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Abstract

Working with general linear Hamiltonian systems on [0, 1], and with a wide range
of self-adjoint boundary conditions, including both separated and coupled, we develop
a general framework for relating the Maslov index to spectral counts. Our approach
is illustrated with applications to Schrödinger systems on R with periodic coefficients,
and to Euler-Bernoulli systems in the same context.

1 Introduction

For values λ in some interval I ⊂ R, we consider linear Hamiltonian systems

J2ny
′ = B(x;λ)y; x ∈ [0, 1], y(x) ∈ R2n, n ∈ {1, 2, . . . }, (1.1)

where J2n denotes the standard symplectic matrix

J2n =

(
0n −In
In 0n

)
,

and we assume throughout that B ∈ C([0, 1] × I : R2n×2n) is symmetric. Moreover, we
assume B is differentiable in λ and that Bλ ∈ C([0, 1]× I : R2n×2n). We consider two types
of self-adjoint boundary conditions, separated and generalized.

(BC1). We consider separated self-adjoint boundary conditions

αy(0) = 0; βy(1) = 0,

where we assume
α ∈ Rn×2n, rankα = n, αJ2nα

t = 0;

β ∈ Rn×2n, rank β = n, βJ2nβ
t = 0.

(BC2). We consider general self-adjoint boundary conditions

Θ

(
y(0)
y(1)

)
= 0; Θ ∈ R2n×4n, rank Θ = 2n, ΘJ4nΘt = 0,

where

J4n :=

(
−J2n 0

0 J2n

)
.
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Remark 1.1. We will see from a short calculation in Section 4 that the form of J4n is a nat-
ural consequence of (1.1) and our convention for specifying boundary conditions in the form
Θ
(
y(0)
y(1)

)
= 0. We will also verify in Section 4 that the boundary conditions (BC1) can always

be expressed in the form (BC2), while the converse is not true. (This is why we describe
(BC2) as general rather than coupled.) We analyze both boundary conditions, because the
approach taken with (BC2) is not generally as efficient as the approach taken with (BC1).
Finally, we note that in [14], the authors show that for Sturm-Liouville systems, problems
with general boundary conditions corresponding with (BC2) can be replaced by problems with
separated self-adjoint boundary conditions that have precisely the same eigenvalues, includ-
ing multiplicities. Indeed, the approach of [14] immediately extends to our setting, providing
an alternative way to tackle (BC2). We do not pursue this approach further in the current
paper.

In some cases it will be natural to assume that the matrix Θ varies with a parameter ξ in
some interval I ⊂ R. This leads to a third family of boundary conditions, which we specify
as follows.

(BC2)ξ. In (BC2), suppose the matrix Θ depends continuously on a variable ξ ∈ I ⊂ R. In
particular, assume that Θ ∈ C(I;R2n×4n) and that for each ξ ∈ I the matrix Θ(ξ) satisfies
the assumptions of (BC2).

One canonical setting in which equations of form (1.1) arise is from second order eigen-
value problems such as

−φ′′ + V (x)φ = λφ, (1.2)

where φ(x) ∈ Rn and V ∈ C([0, 1];Rn×n) is symmetric for all x ∈ [0, 1]. In this case, it’s
natural to express separated self-adjoint boundary conditions in the form

α1φ(0) + α2φ
′(0) = 0

β1φ(1) + β2φ
′(1) = 0,

with α = (α1 α2) and β = (β1 β2) assumed to satisfy the conditions of (BC1). The form
(1.1) is then obtained by setting y1 = φ and y2 = φ′, and for y =

(
y1
y2

)
expressing the resulting

system as J2ny
′ = B(x;λ)y. Equations of form (1.2) have, of course, been studied extensively,

and the introduction of symplectic methods such as those employed here goes back to early
work of Maslov and Arnol’d ([1, 2, 28]). More recently, (1.2) has been analyzed in [20],
using symplectic methods along with a projective formulation of (BC1) due to Berkolaiko
and Kuchment [5, 26].

In order to accommodate the possibility of coupled boundary conditions such as periodic
conditions, we have introduced the formulation (BC2). While our analysis will be for this
general condition, our direct motivation for (BC2) stems from its role in the spectral analysis
of periodic solutions to certain evolutionary PDE (discussed more in Section 4.4.1).

General linear Hamiltonian systems of form (1.1) comprise a broad class of equations that
enjoy properties similar to those of (1.2) (see, for example, the text [29] for an overview).
Such equations are a natural setting for symplectic methods, and in particular several recent
analyses have centered on the Maslov index (for example, [7, 8, 9, 10, 16]). One of our
goals in developing the general framework with (1.1)-(BC1) and (1.1)-(BC2) is to facilitate
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the extension of results that are fairly standard in the Sturm-Liouville setting to the more
general class of self-adjoint ODE. As examples of the systems we have in mind, we discuss
two applications in Section 4, the first to Schrödinger systems (Section 4.4.1), and the second
to Euler-Bernoulli systems (Section 4.4.2). In both cases, we consider θ-periodic boundary
conditions, and a reformulation that sets the problem in the form (1.1)-(BC2)ξ.

Our main results will involve relationships between the number of values λ ∈ I for which
(1.1) has a solution (with a specified choice of boundary conditions) and related Maslov
indices for the equation. In the case of boundary conditions (BC1) we are particularly
motivated by the development of [20] (for Schrödinger operators on [0, 1]), while for boundary
conditions (BC2) we are motivated by [17, 24] (again for Schrödinger operators). This
correspondence between spectral counts and the Maslov index has its origins in the work of
Arnol’d and Maslov noted above. Recently, the theory has been applied in a wide range of
settings, including ODE on bounded domains [17, 20, 23, 24, 30, 31], ODE on unbounded
domains [6, 7, 8, 9, 10, 19, 21, 22, 25], and PDE on bounded domains [11, 13, 27].

Our goal for the remainder of this introduction is to provide an informal development of
the Maslov index in the current context, and to state our main results. A more systematic
development of the Maslov index is provided in Section 2, and a thorough discussion, targeted
toward the current setting, can be found in [18]. For a broader view of the Maslov index, we
refer the reader to [12, 15, 34].

As a starting point, we define what we will mean by a Lagrangian subspace of R2n.

Definition 1.1. We say ` ⊂ R2n is a Lagrangian subspace if ` has dimension n and

(J2nu, v)R2n = 0,

for all u, v ∈ `. Here, (·, ·)R2n denotes Euclidean inner product on R2n. We sometimes
adopt standard notation for symplectic forms, ω(u, v) = (J2nu, v)R2n. In addition, we denote
by Λ(n) the collection of all Lagrangian subspaces of R2n, and we will refer to this as the
Lagrangian Grassmannian.

Any Lagrangian subspace of R2n can be spanned by a choice of n linearly independent
vectors in R2n. We will generally find it convenient to collect these n vectors as the columns
of a 2n× n matrix X, which we will refer to as a frame for `. Moreover, we will often write
X =

(
X
Y

)
, where X and Y are n× n matrices.

Suppose `1(·), `2(·) denote paths of Lagrangian subspaces `i : I → Λ(n), for some pa-
rameter interval I. The Maslov index associated with these paths, which we will denote
Mas(`1, `2; I), is a count of the number of times the paths `1(·) and `2(·) intersect, counted
with both multiplicity and direction. (Precise definitions of what we mean in this context
by multiplicity and direction will be given in Section 2.) In some cases, the Lagrangian
subspaces will be defined along some path in the (α, β)-plane

Γ = {(α(t), β(t)) : t ∈ I},

and when it is convenient we will use the notation Mas(`1, `2; Γ).
Although there are certainly cases in which the Maslov index can be computed analyt-

ically, our point of view is that in most applications it will be computed numerically. In
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particular, the general character of our theorems involves starting with a quantity that is
relatively difficult to compute numerically, and expressing it in terms of one or more quan-
tities that are relatively easy to compute numerically. Such calculations can be made via
the associated frames, so the computational difficulty associated with the Maslov index is
determined by the computational difficulty associated with computing the frames.

For (1.1) with boundary conditions (BC1) we begin by specifying an evolving Lagrangian
subspace `1(x;λ) as follows. Let X1 denote a matrix solution of the initial value problem

J2nX
′
1 = B(x;λ)X1

X1(0;λ) = J2nα
t.

(1.3)

We will show in Section 3 that for all (x, λ) ∈ [0, 1]× I, the matrix X1(x;λ) is the frame for
a Lagrangian subspace. In addition, we will check that the matrix X2 = J2nβ

t is the frame
for a (fixed) Lagrangian subspace, which we denote `2.

Suppose that for some value λ ∈ I the equation (1.1) with boundary conditions (BC1)
admits one or more linearly independent solutions. We denote the subspace spanned by
these solutions by E(λ), noting that dimE(λ) ≤ 2n. Given any two values λ1, λ2 ∈ I, with
λ1 < λ2, we will see that under the monotonicity assumption of Theorem 1.1 (see below),
the spectral count

N ([λ1, λ2)) :=
∑

λ∈[λ1,λ2)

dimE(λ), (1.4)

is well-defined.
We will establish the following theorem.

Theorem 1.1. For equation (1.1) with boundary conditions (BC1), suppose B ∈ C([0, 1]×I :
R2n×2n) is symmetric, and that B is differentiable in λ, with Bλ ∈ C([0, 1]× I : R2n×2n). Fix
λ1, λ2 ∈ I, λ1 < λ2. If the matrix∫ 1

0

X1(x;λ)tBλ(x;λ)X1(x;λ)dx

is positive definite for all λ ∈ [λ1, λ2], then

N ([λ1, λ2)) = −Mas(`1(·;λ2), `2; [0, 1]) + Mas(`1(·;λ1), `2; [0, 1]).

Our notation Mas(`1(·;λ2), `2; [0, 1]) denotes the Maslov index for Lagrangian subspaces
`1(·, λ2) and `2, as x varies from 0 to 1, and similarly for Mas(`1(·;λ1), `2; [0, 1]), except that
λ2 is replaced by λ1. We emphasize that the strength of Theorem 1.1 lies in the numerical
computability of these Maslov indices, which can both be computed by evolving forward
solutions to appropriate initial value problems.

Remark 1.2. Fixing λ0 ∈ I, it’s clear that if Bλ(x;λ0) is positive definite for all x ∈ [0, 1],
then the matrix ∫ 1

0

X1(x;λ0)
tBλ(x;λ0)X1(x;λ0)dx
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will be positive definite. Moreover, we will see in our applications that this matrix is often
positive definite in cases for which Bλ(x;λ0) is only non-negative for all x ∈ [0, 1]. Finally,
we note that during the proof of Theorem 1.1, we will obtain the relation∫ 1

0

X1(x;λ0)
tBλ(x;λ0)X1(x;λ0)dx = X1(1;λ0)

tJ2n(∂λX1)(1;λ0),

and so theorem 1.1 could equivalently be stated in terms of this last matrix expression.

For the case of (1.1) with boundary conditions (BC2), we begin by defining a Lagrangian
subspace in terms of the “trace” operator

Txy :=M
(
y(0)

y(x)

)
, (1.5)

where

M =


In 0 0 0
0 0 In 0
0 −In 0 0
0 0 0 In

 .

Precisely, we will verify in Section 4 that the subspace

`3(x;λ) := {Txy : J2ny
′ = B(x;λ)y on (0, 1)} (1.6)

is Lagrangian for all (x, λ) ∈ [0, 1]× I.
In order to establish notation for the statement of our second theorem, we let Φ(x;λ)

denote the 2n× 2n fundamental matrix solution to

J2nΦ′ = B(x;λ)Φ; Φ(0;λ) = I2n. (1.7)

If we introduce the notation

Φ(x;λ) =

(
Φ11(x;λ) Φ12(x;λ)
Φ21(x;λ) Φ22(x;λ)

)
,

then we can express the frame for `3(x;λ) as

X3(x, λ) =

(
X3(x, λ)

Y3(x, λ)

)
=


In 0

Φ11(x;λ) Φ12(x;λ)
0 −In

Φ21(x;λ) Φ22(x;λ)

 . (1.8)

In addition, we will verify in Section 4 that the matrix

X4 :=MJ4nΘt (1.9)

is the frame for a Lagrangian subspace, which we will denote `4.
We will establish the following theorem.
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Theorem 1.2. For equation (1.1) with boundary conditions (BC2), suppose B ∈ C([0, 1]×I :
R2n×2n) is symmetric, and that B is differentiable in λ, with Bλ ∈ C([0, 1]× I : R2n×2n). Fix
λ1, λ2 ∈ I, λ1 < λ2. If the matrix∫ 1

0

Φ(x;λ)tBλ(x;λ)Φ(x;λ)dx

is positive definite for all λ ∈ [λ1, λ2], then

N ([λ1, λ2)) = −Mas(`3(·;λ2), `4; [0, 1]) + Mas(`3(·;λ1), `4; [0, 1]).

Remark 1.3. The considerations discussed in Remark 1.2 hold for the integral∫ 1

0

Φ(x;λ0)
tBλ(x;λ0)Φ(x;λ0)dx,

and we note that during the proof of Theorem 1.2, we will obtain the relation∫ 1

0

Φ(x;λ0)
tBλ(x;λ0)Φ(x;λ0)dx = Φ(1;λ0)

tJ2n(∂λΦ)(1;λ0).

Theorem 1.2 could equivalently be stated in terms of this last matrix expression.

Finally, for boundary conditions (BC2)ξ we consider the path of Lagrangian subspaces
obtained by fixing x = 1 in our specification above of `3(x;λ). Rather than introducing
new notation, we will express this path as `3(1; ·). The matrix Θ now depends on ξ, and
we specify the evolving matrix X4(ξ) := MJ4nΘ(ξ)t, which is the frame for an evolving
Lagrangian subspace `4(ξ). Again we do not introduce new notation to distinguish this from
our previous use of `4; indeed, we can view the previous case as specialized to functions
constant in ξ. In this case, N ([λ1, λ2)) will depend on the value of ξ, so we will accordingly
expand the notation to N ([λ1, λ2); ξ).

We obtain the following theorem.

Theorem 1.3. For equation (1.1) with boundary conditions (BC2)ξ, suppose B ∈ C([0, 1]×
I : R2n×2n) is symmetric, and that B is differentiable in λ, with Bλ ∈ C([0, 1]× I : R2n×2n).
Fix λ1, λ2 ∈ I, λ1 < λ2. If the matrix∫ 1

0

Φ(x;λ)tBλ(x;λ)Φ(x;λ)dx

is positive definite for all λ ∈ [λ1, λ2], then

N ([λ1, λ2); ξ2)−N ([λ1, λ2); ξ1)

= −Mas(`3(1;λ2), `4; [ξ1, ξ2]) + Mas(`3(1;λ1), `4; [ξ1, ξ2]).

For ξ1 ∈ I fixed, we can use Theorem 1.2 to compute

N ([λ1, λ2); ξ1) = −Mas(`3(·;λ2), `4(ξ1); [0, 1]) + Mas(`3(·;λ1), `4(ξ1); [0, 1]). (1.10)

We immediately conclude the following corollary.
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Corollary 1.1. Let the assumptions and notation of Theorem 1.3 hold, and fix any ξ1 ∈ I.
Then for any ξ2 ∈ I, ξ2 > ξ1,

N ([λ1, λ2); ξ2) = −Mas(`3(1;λ2), `4; [ξ1, ξ2]) + Mas(`3(1;λ1), `4; [ξ1, ξ2])

−Mas(`3(·;λ2), `4(ξ1); [0, 1]) + Mas(`3(·;λ1), `4(ξ1); [0, 1]).

The importance of Corollary 1.1 is that in order to evaluate the right-hand side we only
need to generate two (matrix) solutions of (1.1), one at λ1 and the other at λ2 (both at ξ1).

The remainder of the article is organized as follows. In Section 2, we briefly review theory
associated with the Maslov index, with an emphasis on the properties we will need in the
remaining sections of the article. In Section 3, we prove Theorem 1.1, and in Section 4 we
prove Theorem 1.2, Theorem 1.3, and Corollary 1.1. Applications are provided at the ends
of Sections 3 and 4.

2 The Maslov Index

In this section, we provide a short overview of the Maslov index in the current setting.
Interested readers can find a more thorough discussion in [18] and the references found
there.

Given any two Lagrangian subspaces `1 and `2, with associated frames X1 =
(
X1

Y1

)
and

X2 =
(
X2

Y2

)
, we can define the complex n× n matrix

W̃ = −(X1 + iY1)(X1 − iY1)−1(X2 − iY2)(X2 + iY2)
−1. (2.1)

As verified in [18], the matrices (X1 − iY1) and (X2 + iY2) are both invertible, and W̃ is
unitary. We have the following theorem from [18].

Theorem 2.1. Suppose `1, `2 ⊂ R2n are Lagrangian subspaces, with respective frames X1 =(
X1

Y1

)
and X2 =

(
X2

Y2

)
, and let W̃ be as defined in (2.1). Then

dim ker(W̃ + I) = dim(`1 ∩ `2).

That is, the dimension of the eigenspace of W̃ associated with the eigenvalue −1 is precisely
the dimension of the intersection of the Lagrangian subspaces `1 and `2.

Remark 2.1. As noted in [18], Theorem 2.1 can be viewed as a convenient restatement of
more general results associated with the Soriau map (see, e.g., Lemma 1.2 in [4] or Proposi-
tion 2.52 in [15]). The relationship between W̃ and the Souriau map is discussed at length
in [18].

Following [4, 15], we use Theorem 2.1, along with an approach to spectral flow introduced
in [32], to define the Maslov index. Given a parameter interval I = [a, b], which can be
normalized to [0, 1], we consider maps ` : I→ Λ(n), which will be expressed as `(t). In order
to specify a notion of continuity, we need to define a metric on Λ(n), and following [15] (p.
274), we do this in terms of orthogonal projections onto elements ` ∈ Λ(n). Precisely, let
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Pi denote the orthogonal projection matrix onto `i ∈ Λ(n) for i = 1, 2. I.e., if Xi denotes a
frame for `i, then Pi = Xi(X

t
iXi)

−1Xt
i. We take our metric d on Λ(n) to be defined by

d(`1, `2) := ‖P1 − P2‖,

where ‖·‖ can denote any matrix norm. We will say that ` : I→ Λ(n) is continuous provided
it is continuous under the metric d.

Given two continuous maps `1(t), `2(t) on I, we denote by L(t) the path

L(t) = (`1(t), `2(t)).

In what follows, we will define the Maslov index for the path L(t), which will be a count,
including both multiplicity and direction, of the number of times the Lagrangian paths `1
and `2 intersect. In order to be clear about what we mean by multiplicity and direction,
we observe that associated with any path L(t) we will have a path of unitary complex
matrices as described in (2.1). We have already noted that the Lagrangian subspaces `1
and `2 intersect at a value t0 ∈ I if and only if W̃ (t0) has -1 as an eigenvalue. (We refer
to the value t0 as a conjugate point.) In the event of such an intersection, we define the
multiplicity of the intersection to be the multiplicity of -1 as an eigenvalue of W̃ (since W̃
is unitary the algebraic and geometric multiplicities are the same; we see from Theorem 2.1
that this multiplicity is precisely the dimension of the intersection `1(t0)∩ `2(t0)). When we
talk about the direction of an intersection, we mean the direction the eigenvalues of W̃ are
moving (as t varies) along the unit circle S1 when they cross −1 (we take counterclockwise
as the positive direction). We note that we will need to take care with what we mean by
a crossing in the following sense: we must decide whether to increment the Maslov index
upon arrival or upon departure. Indeed, there are several different approaches to defining
the Maslov index (see, for example, [12, 34]), and they often disagree on this convention.

Following [4, 15, 32] (and in particular Definition 1.5 from [4]), we proceed by choosing
a partition a = t0 < t1 < · · · < tn = b of I = [a, b], along with numbers εj ∈ (0, π) so that
ker
(
W̃ (t)−ei(π±εj)I

)
= {0} for tj−1 ≤ t ≤ tj; that is, ei(π±εj) ∈ C\σ(W̃ (t)), for tj−1 ≤ t ≤ tj

and j = 1, . . . , n. Moreover, we notice that for each j = 1, . . . , n and any t ∈ [tj−1, tj] there
are only finitely many values θ ∈ [0, εj) for which ei(π+θ) ∈ σ(W̃ (t)).

Fix some j ∈ {1, 2, . . . , n} and consider the value

k(t, εj) :=
∑

0≤θ<εj

dim ker
(
W̃ (t)− ei(π+θ)I

)
. (2.2)

for tj−1 ≤ t ≤ tj. This is precisely the sum, along with multiplicity, of the number of
eigenvalues of W̃ (t) that lie on the arc

Aj := {eit : t ∈ [π, π + εj)}.

(See Figure 1.) The stipulation that ei(π±εj) ∈ C \ σ(W̃ (t)), for tj−1 ≤ t ≤ tj asserts that no
eigenvalue can enter Aj in the clockwise direction or exit in the counterclockwise direction
during the interval tj−1 ≤ t ≤ tj. In this way, we see that k(tj, εj) − k(tj−1, εj) is a count
of the number of eigenvalues that enter Aj in the counterclockwise direction (i.e., through
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Aj

e
i(π+ε )j

x

x

x

x

x = eigenvalue of W~

Figure 1: The arc Aj.

−1) minus the number that leave in the clockwise direction (again, through −1) during the
interval [tj−1, tj].

In dealing with the catenation of paths, it’s particularly important to understand the
difference k(tj, εj)−k(tj−1, εj) if an eigenvalue resides at −1 at either t = tj−1 or t = tj (i.e., if
an eigenvalue begins or ends at a crossing). If an eigenvalue moving in the counterclockwise
direction arrives at −1 at t = tj, then we increment the difference forward, while if the
eigenvalue arrives at -1 from the clockwise direction we do not (because it was already in
Aj prior to arrival). On the other hand, suppose an eigenvalue resides at -1 at t = tj−1
and moves in the counterclockwise direction. The eigenvalue remains in Aj, and so we do
not increment the difference. However, if the eigenvalue leaves in the clockwise direction
then we decrement the difference. In summary, the difference increments forward upon
arrivals in the counterclockwise direction, but not upon arrivals in the clockwise direction,
and it decrements upon departures in the clockwise direction, but not upon departures in
the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 2.1. Let L(t) = (`1(t), `2(t)), where `1, `2 : I→ Λ(n) are continuous paths in the
Lagrangian–Grassmannian. The Maslov index Mas(L; I) is defined by

Mas(L; I) =
n∑
j=1

(k(tj, εj)− k(tj−1, εj)). (2.3)

Remark 2.2. As we did in the introduction, we will typically refer explicitly to the individual
paths with the notation Mas(`1, `2; I).

Remark 2.3. As discussed in [4], the Maslov index does not depend on the choices of {tj}nj=0

and {εj}nj=1, so long as they follow the specifications above.
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One of the most important features of the Maslov index is homotopy invariance, for which
we need to consider continuously varying families of Lagrangian paths. To set some notation,
we denote by P(I) the collection of all paths L(t) = (`1(t), `2(t)), where `1, `2 : I→ Λ(n) are
continuous paths in the Lagrangian–Grassmannian. We say that two paths L,M ∈ P(I)
are homotopic provided there exists a family Hs so that H0 = L, H1 = M, and Hs(t) is
continuous as a map from (t, s) ∈ I× [0, 1] into Λ(n)× Λ(n).

The Maslov index has the following properties (see, for example, [18] in the current
setting, or Theorem 3.6 in [15] for a more general result).

(P1) (Path Additivity) If a < b < c then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If L,M∈ P(I) are homotopic, with L(a) =M(a) and L(b) =
M(b) (i.e., if L,M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

In practice, we work primarily with frames for Lagrangian subspaces, and we can use
the following standard condition to verify that a given frame X is indeed the frame for a
Lagrangian subspace (see, for example, [18, 34]).

Proposition 2.1. A 2n × n matrix X is a frame for a Lagrangian subspace if and only if
the columns of X are linearly independent, and additionally

XtJ2nX = 0. (2.4)

We refer to this relation as the Lagrangian property for frames.

3 Separated Boundary Conditions

For (1.1) with boundary conditions (BC1) we will work with the Lagrangian subspaces
`1(x;λ) and `2, specified in the introduction (see (1.3) and the surrounding discussion). As
a start, we verify that for all (x, λ) ∈ [0, 1]× I, the matrix X1(x;λ) specified in (1.3) is the
frame for a Lagrangian subspace. First, it’s clear from our assumptions on α and standard
ODE theory that the columns of X1(x;λ) are linearly independent. According to Proposition
2.1, it only remains to show that

X1(x;λ)tJ2nX1(x;λ) = 0

for all (x, λ) ∈ [0, 1]× I. Fix any λ ∈ I. First, for x = 0,

X1(0;λ)tJ2nX1(0;λ) = αJ t2nJ
2
2nα

t = αJ2nα
t = 0,

where the final equality is a condition of (BC1). For x > 0 temporarily set

A(x;λ) = X1(x;λ)tJ2nX1(x;λ).
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We compute

∂xA(x;λ) = ∂xX1(x;λ)tJ2nX1(x;λ) + X1(x;λ)tJ2n∂xX1(x;λ)

= −(J2n∂xX1(x;λ))tX1(x;λ) + X1(x;λ)tJ2n∂xX1(x;λ)

= −X1(x;λ)tB(x;λ)X1(x;λ) + X1(x;λ)tB(x;λ)X1(x;λ) = 0.

Since A(0;λ) = 0, we can conclude that A(x;λ) = 0 for all x ∈ [0, 1]. The same argument
is true for every λ ∈ I, so we obtain the claim.

Turning to `2, the associated frame is X2 = J2nβ
t, and so similarly as for X1(0;λ)

Xt
2J2nX2 = βJ t2nJ

2
2nβ

t = βJ2nβ
t = 0,

where the final equality is a condition of (BC1).
Using the notation

X1(x;λ) =

(
X1(x;λ)

Y1(x;λ)

)
; X2 =

(
X2

Y2

)
,

we set

W̃ (x;λ) = −(X1(x;λ) + iY1(x;λ))(X1(x;λ)− iY1(x;λ))−1(X2 − iY2)(X2 + iY2)
−1.

3.1 The Maslov Box

Fix any values λ1, λ2 ∈ I with λ1 < λ2, and consider the path in the (x, λ)-plane described as
follows: (1) fix x = 0 and let λ run from λ1 to λ2 (the bottom shelf, which we will sometimes
denote [λ1, λ2]x=0); (2) fix λ = λ2 and let x run from 0 to 1 (the right shelf, [0, 1]λ=λ2); (3)
fix x = 1 and let λ run from λ2 to λ1 (the top shelf, [λ2, λ1]x=1); and (4) fix λ = λ1 and let x
run from 1 to 0 (the left shelf, [1, 0]λ=λ1). We denote by Γ the simple closed curve obtained
by following each of these paths precisely once. (See Figure 2.)

By catenation of paths, we have

Mas(`1, `2; Γ) = Mas(`1(0; ·), `2; [λ1, λ2]) + Mas(`1(·;λ2), `2; [0, 1])

−Mas(`1(1; ·), `2; [λ1, λ2])−Mas(`1(·;λ1), `2; [0, 1]),

and by homotopy invariance Mas(`1, `2; Γ) = 0. Here, the latter two summands could al-
ternatively be expressed with addition, but the parameter would then decrease rather than
increase. The convention for this article will be to express every Maslov index in terms of
an increasing parameter. The relation is simply that if I denotes an interval traversed in one
direction, and −I denotes the same interval traversed in the opposite direction, then

Mas(`1, `2; I) = −Mas(`1, `2;−I).

This is a trivial consequence of our definition, and indeed must be true for any Maslov index
(see Property X of [12]).

For the bottom shelf, X1(0;λ) = Jαt, and if we introduce the block notation α = (α1 α2)
and β = (β1 β2) we find

X1(0;λ) =

(
−αt2
αt1

)
; X2 =

(
−βt2
βt1

)
,

11



λλ2

1

[0,1]λ=λ2
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λ=λ1

[λ2,λ1]
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x=0

λ1

x

Figure 2: The (λ, x)-Maslov Box.

so that
W̃ (0;λ) = −(−αt2 + iαt1)(−αt2 − iαt1)−1(−βt2 − iβt1)(−βt2 + iβt1)

−1.

This is constant in λ, so trivially Mas(`1(0; ·), `2; [λ1, λ2]) = 0.
For the left and right shelves we will generally compute X1(x;λ1) and X1(x;λ2) numer-

ically, and generate the spectral flow from these calculations. The important point here
is that X1(x;λ1) and X1(x;λ2) solve initial value problems which can typically be solved
efficiently with a standard method such as Runge-Kutta.

For the top shelf, we will show that under certain circumstances the eigenvalues of W̃ (x;λ)
rotate monotonically counterclockwise as λ decreases (with x fixed), and it will follow that

−Mas(`1(1; ·), `2; [λ1, λ2]) = N ([λ1, λ2)),

where N ([λ1, λ2)) is described in (1.4). We note particularly that N ([λ1, λ2)) is well-defined,
and that the key property we will used to show that it is well-defined is monotonicity.

3.2 Monotonicity

From [18] we have that monotonicity of the eigenvalues of W̃ (x;λ) as λ varies is determined
by the matrix Xt

1J2n∂λX1 in the following sense: for x ∈ (0, 1] fixed, if X1(x;λ)tJ2n∂λX1(x;λ)
is positive definite for all λ ∈ I, then the eigenvalues of W̃ (x;λ) will rotate monotonically
counterclockwise as λ decreases. In order to get a sign for this matrix, we compute

∂

∂x
Xt

1J2n∂λX1 = (X′1)
tJ2n∂λX1 + Xt

1J2n∂λX
′
1 = −(X′1)

tJ t2n∂λX1 + Xt
1J2n∂λX

′
1

= −Xt
1B(x;λ)∂λX1 + Xt

1∂λ(B(x;λ)X1) = Xt
1BλX1.

12



Integrating on [0, x], and noting that ∂λX1(0;λ) = 0, we see that

X1(x;λ)tJ2n∂λX1(x;λ) =

∫ x

0

X1(y;λ)tBλ(y;λ)X1(y;λ)dy.

If Bλ(y;λ) is positive definite for all y ∈ [0, x], then monotonicity is clear. We will see in the
examples that monotonicity can often be obtained even if Bλ(y;λ) is merely non-negative.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We have already seen that

Mas(`1(0; ·), `2; [λ1, λ2]) = 0.

For −Mas(`1(1; ·), `2; [λ1, λ2]), which we can view as the Maslov index computed as λ runs
from λ2 back to λ1 (with x = 1), we note that each conjugate point will be a value λ ∈ [λ1, λ2]
so that (1.1)-(BC1) has a non-trivial solution, and moreover the dimension of the solution
space associated with λ will correspond with dim(`1(1;λ) ∩ `2). Two cases warrant careful
consideration: a conjugate point at λ1 and a conjugate point at λ2. If λ1 is a conjugate
point then by monotonicity as λ decreases to λ1 the eigenvalue(s) of W̃ (1;λ) corresponding
with the crossing will be rotating in the counterclockwise direction, and will increment the
Maslov index forward as they arrive at −1. On the other hand, if λ2 is a conjugate point,
as λ decreases from λ2, the associated eigenvalue(s) of W̃ (1;λ) will rotate away from −1 in
the counterclockwise direction, and the Maslov index will not record the intersection. We
conclude that

−Mas(`1(1; ·), `2; [λ1, λ2]) = N ([λ1, λ2)).

Note, in particular, that the left-hand side of this equality is well-defined, and so N ([λ1, λ2))
is well-defined. Effectively, monotonicity ensures that the sum defining N ([λ1, λ2)) in (1.4)
is over a discrete set of values λ (because each eigenvalue of W̃ (x;λ) must complete a full
loop of S1 between crossings of −1, and continuity of W̃ (x;λ) on [λ1, λ2] (for x fixed) ensures
that there is a lower bound on the width of the intervals in I between these crossings).

The proof now follows immediately from the relation

0 = Mas(`1(0; ·), `2; [λ1, λ2]) + Mas(`1(·;λ2), `2; [0, 1])

−Mas(`1(1; ·), `2; [λ1, λ2])−Mas(`1(·;λ1), `2; [0, 1]).

3.3 Rotation in x

The eigenvalues of W̃ (x;λ) generally do not rotate monotonically as x increases, but we
nonetheless remark here on how this rotation can be analyzed. According to Lemma 4.2 in
[18], the rotation of the eigenvalues of W̃ (x;λ) as x varies is determined by the nature of

Ω(x;λ) := X1(x;λ)tJ2nX
′
1(x;λ),

where prime denotes differentiation with respect to x. Using (1.3) we see that

Ω(x;λ) = X1(x;λ)tB(x;λ)X1(x;λ).
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If this matrix is positive definite then as x increases the eigenvalues of W̃ (x;λ) will rotate
monotonically clockwise.

One setting in which this relation becomes useful is when we would like to understand
the rotation of an eigenvalue of W̃ (x;λ) for x near 0. This can be determined by the explicit
matrix

Ω(0;λ) = (J2nα
t)tB(0;λ)J2nα

t.

Moreover,

Ω′(x;λ) = X′1(x;λ)tB(x;λ)X1(x;λ) + X1(x;λ)tB′(x;λ)X1(x;λ) + X1(x;λ)tB(x;λ)X′1(x;λ)

= (−JB(x;λ)X1)
tB(x;λ)X1(x;λ) + X1(x;λ)tB′(x;λ)X1(x;λ)

+ X1(x;λ)tB(x;λ)(−JB(x;λ)X1)

= X1(x;λ)tB′(x;λ)X1(x;λ),

so that

Ω(x;λ) = (J2nα
t)tB(0;λ)J2nα

t +

∫ x

0

X1(y;λ)tB′(y;λ)X1(y;λ)dy.

3.4 Applications

In this section we briefly review how some common ODE boundary value problems can be
expressed in the form (1.1)-(BC1). Our goal is not to specify minimal requirements on these
equations, and we often assume more than is required for analysis.

3.4.1 Sturm-Liouville Systems

We consider Sturm-Liouville systems with separated self-adjoint boundary conditions

Lφ := −(P (x)φ′)′ + V (x)φ = λQ(x)φ

α1φ(0) + α2P (0)φ′(0) = 0

β1φ(1) + β2P (1)φ′(1) = 0.

(3.1)

Here, φ(x) ∈ Rn, and our notational convention is to take α = (α1 α2) and β = (β1 β2).
We assume P ∈ C1([0, 1];Rn×n), V,Q ∈ C([0, 1];Rn×n), and that all three matrices are
symmetric. In addition, we assume that P (x) is invertible for each x ∈ [0, 1], and that Q(x)
is positive definite for each x ∈ [0, 1]. For the boundary conditions, we assume rankα = n,
αJ2nα

t = 0 and likewise rank β = n, βJ2nβ
t = 0, which is equivalent to self-adjointness in

this case. We note that in our motivating reference [20] the authors focus on Schrödinger
operators, for which P (x) = In and Q(x) = In.

For each x ∈ [0, 1], we define a new vector y(x) ∈ R2n so that y(x) = (y1(x) y2(x))t, with
y1(x) = φ(x) and y2(x) = P (x)φ′(x). In this way, we express (3.1) in the form

y′ = A(x;λ)y; A(x;λ) =

(
0 P (x)−1

V (x)− λQ(x) 0

)
,

α1y1(0) + α2y2(0) = 0

β1y1(1) + β2y2(1) = 0.
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Upon multiplying both sides of this equation by J2n, we obtain (1.1) with

B(x;λ) =

(
λQ(x)− V (x) 0

0 P (x)−1

)
,

which satisfies our assumptions on B(x;λ).
In this case,

Bλ(x;λ) =

(
Q(x) 0

0 0

)
,

so that ∫ 1

0

X1(y;λ)tBλ(y;λ)X1(y;λ)dy =

∫ 1

0

X1(y;λ)tQ(y)X1(y;λ)dy.

This matrix is clearly non-negative (since Q is positive definite), and moreover it cannot
have 0 as an eigenvalue, because the associated eigenvector v ∈ Rn would necessarily satisfy
X1(x;λ)v = 0 for all x ∈ [0, 1], and this would contradict linear independence of the columns
of X1(x;λ) (as solutions of (1.1)).

3.4.2 Self-Adjoint Fourth Order Equations

We consider self-adjoint fourth order ODE with separated self-adjoint boundary conditions

Lφ = (V4(x)φ′′)′′ − (V2(x)φ′)′ + V0(x)φ = λQ(x)φ

α1φ(0) + α2φ
′(0) + α3V4(0)φ′′(0) + α4

(
(V4φ

′′)′ − V2φ′
)∣∣∣

x=0
= 0

β1φ(1) + β2φ
′(1) + β3V4(1)φ′′(1) + β4

(
(V4φ

′′)′ − V2φ′
)∣∣∣

x=1
= 0.

(3.2)

Here, φ(x) ∈ Rn, Q, V0 ∈ C([0, 1];Rn×n), V2 ∈ C1([0, 1];Rn×n), V4 ∈ C2([0, 1];Rn×n). We
assume each of the matrices V0(x), V2(x), V4(x), and Q(x) is symmetric for each x ∈ [0, 1],
that V4(x) is invertible for all x ∈ [0, 1], and that Q(x) is positive definite for all x ∈ [0, 1].
Also, αj and βj are 2n× n matrices with real entries, and we set

α̃ := (α1 α2 α3 α4) ∈ R2n×4n

β̃ := (β1 β2 β3 β4) ∈ R2n×4n.
(3.3)

(Our use of tildes will be clarified below when we make a slight adjustment to get the form
(1.1)-(BC1).) We assume

rank α̃ = 2n; α̃J4nα̃t = 0

rank β̃ = 2n; β̃J4nβ̃t = 0,

with

J4n =

(
0 J2n
J2n 0

)
.

It is straightforward to check that if we take the domain of L to be

D(L) := {φ ∈ H4([0, 1]) : boundary conditions in (3.2) hold},
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then L is self-adjoint. In order to express (3.2) as a first order system we set y1 = φ,
y2 = V4φ

′′, y3 = −(V4φ
′′)′ + V2φ

′, and y4 = −φ′, so that

y′ = A(x;λ)y; A(x;λ) =


0 0 0 −In
0 0 −In −V2(x)

V0(x)− λQ(x) 0 0 0
0 −V4(x)−1 0 0

 ,

and consequently

J4ny
′ = B(x;λ)y; B(x;λ) =


λQ(x)− V0(x) 0 0 0

0 V4(x)−1 0 0
0 0 0 −In
0 0 −In −V2(x)

 .

If we set α = (α1 α3 − α4 − α2), and similarly for β, then we can express the boundary
conditions as αy(0) = 0 and βy(1) = 0. In this way, we obtain the form of (1.1) with
boundary conditions (BC1).

Before checking the monotonicity assumption of Theorem 1.1, we remark on how this
development goes if we start with the more conventional variables z1 = φ, z2 = φ′, z3 = V4φ

′′,
and z4 = (V4φ

′′)′ − V2φ′. In this case, we arrive at the system

z′ = Ã(x;λ)z; Ã(x;λ) =


0 In 0 0
0 0 V4(x)−1 0
0 V2(x) 0 In

λQ(x)− V0(x) 0 0 0

 ,

and consequently

(−J4n)z′ = B̃(x;λ)z; B̃(x;λ) =


λQ(x)− V0(x) 0 0 0

0 −V2(x) 0 −In
0 0 V4(x)−1 0
0 −In 0 0

 .

We see that in some sense −J4n is the natural skew-symmetric matrix for this problem (rather
than J4n). Our choice of −J4n as opposed to J4n is merely a convention that is consistent
with the variables we started with. If we proceeded with J4n instead, it would lead to the
variables y1 = −φ, y2 = −V4φ′′, y3 = V2φ

′− (V4φ
′′)′, and y4 = −φ′. We know (e.g., Theorem

8.5 in [3]) that there exists an invertible matrix M so that M t(−J4n)M = J4n. Setting
z = Mw we get

(−J4n)Mw′ = B̃(x;λ)Mw,

so that
J4nw

′ = B(x;λ)w; B(x;λ) = M tB̃(x;λ)M.

In our case,

M =


In 0 0 0
0 0 0 −In
0 In 0 0
0 0 −In 0

 ; M t =


In 0 0 0
0 0 In 0
0 0 0 −In
0 −In 0 0

 ,
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which leads immediately to the change of variables we introduced originally.
In order to apply Theorem 1.1, we observe that

Bλ(x;λ) =


Q(x) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

If we introduce the notation

X1 =

(
X11 X12

X21 X22

)
,

where X1 is 2n× 2n and each Xij is n× n, then

X1(x;λ)tBλ(x;λ)X1(x;λ) = X11(x;λ)tQ(x)X11(x;λ),

and we can conclude monotonicity similarly as for the case of Sturm-Liouville operators.

3.4.3 Dirac Equations

Many of the examples we have in mind have the general form

J2ny
′ = (λQ(x) + V (x))y. (3.4)

In this case, B(x;λ) = λQ(x)+V (x), so that Bλ(x;λ) = Q(x), and the monotonicity criterion
of Theorem 1.1 will be satisfied if Q(x) is positive definite. (Though we have seen in our
previous examples that we can have monotonicity in cases for which Q is only non-negative.)
We note that in the event that Q(x) = I2n, we refer to (3.4) as the Dirac equation.

3.4.4 Models with Convection

In this section, we consider equations of the form

J2nφ = B(x;λ)φ+ Sφ, (3.5)

where B(x;λ) is precisely as described following (1.1) and

S =

(
0 sIn
0 0

)
,

for some real value s 6= 0. (We continue to use boundary conditions (BC1).)
Equations of this form arise naturally in the context of eigenvalue problems

−ψ′′ − sψ′ + V (x)ψ = λψ,

where the term −sψ′ would be associated with convection for the related PDE ut − sux +
F ′(u) = uxx. If we set φ1 = ψ and φ2 = ψ′ we arrive at the system

φ′ = A(x;λ)φ; A(x;λ) =

(
0 In

V (x)− λIn −sIn

)
,
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which we can express as
J2nφ

′ = B(x;λ)φ+ Sφ,

with

A(x;λ) =

(
λIn − V (x) 0

0 In

)
,

and S as above.
Now let φ satisfy the general equation (3.5) and set ζ(x;λ) = e

s
2
xφ(x;λ). Computing

directly we find that
J2nζ

′ = B̃(x;λ)ζ,

where

B̃(x;λ) = B(x;λ) +

(
0 s

2
In

s
2
In 0

)
,

and this equation satisfies our assumptions on (1.1) (with B̃ replacing B). The boundary
conditions (BC1) remain unchanged.

4 General Self-Adjoint Boundary Conditions

In this section, we consider equation (1.1) with general self-adjoint boundary conditions
(BC2). As a starting point, we check that equations with boundary conditions (BC1) can
be formulated with boundary conditions (BC2). If we write

Θ =

(
α 0n×2n

0n×2n β

)
,

then the condition Θ
(
y(0)
y(1)

)
= 0 is equivalent to the pair of conditions αy(0) = 0 and βy(1) = 0.

Moreover, if α and β each have rank n then Θ will have rank 2n. Finally, by direct calculation,

ΘJ4nΘt =

(
−αJ2nαt 0n

0n βJ2nβ
t

)
= 0.

Next, we observe that if we fix any x ∈ (0, 1] and take an L2([0, x]) inner product on
both sides of (1.1) with a second solution z then we obtain the relation

〈J2ny′, z〉L2([0,x]) − 〈y, J2nz′〉L2([0,x]) = (J2ny(x), z(x))R2n − (J2ny(0), z(0))R2n . (4.1)

But since y and z both solve (1.1) (and keeping in mind that B(x;λ) is symmetric), the
left-hand side is 0. This of course means that the right-hand side of (4.1) is 0, and we can
express this observation as (

J4n

(
y(0)

y(x)

)
,

(
z(0)

z(x)

))
R4n

= 0.

This suggests a Lagrangian subspace defined in terms of the skew-symmetric matrix J4n. As
in Section 3.4.2, we note that there exists an invertible matrix M so that MtJ4nM = J4n.
If ˆ̀ denotes a Lagrangian subspace relative to J4n, then ` = M(ˆ̀) will be a Lagrangian
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subspace relative to J4n. I.e., given any u, v ∈ `, there exist û, v̂ ∈ ˆ̀ so that u = Mû,
v =Mv̂, and consequently

(J4nu, v) = (J4nMû,Mv̂) = (MtJ4nMû, v̂) = (J4nû, v̂) = 0.

In this case (i.e., for the matrices J4n and J4n), we have

M =


In 0 0 0
0 0 In 0
0 −In 0 0
0 0 0 In

 ,

as introduced in Section 1.
This suggests a Lagrangian subspace, which we define in terms of the trace-type operator

Txy :=M
(
y(0)

y(x)

)
. (4.2)

Precisely, we will verify below that the subspace

`3(x;λ) = {Txy : J2ny
′ = B(x;λ)y on (0, 1)} (4.3)

is Lagrangian for all (x, λ) ∈ [0, 1] × I. (Our choice to designate this space as `3 is taken
simply to distinguish it from the spaces `1 and `2 specified for separated boundary conditions;
i.e., the two primary Lagrangian subspaces for the case of general self-adjoint boundary
conditions will be denoted `3 and `4.) In order to construct a frame for this Lagrangian
subspace, we follow the approach of [17] and let Φ(x;λ) denote the 2n × 2n fundamental
matrix solution to

J2nΦ′ = B(x;λ)Φ; Φ(0;λ) = I2n. (4.4)

If we introduce the notation

Φ(x;λ) =

(
Φ11(x;λ) Φ12(x;λ)
Φ21(x;λ) Φ22(x;λ)

)
,

then we can associate the collection of all vectors of the form
(
y(0)
y(x)

)
with the 4n× 2n matrix

In 0
0 In

Φ11(x;λ) Φ12(x;λ)
Φ21(x;λ) Φ22(x;λ)

 .

Acting on this with M, we find that our frame for `3(x;λ) is

X3(x;λ) =

(
X3(x;λ)

Y3(x;λ)

)
=


In 0

Φ11(x;λ) Φ12(x;λ)
0 −In

Φ21(x;λ) Φ22(x;λ)

 . (4.5)
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In order to verify that X3(x;λ) is indeed the frame for a Lagrangian subspace, we use
Proposition 2.1; i.e., we check the Lagrangian property

X3(x;λ)tJ4nX3(x;λ) = 0,

for all (x, λ) ∈ [0, 1]× I. First, for x = 0 we have

X3(0;λ) =


In 0
In 0
0 −In
0 In

 ,

from which we compute directly to find X3(0;λ)tJ4nX3(0;λ) = 0. For each fixed λ ∈ I, we
temporarily set

A(x) := X3(x, λ)tJ4nX3(x, λ) = Φ(x;λ)tJ2nΦ(x;λ)− J2n,

where dependence on the fixed value λ has been suppressed in A, and the second equality
follows from a straightforward calculation. We have, then,

A′(x) = Φ′(x;λ)tJ2nΦ(x;λ) + Φ(x;λ)tJ2nΦ′(x;λ)

= −(J2nΦ′(x;λ))tΦ(x;λ) + Φ(x;λ)tJ2nΦ′(x;λ)

= −Φ(x;λ)tB(x;λ)Φ(x;λ) + Φ(x;λ)tB(x;λ)Φ(x;λ) = 0,

where we have used J t2n = −J2n and the symmetry of B(x;λ). We conclude that A(x) = 0
for all x ∈ [0, 1], and since this is true for any λ ∈ I we conclude that `3(x;λ) is indeed
Lagrangian for all (x, λ) ∈ [0, 1]× I.

Likewise, we specify a Lagrangian subspace associated with the boundary conditions
(BC2). In this case, it is more convenient to specify the Lagrangian subspace directly from its
frame. The boundary conditions (BC2) have been taken so that the matrix J4nΘt comprises
2n linearly independent columns that satisfy the boundary condition. It is immediate that
the matrix J4nΘt is the frame for a Lagrangian subspace relative to J4n. I.e.,

(J4nΘt)tJ4nJ4nΘt = ΘJ t
4nJ 2

4nΘt = ΘJ4nΘt = 0.

Precisely as in the considerations leading up to our definition of `3(x;λ), this means that
MJ4nΘt will be a frame of a Lagrangian subspace relative to J4n. We let `4 denote the
Lagrangian subspace with this frame. I.e., we set

X4 =MJ4nΘt.

4.1 The Maslov Box and Monotonicity

For any pair λ1, λ2 ∈ I, λ1 < λ2, we consider precisely the same Maslov Box as described in
Section 3.1. (See Figure 2.) For the bottom shelf (i.e., for [λ1, λ2]x=0) the Lagrangian frames
X3(0;λ) and X4 are both independent of λ, so we have

Mas(`3(0; ·), `4; [λ1, λ2]) = 0.
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For the top shelf (i.e., for [λ2, λ1]x=1), and indeed for any intermediate horizontal shelf
[λ2, λ1]x=s, with s ∈ (0, 1], we establish conditions under which the eigenvalues of W̃ (x, λ)
rotate monotonically clockwise as λ increases. According to Lemma 4.2 of [18], monotonicity
will be determined by the nature of

Ω(x;λ) := X3(x;λ)tJ4n∂λX3(x;λ) = Φ(x;λ)tJ2n∂λΦ(x;λ),

where the second equality follows from a straightforward calculation. In particular, if Ω(x;λ)
is positive definite at a conjugate point, then the associated eigenvalues of W̃ (x;λ) will rotate
through −1 in the counterclockwise direction as λ decreases. Computing now almost exactly
as in Section 3.2, we find

Ω(x;λ) =

∫ x

0

Φ(y;λ)tBλ(y;λ)Φ(y;λ)dy.

Similarly as for the top shelf in the proof of Theorem 1.1, we can conclude that

−Mas(`1(1; ·), `2; [λ1, λ2]) = N ([λ1, λ2)).

Theorem 1.2 follows immediately by catenation of paths and homotopy invariance.

4.2 Rotation in x

As in the case of separated self-adjoint boundary conditions, the eigenvalues of W̃ (x;λ)
don’t generally rotate monotonically as x increases. Nonetheless, there are cases in which
useful information can be obtained about such rotation. According to Lemma 4.2 of [18],
the nature of this rotation will be determined by the matrix

Ω(x;λ) = X3(x;λ)tJ4nX
′
3(x;λ) = Φ(x;λ)tJ2nΦ′(x;λ),

where prime denotes differentiation with respect to x. Precisely as with λ, if Ω(x;λ) is
positive definite at a conjugate point, then the associated eigenvalues of W̃ (x;λ) will rotate
through −1 in the counterclockwise direction as x decreases.

Using (1.7) we see that

Ω(x;λ) = Φ(x;λ)tB(x;λ)Φ(x;λ).

We will find this expression useful in understanding rotation near x = 0, for which we have
simply Ω(0;λ) = B(0;λ). Similarly as in Section 3.3, we find that

Ω(x;λ) = B(0;λ) +

∫ x

0

Φ(y;λ)tB′(y;λ)Φ(y;λ)dy.

4.3 Parameter-Dependent Boundary Conditions

We now turn to the case in which Θ depends on a parameter ξ ∈ I, for which we take
boundary conditions (BC2)ξ. As will be discussed in Section 4.4, our primary motivation
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for this analysis is the role such eigenvalue problems play in spectral counts for operators
obtained when certain nonlinear PDE are linearized about periodic stationary solutions.

For each fixed ξ ∈ I, Theorem 1.2 holds with Θ replaced by Θ(ξ). In this section, we fix
x = 1 and let ξ vary over I. Rather than introducing new notation, we will let `3(1;λ) denote
the path of Lagrangian subspaces obtained by fixing x = 1 for the Lagrangian subspaces
`3(x;λ) from (4.3). I.e., we let `3(1;λ) denote the path of Lagrangian subspaces associated
with frames

X3(1, λ) =


In 0

Φ11(1;λ) Φ12(1;λ)
0 −In

Φ21(1;λ) Φ22(1;λ)

 , (4.6)

where Φ(x;λ) is the fundamental matrix described in (4.4), and we are using the notation
just following (4.4). In addition, we expand the notation `4 to `4 = `4(ξ), where `4(ξ) denotes
the Lagrangian subspace with frame

X4(ξ) =MJ4nΘ(ξ)t.

Working with the Lagrangian paths `3(1;λ) and `4(ξ), we are in a position to consider
a Maslov Box constructed as follows: fix values λ1, λ2 ∈ I, λ1 < λ2, and likewise ξ1, ξ2 ∈ I,
ξ1 < ξ2. For ξ = ξ1, let λ run from λ1 to λ2 (the bottom shelf, [λ1, λ2]ξ=ξ1); for λ = λ2, let
ξ run from ξ1 to ξ2 (the right shelf, [ξ1, ξ2]λ=λ2); for ξ = ξ2, let λ run from λ2 to λ1 (the top
shelf, [λ2, λ1]ξ=ξ2); and for λ = λ1 let ξ run from ξ2 to ξ1 (the left shelf, [ξ2, ξ1]λ=λ1). By path
additivity and homotopy invariance we have

Mas(`3(1; ·), `4(ξ1); [λ1, λ2]) + Mas(`3(1;λ2), `4; [ξ1, ξ2])

−Mas(`3(1; ·), `4(ξ2); [λ1, λ2])−Mas(`3(1;λ1), `4; [ξ1, ξ2]) = 0.

For any ξ ∈ I, let N ([λ1, λ2); ξ) denote the spectral count defined in (1.4) for Θ = Θ(ξ).
If the eigenvalues of W̃ (1, λ; ξ) rotate monotonically clockwise as λ increases then for i = 1, 2
we have

Mas(`3(1; ·), `4(ξ1); [λ1, λ2]) = −N ([λ1, λ2); ξ1)

Mas(`3(1; ·), `4(ξ2); [λ1, λ2]) = −N ([λ1, λ2); ξ2).

Precisely the same considerations that lead to Theorem 1.2 provide us with Theorem 1.3.
Corollary 1.1 follows immediately, as discussed in the introduction.

4.4 Applications

In this section, we review two applications of our framework with general self-adjoint bound-
ary conditions. Given appropriate boundary conditions, all of the examples from Sections
3.4.1, 3.4.2, and 3.4.3 can be adapted to the current setting, so our emphasis will be on the
applications that motivated our interest in boundary conditions (BC2) and (BC2)ξ. (The
family of examples from Section 3.4.4 on models with convection cannot be adapted to the
current setting, because the boundary conditions don’t necessarily transform appropriately.)
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4.4.1 Schrödinger Operators

Our interest in boundary conditions (BC2) and (BC2)ξ stems from our references [17, 24],
in which the authors consider eigenvalue problems

Hξφ := −φ′′ + V (x)φ = λφ,

φ(1) = eiξφ(0),

φ′(1) = eiξφ′(0),

(4.7)

where φ(x;λ) ∈ Cn, V ∈ C([0, 1];Rn×n) is a symmetric matrix-valued potential, and ξ ∈
[−π, π). We take as our domain for Hξ

D(Hξ) = {φ ∈ H2((0, 1)) : (4.7) holds}, (4.8)

and note that with this choice of domain, Hξ is self-adjoint. In particular, the spectrum of
Hξ is real-valued. If λ ∈ R is an eigenvalue of Hξ then (by complex conjugate) λ will also
be an eigenvalue of H−ξ. In this way, we can focus on the interval ξ ∈ [0, π].

Equations (4.7) arise naturally when a gradient reaction-diffusion system

ut + F ′(u) = uxx; u ∈ Rn, x ∈ R, t ≥ 0, (4.9)

is linearized about a stationary 1-periodic solution ū(x). In this case, if we write u = ū + v
we obtain the perturbation equation

vt + F ′′(ū)v = vxx + O(v2), (4.10)

with associated eigenvalue problem

Hφ := −φxx + V (x)φ = λφ; V (x) = F ′′(ū(x)). (4.11)

By standard Floquet theory the L2(R) spectrum of H is purely continuous and corre-
sponds with the union of λ so that (4.11) admits a bounded eigenfunction of the Bloch
form

φ(x) = eiξxw(x),

for some ξ ∈ R and 1-periodic function w(x). The periodicity of w allows us to write

φ(0) = w(0) = w(1) = e−iξφ(1),

and proceeding similarly for φ′ we find that the L2(R) spectrum of H corresponds with the
union of λ that are eigenvalues of (4.7).

We can adapt (4.7) to the current setting by expressing φ in terms of its real and imaginary
parts. Adopting the labeling convention of [24], we write

φk = u2k−1 + iu2k,

for k = 1, 2, . . . , n. When expressing the resulting system for u = (u1, u2, . . . , u2n)t, it is
convenient to define the counterclockwise rotation matrix

Rξ :=

(
cos ξ − sin ξ
sin ξ cos ξ

)
. (4.12)
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Also, for an m × n matrix A = (aij)
m,n
i,j=1 and a k × l matrix B = (bij)

k,l
i,j=1 we denote by

A ⊗ B the Kronecker product, by which we mean the mk × nl matrix with ij block aijB.
This allows us to express our equation for u as

Hξu := −u′′ + (V (x)⊗ I2)u = λu

u(1) = (In ⊗Rξ)u(0)

u′(1) = (In ⊗Rξ)u
′(0).

(4.13)

In [17], the authors verify that λ ∈ R is an eigenvalue of Hξ with multiplicity m if and only
if it is an eigenvalue of Hξ with multiplicity 2m.

We can now express (4.13) as a system in the usual way, with y1 = u and y2 = u′. We
find

y′ = A(x;λ)y; A(x;λ) =

(
0 I2n

V (x)⊗ I2 − λI2n 0

)
y(1) = (I2n ⊗Rξ)y(0),

,

where we note that the appearance of In ⊗ Rξ has now been replaced by I2n ⊗ Rξ. If we
multiply the equation by J4n we arrive at the expected form

J4ny
′ = B(x;λ)y; B(x;λ) =

(
λI2n − V (x)⊗ I2 0

0 I2n

)
Θ(ξ)

(
y(0)

y(1)

)
= 0; Θ(ξ) =

(
I2n ⊗Rξ,−I4n

)
.

(4.14)

(The dimension 4n arose naturally in our development, and we simply note that this corre-
sponds with replacing n by 2n in our general formulation.) In this case,

Bλ(x;λ) =

(
I2n 0
0 0

)
,

and we can conclude similarly as in Section 3.4.1 that the monotonicity condition of Theorem
1.1 is satisfied.

To check that Θ(ξ) satisfies the assumptions of (BC2)ξ, we first note that it’s clear from
the appearance of I4n that Θ(ξ) has rank 4n (rank 2n in the general formulation). We also
compute

Θ(ξ)J8nΘ(ξ)t = −(I2n ⊗Rξ)J4n(I2n ⊗Rξ)
t + J4n = 0,

where we have observed that J4n commutes with (I2n⊗Rξ)
t and (I2n⊗Rξ)(I2n⊗Rξ)

t = I4n.
These calculations serve to verify that (4.7) can be analyzed within the current framework.

The frame for `3(x;λ) is precisely as defined in (1.8) with B(x;λ) as in (4.14), while for `4(ξ)
we obtain

X4(ξ) =M8nJ8nΘ(ξ)t =


0 (In ⊗Rξ)

t

0 I2n
(In ⊗Rξ)

t 0
−I2n 0

 .
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For comparison with our reference [17], we observe that we can write

X4(ξ) =


0 (In ⊗Rξ)

t

0 I2n
(In ⊗Rξ)

t 0
−I2n 0



=


0 I2n
0 (In ⊗Rξ)
I2n 0

−(In ⊗Rξ) 0

((In ⊗Rξ)
t 0

0 (In ⊗Rξ)
t

)
,

from which it’s clear that the frame X4(ξ) given here corresponds with the same Lagrangian
subspace as the corresponding frame in [17]. (The left-hand matrix in this final matrix
product is precisely the frame used in [17].)

Fixing any ξ ∈ [0, π], we can apply Theorem 1.2 to conclude that for any pair λ1, λ2 ∈ R,
λ1 < λ2, we have

N ([λ1, λ2)) = −Mas(`3(·;λ2), `4(ξ); [0, 1]) + Mas(`3(·;λ1), `4(ξ); [0, 1]).

As discussed in [17] (and as can be verified by a straightforward energy argument),
Hξ will not have any eigenvalues below −‖V ‖L∞(R) (for any ξ ∈ R). If we choose any
λ = −λ∞ < −‖V ‖L∞(R) and any λ0 > −‖V ‖L∞(R) then the total number of eigenvalues of
Hξ at or below λ0 is precisely the negative of the Maslov index on the top shelf. Following
[17] we denote this value

Mor(Hξ;λ0) = −Mas(`3(1; ·), `4(ξ); [−λ∞, λ0]).

I.e.,
N ([−λ∞, λ0); ξ) = N ((−∞, λ0); ξ) =: Mor(Hξ;λ0).

It now follows from Theorem 1.2 that

Mor(Hξ;λ0) = −Mas(`3(·;λ0), `4(ξ); [0, 1]) + Mas(`3(·;−λ∞), `4(ξ); [0, 1]),

where we have recalled that the Maslov index on the bottom shelf is 0.
In this case, we can take further advantage of the nature of (4.7) and compute the Maslov

index Mas(`3(·;−λ∞), `4(ξ); [1, 0]) explicitly. First, it’s shown in [17] that there can be no
crossings along [1, 0]λ=−λ∞ , except possibly corresponding with an arrival or departure at
x = 0. In this case (i.e., for x = 0) we have explicitly

X3(0;λ) =


I2n 0
I2n 0
0 −I2n
0 I2n

 ,

from which we find

W̃ (0;λ, ξ) = −
(
In ⊗Rξ 0

0 (In ⊗Rξ)
t

)
.
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The eigenvalues of this matrix, which we denote µ, satisfy

det
{(
− (In ⊗Rξ)− µI2n

)(
− (In ⊗Rξ)

t − µI2n
)}

= det
{
I2n(µ2 + 2µ cos ξ + 1)

}
,

where we have recalled the relation (In ⊗ Rξ)
t(In ⊗ Rξ) = I2n and observed the relation

(In ⊗Rξ)
t + (In ⊗Rξ) = 2(cos ξ)I2n. We conclude that the 4n eigenvalues of W̃ (0;λ, ξ) are

µ = − cos ξ ±
√

cos2 ξ − 1 = − cos ξ ± i sin ξ,

each repeated 2n times.
We see that for ξ = 0 all 4n eigenvalues reside at −1, while for any ξ ∈ (0, π] none of

the eigenvalues reside at −1 (for ξ = π, all 4n eigenvalues reside at +1). It follows that for
ξ ∈ (0, π], no eigenvalue of W̃ (x;−λ∞) can arrive at −1 as x→ 0+, and since no eigenvalue
of W̃ (x;−λ∞) can be −1 for any x ∈ (0, 1] (as observed above) we conclude that for any
ξ ∈ (0, π] we must have Mas(`3(·;−λ∞), `4(ξ); [0, 1]) = 0. For ξ = 0 we need to understand
the rotation of the eigenvalues of W̃ (x;−λ∞) as x approaches 0, keeping in mind that we
already know that none can reside at −1 for x ∈ (0, 1]. For this, we recall from Section 4.2
that the rotation at x = 0 will be determined by the nature of Ω(0;λ) = B(0;λ). In this case

B(0;λ) =

(
λI2n − V (0)⊗ I2 0

0 I2n

)
.

For λ = −λ∞ < 0, with |λ∞| sufficiently large, the matrix B(0;λ) has 2n negative eigenvalues
and 2n positive eigenvalues. We can conclude from (the proof of) Lemma 3.11 in [20] that
as x increases from 0, 2n eigenvalues will rotate from −1 in the clockwise direction and 2n
eigenvalues will rotate from −1 in the counterclockwise direction. We conclude that in this
case Mas(`3(·;−λ∞), `4(0); [0, 1]) = −2n (corresponding with the 2n eigenvalues that arrive
at −1 in the counterclockwise direction as x decreases to 0).

For convenient reference, we record these observations as a proposition.

Proposition 4.1. Suppose V ∈ C([0, 1];Rn×n) is a symmetric matrix-valued potential, Hξ

is as in (4.13) for some ξ ∈ [0, π], and Mas(`3(·, λ0), `4(ξ); [0, 1]) is defined as in this section.
Then

Mor(Hξ;λ0) = −Mas(`3(·;λ0), `4(ξ); [0, 1])−

{
2n ξ = 0

0 ξ ∈ (0, π]
.

For each fixed ξ ∈ [0, π], Proposition 4.1 provides a computationally efficient way to
determine the number of eigenvalues that Hξ has at or below a fixed threshold λ0. Since
each eigenvalue of Hξ with multiplicity m is an eigenvalue of Hξ with multiplicity 2m, we
obtain a count of the number of eigenvalues that Hξ has below λ0.

Suppose that we have carried out this calculation for some particular value of ξ0 so that
Mor(Hξ0 ;λ0) is known. We ask the following question: can we find Mor(Hξ;λ0) for each
value ξ ∈ (ξ0, ξ] without recomputing solutions of (4.7)? Theorem 1.3 has been formulated
with precisely this question in mind. In particular, it allows us to write (for ξ0 < ξ)

Mor(Hξ;λ0) = Mor(Hξ0 ;λ0)−Mas(`3(1;λ0), `4; [ξ0, ξ]),
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where we have observed that for λ∞ sufficiently large

Mas(`3(1;−λ∞), `4; [ξ0, ξ]) = 0. (4.15)

Detailed calculations are carried out numerically in [17] for operators Hξ obtained when
Allen-Cahn equations and systems are linearized about stationary periodic solutions.

4.4.2 Euler-Bernoulli Systems

We consider Euler-Bernoulli systems

(A(x)φ′′)′′ = λR(x)φ, (4.16)

where A ∈ C2(R;Rn×n), R ∈ C(R;Rn×n) and both are 1-periodic and symmetric. In addi-
tion, we assume A(x) is invertible for all x ∈ [0, 1], and that R(x) is positive definite for all
x ∈ [0, 1]. The case n = 1 has been analyzed in considerable detail by Papanicolaou (see [33]
and the references therein).

Similarly as in the case of the Schrödinger operator, we know from standard Floquet
theory that the L2(R) spectrum of (4.16) is purely continuous and corresponds with the
union of λ so that (4.16) admits a bounded eigenfunction of the Bloch form

φ(x) = eiξxw(x),

for some ξ ∈ R and 1-periodic function w(x). As discussed in the previous section, this leads
to the boundary conditions

φ(k)(1) = eiξφ(k)(0); k = 0, 1, 2, 3.

Using again the convention φk = u2k−1 + iu2k, we obtain the system

((A(x)⊗ I2)u′′)′′ = λ(R(x)⊗ I2)u
u(k)(1) = (In ⊗Rξ)u

(k)(0); k = 0, 1, 2, 3.
(4.17)

Aside from the boundary conditions, equation (4.17) is a special case of (3.2) with V4(x) =
A(x)⊗ I2, V2(x) ≡ 0, V0(x) ≡ 0, and Q(x) = R(x)⊗ I2.

Following our general framework for (3.2) we express (4.17) as a system by writing y1 = u,
y2 = (A(x)⊗ I2)u′′, y3 = −((A(x)⊗ I2)u′′)′, and y4 = −u′ so that

y′ = A(x;λ)y; A(x;λ) =


0 0 0 −I2n
0 0 −I2n 0

−λ(R(x)⊗ I2) 0 0 0
0 −A(x)−1 ⊗ I2 0 0

 ,

y(1) = (I4n ⊗Rξ)y(0),

where we have observed that (A(x) ⊗ I2)−1 = A(x)−1 ⊗ I2. If we multiply our equation by
J8n we obtain our form (1.1)

J8ny
′ = B(x;λ)y; B(x;λ) =


λ(R(x)⊗ I2) 0 0 0

0 A(x)−1 ⊗ I2 0 0
0 0 0 −I2n
0 −I2n 0

 ,

Θ(ξ)

(
y(0)

y(1)

)
= 0; Θ(ξ) =

(
I4n ⊗Rξ,−I8n

)
.
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We have already seen that Θ(ξ) satisfies the assumptions in (BC2)ξ, so our general framework
applies in this case.
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