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Abstract

Assuming a symmetric matrix-valued potential, we consider the associated θ-periodic
Schrödinger operators Hθ on intervals [0, P ], where in our applications P denotes the
period of a stationary periodic solution to a nonlinear evolutionary PDE. We relate the
Morse index of Hθ to certain Maslov indices, and apply our theory to operators ob-
tained when Allen-Cahn equations and systems are linearized about stationary periodic
solutions.

1 Introduction

We consider boundary value problems

Hθφ := −φ′′ + V (x)φ = λφ,

φ(P ) = eiθφ(0),

φ′(P ) = eiθφ′(0),

(1.1)

where φ(x;λ) ∈ Cn, V ∈ C([0, P ];Rn×n) is a symmetric matrix-valued potential, and θ ∈
[−π, π). We take as our domain for Hθ

D(Hθ) = {φ ∈ H2((0, P )) : (1.1) holds}, (1.2)

and note that with this choice of domain, Hθ is self-adjoint. (See, for example, [19], especially
Chapters 6 and 8.) In particular, the spectrum of Hθ, which we denote σ(Hθ), is real-valued.
If λ ∈ R is an eigenvalue of Hθ then (by complex conjugate) λ will also be an eigenvalue of
H−θ. In this way, we can focus on the interval θ ∈ [0, π]. Finally, it is natural to scale P
to 1 for analysis, but in the current setting we have found it more convenient to leave our
equations unscaled so that we do not need to scale variables in our applications section.

Equations (1.1) arise naturally when a gradient reaction-diffusion system

ut + F ′(u) = uxx; u ∈ Rn, x ∈ R, t ≥ 0, (1.3)

is linearized about a stationary P -periodic solution ū(x). In this case, we obtain the pertur-
bation equation

vt + F ′′(ū)v = vxx + O(v2), (1.4)
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with associated eigenvalue problem

Hφ := −φxx + V (x)φ = λφ; V (x) = F ′′(ū(x)). (1.5)

By standard Floquet theory, the L2(R) spectrum of H is purely continuous and cor-
responds with the union of λ so that (1.5) admits a bounded eigenfunction of the Bloch
form

φ(x) = eiξxw(x),

for some ξ ∈ R and P -periodic function w(x). The periodicity of w allows us to write

φ(0) = w(0) = w(P ) = e−iξPφ(P ),

and proceeding similarly for φ′ we find that the L2(R) spectrum of H corresponds with the
union of λ that are eigenvalues of the boundary value problem (1.5) with boundary conditions

φ(P ) = eiξPφ(0); φ′(P ) = eiξPφ′(0), (1.6)

for some ξ ∈ R. For notational convenience, we set θ = ξP , thus obtaining the operator Hθ

specified in (1.1).
Our analysis is motivated, in part, by the recent results of Jung and Zumbrun, showing

that spectral stability implies nonlinear stability for a broad class of modulated reaction-
diffusion periodic waves [10, 13]. In previous work, Howard has identified explicit periodic
solutions for equations arising in the context of phase separation processes [4, 5], and these
provide a family of applications that will be discussed in Section 6.

We are also motivated by the recent analysis of Jones, Latushkin, and Sukhtaiev, in
which the authors show that the Maslov index can be used to analyze the spectrum of Hθ

(see [12], and also the related analyses in [11, 16]). We utilize the framework of [12], and
compute the Maslov index based on the development of Howard, Latushkin, and Sukhtayev
in [7].

Our goal for this introduction is to provide an informal development of the Maslov index
and to state our main results. A more systematic development of the Maslov index is
provided in Section 2, and a thorough discussion can be found in [7].

As a starting point, we define what we will mean by a Lagrangian subspace of R2n.

Definition 1.1. We say ` ⊂ R2n is a Lagrangian subspace if ` has dimension n and

(J2nu, v)R2n = 0,

for all u, v ∈ `. Here, J2n denotes the standard symplectic matrix

J2n =

(
0 −In
In 0

)
,

and (·, ·)R2n denotes Euclidean inner product on R2n. We sometimes adopt standard notation
for symplectic forms, ω(u, v) = (J2nu, v)R2n. In addition, we denote by Λ(n) the collection of
all Lagrangian subspaces of R2n, and we will refer to this as the Lagrangian Grassmannian.
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Any Lagrangian subspace of R2n can be spanned by a choice of n linearly independent
vectors in R2n. We will generally find it convenient to collect these n vectors as the columns
of a 2n× n matrix X, which we will refer to as a frame for `. Moreover, we will often write
X =

(
X
Y

)
, where X and Y are n× n matrices.

Suppose `1(·), `2(·) denote paths of Lagrangian subspaces `i : I → Λ(n), for some pa-
rameter interval I. The Maslov index associated with these paths, which we will denote
Mas(`1, `2; I), is a count of the number of times the paths `1(·) and `2(·) intersect, counted
with both multiplicity and direction. (Precise definitions of what we mean in this context
by multiplicity and direction will be given in Section 2.) In some cases, the Lagrangian
subspaces will be defined along some path in the (α, β)-plane

Γ = {(α(t), β(t)) : t ∈ I},

and when it is convenient we will use the notation Mas(`1, `2; Γ).
Although cases arise for which the Maslov index can be computed analytically, our point

of view is that in most applications it will be computed numerically. In particular, the
general character of our theorems involves starting with a quantity that is relatively diffi-
cult to compute numerically, and expressing it in terms of one or more quantities that are
relatively easy to compute numerically. Such calculations can be made via the associated
frames, so the computational difficulty associated with the Maslov index is determined by
the computational difficulty associated with computing the frames.

We follow the approach of [12] and reformulate (1.1) for a dependent variable y ∈ R2n.
As a starting point, we express φ in terms of its real and imaginary parts, adopting from
[12] the labeling convention

φk = y2k−1 + iy2k,

for k = 1, 2, . . . , n. When expressing the resulting system for y = (y1, y2, . . . , y2n)t, it is
convenient to define the counterclockwise rotation matrix

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
. (1.7)

Also, for an m×n matrix A = (aij)
m,n
i,j=1 and a k× l matrix B = (bij)

k,l
i,j=1 we denote by A⊗B

the Kronecker product, by which we mean the mk × nl matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
... . . .

...
am1B am2B . . . amnB

 .

For our purposes, the two most important Kronecker products will be

V ⊗ I2 =



V11 0 V12 0 . . . V1n 0
0 V11 0 V12 . . . 0 V1n

V21 0 V22 0 . . . V2n 0
0 V21 0 V22 . . . 0 V2n
...

...
...

... . . .
...

...
Vn1 0 Vn2 0 . . . Vnn 0
0 Vn1 0 Vn2 . . . 0 Vnn


,
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and

In ⊗Rθ =


Rθ 02 . . . 02

02 Rθ . . . 02
...

... . . .
...

02 02 . . . Rθ

 .

This allows us to express our equation for y as

Hθy := −y′′ + (V (x)⊗ I2)y = λy

y(P ) = (In ⊗Rθ)y(0)

y′(P ) = (In ⊗Rθ)y
′(0).

(1.8)

In order to apply the Maslov framework to this system, we introduce two Lagrangian paths,
which have been adapted from [12]. As a starting point, given any y ∈ C([0, P ];R2n) and
any x ∈ [0, P ] we define the trace-type map

Txy := (y(0), y(x),−y′(0), y′(x))t, (1.9)

in which each vector y(0), y(x) etc. is viewed as a row vector so that after transposition
Txy ∈ R8n. (For a general discussion of how the form of Tx is chosen, the reader is referred
to [6].) We specify the set

`1(x;λ) := {Txy : −y′′ + (V ⊗ I2)y = λy for x ∈ (0, P )}, (1.10)

which we verify in Section 3 is a Lagrangian subspace of R8n (this also follows by the proof of
Proposition 3.1 in [12]). In addition, we will see in Section 3 that `1(x;λ) can be continuously
extended to `1(0;λ) and `1(P ;λ), where `1(0;λ) is the Lagrangian subspace associated with
the frame

X1(0;λ) =


I2n 02n

I2n 02n

02n −I2n

02n I2n

 ,

and we defer the specification of `1(P ;λ) until Section 3.
Likewise, we specify a Lagrangian subspace associated with the boundary condition

`2(θ) = {(p, (In ⊗Rθ)p,−q, (In ⊗Rθ)q)
t : p, q ∈ R2n}. (1.11)

(We verify in Section 3 that `2(θ) is indeed a Lagrangian subspace for all θ ∈ [0, π].) The
spaces `1(x;λ) and `2(θ) have been constructed so that intersections of `1(P ;λ) and `2(θ)
correspond with eigenvalues λ of (1.1).

Given a fixed θ ∈ [0, π] and a fixed value λ0 ∈ R, let Mor(Hθ;λ0) denote the number
of eigenvalues that Hθ has below λ0, counted with multiplicity. Our first theorem relates
Mor(Hθ;λ0) to an appropriate Maslov index.

Theorem 1.1. Suppose V ∈ C([0, P ];Rn×n) is a symmetric matrix-valued potential, Hθ

is as specified in (1.8) for some fixed θ ∈ [0, π], and Mas(`1, `2(θ); [0, P ]λ=λ0) denotes the
Maslov index for `1(x;λ0) and `2(θ) as x runs from 0 to P . Then

Mor(Hθ;λ0) = −Mas(`1, `2(θ); [0, P ]λ=λ0)−

{
2n θ = 0

0 θ ∈ (0, π].
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Remark 1.1. Regarding our convention for designating the Maslov index, we note that we
have three variables under consideration—i.e., x, λ, and θ—and that each Maslov index is
computed along a path in two dimensions—either the (λ, x)-plane or the (λ, θ)-plane (see
Theorem 1.2 for the latter). Our convention is to explicitly write the variable that is not in
the plane of computation. For example, this is why θ appears explicitly in the Maslov index
of Theorem 1.1 (which is computed in the (λ, x)-plane) and why P (the value of x) appears
explicitly in the Maslov index of Theorem 1.2 (which is computed in the (λ, θ)-plane).

Results quite similar to Theorem 1.1 appear in [11] (Theorem 4.4) and [12] (Theorem
4.1), and we remark on the differences and connections. (See also [16] for related results
in the case of Schrödinger operators on x ∈ Rn.) First, the primary difference between our
Theorem 1.1 and the results mentioned above is that we state our theorem in terms of a
Maslov index computed on the interval [0, P ]λ=λ0 , while the referenced theorems are stated
in terms of a Maslov index computed on the interval [s, P ]λ=λ0 for some sufficiently small
s > 0. Second, our formulation of the Maslov index is different from the formulation used in
[11, 12], and consequently our proof of Theorem 1.1 proceeds along different lines than the
proofs given in these references.

Turning to the connections, we focus on Theorem 4.4 of [11]. In this reference, the
authors show that for θ ∈ (0, π], and 0 /∈ σ(Hθ), the Morse index of Hθ (i.e., Mor(Hθ; 0)
in our notation) is precisely the negative of a Maslov index computed on [s, P ]λ=0 (Item
(v) in Theorem 4.4 of [11]), and that for θ = 0, and 0 /∈ σ(Hθ), with also 0 /∈ σ(V (0)),
the Morse index of H0 is precisely the sum of a Maslov index computed on [s, P ]λ=0 and
the Morse index of V (0) (i.e., the number of negative eigenvalues of the potential matrix
evaluated at x = 0) (Item (vii) in Theorem 4.4 of [11]). (See also [9] for a result involving
MorV (0) for Schrödinger operators with separated, self-adjoint boundary conditions.) In
order to illuminate the relationship between our Theorem 1.1 and Theorem 4.4 of [11], we
state the following corollary to our Theorem 1.1.

Corollary 1.1. Let the assumptions and notation of Theorem 1.1 hold. Given any θ ∈ (0, π],
there exists s0 > 0 sufficiently small so that for any s ∈ (0, s0],

Mor(Hθ;λ0) = −Mas(`1, `2(θ); [s, P ]λ=λ0).

Moreover, for θ = 0, assume 0 /∈ σ(V (0) − λ0In) (and so 0 /∈ σ(V (0) ⊗ I2 − λ0I2n)). Then
there exists s0 > 0 sufficiently small so that for any s ∈ (0, s0],

Mor(H0;λ0) = −Mas(`1, `2(0); [s, P ]λ=λ0) + Mor(V (0)⊗ I2 − λ0I2n).

For each fixed θ ∈ [0, π], Theorem 1.1 provides a computationally efficient way to deter-
mine the number of eigenvalues that Hθ has below a fixed threshold λ0. We will verify in
Section 3 that a value λ ∈ R is an eigenvalue of Hθ with multiplicity m if and only if it is
an eigenvalue of Hθ with multiplicity 2m. In this way, we obtain from Mor(Hθ;λ0) a count
of the number of eigenvalues Hθ has below λ0. I.e., Mor(Hθ;λ0) = 1

2
Mor(Hθ;λ0).

Suppose we have carried out this calculation for some particular value θ0 so that we know
Mor(Hθ). We ask the following question: can we compute Mor(Hθ) for all θ ∈ [0, π]\{θ0}
without recomputing solutions of (1.8)? Our next theorem uses the approach of [12] to do
precisely this.
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Theorem 1.2. Suppose V ∈ C([0, P ];Rn×n) is a symmetric matrix-valued potential and
Hθ is as specified in (1.8). Fix values λ0 ∈ R and θ0, θ1 ∈ [0, π], with θ0 < θ1, and let
Mas(`1(P ; ·), `2; [θ0, θ1]λ=λ0) denote the Maslov index for `1(P ;λ0) and `2(θ) as θ runs from
θ0 to θ1. Then

Mor(Hθ1 ;λ0) = Mor(Hθ0 ;λ0)−Mas(`1(P ; ·), `2; [θ0, θ1]λ=λ0).

We emphasize that the calculation indicated in Theorem 1.2 does not require re-solving
(1.8). Also, we note that Theorem 1.2 is essentially identical in content with Theorem 3.2
of our motivating reference [12]. We have chosen to state it independently because, as with
Theorem 1.1, the Maslov index in our statement is formulated in a different way from the
Maslov index in [12].

Last, we indicate one final result, which is based on the unitary matrix W̃ (P ;λ, θ), defined
later in (3.9). Since W̃ (P ;λ, θ) is unitary, its eigenvalues will reside on the unit circle S1.
Denote by ñ−(P ;λ, θ) the number of eigenvalues of W̃ (P ;λ, θ) with argument on the interval
[−π, 0) (i.e., on the lower semi-arc), and denote by ñ+(P ;λ, θ) the number of eigenvalues of
W̃ (P ;λ, θ) with argument on the interval [0, π) (i.e., on the upper semi-arc). For brevity,
denote the difference in these values

∆ñ(P ;λ, θ) = ñ+(P ;λ, θ)− ñ−(P ;λ, θ). (1.12)

Theorem 1.3. Suppose V ∈ C([0, P ];Rn×n) is a symmetric matrix-valued potential, Hθ is
as specified in (1.1), H is as specified in (1.5), and W̃ (P ;λ, θ) is as defined in (3.9). For
some fixed λ0 ∈ R, if there exists θ ∈ [0, π] so that ∆ñ(P ;λ0, θ) 6= 0, then H has L2(R)
spectrum below λ0. In particular, if ∆ñ(P ;λ0, θ) 6= 0, then we must have ∆ñ(P ;λ0, θ) = 4κ
for some κ ∈ Z\{0}, with the following cases: (1) if κ > 0, then Hθ has at least κ eigenvalues
below λ0; and (2) if κ < 0, then Hπ−θ has at least −κ eigenvalues below λ0.

To the best of our knowledge, no analogue to Theorem 1.3 appears in our references.
Nonetheless, we mention that it shares the topological flavor of the analysis carried out in
[8].

The paper is organized as follows. In Section 2, we briefly review standard theory asso-
ciated with the Maslov index, and in Section 3 we further discuss the reformulation of (1.1)
as (1.8). In Section 4 we prove Theorem 1.1 and Corollary 1.1, and in Section 5 we prove
Theorems 1.2 and 1.3. Finally, in Section 6, we apply these tools to analyze the spectra
associated with linear operators obtained when a single Allen-Cahn equation is linearized
about a periodic solution (Section 6.1) and when two coupled Allen-Cahn equations are lin-
earized about periodic solutions (Section 6.2). These applications serve three purposes: first,
they illustrate each of our four results, and clarify the analysis; second, they demonstrate
how our results, and the results in several of our references, can readily be implemented
computationally; and third, they provide a complete picture of the spectrum associated with
a standard model of phase separation processes.

2 The Maslov Index

In this section, we provide a short overview of the Maslov index in the current setting.
Interested readers can find a more thorough discussion in [7] and the references found there.
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Given any two Lagrangian subspaces `1 and `2, with associated frames X1 =
(
X1

Y1

)
and

X2 =
(
X2

Y2

)
, we can define the complex n× n matrix

W̃ = −(X1 + iY1)(X1 − iY1)−1(X2 − iY2)(X2 + iY2)−1. (2.1)

As verified in [7], the matrices (X1 − iY1) and (X2 + iY2) are both invertible, and W̃ is
unitary. We have the following theorem from [7].

Theorem 2.1. Suppose `1, `2 ⊂ R2n are Lagrangian subspaces, with respective frames X1 =(
X1

Y1

)
and X2 =

(
X2

Y2

)
, and let W̃ be as defined in (2.1). Then

dim ker(W̃ + I) = dim(`1 ∩ `2).

That is, the dimension of the eigenspace of W̃ associated with the eigenvalue −1 is precisely
the dimension of the intersection of the Lagrangian subspaces `1 and `2.

Following [1, 3], we use Theorem 2.1, along with an approach to spectral flow introduced
in [17], to define the Maslov index. Given a parameter interval I = [a, b], which can be
normalized to [0, 1], we consider maps ` : I → Λ(n), which will be expressed as `(t). In order
to specify a notion of continuity, we need to define a metric on Λ(n), and following [3] (p.
274), we do this in terms of orthogonal projections onto elements ` ∈ Λ(n). Precisely, let
Pi denote the orthogonal projection matrix onto `i ∈ Λ(n) for i = 1, 2. I.e., if Xi denotes a
frame for `i, then Pi = Xi(X

t
iXi)

−1Xt
i. We take our metric d on Λ(n) to be defined by

d(`1, `2) := ‖P1 − P2‖,

where ‖·‖ can denote any matrix norm. We will say that ` : I → Λ(n) is continuous provided
it is continuous under the metric d.

Given two continuous maps `1(t), `2(t) on a parameter interval I, we denote by L(t) the
path

L(t) = (`1(t), `2(t)).

In what follows, we will define the Maslov index for the path L(t), which will be a count,
including both multiplicity and direction, of the number of times the Lagrangian paths `1

and `2 intersect. In order to be clear about what we mean by multiplicity and direction, we
observe that associated with any path L(t) we will have a path of unitary complex matrices as
described in (2.1). We have already noted that the Lagrangian subspaces `1 and `2 intersect
at a value t0 ∈ I if and only if W̃ (t0) has -1 as an eigenvalue. (We refer to the value t0
as a conjugate point.) In the event of such an intersection, we define the multiplicity of
the intersection to be the multiplicity of -1 as an eigenvalue of W̃ (since W̃ is unitary the
algebraic and geometric multiplicities are the same). When we talk about the direction of an
intersection, we mean the direction the eigenvalues of W̃ are moving (as t varies) along the
unit circle S1 when they cross −1 (we take counterclockwise as the positive direction). We
note that we will need to take care with what we mean by a crossing in the following sense:
we must decide whether to increment the Maslov index upon arrival or upon departure.
Indeed, there are several different approaches to defining the Maslov index (see, for example,
[2, 18]), and they often disagree on this convention.
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Following [1, 3, 17] (and in particular Definition 1.5 from [1]), we proceed by choosing a
partition a = t0 < t1 < · · · < tn = b of I = [a, b], along with numbers εj ∈ (0, π) so that
ker
(
W̃ (t)−ei(π±εj)I

)
= {0} for tj−1 ≤ t ≤ tj; that is, ei(π±εj) ∈ C\σ(W̃ (t)), for tj−1 ≤ t ≤ tj

and j = 1, . . . , n. Moreover, we notice that for each j = 1, . . . , n and any t ∈ [tj−1, tj] there
are only finitely many values β ∈ [0, εj) for which ei(π+β) ∈ σ(W̃ (t)).

Fix some j ∈ {1, 2, . . . , n} and consider the value

k(t, εj) :=
∑

0≤β<εj

dim ker
(
W̃ (t)− ei(π+β)I

)
. (2.2)

for tj−1 ≤ t ≤ tj. This is precisely the sum, along with multiplicity, of the number of
eigenvalues of W̃ (t) that lie on the arc

Aj := {eit : t ∈ [π, π + εj)}.

(See Figure 1.) The stipulation that ei(π±εj) ∈ C \ σ(W̃ (t)), for tj−1 ≤ t ≤ tj asserts that no
eigenvalue can enter Aj in the clockwise direction or exit in the counterclockwise direction
during the interval tj−1 ≤ t ≤ tj. In this way, we see that k(tj, εj) − k(tj−1, εj) is a count
of the number of eigenvalues that enter Aj in the counterclockwise direction (i.e., through
−1) minus the number that leave in the clockwise direction (again, through −1) during the
interval [tj−1, tj].

Aj

e
i(π+ε )j

x

x

x

x

x = eigenvalue of W~

Figure 1: The arc Aj.

In dealing with the catenation of paths, it’s particularly important to understand the
difference k(tj, εj)−k(tj−1, εj) if an eigenvalue resides at −1 at either t = tj−1 or t = tj (i.e., if
an eigenvalue begins or ends at a crossing). If an eigenvalue moving in the counterclockwise
direction arrives at −1 at t = tj, then we increment the difference forward, while if the
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eigenvalue arrives at -1 from the clockwise direction we do not (because it was already in
Aj prior to arrival). On the other hand, suppose an eigenvalue resides at -1 at t = tj−1

and moves in the counterclockwise direction. The eigenvalue remains in Aj, and so we do
not increment the difference. However, if the eigenvalue leaves in the clockwise direction
then we decrement the difference. In summary, the difference increments forward upon
arrivals in the counterclockwise direction, but not upon arrivals in the clockwise direction,
and it decrements upon departures in the clockwise direction, but not upon departures in
the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 2.1. Let L(t) = (`1(t), `2(t)), where `1, `2 : I → Λ(n) are continuous paths in
the Lagrangian–Grassmannian. The Maslov index Mas(L; I) is defined by

Mas(L; I) =
n∑
j=1

(k(tj, εj)− k(tj−1, εj)). (2.3)

Remark 2.1. As we did in the introduction, we will typically refer explicitly to the individual
Lagrangian subspaces with the notation Mas(`1, `2; I).

Remark 2.2. As discussed in [1], the Maslov index does not depend on the choices of {tj}nj=0

and {εj}nj=1, so long as these choices follow the specifications above.

One of the most important features of the Maslov index is homotopy invariance, for which
we need to consider continuously varying families of Lagrangian paths. To set some notation,
we denote by P(I) the collection of all paths L(t) = (`1(t), `2(t)), where `1, `2 : I → Λ(n) are
continuous paths in the Lagrangian–Grassmannian. We say that two paths L,M ∈ P(I)
are homotopic provided there exists a family Hs so that H0 = L, H1 = M, and Hs(t) is
continuous as a map from (t, s) ∈ I × [0, 1] into Λ(n)× Λ(n).

The Maslov index has the following properties (see, for example, [7] in the current setting,
or Theorem 3.6 in [3] for a more general result).

(P1) (Path Additivity) If a < b < c then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If L,M∈ P(I) are homotopic, with L(a) =M(a) and L(b) =
M(b) (i.e., if L,M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

In practice, we work primarily with frames for Lagrangian subspaces, and we can use
the following condition from [7] to verify that a given frame X is indeed the frame for a
Lagrangian subspace.

Proposition 2.1. A 2n × n matrix X is a frame for a Lagrangian subspace if and only if
the columns of X are linearly independent, and additionally

XtJ2nX = 0. (2.4)

We refer to this relation as the Lagrangian property for frames.
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3 Specification of W̃

In this section, we clarify the relationship between the spectrum of Hθ and the spectrum of
Hθ, and also introduce frames for the Lagrangian subspaces `1(x;λ) and `2(θ). These frames
allow us to specify the primary object of our study, W̃ (x;λ, θ).

We begin with the following claim.

Claim 3.1. Let θ ∈ [−π, π). A value λ will be an eigenvalue of Hθ with multiplicity m if
and only if λ is an eigenvalue of Hθ with multiplicity 2m.

Proof. We only need to show that each eigenfunction of Hθ corresponds with precisely two
eigenfunctions of Hθ. Referring to a solution y of (1.8), if we set yo := (y1, y3, . . . , y2n−1)t

and ye := (y2, y4, . . . , y2n)t, then we can write

−y′′o + V (x)yo = λyo,

−y′′e + V (x)ye = λye,
(3.1)

with coupling (of yo and ye) entirely through the boundary terms. For θ = −π or θ = 0,
there is no coupling, even in the boundary terms, and we see immediately that if φ(x;λ)
is an eigenfunction for Hθ for some λ ∈ R, then Hθ will have two linearly independent
eigenfunctions associated with the same eigenvalue: yo = φ, ye = 0 and yo = 0, ye = φ.
Notice that in this case, if the real and imaginary parts of φ are linearly independent then λ
will have multiplicity two as an eigenfunction of (1.1), because both the real and imaginary
parts will necessarily be eigenfunctions.

If θ /∈ {−π, 0} and φ(x;λ) is an eigenfunction for Hθ associated with λ then φ cannot be
either purely real or purely imaginary, and we can write φ = yo+iye, which corresponds with
an eigenfunction y of Hθ (i.e., with y = (y1, y2, . . . , y2n)t constructed from yo and ye defined
above). We now define a vector function ỹ ∈ R2n so that ỹo = yo − ye and ỹe = yo + ye. We
see from (3.1) that −ỹ′′+V (x)⊗ ỹ = λỹ, and we also observe that for each k ∈ {1, 2, . . . , n},
we have

y2k−1(P ) = y2k−1(0) cos θ − y2k(0) sin θ,

y2k(P ) = y2k−1(0) sin θ + y2k(0) cos θ,

so that

ỹ2k−1(P ) = y2k−1(P )− y2k(P ) = (y2k−1(0)− y2k(0)) cos θ − (y2k−1(0) + y2k(0)) sin θ

= ỹ2k−1(0) cos θ − ỹ2k(0) sin θ.

and similarly,
ỹ2k(P ) = ỹ2k−1(0) sin θ + ỹ2k(0) cos θ.

Derivative relations follow by identical calculations, and we see that ỹ is a second eigenfunc-
tion of Hθ associated with the eigenvalue λ.

In order to construct a frame for `1(x;λ), we set ϕ1 = y and ϕ2 = y′ and express our
equation as a first order system

ϕ′ = A(x;λ)ϕ; ϕ =

(
ϕ1

ϕ2

)
; A(x;λ) =

(
0 I2n

V ⊗ I2 − λI2n 0

)
. (3.2)
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Let Φ(x;λ) denote the 4n× 4n fundamental matrix obtained by solving the matrix ODE

Φ′ = A(x;λ)Φ; Φ(0;λ) = I4n, (3.3)

which we can alternatively express in the Hamiltonian form

J4nΦ′ = B(x;λ)Φ; Φ(0;λ) = I4n, (3.4)

where

B(x;λ) =

(
λI2n − V ⊗ I2 0

0 I2n

)
.

If we introduce the notation

Φ =

(
Φ1

Φ2

)
=

(
Φ11 Φ12

Φ21 Φ22

)
,

for 2n× 2n matrices {Φij}2
i,j=1 then we can express a frame for `1(x;λ) as

X1(x;λ) =

(
X1(x;λ)

Y1(x;λ)

)
=


I2n 02n

Φ11(x;λ) Φ12(x;λ)
02n −I2n

Φ21(x;λ) Φ22(x;λ)

 . (3.5)

Associated with (3.3), we can consider the reduced system

Φ̃′ = Ã(x;λ)Φ̃; Φ̃(0;λ) = I2n, (3.6)

where

Ã(x;λ) =

(
0 In

V − λIn 0

)
.

It is straightforward to check that Φ(x;λ) = Φ̃(x;λ)⊗ I2, and with

Φ̃ =

(
Φ̃1

Φ̃2

)
=

(
Φ̃11 Φ̃12

Φ̃21 Φ̃22

)
,

we have Φij(x;λ) = Φ̃ij(x;λ)⊗ I2 for i, j ∈ {1, 2}. Although the notation is a bit unwieldy,
we will find it convenient below to denote by Φkl

ij the entry in row k and column l of the

matrix Φij, and similarly for Φ̃kl
ij .

In order to verify that X1(x;λ) is the frame for a Lagrangian subspace, we use Proposition
2.1, which asserts that we need to verify that

X1(x;λ)tJ8nX1(x;λ) = 0

for all (x, λ) ∈ [0, P ]× R.
First, for x = 0 we have

X1(0;λ) =


I2n 02n

I2n 02n

02n −I2n

02n I2n

 ,
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from which we compute directly to find

X1(0;λ)tJ8nX1(0;λ) = 0.

For each fixed λ ∈ R, temporarily set

A(x) := X1(x;λ)tJ8nX1(x;λ) = Φ(x;λ)tJ4nΦ(x;λ)− J4n,

where dependence on the fixed value λ in A has been suppressed, and the second equality
follows from a straightforward calculation. We can now compute

A′(x) = Φ′(x;λ)tJ4nΦ(x;λ) + Φ(x;λ)tJ4nΦ′(x;λ)

= −(J4nΦ′(x;λ))tΦ(x;λ) + Φ(x;λ)tJ4nΦ′(x;λ)

= −(B(x;λ)Φ(x;λ))tΦ(x;λ) + Φ(x;λ)tB(x;λ)Φ(x;λ) = 0,

where the final equality follows from the symmetry of B. We conclude that A(x) = 0 for all
x ∈ [0, P ], and since this is true for all λ ∈ R we conclude that `1(x;λ) is Lagrangian for all
(x, λ) ∈ [0, P ]× R.

Turning to `2(θ), a natural choice of frame is

X2(θ) =

(
X2(θ)

Y2(θ)

)
=


I2n 02n

In ⊗Rθ 02n

02n −I2n

02n In ⊗Rθ

 . (3.7)

Using the relation
(In ⊗Rθ)

t(In ⊗Rθ) = I2n, (3.8)

we verify by direct calculation that X2(θ)tJ8nX2 = 0, and we conclude from Proposition 2.1
that X2(θ) is the frame for a Lagrangian subspace.

We see immediately that

X2(θ)− iY2(θ) =

(
I2n iI2n

In ⊗Rθ −iIn ⊗Rθ

)
,

and similarly for X2(θ) + iY2(θ). Recalling (3.8), we readily check that

(X2(θ) + iY2(θ))−1 =

(
1
2
I2n

1
2
(In ⊗Rθ)

t

i1
2
I2n −i1

2
(In ⊗Rθ)

t

)
,

and consequently

(X2(θ)− iY2(θ))(X2(θ) + iY2(θ))−1 =

(
0 (In ⊗Rθ)

t

In ⊗Rθ 0

)
.

For notational brevity, we will denote this last matrix Rθ, and we note that due to (3.8) Rθ

will be an involutory matrix (i.e., R2
θ = I4n).

Using (2.1), we can now define the primary object of our study:

W̃ (x;λ, θ) = −(X1(x;λ) + iY1(x;λ))(X1(x;λ)− iY1(x;λ))−1Rθ. (3.9)

It follows from our construction of Hθ from Hθ, and from Claim 3.1, that if −1 is an
eigenvalue of W̃ (P ;λ, θ) then it will have even multiplicity. More generally, we have the
following claim.
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Claim 3.2. Each eigenvalue of W̃ (x;λ, θ) occurs with even multiplicity.

Proof. Suppose eiκ is an eigenvalue of W̃ (x;λ, θ) with eigenvector r. That is,

−(X1(x;λ) + iY1(x;λ))(X1(x;λ)− iY1(x;λ))−1Rθr = eiκr.

Set v = Rθr and multiply on the left by Rθ to obtain the equivalent problem

−Rθ(X1(x;λ) + iY1(x;λ))(X1(x;λ)− iY1(x;λ))−1v = eiκv.

Now set w = (X1(x;λ)− iY1(x;λ))−1v so that

−Rθ(X1(x;λ) + iY1(x;λ))w = eiκ(X1(x;λ)− iY1(x;λ))w. (3.10)

Set v̂ = (X1(x;λ) + iY1(x;λ))w, so that (3.10) can alternatively be expressed as

−Rθv̂ = eiκv, (3.11)

and notice that we can express v̂ as follows:

v̂k = wk − iw2n+k; k ∈ {1, 2, . . . , 2n};

v̂2n+k =
n∑
j=1

{
(Φ̃

( k+1
2

)j

11 + iΦ̃
( k+1

2
)j

21 )w2j−1

+ (Φ̃
( k+1

2
)j

12 + iΦ̃
( k+1

2
)j

22 )w2(n+j)−1

}
; k ∈ {1, 3, . . . , 2n− 1};

v̂2n+k =
n∑
j=1

{
(Φ̃

( k
2

)j

11 + iΦ̃
( k
2

)j

21 )w2j

+ (Φ̃
( k
2

)j

12 + iΦ̃
( k
2

)j

22 )w2(n+j)

}
; k ∈ {2, 4, . . . , 2n}.

(3.12)

Moreover, we can express v similarly, with the sign in front of each (explicit) appearance of
i switched.

The first two equations in system (3.11) can be expressed as

−Rt
θ

(
v̂2n+1

v̂2n+2

)
= eiκ

(
v1

v2

)
,

which can be expanded to

− cos θv̂2n+1 − sin θv̂2n+2 = eiκv1,

sin θv̂2n+1 − cos θv̂2n+2 = eiκv2.

If we add these, we get

− cos θ(v̂2n+1 + v̂2n+1) + sin θ(v̂2n+1 − v̂2n+1) = eiκ(v1 + v2),

and likewise if we subtract them we get

− cos θ(v̂2n+1 − v̂2n+1)− sin θ(v̂2n+1 + v̂2n+1) = eiκ(v1 − v2).
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We see from these calculations that the vector pair(
v̂2n+1 − v̂2n+2

v̂2n+1 + v̂2n+2

)
; and

(
v1 − v2

v1 + v2

)
solve the same two equations as the vector pair(

v̂2n+1

v̂2n+2

)
; and

(
v1

v2

)
.

Set
�v = (v1 − v2, v1 + v2, v3 − v4, v3 + v4, . . . , v4n−1 − v4n, v4n−1 + v4n)t,

and similarly for �v̂ and �w. Proceeding similarly as above for each subsequent pair of
equations in (3.11), we find that �v and �v̂ solve precisely the same equations as v and v̂.
I.e.,

−Rθv̂ = eiκv ⇐⇒ −Rθ�v̂ = eiκ�v.

It follows from (3.12) and the similar relations for v that �w is a solution to (3.10). In
particular, we have from (3.12) that

�v̂ = (X1(x;λ) + iY1(x;λ))�w

�v = (X1(x;λ)− iY1(x;λ))�w.

Then −Rθ�v̂ = eiκ�v can be expressed as

−Rθ(X1(x;λ) + iY1(x;λ))�w = eiκ�v,

and subsequently

−Rθ(X1(x;λ) + iY1(x;λ))(X1(x;λ)− iY1(x;λ))−1�v = eiκ�v,

from which we see that v and �v are both eigenvectors of W̃ (x;λ, θ) associated with the
eigenvalue eıκ. Moreover, it’s straightforward to see that v and �v must be linearly inde-
pendent, so they form a pair of two linearly independent eigenvectors for the eigenvalue eiκ.
This completes the proof.

4 Proofs of Theorem 1.1 and Corollary 1.1

Suppose that for some fixed θ ∈ [−π, π), λ ∈ R is an eigenvalue of (1.1) with associated
eigenvector φ(x;λ). If we take an L2([0, P ]) inner product of (1.1) with φ we obtain

‖φ′‖2 + 〈V (x)φ, φ〉 = λ‖φ‖2,

and applying the Cauchy-Schwarz inequality we see that

λ ≥ −‖V ‖L∞([0,P ]), (4.1)
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where
‖V ‖L∞([0,P ]) = max

x∈[0,P ]
‖V (x)‖2,

with ‖ · ‖2 designating the matrix norm induced by the standard Euclidean norm.
Take λ∞ > ‖V ‖L∞([0,P ]) so that the spectrum of Hθ lies in (−λ∞,∞). Fix any λ0 > −λ∞

and consider the path in the (x, λ)-plane described as follows: (1) fix x = 0 and let λ run
from −λ∞ to λ0 (the bottom shelf, which we will denote [−λ∞, λ0]x=0); (2) fix λ = λ0 and let
x run from 0 to P (the right shelf, [0, P ]λ=λ0); (3) fix x = P and let λ run from λ0 to −λ∞
(the top shelf, [λ0,−λ∞]x=P ); and (4) fix λ = −λ∞ and let x run from P to 0 (the left shelf,
[P, 0]λ=−λ∞). We denote by Γ the simple closed curve obtained by following each of these
contours precisely once. (See Figure 2.)

λλ0

P

[0,P]λ=λ0

[P,0]
λ=-λ∞

[λ0,-λ∞]
x=P

[-λ∞,λ0]
x=0

-λ∞

x

Figure 2: The (λ, x)-Maslov Box.

By catenation of paths we have

Mas(`1, `2; Γ) = Mas(`1, `2; [−λ∞, λ0]x=0) + Mas(`1, `2; [0, P ]λ=λ0)

+ Mas(`1, `2; [λ0,−λ∞]x=P ) + Mas(`1, `2; [P, 0]λ=−λ∞).
(4.2)

For the bottom shelf, the Lagrangian subspaces `1(0;λ) and `2(θ) are both independent
of λ, so we have

Mas(`1, `2; [−λ∞, λ0]x=0) = 0.

More precisely, we have

W̃ (0;λ, θ) = −(X1(0;λ) + iY1(0;λ))(X1(0;λ)− iY1(0;λ))−1Rθ

= −
(
In ⊗Rθ 0

0 (In ⊗Rθ)
t

)
,
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where the second equality follows from the form of Rθ and a straightforward calculation.
The eigenvalues of −W̃ (0;λ, θ), which we denote here by µ, will satisfy

det((In ⊗Rθ − µI2n)((In ⊗Rθ)
t − µI2n)) = 0,

and noting the relations (In ⊗Rθ)
t(In ⊗Rθ) = I2n and (In ⊗Rθ)

t + (In ⊗Rθ) = 2(cos θ)I2n,
we see that

det(I2n(µ2 − 2µ cos θ + 1)) = 0.

We see that for any θ ∈ [0, π] the eigenvalues of W̃ (0;λ, θ) (note the sign change) are

µ = − cos θ ± i sin θ,

each repeated 2n times. We see that for θ = 0 all 4n eigenvalues of W̃ (0;λ, θ) reside at −1,
while for θ ∈ (0, π] none of the eigenvalues of W̃ (0;λ, θ) reside at −1.

For the top shelf, and indeed for any intermediate horizontal shelf [λ0,−λ∞]x=s, with s ∈
(0, P ], we can check that the eigenvalues of W̃ (x;λ, θ) rotate monotonically counterclockwise
as λ decreases. In order to see this, we use Lemma 4.2 of [7], which asserts that monotonicity
will be determined by the nature of

Ω(x;λ) := −X1(x;λ)tJ8n∂λX1(x;λ) = −Φ(x;λ)tJ4n∂λΦ(x;λ),

where the second equality follows from a straightforward calculation. In order to get a sign
for this matrix we compute

Ω′(x;λ) = −Φ′(x;λ)tJ4n∂λΦ(x;λ)− Φ(x;λ)tJ4n∂λΦ
′(x;λ)

= (J4nΦ′(x;λ))t∂λΦ(x;λ)− Φ(x;λ)t∂λJ4nΦ′(x;λ)

= (B(x;λ)Φ(x;λ))t∂λΦ(x;λ)− Φ(x;λ)t∂λ(B(x;λ)Φ(x;λ))

= Φ(x;λ)tB(x;λ)∂λΦ(x;λ)− Φ(x;λ)tBλ(x;λ)Φ(x;λ)− Φ(x;λ)tB(x;λ)∂λΦ(x;λ)

= −Φ(x;λ)tBλ(x;λ)Φ(x;λ).

Integrating, and noting that Ω(0;λ) = 0 (because Φ(0;λ) is independent of λ), we obtain

Ω(x;λ) = −
∫ x

0

Φ(y;λ)tBλ(x;λ)Φ(y;λ)dy.

We have

Bλ(x;λ) =

(
I2n 0
0 0

)
,

so that

Ω(x;λ) = −
∫ x

0

Φ1(y;λ)tΦ1(y;λ)dy.

This matrix is clearly non-positive, and moreover it cannot have 0 as an eigenvalue because
the associated eigenvector v = v(x;λ) ∈ R4n would necessarily satisfy Φ1(y;λ)v(x;λ) = 0
for all y ∈ (0, x), and this would contradict linear independence of the columns of Φ1 (as
solutions of −y′′ + (V ⊗ I2) = λy).
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Lemma 4.2 of [7] asserts that if Ω(x;λ) is negative definite then as λ decreases from λ0

to −λ∞ the eigenvalues of W̃ (x;λ, θ) will rotate monotonically counterclockwise. For the
top shelf, we have x = P , and so each conjugate point λ corresponds with an intersection
between `1(P ;λ) and `2(θ), and so with an eigenvalue of Hθ. By monotonicity, the Maslov
index along the top shelf will simply be a count, including multiplicity, of these eigenvalues,
and so will be precisely the number of eigenvalues that Hθ has between −λ∞ and λ0. But
since Hθ has no eigenvalues below −λ∞ this count is precisely the number of eigenvalues,
counted with multiplicity, that Hθ has below λ0. We denote this count Mor(Hθ;λ0). I.e.,

Mas(`1, `2; [λ0,−λ∞]x=P ) = Mor(Hθ;λ0).

For the left shelf, conjugate points x > 0 correspond with solutions to the boundary value
problem

Hx
θ := −φ′′ + V (y)φ = −λ∞φ

φ(x) = eiθφ(0)

φ′(x) = eiθφ′(0).

However, proceeding precisely as with Hθ we find that the eigenvalues of Hx
θ satisfy

λ ≥ −‖V ‖L∞([0,x]) > −λ∞,

from which we conclude that there are no conjugate points x > 0 on the left shelf.
The case x = 0 is not covered in this calculation, but can be understood from our

analysis of the bottom shelf. First, we have seen that for θ ∈ (0, π] none of the eigenvalues
of W̃ (0;λ, θ) will reside at −1, and we can conclude that

Mas(`1, `2(θ); [P, 0]λ=−λ∞) = 0

in these cases. For θ = 0 we know that all 4n eigenvalues of W̃ (0;−λ∞, θ) reside at −1,
so in order to compute Mas(`1, `2(θ); [P, 0]λ=−λ∞) we must determine the rotation of these
eigenvalues as x→ 0+.

According to Lemma 4.2 of [7], rotation of the eigenvalues of W̃ (x;−λ∞, θ) as x varies is
determined by the nature of

Ω̃(x;−λ∞) := −X1(x;−λ∞)tJ8nX
′
1(x;−λ∞)

= −Φ(x;−λ∞)tJ4nΦ′(x;−λ∞) = −Φ(x;−λ∞)tB(x;−λ∞)Φ(x;−λ∞).

Since Φ(0;−λ∞) = I4n, we see that

Ω̃(0;−λ∞) = −B(0;−λ∞) =

(
V (0)⊗ I2 + λ∞I2n 0

0 −I2n

)
.

For λ∞ > 0 sufficiently large (in particular, for −λ∞ < −‖V ‖L∞([0,P ])), half the eigenvalues

of Ω̃(0;−λ∞) will be positive and half will be negative. It follows (see the proof of Lemma
3.11 in [9]) that half of the 4n eigenvalues of W̃ (x;−λ∞, 0) will arrive at −1 from the
counterclockwise direction as x→ 0+, and half will arrive from the clockwise direction. We
conclude that

Mas(`1, `2(0); [P, 0]λ=−λ∞) = 2n.
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Theorem 1.1 now follows immediately from (4.2) and the four established identities:

Mas(`1, `2; Γ) = 0

Mas(`1, `2; [−λ∞, λ0]x=0) = 0

Mas(`1, `2; [λ0,−λ∞]x=P ) = Mor(Hθ;λ0)

Mas(`1, `2(θ); [P, 0]λ=−λ∞) =

{
2n θ = 0

0 θ ∈ (0, π].

�
We conclude this section with a proof of Corollary 1.1.

Proof of Corollary 1.1. First, for θ ∈ (0, π], we have seen during the proof of Theorem 1.1
that −1 /∈ σ(W̃ (0;λ0, θ)). By continuity, there exists s0 > 0 sufficiently small so that
−1 /∈ σ(W̃ (x;λ0, θ)) for any x ∈ [0, s0]. Consequently, we see that for any s ∈ (0, s0],

Mas(`1, `2(θ); [0, s]λ=λ0) = 0.

But then by path catenation,

Mas(`1, `2(θ); [0, P ]λ=λ0) = Mas(`1, `2(θ); [0, s]λ=λ0) + Mas(`1, `2(θ); [s, P ]λ=λ0)

= Mas(`1, `2(θ); [s, P ]λ=λ0),

and the claim of Corollary 1.1 for θ ∈ (0, π] now follows immediately from Theorem 1.1.
For θ = 0, we have seen during the proof of Theorem 1.1 that all 4n eigenvalues of

W̃ (0;λ0, 0) reside at −1. Similarly as in our discussion of the rotation of these eigenvalues
as x arrives at 0 for λ = −λ∞ (during the proof of Theorem 1.1), rotation of the eigenvalues
of W̃ (x;λ0, 0) as x increases from 0 is determined by the eigenvalues of

−B(0;λ0) =

(
V (0)⊗ I2 − λ0I2n 0

0 −I2n

)
.

In particular, each negative eigenvalue of this matrix corresponds with an eigenvalue of
W̃ (x;λ0, 0) that will rotate away from −1 in the clockwise direction as x increases from 0
(thus decrementing the Maslov index), and likewise, each positive eigenvalue of this matrix
corresponds with an eigenvalue of W̃ (x;λ0, 0) that will rotate away from −1 in the counter-
clockwise direction as x increases from 0 (thus leaving the Maslov index unchanged). (We
recall that for θ = 0, Corollary 1.1 assumes 0 is not an eigenvalue of V (0) − λ0In, and it
follows immediately that 0 is not an eigenvalue of −B(0;λ0). We use here the simple obser-
vation that µ is an eigenvalue of V (0) − λ0In with multiplicity m iff µ is an eigenvalue of
V (0) ⊗ I2 − λ0I2n with multiplicity 2m.) Since −B(0;λ0) is block diagonal, its eigenvalues
will be the union of the eigenvalues of V (0)⊗ I2−λ0I2n and the eigenvalues of −I2n (clearly,
all −1 for the latter). The total number of negative eigenvalues in this union will correspond
with the number of eigenvalues of W̃ (x;λ0, 0) that rotate in the clockwise direction as x in-
creases from 0, and hence will correspond with the decrement count of the Maslov index as x
increases from 0. If we let Mor(V (0)⊗ I2−λ0I2n) denote the number of negative eigenvalues
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of V (0)⊗ I2− λ0I2n, then we can conclude by continuity that there exists s0 > 0 sufficiently
small so that for any s ∈ (0, s0], we have

Mas(`1, `2(θ); [0, s]λ=λ0) = −2n−Mor(V (0)⊗ I2 − λ0I2n).

Using catenation of paths, we find

Mas(`1, `2(θ); [0, P ]λ=λ0) = Mas(`1, `2(θ); [0, s]λ=λ0) + Mas(`1, `2(θ); [s, P ]λ=λ0)

= −2n−Mor(V (0)⊗ I2 − λ0I2n) + Mas(`1, `2(θ); [s, P ]λ=λ0),

and the claim of Corollary 1.1 for θ = 0 now follows immediately from Theorem 1.1.

5 Proofs of Theorems 1.2 and 1.3

In this section we prove Theorems 1.2 and 1.3.

5.1 Proof of Theorem 1.2

For each fixed θ ∈ [0, π], Theorem 1.1 provides a computationally efficient way to determine
the number of eigenvalues Hθ has below a fixed threshold λ0. Suppose we have carried out
this calculation for some particular value of θ0 so that we know Mor(Hθ0 ;λ0). Theorem 1.2
allows us to compute Mor(Hθ) for all θ ∈ [0, π]\{θ0} without recomputing solutions of (1.8).

In order to prove Theorem 1.2 we let X1(P ;λ) =
(
X1(P ;λ)
Y1(P ;λ)

)
denote our frame for `1(x;λ)

evaluated at x = P (recall (3.5)), and we let X2(θ) =
(
X2(θ)
Y2(θ)

)
denote our frame for `2(θ)

(recall (3.7)). We calculate the Maslov index along a path in the (λ, θ)-plane via the unitary
matrix W̃ (P ;λ, θ).

We have already seen that we can choose λ∞ sufficiently large so that Hθ will not have
any eigenvalues λ ≤ −λ∞ for any θ ∈ [0, π]. (The calculation at the beginning of Section 4
was independent of θ.)

Now let (θ0, λ0) denote a pair of values 0 ≤ θ0 ≤ π, λ0 ∈ R, with λ0 > −λ∞, and fix any
θ1 ∈ (θ0, π]. We consider a rectangle in the (λ, θ)-plane determined by the following four
contours: (1) for θ = θ0, let λ run from −λ∞ to λ0 (the bottom shelf, [−λ∞, λ0]θ=θ0); (2) for
λ = λ0, let θ run from θ0 to θ1 (the right shelf, [θ0, θ1]λ=λ0); (3) For θ = θ1 let λ run from λ0

to −λ∞ (the top shelf, [λ0,−λ∞]θ=θ1); and (4) for λ = −λ∞, let θ run from θ1 to θ0 (the left
shelf, [θ1, θ0]λ=−λ∞). (See Figure 3.)

We immediately see from (4.1) that if we take λ∞ > ‖V ‖L∞(R) then we will have

Mas(`1(P, ·), `2; [θ1, θ0]λ=−λ∞) = 0. (5.1)

For the horizontal shelves [−λ∞, λ0]θ=θ0 and [λ0,−λ∞]θ=θ1 we have already seen that the
eigenvalues of W̃ (P ;λ, θ) rotate monotonically counterclockwise as λ decreases. We conclude
immediately that

Mas(`1(P, ·), `2; [−λ∞, λ0]θ=θ0) = −Mor(Hθ0 ;λ0)

Mas(`1(P, ·), `2; [λ0,−λ∞]θ=θ1) = Mor(Hθ1 ;λ0).
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π
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[θ0,θ1]λ=λ0

[θ1,θ0]
λ=-λ∞
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θ=θ1

[-λ∞,λ0]
θ=θ0

-λ∞

θ

θ0

Figure 3: The (λ, θ)-Maslov Box.

Using path additivity and homotopy invariance, we see that

Mor(Hθ1 ;λ0) = Mor(Hθ0 ;λ0)−Mas(`1(P, ·), `2; [θ0, θ1]λ=λ0).

This is Theorem 1.2.
In order to characterize our results in terms of standard dispersion relations, we recall

the following definition (see, e.g., [14]).

Definition 5.1. The dispersion relation (or the Bloch variety BH) of H is defined as

BH = {(ξ, λ) ∈ R2 : Hφ = λφ has a nontrivial Floquet-Bloch solution φ(x) = eiξxw(x)}.

Here, w(x) has period P . Since ξ = θ/P , dispersion relations can be expressed in terms of
(θ, λ) with no qualitative difference.

The Bloch variety can be characterized as the set of points (θ, λ) ∈ R2 so that W̃ (P ;λ, θ)
has −1 as an eigenvalue. In this way, intersections along the Maslov Box relate the number
of times BH crosses the axes θ = 0 and θ = π to the number of times it crosses λ = λ0. (See
Figures 6 and 10 for examples.)

5.2 Proof of Theorem 1.3

In this section we establish Theorem 1.3, which gives a lower bound on the number of
eigenvalues either Hθ or Hπ−θ has below some fixed threshold λ0 ∈ R. Our starting point
is to consider the nature of eigenvalues of W̃ (P ;λ, θ) as λ → −∞. Since `2 does not vary
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with λ, this behavior will be determined by `1, for which the λ dependence is determined by
solutions to the matrix ODE

Φ′(x;λ) = A(x;λ)Φ(x;λ); Φ(0;λ) = I4n; A(x;λ) =

(
0 I2n

V ⊗ I2 − λI2n 0

)
. (5.2)

In order to understand the behavior of Φ(x;λ) for large values of −λ, we write Φ =
(

Φ1

Φ2

)
and introduce the scaling

ξ =
√
−λx; Ψ1(ξ;λ) = Φ1(x;λ); Ψ2(ξ;λ) =

1√
−λ

Φ2(x;λ),

for which

Ψ′(ξ;λ) = Ã(ξ;λ)Ψ(ξ;λ); Ã(ξ;λ) =

(
02n I2n

I2n − 1
λ
V ( ξ√

−λ)⊗ I2 02n

)
Ψ(0;λ) =

(
I2n 02n

02n
1√
−λI2n

)
.

We can express this equation as
Ψ′ = Ã0Ψ + EΨ, (5.3)

where

Ã0 =

(
02n I2n

I2n 02n

)
; E(ξ;λ) =

(
02n 02n

− 1
λ
V ( ξ√

−λ)⊗ I2 02n

)
.

We proceed by looking for (matrix) solutions to (5.3) of the form Ψ(ξ;λ) = eξZ(ξ;λ), for
which

Z ′ = (Ã0 − I4n)Z + EZ. (5.4)

Integrating, we find

Z(ξ;λ) = e(Ã0−I4n)ξZ(0;λ) +

∫ ξ

0

e(Ã0−I4n)(ξ−ζ)E(ζ;λ)Z(ζ;λ)dζ. (5.5)

Since Ã0 is a constant matrix, we can directly compute

e(Ã0−I4n)(ξ−ζ) = e−(ξ−ζ)
(

cosh(ξ − ζ)I2n sinh(ξ − ζ)I2n

sinh(ξ − ζ)I2n cosh(ξ − ζ)I2n

)
,

which is uniformly bounded for ζ ∈ [0, ξ]. Fix a matrix norm | · | and constant C (in
particular, independent of λ) so that∣∣∣e(Ã0−I4n)ξZ(0;λ)

∣∣∣ ≤ C.

In addition, there exists a constant K (independent of λ) so that∣∣∣e(Ã0−I4n)(ξ−ζ)E(ζ;λ)
∣∣∣ ≤ K

|λ|
|V (

ζ√
−λ

)|.
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It follows that ∫ √−λP
0

∣∣∣e(Ã0−I4n)(ξ−ζ)E(ζ;λ)
∣∣∣dζ ≤ K

|λ|

∫ √−λP
0

|V (
ζ√
−λ

)|dζ. (5.6)

Setting y = ζ/
√
−λ we see that this integral is bounded by

K

|λ|

∫ P

0

|V (y)|
√
−λdy ≤ K̃|λ|−1/2,

for some constant K̃, independent of λ.
Now take any λ < 0 with |λ| sufficiently large so that

K̃|λ|−1/2 ≤ 1

2
.

Let T Z denote the right-hand side of (5.5), and consider T as a map on the space

Sλ :=
{
Z(·, λ) ∈ C([0,

√
−λP ];R4n×4n) : Z(0;λ) =

(
I2n 02n

02n
1√
−λI2n

)
,

‖Z(·;λ)‖C([0,
√
−λP ]) ≤ 2C

}
,

where
‖Z(·;λ)‖C([0,

√
−λP ]) := max

ζ∈[0,
√
−λP ]
|Z(ζ;λ)|,

with | · | designating the matrix norm induced by the Euclidean inner product.
Noting that for any Z ∈ Sλ

|T Z| ≤ C + ‖Z‖C([0,
√
−λP ])K̃|λ|−1/2

≤ C + 2CK̃|λ|−1/2 ≤ 2C,

we see that T is invariant on Sλ. Likewise, we find that for any Z1, Z2 ∈ Sλ

‖T (Z1 − Z2)‖C([0,
√
−λP ]) ≤ K̃|λ|−1/2‖Z1 − Z2‖C([0,

√
−λP ]) ≤

1

2
‖Z1 − Z2‖C([0,

√
−λP ]),

verifying that T is a contraction. We conclude that our matrix equation (5.4) has a unique
solution in Sλ, and that this solution can be expressed as

Z(ξ;λ) = e(Ã0−I4n)ξZ(0;λ) + O(|λ|−1/2). (5.7)

We can now substitute Z(ξ;λ) back into (5.5) to get a refinement of this estimate. For this,
we notice that by direct calculation

e(Ã0−I4n)(ξ−ζ)E(ζ;λ) = e−(ξ−ζ)

(
− sinh(ξ−ζ)

λ
V ( ζ√

−λ)⊗ I2 0

− cosh(ξ−ζ)
λ

V ( ζ√
−λ)⊗ I2 0

)
,
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so that
e(Ã0−I4n)(ξ−ζ)E(ζ;λ)e(Ã0−I4n)ζZ(0;λ)

= e−ξ

(
sinh(ξ−ζ) cosh ζ

−λ V ( ζ√
−λ)⊗ I2

sinh(ξ−ζ) sinh ζ

(−λ)3/2
V ( ζ√

−λ)⊗ I2

cosh(ξ−ζ) cosh ζ
−λ V ( ζ√

−λ)⊗ I2
cosh(ξ−ζ) sinh ζ

(−λ)3/2
V ( ζ√

−λ)⊗ I2

)
.

Integrating as in (5.6), we find that∫ ξ

0

e(Ã0−I4n)(ξ−ζ)E(ζ;λ)e(Ã0−I4n)ζZ(0;λ)dζ =

(
O(|λ|−1/2) O(|λ|−1)
O(|λ|−1/2) O(|λ|−1)

)
,

where the order relations are uniform for ξ ∈ [0,
√
−λP ]. Likewise, the second summand in

Z(ξ;λ) (i.e., the error term O(|λ|−1/2)) leads to a slightly better error matrix with O(|λ|−1)
in every entry. This provides a slight refinement of our estimate (5.7), which we can now
express as

Z(ξ;λ) =

(
Z11(ξ;λ) Z12(ξ;λ)
Z21(ξ;λ) Z22(ξ;λ)

)
=

(
e−ξ cosh ξI2n e−ξ sinh ξ√

−λ I2n

e−ξ sinh ξI2n e−ξ cosh ξ√
−λ I2n

)
+

(
O(|λ|−1/2) O(|λ|−1)
O(|λ|−1/2) O(|λ|−1)

)
.

(5.8)

Returning to original variables, we can express this as

Φ(x;λ) =

(
Φ11(x;λ) Φ12(x;λ)
Φ21(x;λ) Φ22(x;λ)

)
= e

√
−λx

(
e−
√
−λx cosh(

√
−λx)I2n e−

√
−λx sinh(

√
−λx)√
−λ I2n√

−λe−
√
−λx sinh(

√
−λx)I2n e−

√
−λx cosh(

√
−λx)I2n

)

+ e
√
−λx
(

O(|λ|−1/2) O(|λ|−1)
O(1) O(|λ|−1/2)

)
.

(5.9)

We observe that

e−
√
−λP cosh(

√
−λP ) =

1

2
(1 + e−2

√
−λP ),

where the exponential is clearly transcendentally small. Proceeding similarly for

e−
√
−λP sinh(

√
−λP ),

we can write

Φ(P ;λ) = e
√
−λP

(
1
2
I2n

1
2
√
−λI2n√

−λ
2
I2n

1
2
I2n

)
+ e

√
−λP

(
O(|λ|−1/2) O(|λ|−1)

O(1) O(|λ|−1/2)

)
. (5.10)

Recalling (3.5) we see that

X1(P ;λ)− iY1(P ;λ) =

(
I2n iI2n

e
√
−λP (−i

√
−λ
2
I2n + O(1)) e

√
−λP (−i1

2
I2n + O(|λ|−1/2))

)
,
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and likewise for (X1(P ;λ) + iY1(P ;λ)).
In particular, we can write X1(P ;λ)− iY1(P ;λ) = R(λ) + E(λ), where

R(λ) =

(
I2n iI2n

− i
√
−λ
2
e
√
−λP I2n − i

2
e
√
−λP I2n

)
,

and

E(λ) =

(
02n 02n

e
√
−λPO(1) e

√
−λPO(|λ|−1/2)

)
.

We see that

R(λ)−1 =
1

∆

(
− i

2
e
√
−λP I2n −iI2n

i
√
−λ
2
e
√
−λP I2n I2n

)
,

where

∆ = e
√
−λP (− i

2
−
√
−λ
2

).

This allows us to write

X1(P ;λ)− iY1(P ;λ) = R(λ)(I +R(λ)−1E(λ)),

and subsequently

(X1(P ;λ)− iY1(P ;λ))−1 = (I +R(λ)−1E(λ))−1R(λ)−1.

By direct calculation, we see that

R(λ)−1E(λ) =

(
O(|λ|−1/2) O(|λ|−1)
O(|λ|−1/2) O(|λ|−1)

)
.

It follows by Neumann expansion that

(I +R(λ)−1E(λ))−1 = I + Ẽ(λ),

where

Ẽ(λ) =

(
O(|λ|−1/2) O(|λ|−1)
O(|λ|−1/2) O(|λ|−1)

)
.

Combining these observations, we see that

(X1(P ;λ)− iY1(P ;λ))−1 = (I + Ẽ(λ))R(λ)−1 = R(λ)−1 + Ẽ(λ)R(λ)−1,

where

Ẽ(λ)R(λ)−1 =
1

∆

(
e
√
−λPO(|λ|−1/2) O(|λ|−1/2)

e
√
−λPO(|λ|−1/2) O(|λ|−1/2)

)
.

We now have

(X1(P ;λ) + iY1(P ;λ))(X1(P ;λ)− iY1(P ;λ))−1

= (X1(P ;λ) + iY1(P ;λ))R(λ)−1 + (X1(P ;λ) + iY1(P ;λ))Ẽ(λ)R(λ)−1,
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and we consider each summand on the right-hand side in turn. First,

(X1(P ;λ) + iY1(P ;λ))R(λ)−1 =
1

∆

(
e
√
−λP (

√
−λ
2
− i

2
)I2n −2iI2n

e2
√
−λPO(1) e

√
−λP (

√
−λ
2
I2n + O(1))

)
.

Likewise,

(X1(P ;λ)− iY1(P ;λ))Ẽ(λ)R(λ)−1 =
1

∆

(
e
√
−λPO(|λ|−1/2) O(|λ|−1/2)

e2
√
−λPO(1) e

√
−λPO(1)

)
.

Combining these observations, we conclude

(X1(P ;λ) + iY1(P ;λ))(X1(P ;λ)− iY1(P ;λ))−1

=
1

∆

(
e
√
−λP (

√
−λ
2
I2n + O(1)) O(1)

e2
√
−λPO(1) e

√
−λP (

√
−λ
2
I2n + O(1))

)
.

(5.11)

This matrix is unitary, and we temporarily express it as

U =

(
U11 U12

U21 U22

)
,

where each 2n × 2n block Uij can be identified from (5.11). In particular, we must have
U∗11U11 + U∗21U21 = I2n. Here,

U11 =
1

∆
e
√
−λP (

√
−λ
2

I2n + O(1)) =
1

− i
2
−
√
−λ
2

(

√
−λ
2

I2n + O(1)).

We see that
lim

λ→−∞
U∗11(λ)U11(λ) = I2n,

and it follows that

lim
λ→−∞

U∗21(λ)U21(λ) = 02n =⇒ lim
λ→−∞

U21(λ) = 02n.

Proceeding more directly with the other components of U , we find that

lim
λ→−∞

(X1(P ;λ) + iY1(P ;λ))(X1(P ;λ)− iY1(P ;λ))−1 = −I4n.

It follows immediately that

lim
λ→−∞

W̃ (P ;λ, θ) =

(
02n (In ⊗Rθ)

t

In ⊗Rθ 02n

)
.

Recalling that (In⊗Rθ)
t(In⊗Rθ) = I2n, we find that the eigenvalues µ of this last equation

satisfy
det(µ2I2n − I2n) = 0, (5.12)

from which we conclude that the eigenvalues of W̃ (P ;λ, θ) approach ±1 as λ approaches
−∞, each with multiplicity 2n.

We summarize these observations into a lemma.
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Lemma 5.1. Suppose V ∈ C([0, P ];Rn×n) is a symmetric matrix-valued potential, and
W̃ (P ;λ, θ) is defined as in (3.9). Given any ε > 0 there exists N > 0 sufficiently large
so that if λ < −N then W̃ (P ;λ, θ) has 2n eigenvalues µ that satisfy |µ + 1| < ε and 2n
eigenvalues µ that satisfy |µ− 1| < ε.

In order to see that Theorem 1.3 follows from these considerations, we begin by supposing
that for some fixed λ0 ∈ R and some θ ∈ [0, π], the matrix W̃ (P ;λ0, θ) has 2n+2κ eigenvalues
(counted with multiplicity; κ ∈ {1, 2, . . . , n}) with arguments on the interval [0, π) (i.e., on
the upper semi-arc; we will denote the number of eigenvalues of W̃ (P ;λ0, θ) on this arc
by ñ+(P ;λ0, θ)). Notice that since the eigenvalues of Hθ all occur with multiplicity 2,
ñ+(P ;λ0, θ) must be an even number. As λ decreases from λ0 toward −λ∞ the eigenvalues
of W̃ (P ;λ, θ) will rotate monotonically counterclockwise, and we know from Lemma 5.1 that
for λ∞ sufficiently large 2n of these will end at −1 and 2n will end at +1 (possibly after
multiple full rotations about S1). We conclude that at least 2κ eigenvalues must cross −1,
and each of these crossings will correspond with a multiplicity-2 eigenvalue of Hθ. In this
way, we see that Hθ has at least κ eigenvalues below λ0. We note particularly that if an
eigenvalue resides at the point (1, 0) when λ = λ0 then by strict monotonicity it cannot
remain at (1, 0) as λ decreases toward −λ∞.

On the other hand, suppose that for some θ ∈ [0, π] the matrix W̃ (P ;λ0, θ) has 2n+ 2κ
eigenvalues (κ ∈ {1, 2, . . . , n}) with arguments on the interval [−π, 0) (i.e., on the lower semi-
arc; we will denote the number of eigenvalues of W̃ (P ;λ0, θ) on this arc by ñ−(P ;λ0, θ)).
Noting that for any θ ∈ [0, π] (and indeed for any θ ∈ R), Rθ−π = −Rθ, we see that the
matrix W̃ (P ;λ0, θ − π) will have 2n + 2κ eigenvalues on the upper semi-arc. We conclude
precisely as before that Hθ−π will have at least κ eigenvalues below λ0. As discussed in the
introduction, Hθ−π has precisely the same eigenvalues as Hπ−θ, and so we can conclude that
Hπ−θ has at least κ eigenvalues below λ0.

Theorem 1.3 follows immediately from these observations.

6 Applications

In this section we apply the preceding theory to specific linear operators obtained when
gradient systems are linearized about stationary periodic solutions.

6.1 Allen-Cahn Equations

Consider the single Allen-Cahn equation

ut = uxx − F ′(u), (6.1)

where

F (u) =
1

4
αu4 − 1

2
βu2, (6.2)

for some positive constants α and β. Such equations arise naturally in the context of non-
conservative phase separation processes, and the family of double-well functions (6.2) is taken
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from [15]. As discussed in [4, 5], given any amplitude u∗ ∈ (0,
√
β/α) there exists a periodic

solution ū(x;u∗) that can be expressed in terms of a Jacobi elliptic function as

ū(x;u∗) = u∗sn (

√
−2F (u∗)

u∗
x; k); k2 = − αu4

∗
4F (u∗)

. (6.3)

Here, sn(y; k) is defined so that

sn(y; k) = sinφ; where y =

∫ φ

0

dθ√
1− k2 sin2 θ

.

In practice, such waves can be computed with MATLAB’s built-in function ellipje, and
an example implementation looks as follows (with ubar designating ū(x;u∗), alph designating
α, A designating amplitude u∗, and F denoting a MATLAB anonymous function specifying
6.2):

ubar = A*ellipj((sqrt((-2*F(A)))/A)*x,-alph*A∧4/(4*F(A)));

Likewise, the period for ū(x;u∗) can be computed as

P (u∗) =
4u∗√
−2F (u∗)

K(k), (6.4)

where K denotes the complete elliptic integral

K(k) =

∫ 1

0

ds√
(1− s2)(1− k2t2)

,

which can be computed with MATLAB’s built-in function ellipke. An example implementa-
tion looks as follows:

P = (4*A/sqrt(-2*F(A)))*ellipke(-alph*A∧4/(4*F(A)));

Linearizing (6.1) about (6.3), we obtain the eigenvalue problem

Hθφ = −φ′′ + V (x)φ = λφ; V (x) = F ′′(ū(x;u∗)), (6.5)

to which we can associate boundary conditions

φ(P ) = eiθφ(0); φ′(P ) = eiθφ′(0). (6.6)

As discussed in the general development, we will carry out our calculations in the context of
the related equation

Hθy = −y′′ + (V (x)⊗ I2)y = λy

y(P ) = (In ⊗Rθ)y(0)

y′(P ) = (In ⊗Rθ)y
′(0).

In order to carry out the numerical calculations below, we fix α = 1 and β = 1. In
addition, we fix u∗ = .5, except for the calculation in which we determine how the leading
eigenvalue varies as u∗ varies.
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Lower bound computation. We start by showing that H := −∂2
x + V (x) has L2(R)

spectrum below λ0 = 0. This is an efficient calculation, only requiring the evolution of (3.3)
for the single value λ = 0, and evaluation of the eigenvalues of W̃ (P ; 0, 0).

When θ = 0, ūx is an eigenfunction associated with λ = 0, and consequently W̃ (P ; 0, 0)
will certainly have −1 as an eigenvalue, with multiplicity at least two. According to Theorem
1.3, we will be able to conclude thatH has spectrum below λ0 = 0 so long as ∆ñ(P ; 0, 0)) 6= 0.

The spectrum of W̃ (P ; 0, 0), generated numerically, is depicted in Figure 4, from which
we see that

∆ñ(P ; 0, 0) = ñ+(P ; 0, 0)− ñ−(P ; 0, 0) = −4.

We emphasize that we know that −1 is an eigenvalue for W̃ (P ; 0, 0) with multiplicity at least
two, and so there is no issue with numerical error for that value. The other eigenvalue of
W̃ (P ; 0, 0) is located at approximately −.0391−.9992i, and while there is certainly numerical
error associated with this value it will not be enough to move the value into the upper semi-
arc (though we do not prove this assertion here). We conclude from Theorem 1.3 that Hπ

has at least one eigenvalue below λ = 0.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Spectral flow,  = 0,  = 0

Figure 4: Eigenvalues of W̃ (P ; 0, 0) for Example 1.

Morse index for θ = 0. We next use Theorem 1.1 to compute the number of eigenvalues
below λ0 = 0 for θ = 0. This requires the numerical calculation of Mas(`1, `2(0); [0, P ]λ=0),
and the flow runs as follows: the four eigenvalues of W̃ (0; 0, 0) all reside at −1, and as x
runs from 0 to P , they rotate monotonically clockwise, splitting apart into two separated
multiplicity-2 eigenvalues. As noted in our lower bound computation, one of these stops at
−1 (when x = P ) and the other stops at approximately −.0391 − .9992i. (The additional
thing we had to observe here is that there were no intermediate conjugate points.) We
conclude that

Mas(`1, `2(0); [0, P ]λ=0) = −4.
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According then to Theorem 1.1 we have

Mor(H0) = 4− 2 = 2.

We conclude that H0 has precisely one multiplicity-2 eigenvalue below λ0 = 0 and H0 has
precisely one (necessarily simple) eigenvalue below λ0 = 0.

Although Corollary 1.1 was not used in this calculation, we remark on how it fits in
with the observed dynamics. The proof of Corollary 1.1 in the case θ = 0 hinges on the
observation that the number of eigenvalues of W̃ (x;λ0, 0) rotating away from −1 in the
clockwise direction as x increases from 0 is precisely the number of negative eigenvalues of
the matrix

−B(0;λ0) =

(
V (0)⊗ I2 − λ0I2n 0

0 −I2n

)
.

In the current example, we have n = 1, λ0 = 0, and

V (0) = F ′′(ū(0;u∗)) = F ′′(0) = −β = −1.

We conclude that the matrix −B(0; 0) has four negative eigenvalues, and these correspond
with the four eigenvalues in our example that rotate from −1 in the clockwise direction as
x increases from 0.

The full (λ, x)-Maslov box. For purposes of illustration, we depict the full (λ, x)-Maslov
box in Figure 5. In this case, θ = 0, so as discussed in the proof of Theorem 1.1 the eigenvalues
of W̃ (0;λ, 0) will all be −1 for all λ ∈ R. I.e., the entire bottom shelf is conjugate. This is
not depicted in the figure.
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Figure 5: The (λ, x)-Maslov Box with θ = 0 for Example 1.

Morse index for θ ∈ (0, π]. Having computed X1(P ; 0), we can now evaluate the Maslov
index Mas(`1(P, ·), `2; [0, θ]λ=0) for all θ ∈ (0, π] by evolving the matrix Rθ and following
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the eigenvalues of W̃ (P ; 0, θ). As discussed in the Morse index calculation for θ = 0, the
eigenvalues of W̃ (P ; 0, 0) reside at −1 and (approximately) −.0391− .9992i. As θ increases,
the eigenvalue at −1 rotates monotonically clockwise to .0391 + .9992, while the eigenvalue
at −.0391 − .9992i rotates monotonically counterclockwise to +1. (We know at the outset
that the arrangment of eigenvalues for θ = π must be the negative of the arrangement at
θ = 0, but the paths these eigenvalues take must be determined.) We conclude that for all
θ > 0

Mas(`1(P, ·), `2; [0, θ]λ=0) = −2,

and so by Theorem 1.2
Mor(Hθ) = Mor(H0) + 2 = 4.

We conclude that for any θ ∈ (0, π], Hθ has two eigenvalues below λ0 = 0.
The full dispersion relation. The full dispersion relation for negative values of λ is shown

in Figure 6.
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Figure 6: The (λ, θ)-Maslov Box for Example 1.

Plot of lowest eigenvalues. As discussed in [5], it can be useful when studying periodic
waves to determine the dependence of the lower bound on spectrum as a function of wave
amplitude. For such calculations, our counting framework can be used to ensure than an
identified eigenvalue is indeed the lowest value in the spectrum. For example, we know from
our calculations above that for u∗ = .5, H0 has precisely one eigenvalue below λ0 = 0, and
we find by calculation that H0 has an eigenvalue at approximately −.6394. This must be
the lowest eigenvalue of H0. Proceeding in this way over a range of amplitudes 0 ≤ u∗ ≤ 1
we arrive at the relationship depicted in Figure 7.

Remark 6.1. As suggested by Figure 6, the lowest eigenvalue of H0 turns out for this
example to be the lowest eigenvalue of H. I.e., for any θ ∈ (0, π] the lowest eigenvalue of Hθ

is greater than the lowest eigenvalue of H0.
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Figure 7: Lower limits for the spectrum of H for Example 1.

6.2 Allen-Cahn Systems

As a toy system model, we consider Allen-Cahn systems of the form

ut = uxx − F ′(u) + δ(u− v)

vt = vxx − F ′(v)− δ(u− v),
(6.7)

where F (u) is specified in (6.2), and δ ∈ R is a coupling constant.
System (6.7) has been contrived to have a stationary periodic vector solution

ū(x;u∗) = u∗ sn(

√
−2F (u∗)

u∗
x; k)

v̄(x;u∗) = u∗ sn(

√
−2F (u∗)

u∗
x; k).

The associated eigenvalue problem is

−φ′′ + F ′′(ū)φ− δφ+ δψ = λφ

−ψ′′ + F ′′(ū)ψ + δφ− δψ = λψ.
(6.8)

That is, we have our form (1.5) with

V (x) =

(
−δ + F ′′(ū) δ

δ −δ + F ′′(ū)

)
.

Adding the equations in (6.8) we see that ζ = φ+ ψ solves

−ζ ′′ + F ′′(ū)ζ = λζ, (6.9)
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and subtracting the equations in (6.8) we see that η = φ− ψ solves

−η′′ + F ′′(ū)η = (λ+ 2δ)η. (6.10)

We see from (6.9) that any eigenvalue from (6.5) in Example 1 will be an eigenvalue of (6.8)
(with eigenfunction (φ, ψ) = (ζ, ζ)), and we see from (6.10) that if λ + 2δ is an eigenvalue
of (6.5) then λ will be an eigenvalue of (6.8) (with eigenfunction (φ, ψ) = (η,−η)). For
example, since −.6394 is an eigenvalue for (6.5) we should find that for δ = 1, −2.6394 is an
eigenvalue of (6.8).

In order to carry out a numerical calculation, we will take the specific values δ = 1,
α = 1, β = 1, and the amplitude u∗ = .5. In this case

‖V ‖L∞ = max
u∈[0,u∗],±

|F ′′(u)− δ ± |δ||,

where we note the appearance of ± in the maximization. For u∗ = .5, F ′′(u) varies from −1
to −1

4
, and for δ = 1, ‖V ‖L∞ = 3.

Lower bound computation. We start by showing that H := −∂2
x + V (x) has L2(R)

spectrum below λ0 = 0. When θ = 0, ūx is an eigenfunction associated with λ = 0, and
consequently W̃ (P ; 0, 0) will certainly have −1 as an eigenvalue, with multiplicity at least
two. According to Theorem 1.3, we will be able to conclude that H has spectrum below
λ0 = 0 so long as ∆ñ(P ; 0, 0)) 6= 0.

The spectrum of W̃ (P ; 0, 0) is depicited in Figure 8, from which we see that

∆ñ(P ; 0, 0) = ñ+(P ; 0, 0)− ñ−(P ; 0, 0) = −8.

We emphasize that we know that −1 is an eigenvalue for W̃ (P ; 0, 0) with multiplicity at least
two, and so there is no issue with numerical error for that value. The other eigenvalues of
W̃ (P ; 0, 0) are located at approximately (moving counterclockwise from −1) −.6984−.7157i,
−.0307− .9995i, and .3243− .9460i, and while there is certainly numerical error associated
with these values, the errors will not be enough to move any of the values into the upper
semi-arc (though we do not prove this assertion here). We conclude from Theorem 1.3 that
Hπ has at least two eigenvalues below λ = 0.

Morse index for θ = 0. We next use Theorem 1.1 to compute the number of eigenvalues
below λ0 = 0 for θ = 0. This requires the numerical calculation of Mas(`1, `2(0); [0, P ]λ=0),
and the flow runs as follows: the eight eigenvalues of W̃ (0; 0, 0) all reside at −1, and as x
evolves from 0 to P they rotate monotonically clockwise, with four (i.e., two multiplicity-2
eigenvalues) crossing −1. Keeping in mind that the eight eigenvalues departing −1 in the
clockwise direction decrement the Maslov index by 8, we conclude that

Mas(`1, `2(0); [0, P ]λ=0) = −12.

According then to Theorem 1.1 we have

Mor(H0) = 12− 4 = 8.

We conclude that H0 has eight (i.e., four multiplicity-2) eigenvalues below λ0 = 0, and H0

has precisely four eigenvalues below λ0 = 0. I.e. Mor(H0; 0) = 4.
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Similarly as in Section 6.1, we note that during the proof of Corollary 1.1, we have seen
that the number of eigenvalues of W̃ (x; 0, 0) rotating away from −1 in the clockwise direction
as x increases from 0 is equal to the number of negative eigenvalues of the matrix

−B(0; 0) =

(
V (0)⊗ I2 0

0 −I2n

)
.

In the current example, we have n = 2, λ0 = 0, and

V (0) =

(
−1 + F ′′(0) 1

1 −1 + F ′′(0)

)
=

(
−2 1
1 −2

)
,

with eigenvalues −3 and −1. We conclude that the matrix −B(0; 0) has eight negative
eigenvalues, and these correspond with the eight eigenvalues in our example that rotate from
−1 in the clockwise direction as x increases from 0.

The full (λ, x)-Maslov box. For purposes of illustration, we depict the full (λ, x)-Maslov
box in Figure 9. We find by this calculation that the eigenvalues reside at approximately
−.6394, −1.6251, −2.0001, and −2.6394 (indicated by crossings along the top shelf in Figure
9). As in Figure 5, the entire bottom shelf is conjugate, and this is not depicted.

Morse index for θ ∈ (0, π]. Having computed X1(P ; 0), we can evaluate the Maslov
index Mas(`1(P, ·), `2; [0, θ]λ=0) for all θ ∈ (0, π] by evolving the matrix Rθ and following the
eigenvalues of W̃ (P ; 0, θ). As discussed in the spectral count for θ = 0, the eigenvalues of
W̃ (P ; 0, 0) reside at −1 and (approximately, moving counterclockwise from −1) −.6984 −
.7157i, −.0307 − .9995i, and .3243 − .9460i. As θ increases, the eigenvalue at −1 rotates
monotonically clockwise to .0307+.9995i, and one additional crossings occurs in the clockwise
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Figure 9: The (λ, x)-Maslov Box for Example 2.

direction at (approximately) θ = 1.31. I.e.,

Mas(`1(P ; ·), `2; [0, θ]λ=0) =

{
−2 0 < θ ≤ 1.31

−4 1.31 < θ ≤ π
.

We conclude from Theorem 1.2 that

Mor(Hθ) =


8 θ = 0

10 0 < θ ≤ 1.31

12 1.31 < θ ≤ π

,

where the value 1.31 is approximate.
The full dispersion relation. The full dispersion relation for negative values of λ is shown

in Figure 10.
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Figure 10: The (λ, θ)-Maslov Box for Example 2.
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