wise Green’s function approach of [ZH], we extend the linear analysis to an equation
with non-integrable coefficients. In lieu of working with the integrated equation,

we employ a tracking mechanism that we expect will allow degenerate waves to be
incorporated into the general framework for nondegenerate systems [ZH].

1. Introduction
We consider the scalar viscous conservation law

(1.1)
ut + f(u)x = (b(u)ux)x; u, x, f ∈ R, t ∈ R+ ,

u(0, x) = u0(x),

where u0(±∞) = u±, b, f ∈ C2(R). In particular, we will study the stability of
degenerate, or sonic, shock solutions to (1.1); that is, solutions of the form ū(x−st)
which satisfy the Rankine–Hugoniot condition

s(u+ − u−) = f(u+) − f(u−),

as well as the degenerate condition that f ′(u+) = s < f ′(u−) (or symmetrically
f ′(u+) < s = f ′(u−)). Without loss of generality, we may take s = 0 and thus
f ′(u+) = 0 < f ′(u−). With ū(x) thus defined, we make our final assumption on
(1.1), that b(ū(x)) ≥ b0 > 0. For a brief discussion of previous work and applications
of the analysis, the reader is referred to [H.3].

It is well known that solutions, u(t, x), of viscous conservation laws initialized
by u(0, x) near ū(x) will not generally approach ū(x), but rather will approach a
translate of ū(x) determined uniquely by the mass of u(0, x)−ū(x), measured by the
integral

∫
R
u(0, x)−ū(x)dx. In the case of Lax and degenerate waves arising in single

equations, and for systems under the additional constraint
∫
R
u(0, x)− ū(x)dx = 0,

convergence to this asymptotic translate can be successfully studied [G]. Indeed,
such an analysis for degenerate waves has been carried out in [H.3]. In general,
however, mass propagated away from the shock complicates the picture, and a more
suitable approach is to track the shock in time. Our primary goal here is to show
that the stability analysis of degenerate viscous shock waves can be incorporated
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into the local tracking framework of [HZ.1, ZH]. It is through this framework, then,
that we expect to extend these results to systems.

The fundamental difficulty in carrying out this program was pointed out in [H.3].
The local tracking method of [ZH] made extensive use of the analyticity of the Evans
function at λ = 0 (or its analyticity on a Riemann surface, see [GZ, KR]). It was
pointed out in [H.3] that in the case of degenerate viscous shock waves, the Evans
function is certainly not analytic in a neighborhood of λ = 0, and does not appear
to admit analytic extension to a Riemann manifold. We surmount this obstacle here
by dividing the Evans function (plus related objects) into two pieces: one analytic
in a neighborhood of the origin and one sufficiently small. It would appear that our
decomposition is accurate enough to provide sharp decay rates in all L p norms.

Following [HZ.1], our method of study will be to let u(t, x) denote a second
solution of (1.1) and to consider the perturbation v(t, x) := u(t, x + δ(t)) − ū(x),
where the shift δ(t) will be chosen in such a way that u(t, x + δ(t)) will remain
near ū(x) at each time t (near in a sense discussed below). In this manner, we
will always compare u(t, x) with the shape of ū(x) rather than its position. As
mentioned above, a reasonable first choice for δ(t) is the asymptotically-selected
translate l = δ(∞). In addition to the limited applicability of this choice (as
mentioned above), we observe that even when applicable, it will typically be rather
poor for intermediate times t. The time-asymptotic location takes into account
perturbation mass (measured as

∫
v) that is still far from the shock layer, hence

has not yet had a chance to interact with it. This gives an overestimate of the shock
shift of the order of magnitude of the mass remaining in the far field, with resulting
L∞ perturbation error of the same order. The L∞ distance from a “correctly”
located shock would be, rather, of the order of the oscillation in the far field,
typically much smaller than the mass. The same considerations hold for any norm
Lp, p > 1.

The challenge, then, lies in determining this “correct” local shift δ(t). One could
go about this in a number of ways, for example through best Lp fit, but such an
estimate is not directly related to the underlying dynamics of the problem and so
does not seem entirely satisfactory (though see the linear analysis of [G.1], based
on the flux transform). A more natural approach from the point of view of the
time evolution nature of the problem would be to “window” the shock, considering
only perturbation mass that has already arrived within a vicinity of the shock
layer close enough to affect the location. We will see below that this windowing
is essentially the outcome of our approach; however, we begin from a different,
more technical direction, based on a detailed desciption of the Green’s function
for a certain linear equation. When filtered through the variation of constants
(Duhamel) representation of the nonlinear solution, the estimates yield the most
advantageous choice of shock location from the point of view of this analysis. The
result can be recognized after the fact as a mathematically precise version of the
windowing approach described above.

Prior to defining δ(t) exactly, we recall the framework of the pointwise Green’s
function approach taken in [HZ.1, ZH]. Substituting u(t, x + δ(t)) = ū(x) + v(t, x)
into (1.1) we arrive at the linearized equation

(1.2) vt + (a(x)v)x − (b(x)vx)x = Q(v) + δ̇(t)(ūx(x) + vx),

where a(x) := f ′(ū(x))−b′(ū(x))ūx(x), b(x) = b(ū(x)), and Q(v) = O(v2)+O(vvx)
is a smooth function of its arguments. Allowing G(t, x; y) to represent the Green’s
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function for vt = Lv,Lv := (b(x)vx)x − (a(x)v)x, we have the integral equation

v(t, x) =
∫ +∞

−∞
G(t, x; y)v0(y)dy

+
∫ t

0

∫ +∞

−∞
G(t− s, x; y)

[
Q(v(s, y))y + δ̇(s)(ūy(y) + vy(s, y))

]
dyds.

Using the fact that ūx is an eigenfunction of the linearized eigenvalue equation (for
λ = 0) we see that eLtūx = ūx, so that (after integration by parts on the nonlinear
term)

v(t, x) =
∫ +∞

−∞
G(t, x; y)v0(y)dy + δ(t)ūx(x)

−
∫ t

0

∫ +∞

−∞
Gy(t− s, x; y)

[
Q(v(s, y)) + δ̇(s)v(s, y)

]
dyds,

where we will see below that sharp estimates on G(t, x; y) will lead us to the choice

δ(t) = −P
∫ a−

√
t

−a−t

v0(y)dy.

Letting
G̃(t, x; y) := G(t, x; y) − Pūx(x)I{−a−t≤y≤a−

√
t},

we have

(1.3)
v(t, x) =

∫ +∞

−∞
G̃(t, x; y)v0(y)dy

−
∫ t

0

∫ +∞

−∞
Gy(t− s, x; y)

[
Q(v(s, y)) + δ̇(s)v(s, y)

]
dyds.

Our first theorem consists of pointwise estimates on G(t, x; y) and rests upon the
following observations (see Figure 4.1):
(1) The essential spectrum of L lies on and to the left of a parabola passing through
the origin and opening into the negative real complex plane. We will denote this
parabola by Γe and represent it through

λe(k) = −k2 − ia−k,

where a− := limx→−∞ a(x).
(2) The point spectrum of L lies to the left of a parabola Γd defined through

λd(k) = −d2k
2 − id1k − d0,

where d0, d1, d2 > 0 will be chosen sufficiently small during the analysis. We will
denote this contour Γd.
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Theorem 1.1. Let f ′′(u+) 6= 0 for f(u) as in (1.1) (first order degeneracy).
For some constants C,M, T > 1 and η > 0, depending on a(x) = f ′(ū(x)) −
b′(ū(x))ūx(x), b(x) = b(ū(x)), and the spectrum of L, the Green’s function, G(t, x; y),
for vt = Lv satisfies the following estimates.

(I) For |x− y| ≥ Kt, K sufficiently large, and also for t ≤ T , all x, y (n = 0,1)

∂n
yG(t, x; y) = O(t−

n+1
2 )e−

(x−y)2

Mt .

(II) For |x− y| ≤ Kt, K as above, t ≥ T
(i) y ≤ x ≤ 0

G(t, x; y) = O(t−1/2)e−
(x−y−a−t)2

Mt + Pūx(x)I{|x−y|≤a−t}

+ O(e−η|x|)e−
(x−y−a−t)2

Mt + O(e−η|x|)
(
|x− y − a−t| + 1

)−1/2

I{|x−y|≤a−t},

Gy(t, x; y) = O(t−1)e−
(x−y−a−t)2

Mt + O(e−η|x|)O(t−1/2)e−
(x−y−a−t)2

Mt

+ O(e−η|x|)
(
|x− y − a−t| + 1

)−1

I{|x−y|≤a−t}.

(ii) x ≤ y ≤ 0

G(t, x; y) = O(t−1/2)e−
(x−y−a−t)2

Mt + Pūx(x)I{|x−y|≤a−t}

+ O(e−η|x|)e−
(x−y−a−t)2

Mt + O(t−1/2)O(e−η|x|)e−
(x−y)2

Mt I{|x−y|≤a−t},

Gy(t, x; y) = O(t−1)e−
(x−y−a−t)2

Mt + O(e−η|x|)O(t−1/2)e−
(x−y−a−t)2

Mt

+ O(t−1)O(e−η|x|)e−
(x−y)2

Mt I{|x−y|≤a−t}.

(iii) x ≤ 0 ≤ y

G(t, x; y) = O(t−1/2)O1(|y|)O(e−η|x|)e−
y2

Mt + Pūx(x)I{|x|≤a−t}∩{|y|≤a−
√

t},

Gy(t, x; y) = O(t−1)O1(|y|)O(e−η|x|)e−
y2

Mt

(iv) y ≤ 0 ≤ x

G(t, x; y) = O(t−1/4)O1(|x|−1)e−
(x−y−a−t)2

Mt I{|y|≥a−t}

+ O1(|x|−2)e−
(x−y−a−t)2

Mt I{|y|≥a−t}

+ O1(|x|−1)
(
y + a−t− 3b−x2

2a2−b0t2
y
)−1/2

e−
x2
Mt I{{|y|≤a−t}∩{x≥1}}

+
(
y + a−t− 3b−

2a2−b0t
y
)−1/2

I{{|y|≤a−t}∩{x≤1}} + Pūx(x)I{|y|≤a−t}∩{|x|≤a−
√

t},
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Gy(t, x; y) = O(t−1/2)O1(|x|−2)e−
(x−y−a−t)2

Mt I{|y|≥a−t}

+ O1(|x|−2)
(
y + a−t− 3b−x2

2a2−b0t2
y
)−1

e−
x2
Mt I{|y|≤a−t}∩{x≥1}}

+ O(1)
(
y + a−t− 3b−

2a2−t
y
)−1

I{{|y|≤a−t}∩{x≤1}},

(v) 0 ≤ y ≤ x

G(t, x; y) = O(t−1/2)O1(|x|−1)O1(|y|)e−
(x−y)2

Mt + Pūx(x)I{|x−y|≤a−
√

t},

Gy(t, x; y) = O(t−1)O1(|x|−1)O1(|y|)e−
(x−y)2

Mt

(vi) 0 ≤ x ≤ y

G(t, x; y) = O(t−1/2)O1(|x|−1)O1(|y|)e−
(x−y)2

Mt + Pūx(x)I{|x−y|≤a−
√

t}

Gy(t, x; y) = O(t−1)O1(|x|−1)O1(|y|)e−
(x−y)2

Mt

where ∧ denotes minimum and estimates of form O1(f(·)) satisfy O1(f(·)) ≤
Cf(1 + ·) (allowing numerous expressions that would otherwise extend over two
lines to be completed on one).

A detailed discussion of estimates of the form of those from Theorem 1.1 appears
in [H.1]. We mention here only that the estimates on G,Gy for Cases (i)–(iv) are
not assumed sharp, and should be compared with the more natural estimates of
[H.1, ZH] (though it certainly is not asserted that these hold in the present case).
The difficulty in obtaining sharp Green’s function estimates in these cases centers
around our inability to extend contours through the negative real axis, and also
upon our inability to expand functions of

√
λ in a Taylor series about the crucial

point λ = 0. (Indeed, the Evans function is in some sense even worse than
√
λ,

as it appears to admit no analytic extension to a Riemann manifold. See Lemma
3.1.) As the analysis is essentially dictated by the purely degenerate case, x, y ≥ 0,
however, these estimates do not effect our final result. A critical refinement over
the analysis of [H.3] is the elimination of a number of log t terms. We shall see
that these arise naturally as (sharp!) logλ terms in the ODE analysis (of Lemma
3.1), but subtly cancel in the estimation of Gλ (see Lemma 3.4). This observation
allows us to drop the log t behavior in the estimates of [H.3], making them sharp.
Finally, we point out that these estimates could be sharpened by the refined analysis
of Zumbrun [Z]. Again, however, we find that since the degenerate-side estimates
dominate and are sharp, nothing new is gained. (Actually, sharper estimates on
the non-degenerate side could allow one to consider initial data with slower decay
on that side, but this does not strike me as a critical point.)

We turn now to the critical task of choosing δ(t). First, we observe that in each
case of Theorem 1.1 G(t, x; y) has one term that does not decay in time (called
the excited term, following [ZH]). For example, for y ≤ x ≤ 0, the excited term
is E(t, x; y) = Pūx(x)I{|x−y|≤a−t}, with E(∞, x; y) = Pūx(x). Comparing this
observation with our definition v(t, x) := u(t, x + δ(t)) − ū(x) and our integral
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representation (1.3), we see that this non-decaying mass is directly connected to
our shift from the stationary shock: mass that fails to decay in time forces u(t, x)
toward a translate of ū(x) rather than ū(x) itself. Accordingly, we will choose δ(t)
so as to annihilate the mass accumulating at the shock layer. At first glance, this
suggests we take δ(t) so that

∫ +∞

−∞
E(t, x; y)v0(y)dy + δ(t)ūx(x) = 0.

(In the case of Lax and degenerate waves, Gy does not contain any terms that do
not decay in time, simplifying the analysis to its linear part. For a fully nonlinear
version, see [HZ.1].) Observing that E(t, x; y) = Pūx(x)I{|x−y|≤e(t)}, where e(t)
represents an expression in t dependent upon the case of x, y from Theorem 1.1, we
make a choice that insures that δ(t) will not depend on x; namely,

∫ +∞

−∞
Pūx(x)I{|y|≤e(t)}v0(y)dy + δ(t)ūx(x) = 0,

which becomes

δ(t) = −P
∫ a−

√
t

−a−t

v0(y)dy,

where the upper limit of
√
t is indicative of the degeneracy. Finally, we mention

that as persuasive as this motivating argument may or may not be, the wisdom of
this choice of δ(t) will ultimately be determined by its efficacy in our estimates on
v(t, x) (see Theorem 1.2).

Before stating our main theorem we make the following definitions.

Definition 1.1. (Class of initial data) Denote by ∆r the space of functions d(·) ≥ 0
such that d(x) ≤ C(1 + |x|)−r, r > 1. Denote by D(·) the asymptotically decaying
antiderivative of d(·),

D(x) :=

{ ∫ x

−∞ d(y)dy, x < 0,∫ +∞
x

d(y)dy, x ≥ 0.

Our rate of decay in time will essentially be D(
√
t); hence, we define

D̃(t) :=



D(

√
t)(∼ (1 + t)

1−r
2 ), 1 < r < 2

(1 + t)−1/2 log(2 + t), r = 2

(1 + t)−1/2, r > 2.

Definition 1.2. (Orbital stability) We say that a standing wave solution ū(x) to
(1.1) is orbitally stable in norm ‖·‖ if there exists an ε > 0 and a translate of ū, say
ūl = ū(x−l), such that if another solution, u, to (1.1) satisfies ‖u(0, x)−ūl(x)‖ ≤ ε,
then ‖u(t, x) − ūl(x)‖ decays to zero in time.

We now state the main result of the paper, from which orbital stability follows
in every Lp norm.
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Theorem 1.2. Suppose ū(x) is a degenerate standing wave solution to (1.1) with
f ′′(u+) 6= 0 (first order degeneracy). For a second solution to (1.1), u(t, x), with
initial data, u0(x), suppose u0(x)− ū(x) ∈ Ar

ζ, with

Ar
ζ := {v0(x) : |v0(x)| ≤ ζd(x), some d ∈ ∆r},

ζ sufficiently small and r > 1. In the event that b(u) in (1.1) is non-constant,
suppose additionally that v0(x) ∈ C0+α. Then we obtain the estimates

(I) x ≤ 0

|u(t, x) − ū(x)| ≤ Cζ
[
e−

η
2 |x|D̃(t) + d(x− a−t)

]
,

(II) x ≥ 0

|u(t, x)−ū(x)| ≤ Cζ
[
(1+x)−1e−

x2
2Mt D̃(t)+t−1∧(1+x)−2+(1+x)−r∧t− 1

2 (1+x)1−r
]
,

where η and M are as in Theorem 1.1 and ∧ represents minimum.

Remark. We observe that the maximal rate of decay in time is slower here than
for the case of [H.3], in which the initial perturbation was taken to have zero mass.
This is in interesting contrast with the case of compressive waves, for which local
tracking yields faster decay [HZ.2]. In this respect, degenerate waves are similar to
undercompressive waves: the assumption of zero mass perturbations is inherently
stronger. (Much more so, of course, for undercompressive waves, for which the
assumption of zero mass perturbations is entirely unphysical.) The main point
is that for perturbations from degenerate waves, the lack of transport leaves a
decay rate determined by diffusion. For zero-mass perturbations, we are justified
in thinking of diffusion both above and below the profile, providing the maximal
(double) rate t−1.

Theorem 1.2 provides the following immediate corollary on stability. (See [H.3]
for comments on the proof.)

Corollary 1.3. (Nonlinear stability) Under the assumptions of Theorem 1.2 and
with u0(x)− ū(x) ∈ Ar

ζ as there, we have

‖u(t, x) − ū(x)‖Lp ≤ CD̃(t), p > 1,

and
‖u(t, x) − ū(x)‖L1 ≤ CD̃(t)tε,

for ε > 0 arbitrarily small when 1 < r ≤ 2, and for tε replaced by log t when r > 2.

2. Structure of Degenerate Shock Waves
We begin by collecting some observations regarding the behavior of degenerate
shock waves. The proofs are similar to those of the analogous propositions in [H.3]
and are omitted. For definiteness we will assume throughout that f ′(u−) > 0 and
f ′(u+) = 0.



8 P. HOWARD

Proposition 2.1. Suppose f(u) and u± in (1.1) satisfy the Rankine–Hugoniot
condition (s = 0, without loss of generality), f, b ∈ Ck+1(R), k ≥ 1, and f ′(u+) =
f ′′(u+) = · · · = f (k)(u+) = 0, with f (k+1)(u+) 6= 0. Suppose also that Oleĭnik’s
entropy condition holds:

f(u) − f(u±)
{
< 0, u+ < u < u−,
> 0, u− < u < u+.

Then there exists a traveling wave solution ū(x) of (1.1) so that ū(±∞) = u±,
unique up to a shift. Moreover, we have

|ū(x) − u−| = O(e−α|x|), x ≤ 0, and |ū(x) − u+| = O(|x|−1/k), x ≥ 0.

Proposition 2.2. Under the hypotheses of Proposition 2.1, for a(x) := f ′(ū(x))−
b′(ū(x))ūx, b(x) := b(ū(x)), n = 0, 1, we have (for any order of degeneracy)

(i)
∣∣∣ ∂n

∂xn
(a(x) − a−)

∣∣∣ = O(e−α|x|), x ≤ 0

(ii)
∣∣∣ ∂n

∂xn
a(x)

∣∣∣ = O(|x|−1−n), x ≥ 0.

Moreover, in the case of degeneracy of order 1,

(iii) γ+(x) :=
2ūx

ū− u+
− ūxx

ūx
= O(|x|−2).

3. ODE Estimates
Equations of type (1.2) readily lend themselves to study through the behavior of
solutions of the eigenvalue ODE

(3.1) Lv = λv,

where we recall that L represents the linear operator Lv := (b(x)vx)x − (a(x)v)x.
Following [ZH], our approach will be to solve the associated Green’s function equa-
tion

(3.2) (L− λ)v = −δy(x).

If we let R(λ) := (λI − L)−1 denote the resolvent of L, then (3.2) is solved by the
Green’s function

Gλ(x, y) = R(λ)δy(x)

wherever R(λ) is defined.
The computation of Gλ(x, y) is standard (see [CH], for example) in terms of

decaying solutions of (3.1). Our notation will be to let φ± denote the (unique)
decay modes of (3.1) at ±∞, and ψ± a choice of (nonunique) growth solutions at
±∞. We can directly compute the asymptotic growth and decay rates of φ and ψ
from (3.1) by noting that at ±∞ (3.1) becomes

b±vxx − a±vx − λv = 0,



STABILITY FOR DEGENERATE VISCOUS SHOCK WAVES 9

where a(−∞) = a− > 0 and a(+∞) = a+ = 0, so that solutions of the form v ∼ eµx

give b±µ2 − a±µ− λ = 0, which can readily be solved for the −∞ modes

µ−
1 (λ) =

a− −
√
a2− + 4λb−

2b−
; µ−2 (λ) =

a− +
√
a2− + 4λb−

2b−
,

and the +∞ modes

µ+
1 (x, λ) = −

∫ x

0

√
λ/b(s)ds; µ+

2 (x, λ) = +
∫ x

0

√
λ/b(s)ds,

(The algebraic decay of b(ū(x)) to b(u+) necessitates our keeping the x dependence
in µ+

1 , µ
+
2 .) We immediately see that a crucial aspect of the analysis is that while

the modes at −∞ are analytic in a neighborhood of the origin, the modes at +∞
are not.

In terms of the above notation, the Green’s function Gλ(x, y) for (3.1) takes the
form

Gλ(x, y) =




φ+(x)φ−(y)
b(y)Wλ(y) , x ≥ y,

φ+(y)φ−(x)
b(y)Wλ(y)

, x ≤ y,

where Wλ(y) denotes the usual Wronskian,

Wλ(y) = φ+(y)φ− ′(y)− φ+ ′(y)φ−(y),

and consequently satisifies Abel’s equation,

∂yWλ(y) =
(a(y)
b(y)

− b′(y)
b(y)

)
Wλ(y).

The Evans function of [AGJ] is here Wλ(0).
Finally, we will achieve the desired estimates onG(t, x; y) from Dunford’s Integral

(the resolvent formula for the semigroup, or simply the Laplace transform under
certain conditions) [Y], which gives

G(t, x; y) =
1

2πi

∫
Γ

eλtGλ(x, y)dλ,

where Γ is a contour enclosing the entire spectrum of L (possibly passing through
the point at ∞).

The analysis depends upon an extremely detailed understanding of φ± and ψ±.
We have the following lemma.

Lemma 3.1. Under the assumptions of Theorem 1.1 and for some constant Ms,
we have the following estimates on the growth and decay modes (ψ± and φ±) of
(3.1).
(i) (x ≤ 0) For all |λ| ≤Ms and to the right of Γd,

φ−(x) = e−µ−
1 x(ū(x) − u−)

(
− µ−

1 +
ūx(x)

ū(x) − u−
+ e−2 (x, λ) +

ūx(x)
ū(x)− u−

e−1 (x, λ)
)
,
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φ− ′(x) =
a(x)
b(x)

φ−(x) + e−µ−
1 x(ū(x)− u−)b(x)−1(λ+ λe−1 (x, λ)),

∂k

∂xk
ψ−(x) = eµ−

1 x((µ−
1 )n + O(e−α|x|)).

(ii) (x ≥ 0) For all |λ| ≤Ms, to the right of Γd and off the negative real axis,

φ+(x) = e−
R

x
0

√
λ/b(s)ds(ū(x)− u+)

×
(
−
√
λ/b(x) +

ūx(x)
ū(x) − u+

+ e+2 (x, λ) +
ūx(x)

ū(x)− u+
e+1 (x, λ)

)
,

φ+ ′(x) =
a(x)
b(x)

φ+(x) + b(x)−1e−
R x
0

√
λ/b(s)ds(ū(x) − u+)(λ+ λe+1 (x, λ)),

ψ+(x) = e
R

x
0

√
λ/b(s)ds(ū(x) − u+)

×
(√

λ/b(x) +
ūx(x)

ū(x)− u+
+ ẽ+2 (x, λ) +

ūx(x)
ū(x) − u+

ẽ+1 (x, λ)
)
,

ψ+ ′(x) =
a(x)
b(x)

ψ+(x) + b(x)−1e
R x
0

√
λ/b(s)ds(ū(x)− u+)(λ+ λẽ+1 (x, λ)),

where
e−1 (x, λ), e−2 (x, λ) = O(λ)O(e−η|x|),

while (∧ = min)

e+1 (x, λ), ẽ+1 (x, λ) = O(
√
λ log λ) ∧O1(|x|−1),

and
e+2 (x, λ), ẽ+2 (x, λ) = O(

√
λ)O1(|x|−1).

Moreover, for x
√
λ/b0 < 1, we will require the extended representations,

e+1 (x, λ) = e+1 (0, λ) +
∫ x

0

√
λ/b(s)ds+

∫ x

0

√
λūs

(ū(s)− u+)2
ds+ O(λ log λ),

e+2 (x, λ) =
√
λ/b(x) +

√
λūx

(ū(x)− u+)2
+ O(λ),

and similarly,

ẽ+1 (x, λ) = ẽ+1 (0, λ) −
∫ x

0

√
λ/b(s)ds−

∫ x

0

√
λūs

(ū(s)− u+)2
ds+ O(λ log λ),

ẽ+2 (x, λ) = −
√
λ/b(x) −

√
λūx

(ū(x) − u+)2
+ O(λ).

Remark. The odd form of the error estimate e+
1 (x, λ) is a consequence of the

fact that equations of form vxx + (κ/x)vx = λv—which essentially govern φ and
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ψ, since a(x) ∼ x−1—have the property that they can be scaled to depend only
upon ξ :=

√
λx, leading to trade-off of λ→ 0 decay versus x→ ∞ blow-up, or vice

versa. Though the logλ terms here are sharp—not simply a consequence of the
analysis—we shall find that they cancel with one another as the analysis proceeds
(see Lemma 3.3).

Proof. As these ODE estimates are slightly esoteric, we make some comments on
their proof. We begin with the ODE

(3.3) (b(x)vx)x − (a(x)v)x = λv.

If w(x) satisfies the integrated equation

(3.4) b(x)wxx − a(x)wx = λw,

then it is straightforward to verify that v(x) := wx(x) satisfies (3.3). It will be
convenient to obtain estimates on the growth and decay modes of (3.3) by obtaining
estimates on the growth and decay modes of (3.4) and differentiating. We remark,
however, that this use of the integrated equation requires no assumption on the
mass of the initial perturbation.

Proceeding as in [H.3] we make the change of variables w(x) = (ū(x)−u+)u(x),
natural in this context since the eigenfunction at λ = 0 of (3.4) is ū(x). We obtain

b(x)(ū(x) − u+)uxx + 2b(x)ūxux + b(x)ūxxu

− a(x)(ū(x) − u+)ux − a(x)ūxu = λ(ū− u+)u.

Observing that b(x)ūxx − a(x)ūx = 0 and dividing by b(x)(ū(x) − u+), we obtain

(3.5) uxx + γ+(x)ux = λu; γ+(x) :=
2ūx

ū− u+
− ūxx

ūx
.

Letting U1(x) = u(x), U2(x) = ux(x), we write (3.5) as a system. In order to
investigate solutions of (3.5) that decay at +∞ we look for solutions of the from
U(x) = e−

R x
0

√
λ/b(s)dsZ(x), so that

Z ′(x) = A(x, λ)Z(x) + E(x)Z(x),

where

A(x, λ) =
(√

λ/b(x) 1
λ/b(x)

√
λ/b(x)

)
; and E(x) =

(
0 0
0 −γ+(x)

)
.

We make the diagonalizing change of variables Z(x) = P (x)W (x), where P (x, λ)
represents the matrix of eigenvectors,

P (x, λ) =
(

1 1
−√λ/b(x) √

λ/b(x)

)
; and P (x, λ)−1 =

( 1
2

− 1

2
√

λ/b(x)
1
2

1

2
√

λ/b(x)

)
.

A page or so of matrix algebra brings us to the ODE for W (x, λ),

(3.6) W ′(x) = D(λ)W (x) + Ẽ(x, λ)W (x),
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where

D(λ) =
(

0 0
0 2

√
λ/b(x)

)
; and Ẽ(x, λ) =

γ̃+(x)
2

(−1 1
1 −1

)
.

γ̃+(x) = γ+(x) − b′(x)
2b(x)

.

Equation (3.6) takes the integral form

(3.7)
W1(x) = 1 −

∫ +∞

x

1
2
γ̃(ξ)(−W1(ξ) +W2(ξ))dξ

W2(x) = −
∫ +∞

x

1
2
γ̃(ξ)(W1(ξ) −W2(ξ))e

2
R

x
ξ

√
λ/b(s)dsdξ.

We observe that γ̃+(ξ) = O(|ξ|−2) is sufficient for establishing the validity of (3.7)
for W ∈ L∞[N,+∞), N sufficiently large. Indeed, we obtain estimates of the form
W1(x) = 1+O(|x|−1) and W2(x) = O(|x|−1). Observing that for the case 2x ≥ √

λ

these estimates give decay in λ as well, we shall proceed in the case 2x ≤ √
λ. Here,

we will establish the estimates of Lemma 3.1 through iteration. Beginning with the
large x solution, (W1(+∞),W2(+∞)) = (1, 0), we find

W1(x) = 1 +
1
2

∫ x+ 1
2
√

λ/b0

x

γ̃(ξ)dξ

+
1
2

∫ x+ 1
2
√

λ/b0

x

∫ ξ+ 1
2
√

λ/b0

ξ

γ̃+(s)dsγ̃+(ξ)dξ + · · · + O(
√
λ)

W2(x) = −1
2

∫ x+ 1
2
√

λ/b0

x

γ̃(ξ)dξ

− 1
2

∫ x+ 1
2
√

λ/b0

x

∫ ξ+ 1
2
√

λ/b0

ξ

γ̃+(s)dsγ̃+(ξ)dξ + · · · + O(
√
λ).

Hence, −W1(x) +W2(x) = −1 − ϕ0(x) + O(
√
λ), where

ϕ0(x) =
∫ ∞

x

γ̃(ξ)dξ +
∫ ∞

x

∫ ∞

ξ

γ̃+(s)dsγ̃+(ξ)dξ + . . .

satisfies

ϕ0(x) = −1 − ūx(x)
√
b(x)

(ū(x)− u+)2
.

Recalling our transformation Z(x) = P (x)W (x), we have

(3.8) Z2(x) =
√
λ/b(x)(−W1 +W2) = −

√
λ/b(x)(1 + ϕ0(x) + O(

√
λ)).

Writing

Z1(x) = 1 + e+1 (x, λ),

Z2(x) = −
√
λ/b(x) + e+2 (x, λ),
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we have that e+
2 (x, λ) satisfies the claimed estimate. We recover u, ux through

u(x) = e−
R x
0

√
λ/b(s)ds(1 + e+1 (x, λ)),

ux(x) = e−
R x
0

√
λ/b(s)ds(−

√
λ/b(x) + e+2 (x, λ)),

and set ux = ux to obtain the relation, ∂xe
+
1 (x, λ) −√λ/b(x)e+1 (x, λ) = e+2 (x, λ),

so that
e+1 (x, λ) = e+1 (0, λ) +

∫ x

0

e
R x

ξ

√
λ/b(s)dse+2 (ξ, λ)dξ,

from which the estimate on e+
1 (x, λ) is immediate. The large x estimate e+

1 (x, λ) =
O(

√
λ log λ)∧O1(|x|−1) can be established as in [H.3]. Checking that φ±, ψ± have

the claimed form is now routine.

Remark. Since our integral equations for the Wi do not necessarily hold for x = 0,
it is critical to observe that e+

1 (x, λ), e+2 (x, λ) are bounded here by standard ODE
continuation. Decay in

√
λ is clear from (3.8). Estimating the growth modes is

slightly more delicate, but can be carried out as in [ZH], with M (as there) chosen
carefully as a function of

√
λ. �

Before applying Lemma 3.1 toward some non-trivial observations regarding the
Wronskian and various expansion coefficients, we state without proof the following
large |λ| ODE estimates, which may be proved as in [H.1, ZH].

Lemma 3.2. For |λ| ≥Ml and to the right of Γd, we have (k = 0, 1)

∂k

∂xk
φ±(x) = (∓

√
λ)kK±(x)(1 + O(|λ|−1/2)),

where x ∈ R and K±(x) is bounded in λ.

A critical feature of the degenerate shock case is that while λ = 0 lies in both
the point and essential spectrum, as in the Lax case, it is also a branch point of the
Evans function. In the following key lemma, we prove that while the Wronskian is
not analytic at zero, its behavior remains O(λ), as in the Lax case.

Lemma 3.3. For λ sufficiently small, to the right of Γd, and off the negative real
axis, we have

W0(λ) =
λ

b(0)

[
ūx(0)(u+ − u−)(1 + e+1 (0, λ))

+ (ū(0)− u+)(ū(0)− u−)(−
√
λ/b(0) + e+2 (0, λ)) + O(λ)

]
.

Moreover,
(I) For the scattering coefficients A(λ), B(λ); φ−(x) = A(λ)φ+(x) + B(λ)ψ+(x),
x ≥ 0 we have

(
2λ3/2ūx(0)
b(0)3/2

+ O(λ2))A(λ) = − λ

b(0)

[
ūx(0)(u+ − u−)(1 + ẽ+1 (0, λ))

+ (ū(0)− u+)(ū(0)− u−)(
√
λ/b(0) + ẽ+2 (0, λ)) + O(λ)

]
,

(
2λ3/2ūx(0)
b(0)3/2

+ O(λ2)B(λ) =
λ

b(0)

[
ūx(0)(u+ − u−)(1 + ẽ+1 (0, λ))

+ (ū(0)− u+)(ū(0)− u−)(
√
λ/b(0) + ẽ+2 (0, λ)) + O(λ)

]
,
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from which we obtain

1. (
2λ3/2ūx(0)
b(0)3/2

+ O(λ2))(A(λ) + B(λ))

=
λ

b(0)

[
ūx(0)(u+ − u−)(e+1 (0, λ) − ẽ+1 (0, λ))

+ 2(ū(0)− u+)(ū(0)− u−)

√
λūx(0)

(ū(0)− u+)2
+ O(λ)

]
,

2. A(λ)φ+(x) +B(λ)ψ+(x) = e
R

x
0

√
λ/b(s)ds

[
Pūx(x) + O(

√
λ) ∧O1(|x|−1)

]
,

3. A(λ)(φ+ ′(x)− a(x)
b(x)

φ+(x)) +B(λ)(ψ+ ′(x) − a(x)
b(x)

ψ+(x))

= e
R

x
0

√
λ/b(s)ds

√
λ[O(

√
λ) ∧O1(|y|−1)].

(II) For x ≤ 0, φ+(x) = E(λ)φ−(x) + F (λ)ψ−(x), with F (λ)/W0(λ) bounded and
analytic, and

E(λ)
W0(λ)

=
P

λ
+ O(|λ|−1/2).

Proof. The proof of Lemma 3.3 follows directly from Lemma 3.1 and tedious
algebraic manipulation. In order to indicate the ideas, we develop two results.
First, the estimates on A(λ), B(λ), and W0(λ) are similar. We have

W0(λ) = φ+(0)φ− ′(0)− φ+ ′(0)φ−(0)

= φ+(0)
(a(0)
b(0)

φ−(0) + (ū(0)− u−)(
λ

b(0)
+

λ

b(0)
e−1 (0, λ))

)

− φ−(0)
(a(0)
b(0)

φ+(0) + (ū(0)− u−)(
λ

b(0)
+

λ

b(0)
e+1 (0, λ))

)
= (ū(0)− u+)(ū(0)− u−)

×
(
−
√

λ

b(0)
+

ūx(0)
ū(0)− u+

+ e+2 (0, λ) +
ūx(0)

ū(0)− u+
e+1 (0, λ)

)( λ

b(0)
+

λ

b(0)
e−1 (0, λ)

)

−
(
− µ−

1 +
ūx(0)

ū(0)− u−
+ e−2 (0, λ) +

ūx(0)
ū(0)− u−

e−1 (0, λ)
)( λ

b(0)
+

λ

b(0)
e+1 (0, λ)

)

=
λ

b(0)

[
ūx(0)(u+ − u−)(1 + e+1 (0, λ))

− (ū(0)− u+)(ū(0)− u−)(
√
λ/b(0)− e+2 (0, λ)) + O(λ)

]
.

The cancellation estimates involving A(λ) and B(λ) are quite delicate. We prove
only the less involved, derivative estimate (I.3). From Lemma 3.1 and our estimates



STABILITY FOR DEGENERATE VISCOUS SHOCK WAVES 15

on A(λ), B(λ), we have

A(λ)(φ+ ′(x)− a(x)
b(x)

φ+(x)) +B(λ)(ψ+ ′(x) − a(x)
b(x)

ψ+(x))

= A(λ)e−
R x
0

√
λ/b(s)ds(ū(x) − u+)b(x)−1(λ+ λe+1 (x, λ))

+B(λ)e
R x
0

√
λ/b(s)ds(ū(x) − u+)b(x)−1(λ+ λẽ+1 (x, λ))

= e
R x
0

√
λ/b(s)dsλ(ū(x) − u+)b(x)−1

[
A(λ)e−2

R x
0

√
λ/b(s)ds +B(λ)

+A(λ)e−2
R

x
0

√
λ/b(s)dse+1 (x, λ) +B(λ)ẽ+1 (x, λ)

]
.

In the event that 2x
√
λ/b0 ≥ 1, we have x−1 ≤ 2

√
λ/b0 and consequently an

estimate by
e
R x
0

√
λ/b(s)dsλ[O(1) ∧ O(|λ|−1/2x−1)],

depending upon how we choose to employ ū(x) − u+ = O1(|x|−1). On the other
hand, for 2x

√
λ/b0 ≤ 1, we have 2

∫ x

0

√
λ/b(s)ds ≤ 1, and we can expand the

exponent in brackets to give
[
A(λ)e−2

R
x
0

√
λ/b(s)ds + B(λ) +A(λ)e−2

R
x
0

√
λ/b(s)dse+1 (x, λ) +B(λ)ẽ+1 (x, λ)

]
=
[
A(λ) +B(λ) +A(λ)e+1 (0, λ) +B(λ)ẽ+1 (0, λ) + O1(|x|)

]
.

The critical computation becomes

A(λ) +B(λ) + A(λ)e+1 (0, λ) +B(λ)ẽ+1 (0, λ)

=
(2λ3/2ūx(0)

b(0)3/2
+ O(λ2)

)−1[ λ

b(0)
ūx(0)(u+ − u−)(e+1 (0, λ) − ẽ+1 (0, λ))

− λ

b(0)
ūx(0)(u+ − u−)e+1 (0, λ) +

λ

b(0)
ūx(0)(u+ − u−)ẽ+1 (0, λ) + O(λ3/2)

]
= O(1).

This final calculation is an example of precisely the cancellation that went unob-
served in [H.3]. The other estimates are like these, only more so. �

We now develop estimates on the ODE Green’s function Gλ(x, y). Through the
estimates of Lemmas 3.1–3.3 these can be obtained with varying levels of precision.
For brevity, we will state estimates here in a form convenient for the later analysis.

Lemma 3.4. (Small |λ|) Under the assumptions of Theorem 1.1 and for |λ| ≤Ms,
we have the following estimates, for which terms containing Oa are analytic to the
right of Γd, while the remaining terms are analytic to the right of Γd and away from
the negative real axis.

(i) y ≤ x ≤ 0

Gλ(x, y) = Oa(1)eµ−
1 (x−y) +

Pūx(x)
λ

e−µ−
1 (x+y) + O(|λ|−1/2)O(e−η|x|)eµ−

1 (x−y),

∂yGλ(x, y) = Oa(λ)eµ−
1 (x−y) + O(e−η|x|)e−µ−

1 (x+y),



16 P. HOWARD

(ii) x ≤ y ≤ 0

Gλ(x, y) = Oa(1)eµ−
2 (x−y) +

Pūx(x)
λ

e−µ−
1 (x+y) + O(|λ|−1/2)eµ−

2 x−µ−
1 y,

∂yGλ(x, y) = Oa(1)eµ−
2 (x−y) + O(e−η|x|)e−µ−

1 (x+y)

(iii) x ≤ 0 ≤ y

Gλ(x, y) = O(|λ|−1/2)O(e−η|x|)O1(|y|)e−µ−
1 x−R

y
0

√
λ/b(s)ds

+
Pūx(x)

λ
e−µ−

1 x−R y
0

√
λ/b(s)ds,

∂yGλ(x, y) = O(e−η|x|)O1(|y|)e−µ−
1 x−R y

0

√
λ/b(s)ds,

(iv) y ≤ 0 ≤ x

Gλ(x, y) = O(|λ|−1/2)O1(|x|−1)e−
R

x
0

√
λ/b(s)ds−µ−

1 y

+
Pūx(x)

λ
e−

R
x
0

√
λ/b(s)ds−µ−

1 y,

∂yGλ(x, y) = O1(|x|−2)e−
R x
0

√
λ/b(s)ds−µ−

1 y

+ O(|
√
λ|)O1(|x|−1)e−

R
x
0

√
λ/b(s)ds−µ−

1 y,

(v) 0 ≤ y ≤ x

Gλ(x, y) = O(|λ|−1/2)O1(|x|−1)e−
R

x
y

√
λ/b(s)ds +

Pūx(x)
λ

e−
R

x
y

√
λ/b(s)ds

+
[
O(|λ|1/2) ∧O1(|y|−1)

]
O(|λ|−1/2)O1(|x|−1)O1(|y|2)e−

R
x
y

√
λ/b(s)ds

+
[
O(|λ|1/2) ∧O1(|y|−1)

]
O(|λ|−1)O1(|x|−2)O1(|y|2)e−

R
x
y

√
λ/b(s)ds,

∂yGλ(x, y) =
[
O(|λ|1/2) ∧O1(|y|−1)

]
O(|λ|−1/2)O1(|x|−2)O1(|y|2)e−

R
x
y

√
λ/b(s)ds

+
[
O(|λ|1/2) ∧ O1|y|−1)

]
O1(|x|−1)O1(|y|2)e−

R x
y

√
λ/b(s)ds,

(vi) 0 ≤ x ≤ y

Gλ(x, y) = O(|λ|−1/2)O1(|x|−2)O1(|y|)e−
R y

x

√
λ/b(s)ds +

Pūx(x)
λ

e−
R y

x

√
λ/b(s)ds

+
[
O(|λ|1/2) ∧O1(|x|−1)

]
O(|λ|−1/2)O1(|y|)e−

R y
x

√
λ/b(s)ds

+
[
O(|λ|1/2) ∧O1(|x|−1)

]
O(|λ|−1)e−

R
y
x

√
λ/b(s)ds,

∂yGλ(x, y) = O1(|x|−2)O1|y|e−
R

y
x

√
λ/b(s)ds

+
[
O(|λ|1/2) ∧O1(|x|−1)

]
O1(|y|)e−

R
y
x

√
λ/b(s)ds.

Proof. Employing Lemmas 3.1 and 3.3, the proof is similar to that of the analogous
Lemma 3.4 of [H.3]. �

The final lemma of this section regards large |λ| estimates on Gλ(x, y). The
proof is exactly that of Lemma 3.5 of [H.1] and is omitted.



STABILITY FOR DEGENERATE VISCOUS SHOCK WAVES 17

Lemma 3.5. For |λ| ≥Ml, some Ml > 0, and to the right of Γd, we have

∂k

∂xk
Gλ(x, y) = O(|λ| k−1

2 )e−Re

√
λ/b0
2 |x−y|.

4. Estimates on the time-propagating Green’s function

We now employ the estimates of Lemmas 3.4 and 3.5 to derive estimates on the time-
propagating Green’s functionG(t, x; y). The analysis is governed by the observation
that though we cannot extend the Evans function onto the negative real axis, we
can still extend contours into the essential spectrum, provided they do not cross
the negative real axis.

We begin with the observation that the large-|λ|, or small-time, analysis of [H.1]
remains virtually unchanged. Recalling our relation

G(t, x; y) =
1

2πi

∫
Γ

eλtGλ(x, y)dλ,

where Γ encircles the point spectrum of L, we have for all |λ| ≥M l integrals of the
form

∫
Γ

eλtO(|λ|−1/2)e−
√

λ/b0
2 |x−y|dλ.

In the case |x− y| ≥ Kt, some K sufficiently large, we proceed as in [H.1] with the
contour, Γl

d, determined by

√
λl(k) =

|x− y|
4
√
b0t

+ ik,

for λl to the right of Γd and Γd—along which exponential time decay is clear—

otherwise (see Figure 4.1). We develop, then, an estimate of the form t−1/2e−
|x−y|2

Mt ,
where the only effect of x or y derivatives is that of increasing the algebraic t → 0
blow-up by a power of t−1/2. Similarly, the bounded-time Green’s function es-
timates of [H.1] remain unchanged. We note that each contour we take in the
following analysis will proceed similarly, following Γd out to the point at ∞. The
contour Γd may be thought of as analogous to that which we would take were there
a gap between essential spectrum and the imaginary axis.
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Figure 4.1. Contours Γd, Γe, Γ∗. In all cases, contours intersecting
Γd follow it out to the point at ∞, avoiding possible point spectrum.

For |x − y| ≤ Kt we divide the analysis into cases, similar to those of Lemma
3.4. We begin in the case y ≤ x ≤ 0, for which

Gλ(x, y) = Oa(1)eµ−
1 (x−y) +

Pūx(x)
λ

e−µ−
1 (x+y) + O(|λ|−1/2)O(e−η|x|)eµ−

1 (x−y).

The first two terms are analytic to the right of Γd and may be analyzed as in [H.1,
ZH]. We obtain, under integration, an estimate by

O(t−1/2)e−
(x−y−a−t)2

Mt + O(e−η|x|)e−
(x−y−a−t)2

Mt + Pūx(x)I{|x−y|≤a−t}.

We mention that it is precisely these latter two terms that can be refined by
Zumbrun’s recent analysis [Z]. In particular, he shows that terms of the form
λ−1e−µ+

1 (x+y) give rise to estimates

errfn(
x+ y − a−t√

4b−t
) − errfn(

x− y − a−t√
4b−t

);

hence, that e−η|x|e−
(x−y−a−t)2

Mt is too relaxed, by factor t−1/2. We omit this refine-
ment here, simply because it is the final term in Gλ(x, y) that determines our rate
of decay. This term has a branch point at λ = 0, and consequently we cannot carry
a contour across the negative real axis. As in [H.3] we take the heat-equation-like
contour described through √

λ(k) = t−1/2 + ik

for k such that λ lies to the right of Γd (k ≤ k∗, say), and Γd out to the point at ∞.
(In Figure 4.1, this contour is denoted by Γ∗.) We obtain an additional estimate of

O(e−η|x|)(1 + |x− y − a−t|)−1/2I{|x−y|≤a−t}.
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Since taking a derivative in y annihilates the pole at λ = 0, the estimate on Gy

is easier. The case x ≤ y ≤ 0 is similar.
For x ≤ 0 ≤ y, we have

Gλ(x, y) = O(|λ|−1/2)O1(|y|)O(e−η|x|)e−µ−
1 x−R

y
0

√
λ/b(s)ds+

Pūx

λ
e−µ−

1 x−R
y
0

√
λ/b(s)ds.

On the first term, we proceed as in [H.3], by taking the heat-equation-like contour
defined through √

λ(k) =
y

2
√
b0t

+ ik,

so long as λ lies to the right of Γd, and Γd out to the point at ∞. We obtain an
estimate of the form

(4.1) O(t−1/2)O1(|y|)O(e−η|x|)e−
y2

Mt .

The second term here is crucial, especially as its analysis—and the analyses of terms
like it—mark the most fundamental difference between Section 4 of the current work
and Section 4 of [H.3]. In particular, this term will yield a piece of G(t, x; y) that
does not decay in time. In the case of non-degenerate waves, such “projection”
terms do not arise until the contour crosses the negative-real axis, at which point
the contribution is picked out by Cauchy’s integral formula [ZH]. Since our contour
here never crosses the negative real axis it is not clear when our projection will arise.
Below, we find that whereas such terms appear in the non-degenerate analysis with
an indicator function I{|x−y|≤a−t}, the appropriate extension to degenerate waves
involves (for x ≤ 0 ≤ y) the indicator I{|y|≤a−

√
t}∩{|x|≤a−t}.

We begin as with integration over the first expression, along the contour Γ ∗.
Observing that the exponential decay of ūx(x) dominates e−µ−

1 x (in the portion of
the essential spectrum Γ∗ enters), we consider only

∫
Γ∗

eλt−R
y
0

√
λ/b(x)ds

λ
dλ

=
∫

Γ∗∩Γd

eλt−R y
0

√
λ/b(x)ds

λ
dλ+

∫
Γ∗\Γd

eλt−R y
0

√
λ/b(x)ds

λ
dλ.

Along the contour Γ∗ ∩ Γd, we obtain exponential decay in time, which will easily
be subsumed into further estimates. Along Γ∗\Γd, we have

∣∣∣ ∫
Γ∗\Γd

eλt−R
y
0

√
λ/b(x)ds

λ
dλ
∣∣∣ ≤ Ce−

y2

4b0t

∫ k∗

−k∗

e−k2t√
y2

4b0t2 + k2
dk.

The critical point is that for y = 0 the integral on the right-hand side is undefined;
hence, we must be wary of how far we push the analysis. We observe further, how-
ever, that when y = 0 the integrand on the left is analytic, allowing a contour that
passes through the negative-real axis as in previous analyses. We take advantage
of this in the following way. For y ≥ a−

√
t, the integrand on the right-hand side
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is clearly bounded, with no t-decay, giving a trivial estimate by e−y2/4b0t. But for
y ≥ a−

√
t, we have

e
− y2

4b0t ≤ Cyt−1/2e
− y2

4b0t ,

which can be subsumed into (4.1). In this manner, we discover the appropriate
domain for the indicator function associated with our excited term (y ≤ a−t).

Focusing now on the case y ≤ a−
√
t, we note that the exponential decay e−y2/4b0t

can be dropped. We consider

(4.2)

∫
Γ∗\Γd

eλt−µ−
1 x−R

y
0

√
λ/b(x)ds

λ
dλ

=
∫

Γ∗\Γd

eλt−µ−
1 x

λ
dλ+

∫
Γ∗\Γd

eλt−µ−
1 x(e−

R y
0

√
λ/b(s)ds − 1)

λ
dλ.

The first of these two integrands is analytic, and we may employ Cauchy’s integral
formula to obtain an integral over Γd\Γ∗ plus a residue. We obtain a term that
decays at exponential rate in time, plus the indicator function I{0≤y≤a−

√
t} (arising

simply because that is the case we happen to be in). Last, we turn our attention to
the second integral of (4.2). Over the portion of Γ∗\Γd for which

∫ y

0

√
λ/b(s)ds ≤ 1,

Taylor expansion of the exponent provides an estimate by

∫
Γ∗\Γd

e<λt
∫ y

0

√
1/b(s)ds

|√λ| |dλ| ≤ Ct−1/2|y|.

Alternatively, over the portion of Γ∗\Γd for which
∫ y

0

√
λ/b(s)ds ≥ 1, we have

|λ|−1/2 ≤ ∫ y

0

√
1/b(s)ds and consequently an estimate by Ct−1/2|y|. Each of these

estimates can be subsumed into (4.1).
We turn now to the case y ≤ 0 ≤ x. Though not particularly critical, the analysis

of this case is complicated by the transition in behavior as a kernel starting at y is
swept through the shock layer toward x. In this case, we have

Gλ(x, y) = O(|λ|−1/2)O1(|x|−1)e−
R x
0

√
λ/b(s)ds−µ−

1 y +
Pūx(x)

λ
e−

R x
0

√
λ/b(s)ds−µ−

1 y.

We begin with the case y ≤ −a−t, for which the kernel has not yet arrived at
the origin. Here, we follow [ZH] and work in a sufficiently small neighborhood of
the origin, noting that our contour never crosses the negative real axis. In such
a neighborhood, <(− ∫ x

0

√
λ/b(s)ds) ≤ <µ−

1 , so that the previous analysis applies
directly. We obtain the terms

O(t−1/4)O1(|x|−1)e−
(x−y−a−t)2

Mt I{y≤−a−t} + O1(|x|−2)e−
(x−y−a−t)2

Mt I{y≤−a−t}.

These estimates are not assumed sharp, but they will not be a determining factor
in the analysis.

For −a−t ≤ y ≤ 0, we take the heat-equation-like contour defined through

√
λ(k) =

x

2
√
b0t

+ ik
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to the right of Γd and Γd out to the point at ∞ (denoted, as usual, by Γ∗). The
critical action occurs in an ε-ball around the origin, where to the left of our essential
spectrum boundary (Γe), we have <µ−

1 ≥ 0. Writing

λ(k) =
x2

4b0t2
+ ik

x√
b0t

− k2; µ−1 (k) = − 1
a−

λ+
b−
a3−

λ2 + O(λ3),

we compute, as in [H.3],

O1(|x|−1)
∫

Γ∗
O(|λ|−1/2)eλt−R

x
0

√
λ/b(s)ds−µ−

1 ydλ

= O1(|x|−1)
(
y + a−t− 3b−x2

2a2−b0t2
y
)−1/2

e
− x2

4b0t− x2

4b0t2
|y|
I{y≥−a−t}.

As in the case x ≤ 0 ≤ y, this analysis cannot be applied to integration over
the residue term. (For x = 0 the estimated integrand is not integrable along
this contour.) For |x| ≥ ε

√
t, however, some ε > 0 suitably small, we obtain a

subsumable estimate as before. In the case |x| ≤ ε
√
t, we no longer have exponential

decay and may consider

∫
Γ∗

eλt−R x
0

√
λ/b(s)−µ−

1 y

λ
dλ

=
∫

Γ∗∩Γd

eλt−R
x
0

√
λ/b(s)−µ−

1 y

λ
dλ+

∫
Γ∗\Γd

eλt−R
x
0

√
λ/b(s)−µ−

1 y

λ
dλ.

Though a portion of Γ∗∩Γd may pass through the essential spectrum, where <µ−
1 ≥

0, we find that for y ≥ −a−t and λ ∈ Γd, eλt−R x
0

√
λ/b(s)ds−µ−

1 y decays at exponential
rate in t (and hence y). Along the contour Γ∗\Γd, we further divide the integral up
as

∫
Γ∗\Γd

eλt−R
x
0

√
λ/b(s)ds−µ−

1 y

λ
dλ

=
∫

Γ∗\Γd

eλt−µ−
1 y

λ
dλ+

∫
Γ∗\Γd

eλt−µ−
1 y(e−

R
x
0

√
λ/b(s)ds − 1)

λ
dλ.

The first of these two integrands is analytic, and we may employ Cauchy’s integral
formula as before to obtain integration over Γd\Γ∗ plus a residue. We obtain a
term that decays at exponential rate in time plus I{y≥−a−t}∩{x≤a−

√
t}, a natural

consequence of our transition in behavior as we pass through the shock layer. The
final integral can be subsumed as before into previous estimates.

Consider now the case 0 ≤ y ≤ x, for which we have

Gλ(x, y) = O(|λ|−1/2)O1(|x|−1)e−
R

x
y

√
λ/b(s)ds +

Pūx(x)
λ

e−
R

x
y

√
λ/b(s)ds

+
[
O1(|y|−1) ∧O(|λ|1/2)

]
O(|λ|−1/2)O1(|x|−1)O1(|y|2)e−

R
x
y

√
λ/b(s)ds

+
[
O1(|y|−1) ∧O1(|λ|1/2)

]
O(|λ|−1)O1(|x|−2)O1(|y|2)e−

R
x
y

√
λ/b(s)ds.
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For integration over each of these, we proceed along the heat-equation-like contour
defined through √

λ(k) =
|x− y|
2
√
b0t

+ ik

for λ to the right of Γd, and Γd out to the point at ∞. On the first, we obtain
an estimate by O(t−1/2)O1(|x|−1)e−(x−y)2/(Mt), with analogous estimates on the
third and fourth. For the critical second term, we divide the analysis into subcases,
x ≥ ε

√
t and x ≤ ε

√
t. For x ≥ ε

√
t, ūx(x) yields t-decay, and we arrive at an

estimate that can be subsumed into those above. For x ≤ εt, we write∫
Γ∗

eλt−R
x
y

√
λ/b(s)ds

λ
dλ

=
∫

Γ∗∩Γd

eλt−R x
y

√
λ/b(s)ds

λ
dλ+

∫
Γ∗\Γd

eλt−R x
y

√
λ/b(s)ds

λ
dλ.

Since <√λ/b(s) ≥ 0, along Γ∗ ∩ Γd we have exponential decay in time. Along
Γ∗\Γd, we further divide the integral as∫

Γ∗\Γd

eλt−R
x
y

√
λ/b(s)ds

λ
dλ

=
∫

Γ∗\Γd

eλt

λ
dλ+

∫
Γ∗\Γd

eλt(e−
R

x
y

√
λ/b(s)ds − 1)
λ

dλ.

The first of these two integrands is analytic, and we may employ Cauchy’s integral
formula to obtain an integral over Γd\Γ∗ plus a constant residue. We obtain a
subsumable term that decays at exponential rate plus I{x≤ε

√
t}. As in the analysis

of x ≤ 0 ≤ y, the second integral is bounded by Ct−1/2|x− y|.
The analysis for 0 ≤ x ≤ y differs negligibly from that of the previous case and

is omitted. Derivative estimates are also similar. �

5. Estimates on the perturbation
In this section we will prove Theorem 1.2 through a lemma similar to Lemma 1.5
of [ZH]. We have

Lemma 5.1. Let C1 and C2 be constants and let h0(x), h(t, x) ≥ 0 satisfy the
relations ∫ +∞

−∞
|G̃(t, x; y)|h0(y)dy ≤ C1h(t, x)

and ∫ t

0

∫ +∞

−∞
|Gy(t− s, x; y)|

[
Mh(s, y)2 + |δ̇(s)|h(y, s)

]
dyds ≤ C1h(t, x),

for all t > 0, x ∈ R. If then |v(0, x)| ≤ ζ0h0(x) for some ζ0 sufficiently small, then
|v(t, x)| ≤ C2ζ0h(t, x) for all t > 0, x ∈ R.

Remark. Lemmas of this form have now been proven in a variety of contexts
[L, LZ.1–2, ZH HZ.1]. For b(·) = const, Lemma 5.1 applies with no smoothness
assumption on initial data v0(x). For b(·) nonconstant, we must assume v0(x) ∈
C0+α; i.e., Hölder continuous for some index α > 0. (See, in particular, [ZH, Section
11].)

The following useful lemma was proven in [H.3].



STABILITY FOR DEGENERATE VISCOUS SHOCK WAVES 23

Lemma 5.2. For M > 0, t > 0, and α ∈ R, we have

∫ +∞

0

(1 + y)αe−
y2

Mt dy ≤ Cα




1, α < −1,
log(2 +

√
t), α = −1,

(1 + t)
1
2+ α

2 , α > −1.

Proof of Theorem 1.2. In order to employ Lemma 5.1, we require an ansatz
h(t, x) for the behavior of v(t, x). We write

h(t, x) =
{
h−(t, x), x ≤ 0
h+(t, x), x ≥ 0,

with
h−(t, x) = d(x− a−t) + e−

η
2 |x|D̃(t),

η as in Theorem 1.1, and

h+(t, x) = (1 + x)−1e−
x2
Mt D̃(t) + (1 + x)−r ∧ t−1/2(1 + x)1−r + (1 + x)−2 ∧ t−1,

where we recall that

D̃(t) :=




(1 + t)
1−r
2 , 1 < r < 2

(1 + t)−1/2 log(2 + t), r = 2

(1 + t)−1/2, r > 2.

Linear analysis for x ≤ 0. The linear analysis will consist of integrals of the form

∫ +∞

−∞
G(t, x; y)h0(y)dy,

where h0(y) = d(y) ≤ C(1+ |y|)1−r, r > 1. In the case |x−y| ≥ Kt, this analysis is
unchanged from that of previous work (see [H.1, ZH]) and yields estimates bounded
by h±(t, x) for x R 0. The sectorial nature of L insures that we have no difficulty
as t→ 0, as for example, in the case of equations of odd order (see [HZ.1]).

For |x− y| ≤ Kt, we begin in the case y ≤ x ≤ 0, for which we have

G(t, x; y) = O(t−1/2)e−
(x−y−a−t)2

Mt + Pūx(x)I{|x−y|≤a−t}

+ O(e−η|x|)e−
(x−y−a−t)2

Mt + O(e−η|x|)
(
|x− y − a−t| + 1

)−1/2

I{|x−y|≤a−t}.

Integrated against initial data, the first and third terms yield estimates

C[d(x− a−t) + t1/2e−η|x|d(x− a−t)].

For Pūx(x)I{|x−y|≤a−t}, we have, taking into account our tracking,

Pūx(x)
[∫ x

x−a−t

h0(y)dy −
∫ x

−a−t∧x

h0(y)dy
]
.



24 P. HOWARD

For |x| ≥ εt, we have exponential decay in both x and t; for |x| ≤ εt, we have

∣∣∣Pūx(x)
∫ −a−t

x−a−t

h0(y)ds
∣∣∣ ≤ Ce−

η
2 |x|d(−a−t).

Finally, we have the dominant term,

e−η|x|
∫ x

x−a−t

(1 + |x− y − a−t|)−1/2h0(y)dy ≤ Ce−η|x|t−1/2.

A similar estimate follows for x ≤ y ≤ 0.
The linear analysis for x ≤ 0 is determined by its degenerate portion: x ≤ 0 ≤ y.

Here, we have (|x− y| ≤ Kt)

G(t, x; y) = O(t−1/2)O(e−η|x|)O1(|y|)e−
y2

Mt + Pūx(x)I{|x|≤a−t}∩{|y|≤a−
√

t}.

Integrating the first term against (1+ |y|)−r, we may apply Lemma 5.2 to obtain an
estimate by Ce−η|x|D̃(t). For |x| ≥ εt, the second term yields exponential decay in
both space and time, while for |x| ≤ εt, it cancels exactly with our tracking term.

Linear analysis for x ≥ 0. We turn now to the analysis for x ≥ 0, which we
begin with the case y ≤ 0 ≤ x, where we have

G(t, x; y) = O(t−1/4)O1(|x|−1)e−
(x−y−a−t)2

Mt I{|y|≥a−t}

+ O1(|x|−2)e−
(x−y−a−t)2

Mt I{|y|≥a−t}

+ O1(|x|−1)
(
y + a−t− 3b−

2a2−b0
x2

t2
y
)−1/2

e−
x2
Mt I{{|y|≤a−t}∩{x≥1}}

+ ūx(x)PI{|y|≤a−t}∩{|x|≤a−
√

t}.

Integrating over the first and second terms, we obtain an estimate of the form

C
[
O1(|x|−1)e−

x2
2Mt t1/4d(t) + O1(|x|−2)e−

x2
2Mt t1/2d(t)

]
,

both of which will later be subsumed into sharper estimates. For the third expres-
sion, we compute,

|x|−1e−
x2
Mt

∫ 0

−a−t

(y + a−t− 3b−x2

2a2−b0t2
y)−1/2d(y)dy

≤ |x|−1e−
x2
Mt d(t)

∫ − a−t

2

−a−t

(y + a−t− 3b−x2

2a2−b0t2
y)−1/2d(y)dy

+ |x|−1e−
x2
Mt

∫ 0

− a−t

2

t−1/2d(y)dy

≤ |x|−1e−
x2

2Mt t1/2d(t) + |x|−1t−1/2e−
x2
Mt .
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For |x| ≤ a−
√
t, we obtain no contribution from the last term. For |x| ≥ a−

√
t, we

have only ūx(x)δ(t),

Pūx(x)
∫ 0

−a−t

d(y)dy ≤ (1 + x)−2 ∧ t−1.

For 0 ≤ x, y, the analysis is considerably shortened by the observation that no
final t-decay on the perturbation is lost if we use the umbrella estimate

G(t, x; y) = O(t−1/2)O1(|x|−1)O1(|y|)e−
(x−y)2

Mt + Pūx(x)I{|x−y|≤a−
√

t}.

Integrating over the first term, we have,

t−1/2|x|−1

∫ x
4

0

(1 + y)1−re−
(x−y)2

Mt dy + t−1/2|x|−1

∫ 2x

x
4

(1 + y)1−re−
(x−y)2

Mt dy

+ t−1/2|x|−1

∫ +∞

x
2

(1 + y)1−re−
(x−y)2

Mt dy

≤ C(1 + x)−1D̃(t)e−
x2

2Mt + t−1/2(1 + x)1−r ∧ (1 + x)−r.

For the second term, we have

Pūx(x)
[∫ x+a−

√
t

(x−a−
√

t)∨0

h0(y)dy −
∫ a−

√
t

0

h0(y)dy
]
.

For x ≥ a−
√
t, integrability of v0(y) yields an estimate by (1 + x)−2 ∧ t−1. For

x ≤ a−
√
t, we have

Pūx(x)
∫ x+a−

√
t

a−
√

t

v0(y)dy ≤ C
[
(1 + x)−2(1 +

√
t)1−r ∧ (1 + x)−1(1 +

√
t)−r

]
.

Nonlinear Analysis. Following Lemma 5.1, the nonlinear analysis involves esti-
mating integrals of the form

∫ t

0

∫ +∞

−∞
|Gy(t− s, x; y)|

[
Mh(s, y)2 + |δ̇(s)|h(s, y)

]
dyds.

This calculation is almost precisely the same as the nonlinear analysis of [H.4], in
which we estimated integrals of the form

∫ t

0

∫ +∞

−∞
|Gx(t− s, x; y)|Mh(s, y)2dyds,

where G represents the Green’s function for the integrated equation w t + a(x)wx =
b(x)wxx. Writing w = G ∗ w0 and v = G ∗ v0, and considering v = wx, we have
v = Gx ∗ w0. But additionally, v = G ∗ v0 = G ∗ (w0)y = Gy ∗ w0, so that Gx and
Gy satisfy identical estimates (also clear from direct comparison). Hence, the new
calculation is quite redundant, and we omit it. �
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