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Abstract

We consider the asymptotic behavior of perturbations of transition front solutions
arising in Cahn–Hilliard systems on R. Such equations arise naturally in the study
of phase separation, and systems describe cases in which three or more phases are
possible. When a Cahn–Hilliard system is linearized about a transition front solution,
the linearized operator has an eigenvalue at 0 (due to shift invariance), which is not
separated from essential spectrum. In cases such as this, nonlinear stability cannot be
concluded from classical semigroup considerations and a more refined development is
appropriate. Our main result asserts that spectral stability—a necessary condition for
stability, defined in terms of an appropriate Evans function—implies nonlinear stability.

1 Introduction

We consider the stability of transition front solutions ū(x), ū(±∞) = u±, u− 6= u+, for
Cahn–Hilliard systems on R,

ut =
(

M(u)(−Γuxx + f(u))x

)

x
, (1.1)

where u, f ∈ Rm, m an integer greater than or equal to 2 (m + 1 phases are possible) and
M,Γ ∈ Rm×m. A brief discussion of the history and physicality of this equation is given in
[10], and reasonable (physical) choices for f , M , and Γ are also discussed. We omit such a
discussion here, but state, for convenient reference, the assumptions of [10], which we will
assume throughout this paper.

(H0) (Assumptions on Γ) Γ denotes a constant, symmetric, positive definite matrix.

(H1) (Assumptions on f) f ∈ C3(Rm), and f has at least two zeros on Rm. For convenience
we denote this set

M := {u ∈ R
m : f(u) = 0}. (1.2)
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(H2) (Transition front existence and structure) There exists a transition front solution to
(1.1) ū(x), so that

−Γūxx + f(ū) = 0, (1.3)

with ū(±∞) = u±, u± ∈ M. When (1.3) is written as a first order autonomous ODE
system ū arises as a transverse connection either from the m-dimensional unstable linearized
subspace for u−, denoted U−, to them-dimensional stable linearized subspace for u+, denoted
S+, or (by isotropy) vice versa. (We recall that since our ambient manifold is R2m, the
intersection of U− and S+ is referred to as transverse if at each point of intersection the
tangent spaces associated with U− and S+ generate R2m. In particular, in this setting
a transverse connection is one in which the the intersection of these two manifolds has
dimension 1; i.e., our solution manifold will comprise shifts of ū.)

(H3) (Assumptions on M and Γ) M ∈ C2(Rm); M is uniformly positive definite along the
front; i.e., there exists θ > 0 so that for all ξ ∈ Rm and all x ∈ R we have

ξtrM(ū(x))ξ ≥ θ|ξ|2.

(H4) (Symmetry and Endstate Assumptions) We assume them×m Jacobian matrix f ′(ū(x))
is symmetric for all x ∈ R. Setting B± := f ′(u±) andM± :=M(u±), we assume B± and M±
are both symmetric and positive definite. (Of course, M± is already positive definite from
(H3).) In addition, we assume that for each of the matricesM±B± and Γ−1B±, the spectrum
is distinct except possibly for repeated eigenvalues that have an associated eigenspace with
dimension equal to eigenvalue multiplicity. In the case of repeated eigenvalues, we assume
additionally that the solutions µ of

det
(

− µ4M±Γ + µ2M±B± − λI
)

= 0

can be strictly divided into two cases: if µ(0) 6= 0 then µ(λ) is analytic in λ for |λ| sufficiently
small, while if µ(0) = 0 µ(λ) can be written as µ(λ) =

√
λh(λ), where h is analytic in λ for

|λ| sufficiently small.

Regarding (H1) we observe that for Cahn-Hilliard systems we can often write f as the
gradient of an appropriate bulk free energy density F (i.e. f(u) = F ′(u)), where F has m+1
local minima on R

m. In this way, it’s natural for f to have precisely m + 1 zeros. Since F
would appear in (1.1) with both a u and an x derivative, we can subtract from it any affine
function without changing (1.1). It is often convenient to subtract a supporting hyperplane
from F so that F is also 0 on M.

Regarding (H4), we first observe that the symmetry condition on f ′(ū(x)) is natural since
F ′′(u) is a Hessian matrix. Also, we note that we can ensure that our system satisfies the
determinant condition by taking arbitrarily small perturbations of the matrices M and Γ.
Since we expect stability to be insensitive to such perturbations, we view this assumption as
purely for technical convenience. In particular, our estimates of Lemma 2.1 would take a more
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complicated form if we removed them. Generally speaking, (H0)-(H4) hold for physically
relevant choices of Γ, M , and f ; particular examples can be found in [10].

When the Cahn–Hilliard system (1.1) is linearized about a standing wave solution ū(x),
as described in (H2), the resulting linear equation is

vt =
(

M(x)(−Γvxx +B(x)v)x

)

x
, (1.4)

where (with a slight abuse of notation) M(x) := M(ū(x)) and B(x) := f ′(ū(x)). Assump-
tions (H0)–(H4) imply the following (stated with some redundancy so that these assumptions
can be referred to independently of (H0)-(H4)):

(C1) B ∈ C2(R); there exists a constant αB > 0 so that

∂jx(B(x)− B±) = O(e−αB |x|), x→ ±∞,

for j = 0, 1, 2; B± are both positive definite matrices.

(C2) M ∈ C2(R); there exists a constant αM > 0 so that

∂jx(M(x)−M±) = O(e−αM |x|), x→ ±∞,

for j = 0, 1, 2; M is uniformly positive definite on R; Γ denotes a constant, symmetric,
positive definite matrix. We will set α = min{αB, αM}.

The eigenvalue problem associated with (1.4) has the form

Lφ :=
(

M(x)(−Γφ′′ +B(x)φ)′
)′

= λφ. (1.5)

In many cases it’s possible to verify that the only non-negative eigenvalue for this equation
is λ = 0 (see, for example, [1, 2, 16] and our companion spectral paper [10]), and so stability
depends entirely on the nature of this neutral eigenvalue. In [10], we identify an appropriate
stability condition for this leading eigenvalue. Briefly, this condition is constructed in terms
of the asymptotically growing/decaying solutions of (1.5). For |λ| > 0 sufficiently small,
and Argλ 6= π (i.e., excluding negative real numbers), there are 2m linearly independent
solutions of (1.5) that decay as x→ −∞ and 2m linearly independent solutions of (1.5) that
decay as x → +∞. Moreover, these functions can be constructed so that they are analytic
in ρ =

√
λ. If we denote these functions {φ±

j (x; ρ)}2mj=1 and set Φ±
j = (φ±

j , φ
±
j
′
, φ±

j
′′
, φ±

j
′′′
)tr,

the Evans function can be expressed as

Da(ρ) = det(Φ+
1 , . . . ,Φ

+
2m,Φ

−
1 , . . . ,Φ

−
2m)
∣
∣
∣
x=0

. (1.6)

In terms of this function the stability condition of [10] can be stated as follows:

Condition 1.1. The set σ(L)\{0} lies entirely in the negative half-plane Reλ < 0, and

dm+1

dρm+1
Da(ρ)

∣
∣
∣
ρ=0

6= 0.
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Remark 1.1. As discussed in Section 3 of [10], our assumptions (H0)-(H4) ensure that the
essential spectrum of L (defined here as any value that is neither in the point spectrum nor the
resolvent set of L) is confined to the negative real axis (−∞, 0]. (This follows immediately
from our assumptions that Γ, B±, and M± are all symmetric and positive definite.) In
addition, our straightforward energy estimate in Section 4 shows that Condition 1.1 implies
that aside from the leading eigenvalue λ = 0 the point spectrum of L is bounded to the left
of a wedge with vertex on the negative real axis:

Γθ := {λ : Re λ = −θ1 − θ2|Im λ|} (1.7)

for some positive values θ1, θ2 sufficiently small. If we make one additional natural assump-
tion, that M(ū(x)) is symmetric for all x ∈ R, we can ensure that the point spectrum of L
is entirely real-valued. Finally, we verify in [10] that

Da(0) = D′
a(0) = · · · = D(m)

a (0) = 0

(see also the brief note in Section 2 of the current paper.)

Our main goal in the current analysis is to establish that Condition 1.1 is sufficient to
guarantee nonlinear (phase-asymptotic) stability for the front ū(x). We employ the pointwise
Green’s function approach of [6, 7, 19], along with the local tracking developed in [12].

Generally, if the initial value for (1.1) is taken as a small perturbation of ū(x), the solution
u(t, x) will approach a shift of ū(x) rather than the front itself (orbital stability). Following
[12], we proceed by tracking this shift locally in time, our location denoted by δ(t), which is
standard notation in the literature and should not be confused with a Dirac delta function.
More precisely, we include this shift in our analysis by defining our perturbation v(t, x) as

v(t, x) := u(t, x+ δ(t))− ū(x). (1.8)

At this point, δ(t) is yet undetermined, and indeed one of the most important aspects of
our approach to this problem is that it allows us to make an effective choice of δ(t). Upon
substitution of u(t, x+ δ(t)) into (1.1) we obtain the perturbation equation

vt =
(

M(x)(−Γvxx +B(x)v)x

)

x
+ ū′(x)δ̇(t) + vxδ̇(t) +Qx, (1.9)

where Q = Q(x, v, vx, vxxx) is at least C
2 in all its variables, and if

|v|+ |vx|+ |vxxx| ≤ C̃

for some constant C̃, then there exists a constant C so that

|Q| ≤ C
(

|v||vx|+ e−α|x||v|2 + |v||vxxx|
)

, (1.10)

where α is described in (C1)-(C2) above. On one hand, this is a beneficial nonlinearity,
because |vx| and |vxxx| will generally decay faster than |v| as |x| or t tends to ∞, and so each
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of these bounds is better than the standard nonlinearity |v|2 encountered in the analysis of
viscous conservation laws. On the other hand, for small values of t, derivatives of v generally
blow up, and vxxx is problematic in this regard. Our short time analysis of Section 7.1 is
designed primarily to address this difficulty.

Let G(t, x; y) denote the Green’s function associated with the linear equation vt = Lv,
where L is as in (1.5), so that, in the standard distributional sense,

Gt = LG

G(0, x; y) = δy(x)I,
(1.11)

where I denotes an m × m identity matrix, and of course δy(x) is a standard Dirac delta
function. Integrating (1.9), we find

v(t, x) =

∫ +∞

−∞
G(t, x; y)v0(y)dy + δ(t)ū′(x)

−
∫ t

0

∫ +∞

−∞
Gy(t− s, x; y)

[

δ̇(s)v(s, y) + Q(s, y)
]

dyds,

(1.12)

where in deriving this equation we have (1) observed that since ū′(x) is a stationary solution
for vt = Lv we must have eLtū′(x) = ū′(x); (2) assumed our eventual choice of δ(t) has the
natural property δ(0) = 0; and (3) integrated the standard nonlinear integral by parts. To
be clear, we do not assume at this stage that solutions of (1.12) are necessarily solutions of
(1.9). Rather, our approach will be to work directly with (1.12) and use our estimates on
G and v to establish the correspondence. We consider the condition δ(0) = 0 to be natural,
because δ(t) should capture the shift obtained as perturbation mass accumulates near the
transition layer, and generally this accumulation will take some time.

We remark that (1.12) can be expressed in terms of the semigroup eLt as

v(t, x) = eLtv0 + δ(t)ū′(x) +

∫ t

0

eL(t−s)
[

δ̇(s)v(s, ·) +Q(s, ·)
]

y
ds. (1.13)

Using the resolvent kernel estimates we derive in Section 3.2, we can verify that −L is
sectorial on Lp(R), 1 ≤ p < ∞, and so generates an analytic semigroup. (See, for example,
[13] or [15].) If we assume additional regularity on f and M we can ensure −L is sectorial
on W k,p spaces: precisely, if f ∈ C3+k and M ∈ C1+k then −L will be sectorial on W k,p.
This serves to establish the spectral representation (inverse Laplace transform)

eLt =
1

2πi

∫

Γ

eλt(λI − L)−1dλ, (1.14)

where Γ is a contour in the resolvent set of L, entirely to the right of σ(L), so that arg λ→ ±θ
as |λ| → ∞ for some θ ∈ (π

2
, π). (In fact, we can relax this last condition to the extent allowed
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by analyticity and Cauchy’s Theorem.) If φ is in an appropriate Banach space, such as those
listed above, then

(λI − L)−1φ =

∫ +∞

−∞
Gλ(x, y)φ(y)dy, (1.15)

where Gλ denotes the resolvent kernel associated with L. We have, then,

eLtφ =
1

2πi

∫

Γ

eλt
∫ +∞

−∞
Gλ(x, y)φ(y)dydλ. (1.16)

Our estimates on Gλ, derived in Section 3, will verify that we can exchange the order of
integration, and so we have

eLtφ =

∫ +∞

−∞
G(t, x; y)φ(y)dy,

where

G(t, x; y) =
1

2πi

∫

Γ

eλtGλ(x, y)dλ. (1.17)

More directly, we can employ our estimates on Gλ(x, y) to show that if G is defined as in
(1.17) then (1.11) can be verified directly.

In our detailed analysis of G (carried out in Section 5) we proceed by decomposing G
into two parts, an excited term E that does not decay as t → ∞ (and is associated with
the leading eigenvalue λ = 0), and a higher order term G̃(t, x; y) that does decay as t→ ∞.
This approach, following [8, 12, 17, 19] and others, will allow us to choose our shift δ(t). We
will find that E can be written as E(t, x; y) = ū′(x)e(t, y), and so we can express G as

G(t, x; y) = ū′(x)e(t; y) + G̃(t, x; y), (1.18)

so that (1.12) becomes

v(t, x) =

∫ +∞

−∞
G̃(t, x; y)v0(y)dy −

∫ t

0

∫ +∞

−∞
G̃y(t− s, x; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

+ ū′(x)
{

δ(t) +

∫ +∞

−∞
e(t; y)v0(y)dy −

∫ t

0

∫ +∞

−∞
ey(t− s; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds
}

.

(1.19)
Our goal will be to choose δ(t) in such a way that the entire expression multiplying ū′(x)

in (1.19) is annihilated. That is, we would like δ(t) to solve the integral equation

δ(t) = −
∫ +∞

−∞
e(t; y)v0(y)dy +

∫ t

0

∫ +∞

−∞
ey(t− s; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds. (1.20)

In principle now, we would like to establish existence of v, along with a bound on asymmptotic
behavior, by closing an iteration on (1.12). For such an argument we must be clear about
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which functions must be carried through the iteration and which can be analyzed after the
iteration, using the obtained bounds. Of particular importance in this regard, δ(t) does not
appear directly in (1.12), and so it suffices to couple (1.12) with an equation for δ̇(t), rather
than for δ(t) itself. (Of course, v depends on δ, and we will accomodate that dependence
with our short-time theory; see Section 7.2.) Afterward, estimates on δ(t) can be obtained
directly from (1.20). Also, the nonlinearity Q depends on vx and vxxx (in addition, of course,
to dependence on x and v), and so we must either couple (1.12) with integral equations for
these functions or obtain estimates on them in terms of the functions we do iterate. It’s
straightforward to show that vxxx can be bounded in terms of x, vx, and δ(t) for t bounded
away from 0, and can easily be estimated for t near 0, and so our approach will be to iterate
with the variables v, vx, and δ̇(t), and to obtain estimates on vxxx and δ(t) after the iteration.
(Though the connection between vx and vxxx will be used during the course of the iteration.)
In this way, we will carry out an iteration on the 2m+ 1 integral equations,

v(t, x) =

∫ +∞

−∞
G̃(t, x; y)v0(y)dy −

∫ t

0

∫ +∞

−∞
G̃y(t− s, x; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

vx(t, x) =

∫ +∞

−∞
G̃x(t, x; y)v0(y)dy −

∫ t

0

∫ +∞

−∞
G̃xy(t− s, x; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

δ̇(t) = −
∫ +∞

−∞
et(t; y)v0(y)dy +

∫ t

0

∫ +∞

−∞
ety(t− s; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds.

(1.21)
Our first result regards estimates on G(t, x; y) and its derivatives. In expressing this

theorem, it’s convenient to separate short and long time behavior by taking a function ̺(t)
so that ̺ ∈ C∞[0,∞), with ̺(t) = 0 for 0 ≤ t < T1 and ̺(t) = 1 for t ≥ T2, where T1 and T2
are any constants so that 0 < T1 < T2. Simply to be specific, we take

̺(t) := ϕǫ ∗ χ(t),

where ϕ is the standard mollifier

ϕ(t) :=

{

Ce
1

t2−1 |t| < 1

0 |t| ≥ 1,

(C chosen so that
∫

R
ϕ(t)dt = 1), ϕǫ(t) :=

1
ǫ
ϕ( t

ǫ
), and χ(t) denotes a characteristic function

on [1
2
,∞). Taking ǫ = 1

4
, we obtain T1 =

1
4
and T2 =

3
4
.

Theorem 1.1. Suppose Conditions (C1)-(C2) hold, and also that spectral Condition 1.1
holds. Then given any time thresholds T1 > 0 and T2 > 0 there exist constants η > 0
(sufficiently small), and C > 0, K > 0, M > 0 (sufficiently large) so that the Green’s
function described in (1.11) can be bounded as follows: there exists a splitting

G(t, x; y) = ū′(x)e(t; y) + G̃(t, x; y),
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so that for y < 0:

(I) (Excited terms)

(i) Main estimates:

e(t; y) =
( 2√

π

2m∑

j=m+1

c−j r̃
−
j (0)

∫ y√
4β

−
j−m

t

−∞
e−z2dz +Re(t; y)

)

̺(t)

ey(t; y) =
( 2m∑

j=m+1

c−j r̃
−
j (0)

√

β−
j−mπt

e
− y2

4β−
j−m

t + ∂yRe(t; y)
)

̺(t)

where
|Re(t, y)| ≤ Ct−1/2e−y2/Mt

|∂yRe(t, y)| ≤ C
(

t−1e−y2/Mt + t−1/2e−y2/Mte−η|y|
)

.

For brevity the (constant) values {β−
j }mj=1 and {c−j }2mj=m+1, and the vectors {r̃−j (0)}2mj=m+1 are

specified in a remark following the theorem statement.

(ii) Time derivatives:
∣
∣
∣et(t; y)

∣
∣
∣ ≤ C(1 + t)−1e−

y2

Mt

∣
∣
∣eyt(t; y)

∣
∣
∣ ≤ C(1 + t)−3/2e−

y2

Mt .

(II) For |x− y| ≤ Kt and t ≥ T1

∣
∣
∣G̃(t, x; y)

∣
∣
∣ ≤ Ct−1/2e−

(x−y)2

Mt

∣
∣
∣G̃y(t, x; y)

∣
∣
∣ ≤ Ct−1e−

(x−y)2

Mt

∣
∣
∣G̃x(t, x; y)

∣
∣
∣ ≤ C

[

t−1/2e−η|x| + t−1
]

e−
(x−y)2

Mt

∣
∣
∣G̃xy(t, x; y)

∣
∣
∣ ≤ C

[

t−1e−η|x|e−
y2

Mt + t−1e−η|x−y| + t−3/2e−
(x−y)2

Mt

]

.

(III) For |x− y| ≥ Kt or 0 < t < T2

∣
∣
∣∂αG̃(t, x; y)

∣
∣
∣ ≤ C

[

t−
1+|α|

4 e
− |x−y|4/3

Mt1/3 + e−η(|x|+t)e−
y2

Mt

]

where α is a standard multiindex in x and y with |α| ≤ 3. In all cases symmetric estimates
hold for y > 0.
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Remark 1.2. Using the notation of (C1)-(C2) we can, up to a choice of scaling, specify the
values {β±

j }mj=1 and {r̃−m+j(0)}mj=1 by the relation

r̃±m+j(0)M±B± = β±
j r̃

±
m+j(0).

The values {cj}2mj=m+1 can be specified as

cj = h−(2m)j c̃
−
j (0),

where the {c̃−j }2mj=m+1 are described in Lemma 3.5, while the values {h−(2m)j}2mj=m+1 are described

in Lemma 3.9 Part (iv). Although we give these precise specifications to be complete, our
analysis only requires the existence of such constants.

The estimates on G̃ could be expressed in a more detailed form, similar to the expressions
for e(t; y), but our analysis won’t require that much precision, and we have chosen to omit
it. See [3, 8] for more precise statements in the scalar case.

Remark 1.3. We will use the observation that by taking T2 > T1 we can ensure there is a
region in the case |x− y| ≤ Kt for which estimates (II) and (III) both hold.

In Section 7 we show that the estimates of Theorem 1.1 are sufficient to close an iteration
on the system (1.21). In this way, we establish the following theorem, which is the main
result of our analysis.

Theorem 1.2. Suppose ū(x) is a transition front solution to (1.1) as described in (H2),
and suppose (H0)-(H4) hold, as well as Condition 1.1. Then for Hölder continuous initial
conditions u(0, x) ∈ Cγ(R), 0 < γ < 1, with

|u(0, x)− ū(x)| ≤ ǫ(1 + |x|)−3/2,

for some ǫ > 0 sufficiently small, there exists a solution u(t, x) of (1.1)

u ∈ C1+ γ
4
,4+γ((0,∞)× R) ∩ C γ

4
,γ([0,∞)× R)

and a shift function δ ∈ C1+ γ
4 [0,∞) so that

lim
t→0+

δ(t) = 0; lim
t→∞

δ(t) = δ∞ ∈ R,

for which the following estimates hold: there exist constants C > 0 and L > 0 (sufficiently
large) and a constant η̃ > 0 (sufficiently small) so that

|u(t, x+ δ(t))− ū(x)| ≤ Cǫ
[

(1 + t)−1/2e−
x2

Lt + (1 + |x|+
√
t)−3/2

]

|ux(t, x+ δ(t))− ū′(x)| ≤ Cǫt−1/4
[

(1 + t)−3/4e−
x2

Lt

+ (1 + t)−1/4(1 + |x|+
√
t)−3/2 + (1 + t)−1/4e−η̃|x|e−

x2

Lt

]

|δ(t)− δ∞| ≤ Cǫ(1 + t)−1/4

|δ̇(t)| ≤ Cǫ(1 + t)−1.
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Remark 1.4. We’ve chosen to state our theorem with initial decay (1+|x|)−3/2, but a similar
statement can be obtained for (1+ |x|)−r, any r > 1. Along these lines, we verify in [11] that
under the same assumptions of Theorem 1.2 excepting the initial rate condition, stability in
W 1,p(R) follows so long as ‖v0‖L1(R) + ‖v0‖L∞(R) ≤ ǫ.

Plan of the paper. In Section 2 we review necessary ODE estimates from [10], and we use
these estimates in Section 3 to obtain bounds on the resolvent kernel Gλ(x, y). In Section
4 we carry out a brief energy estimate that restricts the point specturm of L (aside from
λ = 0) to the left of wedge Γθ, and in Section 5 we combine the observations of Sections 3-5
to prove Theorem 1.1. In Section 6 we obtain estimates on the linear and nonlinear integrals
in (1.21). Finally, in Section 7 we prove Theorem 1.2.

2 Preliminary ODE Estimates

If we formally take a Laplace transform of the Green’s function equation (1.11), transforming
t to λ, and we denote the Laplace transform of G(t, x; y) by Gλ(x; y) (as has become common
in the pointwise semigroup literature), we obtain the ODE System

LGλ − λGλ = −δy(x)I, (2.1)

where L is as defined in (1.5). We will construct Gλ(x; y) from the solutions of (1.5) that
decay at either −∞ or +∞ (or both). This analysis has been carried out in detail in [10],
and we only summarize the main results here.

First, to set notation, we specify the (necessarily positive) eigenvalues of Γ−1B± and
M±B±

σ(Γ−1B±) := {ν±j }mj=1

σ(M±B±) := {β±
j }mj=1

(2.2)

ordered so that j < k ⇒ ν±j ≤ ν±k , and likewise for the β±
j . According to our assumption

(H4) each of these sets of eigenvalues corresponds with a collection of eigenvectors that spans
R

m.
Asymptotically, (1.5) has the form

−M±Γφ
′′′′ +M±B±φ

′′ = λφ, (2.3)

and we naturally look for solutions of the form φ = eµ
±xr±, for which we find

(

−M±Γ(µ
±)

4
+M±B±(µ

±)
2 − λI

)

r± = 0. (2.4)

In [10] the authors show that the growth and decay rates µ±(λ) are as follows: for j =
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1, 2, . . . , m

µ±
j (λ) = −

√

ν±m+1−j +O(|λ|)

µ±
m+j(λ) = −

√

λ

β±
j

+O(|λ|3/2)

µ±
2m+j(λ) =

√

λ

β±
m+1−j

+O(|λ|3/2)

µ±
3m+j(λ) =

√

ν±j +O(|λ|),

(2.5)

where the index convention has been chosen so that j < k ⇒ µ±
j ≤ µ±

k . Moreover, the fast
rates {µ±

j }mj=1 and {µ±
j }4mj=3m+1 are analytic in λ, while the slow rates {µ±

j }3mj=m+1 are analytic

as functions of
√
λ. (Our entire analysis will be restricted to the case Arg(λ) 6= π.)

Our labeling for the eigenvectors {r±j } will coincide with that of the µ±
j so that for

j = 1, 2, . . . , 4m (

−M±Γ(µ
±
j )

4
+M±B±(µ

±
j )

2 − λI
)

r±j = 0. (2.6)

Finally, it will be convenient to clarify the direct connection between {r±j (0)}4mj=1 and the
eigenvalues {ν±j }mj=1 and {β±

j }mj=1. For j = 1, 2, . . . , m

Γ−1B±r
±
j (0) = ν±m+1−jr

±
j (0)

M±B±r
±
m+j(0) = β±

j r
±
m+j(0)

M±B±r
±
2m+j(0) = β±

m+1−jr
±
2m+j(0)

Γ−1B±r
±
3m+j(0) = ν±j r

±
3m+j(0).

(2.7)

Moreover, for |λ| sufficiently small the eigenvectors {r±j (λ)}mj=1 and {r±j (λ)}4mj=3m+1 are ana-

lytic in λ, while the eigenvectors {r±j (λ)}3mj=m+1 are analytic as functions of
√
λ.

The following lemma is taken directly from [10].

Lemma 2.1. Under Conditions (C1)–(C2), and for |λ| sufficiently small, with Argλ 6= π,
there exists a value η > 0 for which we have the following estimates on a choice of linearly
independent solutions of the eigenvalue problem (1.5).

(I) For x ≤ 0 and k = 0, 1, 2, 3 we have:

(i) For j = 1, . . . , 2m

∂kxφ
−
j (x;λ) = eµ

−
2m+j(λ)x

(

µ−
2m+j(λ)

kr−2m+j(λ) +O(e−η|x|)
)

;

(ii) For j = 1, . . . , m

∂kxψ
−
j (x;λ) = eµ

−
j (λ)x

(

µ−
j (λ)

kr−j (λ) +O(e−η|x|)
)

;
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(iii) For j = m+ 1, . . . , 2m

∂kxψ
−
j (x;λ) =

1

µ−
j (λ)

(

µ−
j (λ)

keµ
−
j (λ)x − (−µ−

j (λ))
ke−µ−

j (λ)x
)

r−j (λ) +O(e−η|x|);

(II) For x ≥ 0 and k = 0, 1, 2, 3 we have:

(i) For j = 1, . . . , 2m

∂kxφ
+
j (x;λ) = eµ

+
j (λ)x

(

µ+
j (λ)

kr+j (λ) +O(e−η|x|)
)

;

(ii) For j = 1, . . . , m

∂kxψ
+
j (x;λ) =

1

µ+
2m+j(λ)

(

µ+
2m+j(λ)

keµ
+
2m+j (λ)x−(−µ+

2m+j(λ))
ke−µ+

2m+j (λ)x
)

r+2m+j(λ)+O(e−η|x|);

(iii) For j = m+ 1, . . . , 2m

∂kxψ
+
j (x;λ) = eµ

+
2m+j (λ)x

(

µ+
2m+j(λ)

kr+2m+j(λ) +O(e−η|x|)
)

.

Remark 2.1. The cases (Ii), (Iii), (IIi), and (IIiii) can be established by standard methods
such as those of Proposition 3.1 in [19]. Cases (Iiii) and (IIii) are established in [10]. The
fast decay modes are {φ−

j }2mj=m+1 and {φ+
j }mj=1. Likewise, the slow decay modes are {φ−

j }mj=1

and {φ+
j }2mj=m+1.

It will be convenient for our later calculations to briefly review the argument from [10]
establishing that

Da(0) = D′
a(0) = · · · = Dm

a (0) = 0.

(The condition Dm+1
a (0) 6= 0 is much more difficult to verify, and we will not make any

attempt to do so here. See [10].) First, we recall that Da(ρ) can be characterized as follows,

Da(ρ) = W (φ+
1 , . . . , φ

+
m

︸ ︷︷ ︸

fast

,

slow
︷ ︸︸ ︷

φ+
m+1, . . . , φ

+
2m,

slow
︷ ︸︸ ︷

φ−
1 , . . . , φ

−
m, φ

−
m+1, . . . , φ

−
2m

︸ ︷︷ ︸

fast

).

By a choice of our bases, we can take

φ+
1 (x; 0) = ū′(x) = φ−

2m(x; 0). (2.8)

To be clear, we observe that this choice typically requires a relabeling of the estimates in
Lemma 2.1.

It’s clear from (2.8) that if both φ+
1 and φ−

2m appear undifferentiated in a term W (. . . )
then that term will be 0 by linear dependence. Likewise, if only a single ρ-derivative appears
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on either of these modes the term will be 0 by analyticity. This means that we can only
possibly have a non-zero term if at least one of these modes is differentiated twice with
respect to ρ. At the same time, we observe that the twice-integrable form of our eigenvalue
problem (1.5) ensures that the m terms φ±

j
′′′
can be eliminated from any term, fast or slow,

that is undifferentiated. Since W is the determinant of a 4m × 4m matrix this means we
can only obtain a non-zero term if at least m terms are differentiated. If a single derivative
appears on any fast mode then the corresponding W will be 0, so the lowest order derivative
of Da(ρ) that can be non-zero at ρ = 0 is obtained by putting two ρ-derivatives on either
φ+
1 or φ−

2m and one ρ-derivative on m− 1 of the 2m slow modes. For a detailed discussion of
these considerations, especially in the case m = 2, see [10].

3 Construction of the Resolvent Kernel

We turn now to the first stages in our construction of G(t, x; y), beginning with (2.1). By
construction, Gλ(x; y) must decay to 0 as x → ±∞ (for each fixed y), and so we expect
that Gλ can be expressed as a linear combination of the asymptotically decaying solutions
described in Lemma 2.1. The expansion coefficients will naturally depend on y, and in
particular will be solutions of the transpose eigenvalue problem

L̃z := −
(

(zxM)xΓ
)

xx
+
(

zxM
)

x
B(x) = λz, (3.1)

where z denotes a 1×m row vector. (We will be more precise about this below.)
In our calculations below we will take advantage of the relationship between Gλ(x; y)

and the Green’s function associated with (3.1). In particular, we have the following lemma,
which is the analogue in the current setting to Lemma 4.3 of [19].

Lemma 3.1. Suppose there exists a function Gλ(x; y) that satisfies (2.1) and for each fixed
y ∈ R decays to 0 as x→ ±∞. If Hλ(x; y) likewise satisfies

L̃Hλ − λHλ = −δy(x)I.

and decays to 0 as x→ ±∞ for each fixed y, then Hλ(x; y) = Gλ(y; x).

Proof of Lemma 3.1. Precisely as in the proof of Lemma 4.3 of [19], we compute directly.
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For any x0, y0 ∈ R, we have

Gλ(x0; y0) =

∫ +∞

−∞

[

δx0(x)I
]

Gλ(x; y0)dx

=

∫ +∞

−∞

[(

(HλxM)xΓ
)

xx
−
(

HλxM
)

x
B(x) + λHλ

]

(x; x0)Gλ(x; y0)dx

=

∫ +∞

−∞
Hλ(x, x0)

[(

M(x)(ΓGλxx −B(x)Gλ)x

)

x
+ λGλ

]

(x; y0)dx

=

∫ +∞

−∞
Hλ(x; x0)

[

δy0(x)
]

dx

= Hλ(y0; x0),

where of course we have integrated by parts to obtain the third equality. �

In order for Gλ(x; y) to solve (2.1), it must be continuous in all derivatives, including
mixed partials, up to and including order 2, and it must have jumps in at least some of its
order 3 derivatives. In order to efficiently describe this behavior, we will adopt the jump
notation [·], so that, for example,

[Gλ](y) := lim
x→y+

Gλ(x; y)− lim
x→y−

Gλ(x; y). (3.2)

It will also be notationally convenient for certain calculations to set

G±
λ (x; y) := lim

z→x±
Gλ(z; y), (3.3)

so that
[Gλ](y) = G+

λ (y; y)−G−
λ (y; y). (3.4)

Finally, we will denote by Gλ the 4m× 4m matrix

Gλ(x; y) =







Gλ Gλy Gλyy Gλyyy

Gλx Gλyx Gλyyx Gλyyyx

Gλxx Gλyxx Gλyyxx Gλyyyxx

Gλxxx Gλyxxx Gλyyxxx Gλyyyxxx






. (3.5)

In the calculations that follow we will ease notation by setting

∂i,jGλ :=
∂i+jGλ

∂xi∂yj
.

Lemma 3.2. Suppose there exists a function Gλ(x, y) that satisfies (2.1) and for each fixed
y ∈ R decays to 0 as x→ ±∞. Then

[Gλ](y) =








0 0 0 −Γ−1M−1

0 0 Γ−1M−1 2Γ−1 dM−1

dy

0 −Γ−1M−1 −Γ−1 dM−1

dy
−Γ−1BΓ−1M−1 − Γ−1 d2M−1

dy

Γ−1M−1 0 Γ−1BΓ−1M−1 −Γ−1B′Γ−1M−1 + 2Γ−1BΓ−1 dM−1

dy







,
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where the matrices M and B, as well as their derivatives, are evaluated at y.
Moreover, we can invert [Gλ] to obtain

[Gλ]
−1 =







−MB′ −MB 0 MΓ
MB −M ′′Γ M ′Γ −MΓ 0
−2M ′Γ MΓ 0 0
−MΓ 0 0 0






.

Remark 3.1. In putting Lemma 3.2 in its stated form, we have made liberal use of the
standard identities

dM

dy
= −MdM−1

dy
M

dM−1

dy
= −M−1 dM

dy
M−1

M
d2M

dy2
M = 2M ′M−1M ′ −M ′′.

For notational brevity we will often suppress the dependence of B and M on y.

Proof of Lemma 3.2. First, Gλ and all of its partial derivatives are continuous up to and
including order two, so the jumps for these functions must be 0.

Third order derivatives [∂3,0Gλ], [∂
2,1Gλ], [∂

1,2Gλ], [∂
0,3Gλ]. In order for the fourth x-

derivative of Gλ to correspond with a Dirac delta function, we expect the third derivative to
have a step jump with appropriate amplitude. That is, the distributional relationship

−M(x)Γ∂4,0Gλ = −δy(x)I

suggests the jump relationship

[∂3,0Gλ](y) = Γ−1M(y)−1. (3.6)

This completes the first column of [Gλ].
Next, we observe from Lemma 3.1 that for each fixed x ∈ R the function of y Gλ(x, ·)

satisfies
−
(

(GλyM)yΓ
)

yy
+
(

GλyM
)

y
B(y)− λGλ = −δx(y)I.

In this case, we must have a jump in the third y-derivative of Gλ(x, ·) of the form

[∂0,3Gλ](y)MΓ = −I ⇒ [∂0,3Gλ](y) = −Γ−1M−1.

For the purposes of keeping signs straight, we recall that [·] denotes a jump as x varies and
the distributional relation ∂0,4GλMΓ = δx(y)I suggests a jump up as y crosses x (increasing)
and a jump down as x crosses y (increasing).

15



In order to compute the third order mixed partials, we differentiate our difference ex-
pressions. To begin, using (3.4) we have

0 =
d

dy
[Gλ](y) = G+

λx
(y, y) +G+

λy
(y, y)−G−

λx
(y, y)−G−

λy
(y, y) = [Gλx ] + [Gλy ].

Similarly,
d3

dy3
[Gλ](y) = [∂3,0Gλ] + 3[∂2,1Gλ] + 3[∂1,2Gλ] + [∂0,3Gλ]. (3.7)

Using our expressions for [∂3,0Gλ] and [∂0,3Gλ] we see that

[∂2,1Gλ] = −[∂1,2Gλ]. (3.8)

Alternatively, we can begin with [Gλx ](y) and compute

0 =
d2

dy2
[Gλx ](y) = [∂3,0Gλ] + 2[∂2,1Gλ] + [∂1,2Gλ]. (3.9)

Combining (3.8) and (3.9) with our expression for [∂3,0Gλ] we find

[∂2,1Gλ] = −Γ−1M−1

[∂1,2Gλ] = +Γ−1M−1.

Fourth order derivatives [∂3,1Gλ], [∂
2,2Gλ], [∂

1,3Gλ]. In order to compute jumps in the
fourth order derivatives, we’ll first compute [∂4,0Gλ] and [∂0,4Gλ]. To this end, we begin with

−
(

M(x)ΓG±
λxxx

)

x
+
(

M(x)(B(x)G±
λ )x

)

x
− λG±

λ = 0. (3.10)

Subtracting the G−
λ equation from the G+

λ equation we find

−M(y)Γ[∂4,0Gλ](y)−M ′(y)Γ[∂3,0Gλ](y) = 0,

so that

[∂4,0Gλ](y) = −Γ−1M(y)−1M ′(y)ΓΓ−1M(y)−1 = Γ−1dM
−1

dy
.

Likewise
−
(

(G±
λy
M)yΓ

)

yy
+
(

G±
λy
M
)

y
B(y)− λG±

λ = 0. (3.11)

We can compute jump values from (3.11) by subtracting the equation for G−
λ from the

equation for G+
λ . We find

−[∂0,4Gλ](y)MΓ− 3[∂0,3Gλ](y)M
′Γ = 0,

16



so that

[∂0,4Gλ](y) = 3Γ−1M(y)−1M ′(y)M(y)−1 = −3Γ−1dM
−1

dy
.

We can now use the relation

d

dy
[∂3,0Gλ](y) = [∂4,0Gλ](y) + [∂3,1Gλ](y),

to see that [∂3,1Gλ](y) = 0, and the relation

d

dy
[∂0,3Gλ](y) = [∂3,1Gλ](y) + [∂0,4Gλ](y),

to see that [∂1,3Gλ](y) = 2Γ−1 dM−1

dy
. In order to compute [∂2,2Gλ](y), we use the relation

d

dy
[∂2,1Gλ](y) = [∂3,1Gλ](y) + [∂2,2Gλ](y),

along with our previously derived expressions for [∂2,1Gλ](y) and [∂3,1Gλ](y) to find

[∂2,2Gλ](y) = −Γ−1dM
−1

dy
.

Fifth order derivatives [∂3,2Gλ], [∂
2,3Gλ]. For these we begin by differentiating (3.10) with

respect to x and subtracting the result we obtain for G−
λ from the result we obtain for G+

λ .
We find

[∂5,0Gλ](y) = Γ−1B(y)Γ−1M(y)−1 + Γ−1d
2M−1

dy2
.

Likewise, working with (3.11) we find

[∂0,5Gλ](y) = −6Γ−1d
2M−1

dy2
− Γ−1B(y)Γ−1M(y)−1.

We now subtract
d

dy
[∂4,0Gλ](y) = [∂5,0Gλ](y) + [∂4,1Gλ](y)

from
d

dy
[∂3,1Gλ](y) = [∂4,1Gλ](y) + [∂3,2Gλ](y),

to find

[∂3,2Gλ](y) =
d

dy
[∂3,1Gλ](y)−

d

dy
[∂4,0Gλ](y) + [∂5,0Gλ](y) = Γ−1B(y)Γ−1M(y)−1.
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Likewise, we subtract

d

dy
[∂0,4Gλ](y) = [∂1,4Gλ](y) + [∂0,5Gλ](y)

from
d

dy
[∂1,3Gλ](y) = [∂2,3Gλ](y) + [∂1,4Gλ](y),

to find

[∂2,3Gλ](y) =
d

dy
[∂1,3Gλ](y)−

d

dy
[∂0,4Gλ](y) + [∂0,5Gλ](y)

= −Γ−1d
2M−1

dy2
− Γ−1B(y)Γ−1M(y)−1.

Sixth order derivative [∂3,3Gλ]. Differentiating (3.11) twice, we find

[∂0,6Gλ](y) = −10Γ−1d
3M−1

dy3
− 5Γ−1B(y)Γ−1dM

−1

dy
− 2Γ−1B′(y)Γ−1M(y)−1.

We now combine the relations

d

dy
[∂2,3Gλ](y) = [∂3,3Gλ](y) + [∂2,4Gλ](y)

d

dy
[∂1,4Gλ](y) = [∂2,4Gλ](y) + [∂1,5Gλ](y)

d

dy
[∂0,5Gλ](y) = [∂1,5Gλ](y) + [∂0,6Gλ](y),

to obtain

[∂3,3Gλ](y) =
d

dy
[∂2,3Gλ](y)−

d

dy
[∂1,4Gλ](y) +

d

dy
[∂0,5Gλ](y)− [∂0,6Gλ](y)

= 2Γ−1B(y)Γ−1dM
−1

dy
− Γ−1B′(y)Γ−1M(y)−1.

Finally, we can verify that [G]−1 is the correct inverse by direct matrix multiplication. �

Lemma 3.3. For each λ ∈ C, if z(·;λ) ∈ C4(R), and L̃ is defined as in (3.1), then L̃z = λz
if and only if the entwining

(
z z′ z′′ z′′′

)
[G]−1







w
w′

w′′

w′′′







is constant (in x) for all w(·;λ) ∈ C4(R) that satisfy Lw = λw, where L is as defined in
(1.5).
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Proof. For notational convenience, we set Z = (z, z′, z′′, z′′′) and W = (w,w′, w′′, w′′′)tr.
Computing directly, we find that

d

dx

(

Z[G]−1W
)

= z
(

(MΓw′′′)′ − (M(Bw)′)′
)

+ z′
(

M ′B −M ′′′Γ
)

w

+ z′′
(

MB − 3M ′′Γ
)

w − 3z′′′M ′Γw − z′′′′MΓw

=
(

− (z′M)′′′Γ + (z′M)′B − λz
)

w = 0,

where we give the intermediate step as a convenient bookkeeping arrangement for the
straightforward but tedious calculation, and where we have used (3.1) in obtaining the final
inequality.

Since z and w can both be scaled by any constant (in x) we can clearly scale away λ
dependence. �

We now require a lemma, similar to Lemma 2.1, characterizing asymptotic behavior of
solutions to L̃z = λz. We will refer to these as dual solutions and typically we will distinguish
them with a tilde.

Lemma 3.4. Under Conditions (C1)–(C2), and for |λ| sufficiently small, with Argλ 6= π,
there exists a value η > 0 for which we have the following estimates on a choice of linearly
independent solutions of the eigenvalue problem L̃z = λz.

(I) For x ≤ 0 and k = 0, 1, 2, 3 we have:

(i) (Slow growth) For j = 1, . . . , m

∂kxϕ̃
−
j (x;λ) = e−µ−

2m+j(λ)x
(

(−µ−
2m+j(λ))

kr̃−2m+j(λ) +
√
λO(e−η|x|)

)

;

(ii) (Fast growth) For j = m+ 1, . . . , 2m

∂kxϕ̃
−
j (x;λ) = e−µ−

2m+j(λ)x
(

(−µ−
2m+j(λ))

kr̃−2m+j(λ) +O(e−η|x|)
)

;

(iii) (Fast decay) For j = 1, . . . , m

∂kx ζ̃
−
j (x;λ) = e−µ−

j (λ)x
(

(−µ−
j (λ))

kr̃−j (λ) +O(e−η|x|)
)

;

(iv) (Slow decay) For j = m+ 1, . . . , 2m

∂kx ζ̃
−
j (x;λ) = e−µ−

j (λ)x
(

(−µ−
j (λ))

kr̃−j (λ) +
√
λO(e−η|x|)

)

;

(II) For x ≥ 0 and k = 0, 1, 2, 3 we have:

19



(i) (Fast growth) For j = 1, . . . , m

∂kxϕ̃
+
j (x;λ) = e−µ+

j (λ)x
(

(−µ+
j (λ))

kr̃+j (λ) +O(e−η|x|)
)

;

(ii) (Slow growth) For j = m+ 1, . . . , 2m

∂kxϕ̃
+
j (x;λ) = e−µ+

j (λ)x
(

(−µ+
j (λ))

kr̃+j (λ) +
√
λO(e−η|x|)

)

;

(iii) (Slow decay) For j = 1, . . . , m

∂kx ζ̃
+
j (x;λ) = e−µ+

2m+j(λ)x
(

(−µ+
2m+j(λ))

kr̃+2m+j(λ) +
√
λO(e−η|x|)

)

.

(iv) (Fast decay) For j = m+ 1, . . . , 2m

∂kx ζ̃
+
j (x;λ) = e−µ+

2m+j(λ)x
(

(−µ+
2m+j(λ))

kr̃+2m+j(λ) +O(e−η|x|)
)

.

Here, the r̃±j satisfy

r̃±j

(

− (µ±
j )

4M±Γ + (µ±
j )

2M±B± − λI
)

= 0.

Notes on the proof. Lemma 3.4 can be proven by standard asymptotic techniques, as
referenced following the statement of Lemma 2.1. The important point here is that for the
slow modes the asymptotic error term goes to 0 (like

√
λ) as λ → 0. This is a direct and

straightforward consequence of the fact that for λ = 0 constants are solutions of the dual
equation L̃z = 0. By contrast, this is not the case for Lw = 0. �

In practice, we will find it convenient to scale our bases of dual solutions according to
an entwinement relationship with our basic ODE modes. To be precise, let {φ−

j }2mj=1 denote

the decay modes of (1.5) at −∞, and let {ψ̄−
j }2mj=1 denote the growth modes of (1.5) at −∞

obtained prior to the difference forms of Lemma 2.1 . That is, the fast ψ̄−
j are precisely the

same as the ψ−
j , while the slow ψ̄−

j satisfy the estimates (j = m+ 1, . . . , 2m)

∂kxψ̄
−
j (x;λ) = eµ

−
j (λ)x

(

µ−
j (λ)

kr−j (λ) +O(e−η|x|)
)

.

In terms of ψ̄−
j , the difference growth mode ψ−

j is defined as

ψ−
j =

1

µ−
j

(

ψ̄−
j − φ−

2m+1−j

)

, (3.12)

for j = m+ 1, . . . , 2m.
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For the {φ−
j }2mj=1 we define the extended vectors

Φ−
j =







φ−
j

φ−′
j

φ−′′
j

φ−′′′
j






,

and we similarly define Ψ−
j and Ψ̄−

j . In addition it will be convenient to define the matrices

Φ± =
(
Φ±

1 Φ±
2 . . . Φ±

2m

)

Ψ̃± =








Ψ̃±
1

Ψ̃±
2
...

Ψ̃±
2m







.

(3.13)

Now scale the associated duals {Φ̃−
j }2mj=1 and {Ψ̃−

j }2mj=1 as follows: for j ∈ {1, 2, . . . , 2m}

Φ̃−
j [Gλ]

−1Φ−
k = δjk; k = 1, 2, . . . , 2m

Φ̃−
j [Gλ]

−1Ψ−
k = 0; k = 1, 2, . . . , 2m

(3.14)

and
Ψ̃−

j [Gλ]
−1Φ−

k = 0; k = 1, 2, . . . , 2m

Ψ̃−
j [Gλ]

−1Ψ−
k = δkj ; k = 1, 2, . . . , 2m,

(3.15)

or more briefly
(
Φ̃−

Ψ̃−

)

[Gλ]
−1
(
Φ−,Ψ−) = I.

We now state a lemma specifying asymptotic behavior for the choice of dual bases we’ll
use for the analysis.

Lemma 3.5. Under Conditions (C1)–(C2), and for |λ| sufficiently small, with Argλ 6= π,
there exists a value η > 0 for which we have the following estimates on a choice of linearly
independent solutions of the eigenvalue problem L̃z = λz.

(I) For x ≤ 0 and k = 0, 1, 2, 3 we have:

(i) (Slow growth) For j = 1, . . . , m

∂kxφ̃
−
j (x;λ) = c̃−j (λ)

(

(−µ−
2m+j)

ke−µ−
2m+j (λ)x − (µ−

2m+j)
keµ

−
2m+j (λ)x

)

r̃−2m+j +O(e−η|x|)

(ii) (Fast growth) For j = m+ 1, . . . , 2m

∂kx φ̃
−
j (x;λ) = e−µ−

2m+j(λ)x
(

(−µ−
2m+j(λ))

kr̃−2m+j(λ) +O(e−η|x|)
)

;
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(iii) (Fast decay) For j = 1, . . . , m

∂kxψ̃
−
j (x;λ) = e−µ−

j (λ)x
(

(−µ−
j (λ))

kr̃−j (λ) +O(e−η|x|)
)

;

(iv) (Slow decay) For j = m+ 1, . . . , 2m

∂kxψ̃
−
j (x;λ) = c̃−j (λ)e

−µ−
j (λ)x

(

(−µ−
j (λ))

kr̃−j (λ) +
√
λO(e−η|x|)

)

;

(II) For x ≥ 0 and k = 0, 1, 2, 3 we have:

(i) (Fast growth) For j = 1, . . . , m

∂kxφ̃
+
j (x;λ) = e−µ+

j (λ)x
(

(−µ+
j (λ))

kr̃+j (λ) +O(e−η|x|)
)

;

(ii) (Slow growth) For j = m+ 1, . . . , 2m

∂kxϕ̃
+
j (x;λ) = c̃+j (λ)

(

(−µ+
j )

ke−µ+
j (λ)x − (µ+

j )
keµ

+
j (λ)x

)

r̃+j +O(e−η|x|)

(iii) (Slow decay) For j = 1, . . . , m

∂kxψ̃
+
j (x;λ) = c̃+j (λ)e

−µ+
2m+j (λ)x

(

(−µ+
2m+j(λ))

kr̃+2m+j(λ) +
√
λO(e−η|x|)

)

.

(iv) (Fast decay) For j = m+ 1, . . . , 2m

∂kxψ̃
+
j (x;λ) = e−µ+

2m+j (λ)x
(

(−µ+
2m+j(λ))

kr̃+2m+j(λ) +O(e−η|x|)
)

.

Here, the r̃±j satisfy

r̃±j

(

− (µ±
j )

4M±Γ + (µ±
j )

2M±B± − λI
)

= 0.

Finally, there exists a constant C > 0 sufficiently large so that for j = 1, 2, . . . , m |c̃−j (λ)| ≤
C|λ|−1/2 and |c̃+j (λ)| ≤ C, while for j = m + 1, m + 2, . . . , 2m |c̃−j (λ)| ≤ C and |c̃+j (λ)| ≤
C|λ|−1/2.

Proof. Since the considerations are similar for Cases (I) and (II), we will restrict our
discussion to Case (I). First, let {Ψ̄−

j }2mj=1 be as discussed just above (3.13). We will work

initially with the duals for {Φ−
j }2mj=1 and {Ψ̄−

j }2mj=1. That is, let { ¯̃Φ−
j }2mj=1 and { ˜̄Ψ−

j }2mj=1 satisfy:
for j ∈ {1, 2, . . . , 2m}

¯̃Φ−
j [Gλ]

−1Φ−
k = δjk; k = 1, 2, . . . , 2m

¯̃Φ−
j [Gλ]

−1Ψ̄−
k = 0; k = 1, 2, . . . , 2m

(3.16)
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and
˜̄Ψ−
j [Gλ]

−1Φ−
k = 0; k = 1, 2, . . . , 2m

˜̄Ψ−
j [Gλ]

−1Ψ̄−
k = δkj ; k = 1, 2, . . . , 2m,

(3.17)

or briefly (
¯̃Φ−

˜̄Ψ−

)

[Gλ]
−1
(
Φ−, Ψ̄−) = I.

We grant that this notation is unwieldy, but it does not carry beyond this proof.
It’s clear from our entwinement relations, and the form of [Gλ]

−1 that an entwinement
can only be non-zero if the fundamental rate of the dual variable is the negative of the

fundamental rate of the ODE variable. In this way, the entwined duals { ¯̃Φ−
j }2mj=1, { ˜̄Ψ−

j }2mj=1

must respectively be multiples of the (extended vector) forms from Lemma 3.4. For the slow

decay duals { ˜̄Ψ−
j }2mj=m+1 this means we have

∂kx
˜̄ψ−
j (x;λ) = ˜̄c−j (λ)e

−µ−
j (λ)x

(

(−µ−
j (λ))

kr̃−j (λ) +
√
λO(e−η|x|)

)

for some constant ˜̄c−j (λ).
In order to understand the nature of this constant, we recall that by definition

˜̄Ψ−
j [G]−1Ψ̄−

j = 1,

and if we take a limit as x→ −∞ in this last relation we obtain

˜̄c−j (λ)
(

− 2µ−
j r̃

−
j M−B−r

−
j + 3(µ−

j )
3r̃−j M−Γr̃

−
j

)

= 1,

and we see that ˜̄c−j (λ) scales like 1/µ
−
j ; i.e., like λ

−1/2. (Here, M−B−r
−
j (0) = β−

j−mr
−
j (0), and

by our standard scaling r̃−j (0) · r−j (0) = 1.)
Likewise, for j = 1, 2, . . . , m

∂kx
¯̃
φ−
j (x;λ) = ¯̃c−j (λ)e

−µ−
2m+j (λ)x

(

(−µ−
j (λ))

kr̃−2m+j(λ) +
√
λO(e−η|x|)

)

∂kx
˜̄ψ−
j (x;λ) = ˜̄c−j (λ)e

−µ−
j (λ)x

(

(−µ−
j (λ))

kr̃−j (λ) +O(e−η|x|)
)

,

where |¯̃c−j (λ)| ≤ C|λ|−1/2 and |˜̄c−j (λ)| ≤ C, and finally for j = m+ 1, . . . , 2m

∂kx
¯̃φ−
j (x;λ) = ¯̃c−j (λ)e

−µ−
j (λ)x

(

(−µ−
j (λ))

kr̃−j (λ) +O(e−η|x|)
)

,

where |¯̃c−j (λ)| ≤ C.

We now define the duals of Lemma 3.5 in terms of { ¯̃Φ−
j }2mj=1 and { ˜̄Ψ−

j }2mj=1 as follows: for
j = 1, 2, . . . , m

Φ̃−
j =

(
¯̃Φ−
j + ˜̄Ψ2m+1−j

)

Ψ̃−
j = ˜̄Ψ−

j ,
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while for j = m+ 1, . . . , 2m

Φ̃−
j = ¯̃Φ−

j

Ψ̃−
j = µ−

j
˜̄Ψ−
j .

We can verify by direct calculation, using (3.16) and (3.17) that these satisfy (3.14) and

(3.15). The claimed estimates follow from the estimates on { ¯̃Φ−
j }2mj=1 and { ˜̄Ψ−

j }2mj=1.
Since these calculations are straightforward, we consider only the case in which an addi-

tion dual entwines with a subtraction mode. That is, for j = 1, . . . , m and k = m+1, . . . , 2m
we compute

Φ̃−
j [Gλ]

−1Ψ−
k = (¯̃Φj +

˜̄Ψ2m+1−j)[Gλ]
−1 1

µ−
k

(Ψ̄−
k − Φ−

2m+1−k)

=
1

µk

[
¯̃Φj [Gλ]

−1Ψ̄−
k − ¯̃Φj [Gλ]

−1Φ−
2m+1−k

+ ˜̄Ψ2m+1−j [Gλ]
−1Ψ̄−

k − ˜̄Ψ2m+1−j [Gλ]
−1Φ−

2m+1−k

]

=
1

µ−
k

[

0− δ2m+1−k
j + δ2m+1−j

k − 0
]

= 0.

The other cases are similar. �

We observe now that since Gλ(x; y) should decay as x → ±∞ for each fixed y ∈ R, we can
express it as a linear combination (with coefficients depending on y) of the asymptotically
decaying extended vector solutions Φ±(x;λ); at the same time, by Lemma 3.1 we can express
Gλ(x; y) as a linear combination (with coefficients depending on x) of the asymptotically
decaying extended dual solutions {Ψ̃±(y;λ)}. Combining these observations, we conclude
that there must exists 2m× 2m matrices M±(λ) so that

Gλ(x; y) =

{

Φ+(x;λ)M+(λ)Ψ̃−(y;λ) x > y

Φ−(x;λ)M−(λ)Ψ̃+(y;λ) x < y,
(3.18)

or equivalently

Gλ(x; y) =







(

Φ+(x;λ) 0
)
(

M+(λ) 0

0 −M−(λ)

)(

Ψ̃+(y;λ)

0

)

x > y

(

0 −Φ−(x;λ)
)
(

M+(λ) 0

0 −M−(λ)

)(

0

Ψ̃−(y;λ)

)

x < y,

(3.19)

By definition of our notation [Gλ](y) we have

[Gλ](y) = Φ+(y;λ)M+(λ)Ψ̃−(y;λ)− Φ−(y;λ)M−(λ)Ψ̃+(y;λ),

which can be re-written in the form

[Gλ](y) =
(
Φ+(y;λ) Φ−(y;λ)

)
(
M+(λ) 0

0 −M−(λ)

)(
Ψ̃+(y;λ)

Ψ̃−(y;λ)

)

.
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Solving for the coefficient matrix, we find

(
M+(λ) 0

0 −M−(λ)

)

=
(
Φ+(y;λ) Φ−(y;λ)

)−1
[Gλ](y)

(
Ψ̃+(y;λ)

Ψ̃−(y;λ)

)−1

. (3.20)

Following [19] we find it notationally convenient to define (suppressing λ dependence)
the ODE solution maps

F z→x :=
(
Φ+(x) Φ−(x)

) (
Φ+(z) Φ−(z)

)−1

F̃ z→y :=

(
Ψ̃−(z)

Ψ̃+(z)

)−1(
Ψ̃−(y)

Ψ̃+(y)

)

,
(3.21)

and the associated projective maps

Π+(y) :=
(
Φ+(y) 0

) (
Φ+(y) Φ−(y)

)−1

Π−(y) :=
(
0 Φ−(y)

) (
Φ+(y) Φ−(y)

)−1

Π̃+(y) :=

(
Ψ̃−(y)

Ψ̃+(y)

)−1(
0

Ψ̃+(y)

)

Π̃−(y) :=

(
Ψ̃−(y)

Ψ̃+(y)

)−1(
Ψ̃−(y)

0

)

.

(3.22)

Clearly, we have the relations
Π−(y) + Π+(y) = I

Π̃−(y) + Π̃+(y) = I.
(3.23)

We can now state three lemmas that will be useful in our analysis of Gλ.

Lemma 3.6. Let λ ∈ C and suppose that for (1.5), the solutions {φ−
j (x;λ)}2mj=1 decay as

x → −∞, the solutions {ψ−
j (x;λ)}2mj=1 grow as x → −∞, and that together these solu-

tions comprise a full basis of solutions to (1.5), and likewise at +∞ for {φ+
j (x;λ)}2mj=1 and

{ψ+
j (x;λ)}2mj=1. Define Φ± and Ψ̃± as in (3.13), and let the definitions (3.21) and (3.22)

hold. Then

Gλ(x; y) =

{

F z→xΠ+(z)[Gλ](z)Π̃−(z)F̃ z→y x > y

−F z→xΠ−(z)[Gλ](z)Π̃+(z)F̃ z→y x < y.

Proof. In both cases we verify the claim by direct computation. Since the cases are similar,
we proceed only for x < y. First, it’s clear from (3.19) and (3.20) that for x < y

Gλ(x; y) = −
(
0 Φ−(x;λ)

) (
Φ+(z;λ) Φ−(z;λ)

)−1
[Gλ](z)

(
Ψ̃+(z;λ)

Ψ̃−(z;λ)

)−1(
0

Ψ̃−(y;λ)

)

,
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where we have observed that the quantity obtained from (3.20) is independent of y and can
be evaluated at any z ∈ R.

Computing directly from the definitions, we find (suppressing dependence on λ for nota-
tional brevity)

−F z→xΠ−(z)[Gλ](z)Π̃+(z)F̃ z→y

= −
(
Φ+(x) Φ−(x)

) (
Φ+(z) Φ−(z)

)−1 (
0 Φ−(z)

) (
Φ+(z) Φ−(z)

)−1

× [Gλ](z)

(
Ψ̃−(z)

Ψ̃+(z)

)−1(
0

Ψ̃+(z)

)(
Ψ̃−(z)

Ψ̃+(z)

)−1(
Ψ̃−(y)

Ψ̃+(y)

)

= −
(
Φ+(x) Φ−(x)

)
(
0 0
0 I

)
(
Φ+(z) Φ−(z)

)−1

× [Gλ](z)

(
Ψ̃−(z)

Ψ̃+(z)

)−1(
0 0
0 I

)(
Ψ̃−(y)

Ψ̃+(y)

)

= −
(
0 Φ−(x)

) (
Φ+(z) Φ−(z)

)−1
[Gλ](z)

(
Ψ̃−(z)

Ψ̃+(z)

)−1(
0

Ψ̃+(y)

)

.

Comparing the last expression here with the observation at the start of the proof, we obtain
the claim. �

Likewise, we can establish the following vanishing pi lemma.

Lemma 3.7. Under the assumptions of Lemma 3.6, we have

Π+(z)[Gλ](z) = Π+(z)[Gλ](z)Π̃−(z) = [Gλ](z)Π̃−(z)

Π−(z)[Gλ](z) = Π−(z)[Gλ](z)Π̃+(z) = [Gλ](z)Π̃+(z).
(3.24)

Proof. First, we note that all quantities are evaluated at z, so there will be no confusion
if we leave off this dependence. Also, the proof is similar for each of the claimed equalities,
so we will only establish the choice Π−[Gλ] = Π−[Gλ]Π̃+. To this end, we begin by observing
that it’s clear from our entwinement relations that
(
Ψ̃−

Ψ̃+

)

[Gλ]
−1
(
Φ+ Φ−) =

(
Ψ̃−[Gλ]

−1Φ+ Ψ̃−[Gλ]
−1Φ−

Ψ̃+[Gλ]
−1Φ+ Ψ̃+[Gλ]

−1Φ−

)

=

(
Ψ̃−[Gλ]

−1Φ+ 0

0 Ψ̃+[Gλ]
−1Φ−

)

,

so that
(
Φ+ Φ−)−1

[Gλ]

(
Ψ̃−

Ψ̃+

)−1

=

(
(Ψ̃−[Gλ]

−1Φ+)−1 0

0 (Ψ̃+[Gλ]
−1Φ−)−1

)

. (3.25)

Using this expression, we compute

Π−[Gλ] =
(
0 Φ−) (Φ+ Φ−)−1

[Gλ]

=
(
0 Φ−)

(
(Ψ̃−[Gλ]

−1Φ+)−1 0

0 (Ψ̃+[Gλ]
−1Φ−)−1

)(
Ψ̃−

Ψ̃+

)

= Φ−(Ψ̃+[Gλ]
−1Φ−)−1Ψ̃+.
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Likewise,

Π−[Gλ]Π̃+ =
(
0 Φ−) (Φ+ Φ−)−1

[Gλ]

(
Ψ̃−

Ψ̃+

)−1(
0

Ψ̃+

)

=
(
0 Φ−)

(
(Ψ̃−[Gλ]

−1Φ+)−1 0

0 (Ψ̃+[Gλ]
−1Φ−)−1

)(
0

Ψ̃+

)

= Φ−(Ψ̃+[Gλ]
−1Φ−)−1Ψ̃+.

�

Lemma 3.8. Under the assumptions of Lemma 3.6, we have

Gλ(x; y) =







(

Φ+(x;λ) 0
)(

Φ+(y;λ) Φ−(y;λ)
)−1

[Gλ](y) x > y

−
(

0 Φ−(x;λ)
)(

Φ+(y;λ) Φ−(y;λ)
)−1

[Gλ](y) x < y.

Proof. Since the proof is similar for each case we proceed only for x < y. Using Lemmas
3.6 and 3.7, we compute

Gλ(x, y) = −F z→xΠ−(z)[Gλ](z)Π̃+(z)F̃ z→y

= −F z→xΠ−(z)[Gλ](z)F̃ z→y

= −
(
Φ+(x) Φ−(x)

) (
Φ+(z) Φ−(z)

)−1 (
0 Φ−(z)

) (
Φ+(z) Φ−(z)

)−1

× [Gλ](z)

(
Ψ̃−(z)

Ψ̃+(z)

)−1(
Ψ̃−(y)

Ψ̃+(y)

)

.

Now, z is arbitrary here, so we can take z = y to get

Gλ(x; y) = −
(
Φ+(x) Φ−(x)

) (
Φ+(y) Φ−(y)

)−1 (
0 Φ−(y)

) (
Φ+(y) Φ−(y)

)−1
[Gλ](y).

The claim is now clear from the relation

(
Φ+(y) Φ−(y)

)−1 (
0 Φ−(y)

)
=

(
0 0
0 I

)

.

�

We will divide our analysis of Gλ(x; y) into three cases: (A) |λ| < r, r > 0 sufficiently
small; (B) |λ| > R, R > 0 sufficiently large; and (C) r ≤ |λ| ≤ R.

3.1 Small |λ| estimates

In this section, we focus on the case |λ| < r for r > 0 sufficiently small. Our notation
O(·) in this section will always describe behavior for |λ| < r. For example, we will write
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h(λ) = O(|λ−1/2|) if there exists a constant C so that |h(λ)| ≤ C|λ−1/2| for |λ| < r, λ 6= 0.
As always, we assume Argλ 6= π. If h depends additionally on x and y, then the notation
|h(λ)| ≤ C|λ−1/2| refers to behavior uniform in x and y. Likewise, if we write h = O(e−η|x|),
we mean there exists a constant C so that for all |λ| < r and all y in its specified domain,
we have |h| ≤ Ce−η|x|.

Lemma 3.9. Suppose Conditions (C1)-(C2) hold, and also that spectral Condition 1.1 holds.
Let Gλ be as defined in (3.5). There exists a value r > 0 sufficiently small so that for |λ| < r,
with Arg λ 6= π we have the following representation for y < x < 0:

Gλ(x; y) = Φ−(x;λ)E(λ)Ψ̃−(y;λ) + Ψ−(x;λ)Ψ̃−(y;λ).

Here, E(λ) ∈ R2m×2m with components {eij(λ)}2mi,j=1 can be characterized as follows: there
exist real values {h−ij}2mi,j=1 so that

(i) For i = 1, 2, . . . , 2m− 1 and j = 1, 2, . . . , m

eij(λ) = h−ij +O(|λ1/2|)

(ii) For i = 1, 2, . . . , 2m− 1 and j = m+ 1, m+ 2, . . . , 2m

eij(λ) = h−ijλ
−1/2 +O(1)

(iii) For i = 2m and j = 1, 2, . . . , m

eij(λ) = h−ijλ
−1/2 +O(1)

(iv) For i = 2m and j = m+ 1, m+ 2, . . . , 2m

eij(λ) = h−ijλ
−1 +O(|λ−1/2|).

Proof. First, for y < x we have

Gλ(x; y) = Φ+(x;λ)M+(λ)Ψ̃−(y;λ),

and we observe that for x < 0 we need to expand Φ+(x;λ) in terms of Φ−(x;λ) and Ψ−(x;λ).
More precisely, there exist 2m× 2m matrices E(λ) and F (λ) so that

Gλ(x; y) = Φ−(x;λ)E(λ)Ψ̃−(y;λ) + Ψ−(x;λ)F (λ)Ψ̃−(y;λ).

At the same time, according to Lemma 3.8, we have

Gλ(x; y) =
(
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
[Gλ](y).

If we equate these expressions for Gλ, multiply each on the right by [Gλ]
−1Ψ− and use the

identity Ψ̃−[Gλ]Ψ
− = I, we find

(
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ) =

(
Φ−(x;λ) Ψ−(x;λ)

)
(
E(λ)
F (λ)

)

.
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Solving this system for the scattering coefficients E(λ) and F (λ), we find

(
E(λ)
F (λ)

)

=
(
Φ−(x;λ) Ψ−(x;λ)

)−1 (
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ).

Since the right-hand side is independent of x and y, we can take y = x. Recalling the
definition of Π+(y) in (3.22) and using (3.23), we compute

(
E(λ)
F (λ)

)

=
(
Φ−(y;λ) Ψ−(y;λ)

)−1
Π+(y)Ψ

−(y;λ)

=
(
Φ−(y;λ) Ψ−(y;λ)

)−1
(I − Π−(y))Ψ

−(y;λ)

=
(
Φ−(y;λ) Ψ−(y;λ)

)−1
Ψ−(y;λ)

−
(
Φ−(y;λ) Ψ−(y;λ)

)−1 (
0 Φ−(y;λ)

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ)

=

(
0
I

)

−
(
0 I
0 0

)
(
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ).

In this way, it’s clear that F (λ) = I and

E(λ) = −
(
0 I

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ). (3.26)

We can characterize the components of E(λ), denoted here {eij}2mi,j=1 by Cramer’s Rule
as

eij(λ) = −
det
(

Φ+
1 , . . . ,Φ

+
2m,Φ

−
1 , . . . ,Ψ

−
j , . . . ,Φ

−
2m

)

det
(

Φ+,Φ−
) , (3.27)

where Ψ−
j appears in the (2m+ i)th slot. We focus our attention on the numerator, which

for convenience in the following discussion we label

Nij = det
(

Φ+
1 , . . . ,Φ

+
2m,Φ

−
1 , . . . ,Ψ

−
j , . . . ,Φ

−
2m

)

.

The discussion here is based on the paragraph immediately following Remark 2.1.
Slow-fast. First, suppose i ∈ {1, . . . , m} and j ∈ {1, . . . , m} so that a slow decay mode

is replaced by a fast growth mode. In this case Nij vanishes at least to the same order as
Da(ρ), and we can conclude eij(λ) = h−ij +O(|λ1/2|).

Slow-slow. For the cases i ∈ {1, . . . , m} and j ∈ {m + 1, . . . , 2m} a slow decay mode is
replaced by a slow growth mode. It’s important to keep in mind at this point that we are
working with the difference forms of our slow growth modes (see Part (iii) of Lemma 2.1),
and so in particular

ψ−
j
′
(x;λ) =

(

eµ
−
j (λ)x + e−µ−

j (λ)x
)

r−j (λ) +O(e−η|x|), (3.28)
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so that
lim

x→−∞
ψ−
j
′
(x; 0) = 2r−j (0).

In this way, if we set λ = 0 in (1.5) for ψ−
j and integrate once we obtain

M(x)
(

− Γψ−
j
′′′
(x; 0) +B(x)ψ−

j (x; 0)
)′

= 2M−B−r
−
j (0).

In this way, we cannot eliminate ψ−
j
′′′
(x; 0) with matrix row operations, and so

dmNij

dρm
(0)

may not be 0 in these cases. Since Nij vanishes to a lower order than Da(ρ), we conclude
eij(λ) = h−ijλ

−1/2 +O(|λ|).
Fast-fast. For the cases i ∈ {m+ 1, . . . , 2m− 1} and j ∈ {1, . . . , m} a fast decay mode

(though not φ−
2m, which corresponds with ū′) is replaced by a fast growth mode. Since the

fast growth modes have been chosen by scaling so that

−Γψ−
j
′′
(x; 0) +B(x)ψ−

j (x; 0) = 0,

we find that in these cases the Nij(ρ) vanish to the same order in ρ as Da(ρ). We conclude
eij(λ) = h−ij +O(|λ1/2|).

Fast-slow. For the cases i ∈ {m + 1, . . . , 2m − 1} and j = {m + 1, . . . , 2m}, we replace
a fast decay mode (though not φ−

2m, which corresponds with ū′) with a slow growth mode.
As discussed in the slow-slow case above, slow growth modes can reduce the order to which
Nij(ρ) vanishes by one order, and so as in that case we conclude eij(λ) = h−ijλ

−1/2 +O(|λ|).
Excited-fast. For the cases i = 2m and j ∈ {1, . . . , m} the mode φ−

2m (which corresponds
with ū′) is replaced by a fast growth mode. In this case, the first non-zero ρ derivative occurs
when a single ρ derivative appears on each of m different slow decay modes. In this way,
N(2m)j(ρ) vanishes to order m− 1, and we conclude eij(λ) = h−ijλ

−1/2 +O(|λ|).
excited-slow. For the cases i = 2m and j ∈ {m+ 1, . . . , 2m} the mode φ−

2m (which corre-
sponds with ū′) is replaced by a slow growth mode. In this case the (un-differentiated) slow
growth mode contributes a full column (no entries necessarily 0), and so for the determinant
of a 4m× 4m matrix we require only m − 1 additional full columns, which can correspond
with a ρ derivative on each of m − 1 slow decay modes. In this way, N(2m)j(ρ) may only
vanish up to order m− 2 in ρ, and we conclude e(2m)j(λ) = h−(2m)jλ

−1 +O(|λ−1/2|). �

Lemma 3.10. Let the assumptions of Lemma 3.9 hold and consider the case x < y < 0.
There exists a value r > 0 sufficiently small so that for |λ| < r, with Arg λ 6= π, we have the
representation

Gλ(x; y) = −Φ−(x;λ)Φ̃−(y;λ) + Φ−(x;λ)E(λ)Ψ̃−(y;λ),

where E(λ) ∈ R
2m×2m is precisely as described in Lemma 3.9.

Proof. First, for y > x we have

Gλ(x, y) = Φ−(x;λ)M+(λ)Ψ̃+(y;λ),
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and we observe that for y < 0 we need to expand Ψ̃+(y;λ) in terms of Φ̃−(y;λ) and Ψ̃−(y;λ).
More precisely, there exist 2m× 2m matrices Ẽ(λ) and F̃ (λ) so that

Gλ(x, y) = Φ−(x;λ)Ẽ(λ)Ψ̃−(y;λ) + Φ−(x;λ)F̃ (λ)Φ̃−(y;λ).

At the same time, according to Lemma 3.8, we have

Gλ(x, y) = −
(
0 Φ+(x;λ)

) (
Φ+(y;λ) Φ−(y;λ)

)−1
[Gλ](y).

Equating these representations, we have

−
(
0 Φ+(x;λ)

) (
Φ+(y;λ) Φ−(y;λ)

)−1
[Gλ](y) = Φ−(x;λ)

{

Ẽ(λ)Ψ̃−(y;λ) + F̃ (λ)Φ̃−(y;λ)
}

.

(3.29)
We multiply this equality on the right by [Gλ]

−1(y)Φ−(y;λ) and use (3.14) and (3.15) to
obtain

−
(
0 Φ+(x;λ)

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Φ−(y;λ) = Φ−(x;λ)F̃ (λ),

and we multiply this new equality on the left by Ψ̃−(x;λ)[Gλ]
−1(x) to obtain

F̃ (λ) = −
(
0 I

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Φ−(y;λ)[Gλ]

−1(y) = −I.

Likewise, if we multiply (3.29) on the right by [Gλ]
−1(y)Ψ−(y;λ) and on the left by

Ψ̃(x;λ)[Gλ]
−1(x) we find

Ẽ(λ) = −
(
0 I

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ),

and comparing with (3.26), we observe that Ẽ(λ) = E(λ). �

Lemma 3.11. Let the assumptions of Lemma 3.9 hold and consider the case y < 0 < x.
There exists a value r > 0 sufficiently small so that for |λ| < r, with Arg λ 6= π, we have the
representation

Gλ(x, y) = Φ−(x;λ)M+(λ)Ψ̃−(y;λ),

where M+(λ) ∈ R2m×2m with components {m+
ij(λ)}2mi,j=1 characterized as follows: there exist

real values {s+ij}2mi,j=1 so that

(i) For i = 2, . . . , 2m and j = 1, 2, . . . , m

m+
ij(λ) = s+ij +O(|λ1/2|)

(ii) For i = 2, . . . , 2m and j = m+ 1, m+ 2, . . . , 2m

m+
ij(λ) = s+ijλ

−1/2 +O(1)

(iii) For i = 1 and j = 1, 2, . . . , m

m+
ij(λ) = s+ijλ

−1/2 +O(1)
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(iv) For i = 1 and j = m+ 1, m+ 2, . . . , 2m

m+
ij(λ) = s+ijλ

−1 +O(|λ−1/2|).

Moreover, s+1j = h−(2m)j for all j = 1, . . . , 2m.

Proof. Using Lemma 3.8, we have

Φ−(x;λ)M+(λ)Ψ̃−(y;λ) =
(
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
[Gλ](y).

We multiply both sides on the left by Φ̃+(x;λ)[Gλ]
−1(x) and on the right by [Gλ]

−1(y)Ψ−(y;λ)
to obtain

M+(λ) =
(
I 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
Ψ−(y;λ).

According to Cramer’s rule, the components m+
ij can be written as

m+
ij(λ) =

det
(

Φ+
1 , . . . ,Ψ

−
j , . . . ,Φ

+
2m,Φ

−
1 , . . . ,Φ

−
2m

)

det
(

Φ+,Φ−
) , (3.30)

where Ψ−
j appears in the ith slot. Claims (i)-(iv) now follow almost precisely as in the proof

of Lemma 3.9.
Finally, regarding s+1j , we observe that the associated numerator satisfies

N(0) = W (ψ−
j , φ

+
2 , . . . , φ

+
2m, φ

−
1 , . . . , ū

′) = −W (ū′, φ+
2 , . . . , φ

+
2m, φ

−
1 , . . . , ψ

−
j )

= −W (φ+
1 , . . . , φ

+
2m, φ

−
1 , . . . , ψ

−
j ),

(3.31)

which is precisely the numerator in e(2m)j(λ), evaluated at λ = 0 (cf. (3.27)). �

In what follows, we will obtain estimates on Gλ(x, y) in three different regions: (i) y <
x < 0; (ii) x < y < 0; and (iii) y < 0 < x. However, we find that the leading order terms (in
λ) have the form Eλ(x, y) = ū′(x)eλ(y), where eλ(y) is case independent. We begin, then,
with a lemma in which we define and characterize Eλ(x, y) in all cases.

Lemma 3.12. Let the assumptions of Lemma 3.9 hold and consider the case y < 0. Set

eλ(y) :=

m∑

j=1

h−(2m)jλ
−1/2ψ̃−

j (y;λ) +

2m∑

j=m+1

h−(2m)jλ
−1ψ̃−

j (y;λ).

There exists a value r > 0 sufficiently small, and a constant η > 0 so that for |λ| < r, with
Arg λ 6= π, the following estimates hold:

eλ(y) =
1

λ

2m∑

j=m+1

h−(2m)je
−µ−

j (λ)y c̃−j (0)r̃
−
j (0) +O(|λ−1/2|)e−µ−

2m(λ)y

e′λ(y) =
1

λ

2m∑

j=m+1

h−(2m)je
−µ−

j (λ)y(−µ−
j (λ))c̃

−
j (0)r̃

−
j (0) +O(1)e−µ−

2m(λ)y +O(|λ−1/2|)O(e−η|y|).
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Remark 3.2. The fact that eλ(y) is the same for all three regions (i)-(iii) follows from the
appearance of E(λ) in both Lemma 3.9 and Lemma 3.10, and from the Moreover part of
Lemma 3.11.

Proof. For the fast ψ̃−
j (i.e., for j = 1, . . . , m), we have

m∑

j=1

h−(2m)jλ
−1/2ψ̃−

j (y;λ) =
m∑

j=1

h−(2m)jλ
−1/2O(e−η|y|) = λ−1/2O(e−η|y|).

For the slow ψ̃−
j (i.e., for j = m+ 1, . . . , 2m), we have

2m∑

j=m+1

h−(2m)jλ
−1ψ̃−

j (y;λ) =

2m∑

j=m+1

h−(2m)jλ
−1c̃−j (λ)e

−µ−
j (λ)y(r̃−j (λ) +

√
λO(e−η|y|))

=
2m∑

j=m+1

h−(2m)j c̃
−
j (0)r̃

−
j (0)λ

−1e−µ−
j (λ)y +O(|λ−1/2|)e−µ−

2m(λ)y,

where we have observed that µ−
2m(λ) is the slow mode closest to 0 for small values of |λ|.

The derivative estimate follows similarly. �

Lemma 3.13. Let the assumptions of Lemma 3.9 hold and consider the case y < x < 0.
There exists a value r > 0 sufficiently small and a value η > 0 so that for |λ| < r, with
Arg λ 6= π, we have the representation

Gλ(x; y) = ū′(x)eλ(y) +Rλ(x; y),

where eλ(y) is specified in Lemma 3.12 and Rλ(x; y) satisfies the following estimates:

Rλ(x; y) =

2m∑

j=m+1

c̃−j (λ)

µ−
j (λ)

(

eµ
−
j (λ)(x−y) − e−µ−

j (λ)(x+y)
)

r−j (λ)r̃
−
j (λ)

+O(|λ−1/2|)eµ−
2m+1(λ)xe−µ−

2m(λ)y +O(e−η|x−y|).

∂yRλ(x; y) = −
2m∑

j=m+1

(

eµ
−
j (λ)(x−y) − e−µ−

j (λ)(x+y)
)

r−j (λ)c̃
−
j (λ)r̃

−
j (λ)

+O(1)e−µ−
2m(λ)(x+y) +O(e−η|x−y|).

∂xRλ(x; y) =

2m∑

j=m+1

(

eµ
−
j (λ)(x−y) + e−µ−

j (λ)(x+y)
)

r−j (λ)c̃
−
j (λ)r̃

−
j (λ)

+O(1)eµ
−
2m(λ)(x+y) +O(|λ−1/2|)O(e−η|x|)e−µ−

2m(λ)y +O(e−η|x−y|).
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∂xyRλ(x; y) = −
2m∑

j=m+1

(

eµ
−
j (λ)(x−y) + e−µ−

j (λ)(x+y)
)

µ−
j (λ)r

−
j (λ)c̃

−
j (λ)r̃

−
j (λ)

+O(e−η|x|)e−µ−
2m(λ)y +O(e−η|x−y|) +O(|λ1/2|)e−µ−

2m(λ)(x+y).

Proof. First, we observe that for y < x < 0 Lemma 3.9 allows us to write

Gλ(x; y) =

2m∑

i,j=1

eij(λ)φ
−
i (x;λ)ψ̃

−
j (y;λ) +

2m∑

i=1

ψ−
i (x;λ)ψ̃

−
i (y;λ),

and likewise, of course, expressions for x and y derivatives of Gλ(x, y) can be obtained by
placing x and y derivatives appropriately on the right-hand side.

As in the proof of Lemma 3.9, we will divide the analysis into cases.
Excited terms. In this case, the excited terms comprise the summands

2m∑

j=1

e(2m)j(λ)φ
−
2m(x;λ)ψ̃

−
j (y;λ),

where we recall our convention
φ−
2m(x; 0) = ū′(x),

and by a perturbation argument that employs analyticity of φ−
2m(x;λ),

φ−
2m(x;λ) = ū′(x) + λO(e−η|x|),

for some η > 0. (Recall that our notationO(e−η|x|) indicates an estimate uniform for |λ| < r.)
For the fast ψ̃−

j (i.e., for j = 1, . . . , m), we have

m∑

j=1

e(2m)j(λ)φ
−
2m(x;λ)ψ̃

−
j (y;λ)

=

m∑

j=1

(h−(2m)jλ
−1/2 +O(1))(ū′(x) + λO(e−η|x|))ψ̃−

j (y;λ)

= ū′(x)
m∑

j=1

h−(2m)jλ
−1/2ψ̃−

j (y;λ) +O(e−η|x|)O(e−η|y|).

The first of these will appear in Eλ(x, y) while the second will appear in Rλ(x, y).
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For the slow ψ̃−
j (i.e., for j = m+ 1, . . . , 2m), we have

2m∑

j=m+1

e(2m)j(λ)φ
−
2m(x;λ)ψ̃

−
j (y;λ)

=

2m∑

j=m+1

(h−(2m)jλ
−1 +O(|λ−1/2|))(ū′(x) + λO(e−η|x|))ψ̃−

j (y;λ)

= ū′(x)

2m∑

j=m+1

h−(2m)jλ
−1ψ̃−

j (y;λ)

+
2m∑

j=m+1

λ−1/2O(e−η|x|))c̃−j (λ)e
−µ−

j (λ)y(r̃−j (λ) +
√
λO(e−η|y|))

= ū′(x)

2m∑

j=m+1

h−(2m)jλ
−1ψ̃−

j (y;λ) + λ−1/2O(e−η|x|)e−µ−
2m(λ)y ,

where we have observed that µ−
2m(λ) is the slow mode closest to 0 for small values of |λ|.

Again, the first term will be taken as a summand in Eλ(x, y) while the second will be a
summand in Rλ(x, y).

The remaining terms will all be incorporated into Rλ(x, y).
Fast-fast terms. The fast-fast terms comprise the summands

2m−1∑

i=m+1

m∑

j=1

eij(λ)φ
−
i (x;λ)ψ̃

−
j (y;λ)

=

2m−1∑

i=m+1

m∑

j=1

(h−ij +O(|λ1/2|))O(e−η|x|)O(e−η|y|) = O(e−η|x|)O(e−η|y|).

(3.32)

Fast-slow terms. The fast-slow terms comprise the summands

2m−1∑

i=m+1

2m∑

j=m+1

eij(λ)φ
−
i (x;λ)ψ̃

−
j (y;λ)

=

2m−1∑

i=m+1

2m∑

j=m+1

(h−ijλ
−1/2 +O(1))O(e−ηj |x|)e−µ−

j (λ)y = λ−1/2O(e−η|x|)e−µ−
2m(λ)y.

(3.33)

Slow-fast terms. The slow-fast terms comprise the summands
m∑

i=1

m∑

j=1

eij(λ)φ
−
i (x;λ)ψ̃

−
j (y;λ)

=
m∑

i=1

m∑

j=1

(h−ij +O(|λ1/2|))eµ−
2m+i(λ)xO(e−ηj |y|) = eµ

−
2m+1(λ)xO(e−η|y|).

(3.34)
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Slow-slow terms. The slow-slow terms comprise the summands

m∑

i=1

m∑

j=1

eij(λ)φ
−
i (x;λ)ψ̃

−
j (y;λ)

=

m∑

i=1

m∑

j=1

(h−ijλ
−1/2 +O(1))eµ

−
2m+i(λ)xO(1)e−µ−

2m(λ)yO(1) = λ−1/2eµ
−
2m+1(λ)(x+y)O(1).

(3.35)
Fast growth-decay terms. The fast growth-decay terms comprise the summands

m∑

i=1

ψ−
i (x;λ)ψ̃

−
i (y;λ) =

m∑

i=1

eµ
−
i (λ)(x−y)O(1) = O(e−η|x−y|).

Slow growth-decay terms. The slow growth-decay terms comprise the summands

2m∑

i=m+1

ψ−
i (x;λ)ψ̃

−
i (y;λ) =

2m∑

i=m+1

{( 1

µ−
j (λ)

(eµ
−
j (λ)x − e−µ−

j (λ)x)r−j (λ) +O(e−η|x|)
)

× c̃−j (λ)e
−µ−

j (λ)y(r̃−j (λ) +
√
λO(e−η|y|))

}

=

2m∑

i=m+1

c̃−j (λ)

µ−
j (λ)

(eµ
−
j (λ)(x−y) − e−µ−

j (λ)(x+y))r−j (λ)r̃
−
j (λ)

+ eµ
−
2m(λ)(x−y)O(e−η|y|) + e−µ−

2m(λ)yO(e−η|x|) +
√
λO(e−η|x−y|).

The claimed estimate consists of the larger of these terms. The remaining cases for this
lemma are established in a very similar manner, with derivatives on the growth and decay
modes as appropriate. �

Estimates on Gλ(x; y) and its derivatives for the cases x < y < 0 and y < 0 < x are
proven similarly, and we state the results without proof in the next two lemmas.

Lemma 3.14. Let the assumptions of Lemma 3.9 hold and consider the case x < y < 0.
There exists a value r > 0 sufficiently small and a value η > 0 so that for |λ| < r, with
Arg λ 6= π, we have the representation

Gλ(x; y) = ū′(x)eλ(y) +Rλ(x; y),

where eλ(y) is specified in Lemma 3.12 and Rλ(x, y) satisfies the following estimates:

Rλ(x; y) =

m∑

j=1

c̃−2m+j(λ)

µ−
2m+j(λ)

(

eµ
−
2m+j (λ)(x−y) − e−µ−

2m+j(λ)(x+y)
)

r−2m+j(λ)r̃
−
2m+j(λ)

+O(|λ−1/2|)e−µ−
2m(λ)(x+y) +O(e−η|x−y|).
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∂yRλ(x; y) = −
m∑

j=1

(

eµ
−
2m+j(λ)(x−y) + e−µ−

2m+j (λ)(x+y)
)

r−2m+j(λ)c̃
−
2m+j(λ)r̃

−
2m+j(λ)

+O(1)e−µ−
2m(λ)(x+y) +O(e−η|x−y|).

∂xRλ(x; y) =

m∑

j=1

(

eµ
−
2m+j (λ)(x−y) − e−µ−

2m+j (λ)(x+y)
)

r−2m+j(λ)c̃
−
2m+j(λ)r̃

−
2m+j(λ)

+O(1)eµ
−
2m(λ)(x+y) +O(|λ−1/2|)O(e−η|x|)e−µ−

2m(λ)y +O(e−η|x−y|).

∂xyRλ(x; y) = −
m∑

j=1

(

eµ
−
2m+j (λ)(x−y) + e−µ−

2m+j (λ)(x+y)
)

µ−
2m+j(λ)r

−
2m+j(λ)c̃

−
2m+j(λ)r̃

−
2m+j(λ)

+O(e−η|x|)e−µ−
2m(λ)y +O(e−η|x−y|) +O(|λ1/2|)e−µ−

2m(λ)(x+y).

Lemma 3.15. Let the assumptions of Lemma 3.9 hold and consider the case y < 0 < x.
There exists a value r > 0 sufficiently small and a value η > 0 so that for |λ| < r, with
Arg λ 6= π, we have the representation

Gλ(x; y) = ū′(x)eλ(y) +Rλ(x; y),

where eλ(y) is specified in Lemma 3.12 and Rλ(x, y) satisfies the following estimates:

Rλ(x; y) = O(|λ−1/2|)eµ+
2m(λ)x−µ−

2m(λ)y .

∂yRλ(x; y) = O(1)eµ
+
2m(λ)x−µ−

2m(λ)y.

∂xRλ(x; y) = O(1)eµ
+
2m(λ)x−µ−

2m(λ)y +O(|λ−1/2|)O(e−η|x|)e−µ−
2m(λ)y .

∂xyRλ(x; y) = O(|λ1/2|)eµ+
2m(λ)x−µ−

2m(λ)y +O(e−η|x|)e−µ−
2m(λ)y .

3.2 Large |λ| estimates

In this section, we focus on the case |λ| > R for R > 0 sufficiently large. Our notation
O(·) in this section will always describe behavior for |λ| > R. For example, we will write
h(λ) = O(|λ−1/2|) if there exists a constant C so that |h(λ)| ≤ C|λ−1/2| for |λ| > R. As
always, we assume Argλ 6= π. If h depends additionally on x and y, then the notation
|h(λ)| ≤ C|λ−1/2| refers to behavior uniform in x and y.

The scaling argument in this section follows [5, 19], and we employ Zumbrun’s tracking
lemma (see [18], Corollary 8.25).

For the eigenvalue problem

(

M(x)(−Γφ′′ +B(x)φ)′
)′

= λφ (3.36)
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(i.e., for (1.5)), we take |λ| > R and set x̄ := |λ1/4|x and φ̄(x̄) := φ(x). We find, suppressing
the dependence of φ̄ on x̄,

−M(
x̄

|λ1/4|)Γφ̄
′′′′ = λ̄φ̄+O(|λ−1/4|)φ̄′′′ +O(|λ−1/2|)φ̄′′ +O(|λ−3/4|)φ̄′ +O(|λ−1|)φ̄,

where λ̄ := λ
|λ| .

Setting M̄(x̄) :=M(x̄/|λ1/4|), and computing directly, we find

φ̄′′′′ = −Γ−1M̄(x̄)−1λ̄φ̄+O(|λ−1/4|)φ̄′′′ +O(|λ−1/2|)φ̄′′ +O(|λ−3/4|)φ̄′ +O(|λ−1|)φ̄. (3.37)

We express this as a first order system with W̄j = φ̄(j−1), j = 1, 2, 3, 4, so that

W̄ ′ = M̄(x̄;λ)W̄ + Ē(x̄;λ)W̄ , (3.38)

where

M̄(x̄;λ) =







0 I 0 0
0 0 I 0
0 0 0 I

−λ̄Γ−1M̄−1 0 0 0






,

and

Ē(x̄;λ) =







0 0 0 0
0 0 0 0
0 0 0 0

O(|λ−1|) O(|λ−3/4|) O(|λ−1/2|) O(|λ−1/4|)






.

Our goal now is to verify that we can apply the Tracking Lemma from Appendix A4 of [18]
in this case.

If we let {m̄j}nj=1 denote the eigenvalues of Γ
−1M̄(x̄)−1, so that (recalling m̄j(x̄) ≥ m0 > 0

for all j ∈ {1, 2, . . . , n}, by our assumption that M(x) is uniformly positive definite)

µ̄4
j = − λ̄

m̄j
⇒ µ̄j(x̄;λ) = (−λ̄)1/4 1

4
√
m̄j(x̄)

,

where our convention is that (·)1/4 is multi-valued, while 4
√

m̄j(x̄) is not.
In order to apply the Tracking Lemma, we need to work on a contour Ω ⊂ C such that

the eigenvalues of M̄(x̄;λ) can be separated into two spectral groups. More precisely, if
(briefly following the notation of [18] for convenient reference) we let {αk(x̄;λ)}4nk=1 denote
the eigenvalues of M̄(x̄;λ), ordered so that i ≤ j ⇒ Reαi ≤ Reαj, then there exist α(x̄;λ)
and ᾱ(x̄;λ) so that

Re α1(x̄;λ), . . . ,Re αl(x̄;λ) < Re α(x̄;λ) < Re ᾱ(x̄;λ) ≤ Re αl+1(x̄;λ), . . . ,Re α4n(x̄;λ),
(3.39)
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with the uniformity condition ((8.177) of [18])

Re ᾱ(x̄;λ)− Re α(x̄;λ) ≥ 2η > 0.

(See (8.176) of [18], and also (4.178) of the same reference; in [18] the αj appear without real
parts, but only because the inequality is taken as an ordering by real parts.) In our case,

Re α(x̄;λ) < 0 < Re ᾱ(x̄;λ), (3.40)

and the uniformity condition will be clear along our contour from our assumption that
M(ū(x)) is uniformly positive definite.

Set
Ωθ := {λ : Reλ ≥ −θ1 − θ2|Imλ|}.

For R > 0 sufficiently large, and |λ| > R, we will work along the boundary of

Ω = Ωθ − B(0, R). (3.41)

If we write λ̄ = eiθ̄, then the fourth roots of −λ̄ must have one of the four forms

1√
2
(cos

θ̄

4
± sin

θ̄

4
);

1√
2
(− cos

θ̄

4
± sin

θ̄

4
).

Given any ǫ > 0, we can take θ1 > 0 and θ2 > 0 sufficiently small to ensure that |θ̄| ≤ π
2
+ ǫ.

For such values of θ, | cos(θ/4)| ≥ | sin(θ/4)|, and so the real parts of the roots have have
fixed signs. We conclude that (3.39) holds in Ω.

Using the Tracking Lemma, we can conclude that if W̄+(x̄;λ) denotes a solution of (3.38)
that decays as x̄→ +∞ and W̄−(x̄;λ) denotes a solution of (3.38) that decays as x̄→ −∞,
then there exist constants m̄1 > 0, m̄2 > 0, and C̄ > 0, independent of λ ∈ Ωθ, so that

∣
∣
∣
W̄+(x̄;λ)

W̄+(ȳ;λ)

∣
∣
∣ ≤ Ce−m̄1|x̄−ȳ|

∣
∣
∣
W̄−(x̄;λ)

W̄−(ȳ;λ)

∣
∣
∣ ≥ C−1e+m̄2|x̄−ȳ|,

(3.42)

for x̄ ≥ ȳ and likewise
∣
∣
∣
W̄+(x̄;λ)

W̄+(ȳ;λ)

∣
∣
∣ ≥ C−1e−m̄2|x̄−ȳ|

∣
∣
∣
W̄−(x̄;λ)

W̄−(ȳ;λ)

∣
∣
∣ ≥ Ce+m̄1|x̄−ȳ|,

(3.43)

for x̄ ≤ ȳ.
Returning now to original coordinates, if φ+(x;λ) is any solution of (3.36) that decays

as x→ +∞, then there is a corresponding W̄+(x̄;λ) so that

W̄+(x̄;λ) =
(

φ+(x;λ) 1
|λ1/4|φ

+′
(x;λ) 1

|λ1/2|φ
+′′

(x;λ) 1
|λ3/4|φ

+′′′
(x;λ)

)tr

.
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We now set (suppressing λ dependence for notational brevity)

Φ̄+(ȳ) :=







φ̄+(ȳ)
φ̄+ ′

(ȳ)
φ̄+ ′′

(ȳ)
φ̄+ ′′

(ȳ)







; I|λ1/4| =







I 0 0 0
0 |λ1/4|I 0 0
0 0 |λ1/2|I 0
0 0 0 |λ3/4|I






. (3.44)

We can express the relationship between Φ±(x;λ) and Φ̄±(x;λ) as
(
Φ+(y;λ) Φ−(y;λ)

)
= I|λ1/4|

(
Φ̄+(ȳ;λ) Φ̄−(ȳ;λ)

)
. (3.45)

For x > y, we recall from Lemma 3.8 the representation

Gλ(x, y) =
(
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
[Gλ](y). (3.46)

According to (3.45), we can write

(
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
= I|λ1/4|

(
Φ̄+(x;λ) 0

) (
Φ̄+(y;λ) Φ̄−(y;λ)

)−1
I|λ1/4|,

where by (3.42) and (3.43), and the observation that for |λ| > R (with R sufficiently large),
the Evans function has a uniformly bounded condition number (denote here κ), we have

∣
∣
∣

(
Φ̄+(x;λ) 0

) (
Φ̄+(y;λ) Φ̄−(y;λ)

)−1
∣
∣
∣ ≤ κ

∣
∣
∣

(
Φ̄+(x;λ) 0

)
∣
∣
∣

∣
∣
∣

(
Φ̄+(y;λ) Φ̄−(y;λ)

)
∣
∣
∣

≤ Ce−m1|x̄−ȳ|.

In this way, we see that

(
Φ+(x;λ) 0

) (
Φ+(y;λ) Φ−(y;λ)

)−1
= I|λ1/4|O(e−m1|λ1/4||x−y|)I|λ1/4|.

Using (3.46), and the expression for [Gλ](y) in Lemma 3.2, we obtain estimates summa-
rized in the following lemma. We note that the case x < y is almost identical.

Lemma 3.16. Suppose Gλ(x, y) is a solution of (2.1) in the natural (distributional sense),
the assumptions (C1) and (C2) hold for the operator L, along with Condition 1.1, and let
Ω be as in (3.41) for some R taken sufficiently large. Then there exist constants m > 0
(sufficiently small) and C > 0 (sufficiently large) so that for all λ ∈ Ω and any multi-index
α in x and y with |α| ≤ 3, we have

∣
∣
∣∂αGλ(x; y)

∣
∣
∣ ≤ C|λ|

|α|−3
4 e−m|λ1/4||x−y|.

Remark 3.3. Clearly, this estimate holds for certain multi-indices |α| > 3 for which the
derivatives are distributed with respect to both x and y so that differentiation with respect to
either individual variable or third order or less. We will not require this observation.
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We have now obtained estimates on Gλ(x, y) for |λ| < r, some r > 0 sufficiently small
(Lemmas 3.13, 3.14, and 3.15) and for |λ| > R, some R > 0 sufficiently large (Lemma 3.16).
Finally, we observe in the statement of the next lemma that for r ≤ |λ| ≤ R, we have simple
boundedness.

Lemma 3.17. Suppose Gλ(x, y) is a solution of (2.1) in the natural (distributional sense),
the assumptions (C1) and (C2) hold for the operator L, along with Condition 1.1, and
c ≤ |λ| ≤ C, for any constants 0 < c < C. Then there exists a constant K sufficiently large
so that for any multi-index α in x and y with |α| ≤ 3, and for λ to the right of Γθ (Γθ as in
(1.7)), we have ∣

∣
∣∂αGλ(x; y)

∣
∣
∣ ≤ K.

4 Energy Estimate

Throughout our contour-integral analysis, carried out in the next section, we will use the
observation that Condition 1.1, along with assumptions (H0)-(H4), imply that, aside from
the leading eigenvalue λ = 0, the point spectrum of L lies entirely to the left of Γθ. We
verify that observation in this section with a straightforward energy estimate.

We begin by observing that since the left-hand side of our eigenvalue problem (1.5) is a
derivative, and since eigenfunctions by definition for our problem must decay at both ±∞
we must have that if φ(x;λ) is an eigenfunction of L for any λ 6= 0 then

∫ +∞

−∞
φ(x;λ)dx = 0.

This justifies our setting

ϕ(x;λ) :=

∫ x

−∞
φ(y;λ)dy,

and we observe that ϕ solves the integrated equation

(−Γϕxxx +B(x)ϕx)x = λM(x)−1ϕ. (4.1)

We multiply both sides of (4.1) by the complex conjugate of ϕ and integrate the result
by parts to obtain

−〈ϕxx,Γϕxx〉 − 〈ϕx, B(x)ϕx〉 = λ〈ϕ,M(x)−1ϕ〉, (4.2)

where 〈·, ·〉 denotes complex L2 inner product. We see immediately that if Γ, B(x), and
M(x) are all symmetric for all values of x then the point spectrum of L will be entirely
real-valued. In this case, it is also straightforward to see that there exists some value c ∈ R

so that the point spectrum of L is bounded to the left of c.
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In order to relax this symmetry assumption onM(x) (while leaving the symmetry of Γ and
B(x) in place), we consider complex eigenvalues λ = α + iβ with associated eigenfunctions
ϕ = u+ iv. Taking real and imaginary parts of (4.2) we obtain two equations

−〈uxx,Γuxx〉 − 〈vxx,Γvxx〉 − 〈ux, B(x)ux〉 − 〈vx, B(x)vx〉
= α

(

〈u,M(x)−1u〉+ 〈v,M(x)−1v〉
)

− β
(

〈u,M(x)−1v〉 − 〈v,M(x)−1u〉 −
)

;

〈vx, B(x)ux〉 − 〈ux, B(x)vx〉 =
α
(

〈u,M(x)−1v〉 − 〈v,M(x)−1u〉
)

+ β
(

〈u,M(x)−1u〉+ 〈v,M(x)−1v〉
)

.

(4.3)

For the second equation in (4.3) (from imaginary parts), if B(x) is symetric we have

0 = α
(

〈u,M(x)−1v〉 − 〈v,M(x)−1u〉
)

+ β
(

〈u,M(x)−1u〉+ 〈v,M(x)−1v〉
)

. (4.4)

By our assumption that M(x) is uniformly positive definite (and bounded by regularity and
boundedness of ū(x)) we have the inequalities

∣
∣
∣〈u,M(x)−1v〉 − 〈v,M(x)−1u〉

∣
∣
∣ ≤ C(‖u‖2L2 + ‖v‖2L2)

∣
∣
∣〈u,M(x)−1u〉+ 〈v,M(x)−1v〉

∣
∣
∣ ≥ γ(‖u‖2L2 + ‖v‖2L2),

for some constants C and γ. For β > 0 we obtain from (4.4) the inequality

0 ≥ −|α|C(‖u‖2L2 + ‖v‖2L2) + βγ(‖u‖2L2 + ‖v‖2L2),

from which we conclude that eigenvalues in the positive imaginary half-plane are restricted
to the region

β ≤ C|α|
γ

.

Proceeding similarly for β < 0 we find that eigenvalues in the negative imaginary half-plane
are restricted to the region

β ≥ −C|α|
γ

.

Combining these observations, we see that there can be no eigenvalues in the pair of
wedges |β| ≥ (C/γ)|α|. Denote this pair of wedges W.

Now, if we assume Condition 1.1 then the point spectrum of L must lie entirely to the
left of W. In addition, by analyticity of Da(ρ) there is a point eigenvalue at λ = 0 and a
ball B(0, r) in the complex plane that contains no point eigenvalues other than λ = 0. We
can choose θ1 and θ2 to ensure that Γθ ⊂ B(0, r) ∩W. This establishes our claim that the
point spectrum of L, excepting λ = 0, lies entirely to the left of Γθ.
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5 Green’s Function Estimates

In this section we derive our estimates on the Green’s function G(t, x; y). We will employ
our estimates on Gλ(x, y) and the Laplace inversion formula

G(t, x; y) =
1

2πi

∫

Γ

eλtGλ(x; y)dλ, (5.1)

where Γ denotes a contour that passes through the point at ∞ and encloses the poles of
Gλ(x, y). (See our more detailed discussion in the introduction.)

It’s important to recognize at the outset that our estimates on Gλ(x, y) have different
forms for different values of |λ| (small, medium, and large). In light of this, we will let Γr

denote the portion of Γ so that |λ| < r, Γm the portion of Γ so that r ≤ |λ| ≤ R, and ΓR

the portion of the contour so that |λ| > R. (We will use additional notation below when we
turn to the selection of our contours for various cases.) Clearly,

Γ = Γr ∪ Γm ∪ ΓR.

Our choice of contour will depend on the values x, y, and t. Since our contours must all
pass through the point at ∞, we know Γ will always include a portion ΓR, but Γr and Γm

can both be the empty set in cases. Since the choice of contours depends on the values of
x, y, and t, we must organize our analysis according to these cases. For some ǫ > 0, which
will be chosen during the analysis, and for some K > 0, also chosen during the analysis, we
consider the three cases: (1) |x− y| > Kt; (2) ǫt ≤ |x− y| ≤ Kt, and (3) |x− y| < ǫt.

Since the analysis consists of evaluating numerous integrals of the basic form (5.1), though
only over partial contours, so that the individual results are not G(t, x; y), it will be conve-
nient to employ the notation

I(Γ) := 1

2πi

∫

Γ

eλtGλ(x; y)dλ. (5.2)

Likewise, if Γ is parametrized by k we will use the notation I(Γ|J) to denote the restriction
of Γ to k ∈ J .

5.1 The Case |x− y| > Kt

The case |x − y| > Kt is certainly the most straightforward, because for this case we can
proceed entirely along contours for which |λ| > R. In light of this, we can work entirely with
the estimates of Lemma 3.16, and we can follow closely the analysis on pp. 822-824 of [19].
The first summand in the estimate stated in Part III of Theorem 1.1 is precisely the estimate
we obtain from the analysis just described. The second summand is a correction we take
for convenience, and it arises in the following way. Our estimates from Part I of Theorem
1.1 are derived for the case |x − y| ≤ Kt with t ≥ 1 (Section 5.2 below), and so for the
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current case |x− y| > Kt, we can only continue to use the same expressions for e(t; y) if we
correct them with G̃. Details on the relevant calculation are given at the end of this section.
Regarding the case 0 < t < 1, we observe that the expressions in Part (Ii) of Theorem 1.1
can be regarded as errors in Part III. For example, for 0 < t < 1 and y < 0 we have

∣
∣
∣ū′(x)

2√
π

2m∑

j=m+1

c−j r̃
−
j (0)

∫ y√
4β−

j−m
t

−∞
e−z2dz

∣
∣
∣ ≤ Ce−α|x|e−

y2

Mt .

Of course, for 0 < t < 1 we can write this with exponential decay in t as well, and this
clearly gives a result that can be subsumed into Part III of Theorem 1.1.

We set

R̃ =
|x− y|4/3
L̃t4/3

, (5.3)

for a constant L̃ (to be specified during the analysis) so that R̃ > R. Consider in addition
the wedge contour Γθ (as defined in (1.7)), which we can write in the parametric form

λθ(k) = −θ1 − θ2|k|+ ik, (5.4)

for k ∈ (−∞,∞), with clearly |dλθ| =
√

(1 + θ22)dk and |λθ|2 = (θ1 + θ2|k|)2 + k2.

Re

Im

λ

λ

Essential
spectrum

Γθ
B(0,R̃)

Figure 1: Contours for the case |λ| > R.
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In this case, our contour Γ will follow Γθ until Γθ intersects ∂B(0, R̃), and then will
remain on ∂B(0, R̃), moving in the counterclockwise direction, until it reaches the second
interection of Γθ and B(0, R̃). Finally, Γ follows Γθ out to the point at ∞. For notational
convenience, we will designate the portion of this contour along ∂B(0, R̃) by Γ̃. See Figure
1.

We begin with the analysis along Γ̃, parametrizing this contour as

λ(ω) = R̃eiω, (5.5)

where θ1 and θ2 can be chosen small enough so that ω ranges from −ω0 to +ω0, with ω0 >
π
2

as close to π
2
as we like.

Recalling from Lemma 3.16 the estimate

∣
∣
∣Gλ(x, y)

∣
∣
∣ ≤ C|λ|− 3

4 e−m|λ1/4||x−y|,

we have (recalling (5.2))

∣
∣
∣I(Γ̃)

∣
∣
∣ ≤ C

2π

∫ +ω0

−ω0

eR̃tR̃1/4e−mR̃1/4|x−y|dω

≤ Cω0

π

|x− y|1/3
L̃1/4t1/3

e
|x−y|4/3

L̃t1/3
(1−mL̃3/4)

.

By choosing L̃ large enough so that mL̃3/4 > 1, we obtain exponential decay, and we addi-
tionally use the estimate

zαe
− z4/3

t1/3 ≤ Ct
α
4 e

− z4/3

2t1/3 , (5.6)

to obtain the estimate (for the undifferentiated case) of Theorem 1.1 Part (III),

∣
∣
∣
1

2πi

∫

Γ̃

eλtGλ(x, y)dλ
∣
∣
∣ ≤ Ct−1/4e

− |x−y|4/3

Mt1/3 ,

for M sufficiently large.
For the portion of Γ along Γθ, let λ0 = R̃eiω0 denote the value of λ where ∂B(0, R̃)

intersects Γθ (in the second quadrant) so that

Reλ− Reλ0 = − 1

θ2
(Imλ− Imλ0).

We have, then,

∣
∣
∣I(Γ̄ ∩B(0, R)c)

∣
∣
∣ ≤ C

∫ +∞

k0

1

((θ1 + θ2k)2 + k2)3/8
eReλ0teRe(λ−λ0)te−mR̃1/4|x−y|dk,
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where we have observed that along this contour |λ| ≥ R. Here, we have the following
relations:

Reλ0t−mR̃1/4|x− y| ≤ R̃(cosω0)t−mR̃1/4|x− y| = |x− y|4/3
L̃t1/3

(cosω0 −mL̃3/4)

Re(λ− λ0)t = − 1

θ2
(k − R̃ sinω0)t.

Combining these, we find

Reλ0t + Re(λ− λ0)t−m1R̃
1/4|x− y| ≤ |x− y|4/3

L̃t1/3
(cosω0 −mL̃3/4 +

sinω0

θ2
)− k

θ2
t.

Clearly, we can choose L̃ sufficiently large to obtain the expected exponential rate of decay.
That is, we have shown

∣
∣
∣I(Γ̄ ∩B(0, R̃)c)

∣
∣
∣ ≤ Ce

|x−y|4/3

Mt1/3

∫ ∞

k0

1

((θ1 + θ2k)2 + k2)3/8
e
− k

θ2
t
dk,

and we can use a straightforward scaling argument to show that this integral is bounded by
Ct−1/4 for some constant C. Our claimed derivative estimates follow from almost precisely
the same calculation.

We now turn to the second summand in the estimate from Part (III) of Theorem 1.1.
This term arises because our derivation of the estimates on e(t; y) and its derivatives for Part
I of the theorem are only valid for |x− y| ≤ Kt, with t ≥ 1, and so we must correct for these
terms in Part III. We note, in particular, that this approach simplifies the analysis involved
with choosing the local shift δ(t). For that choice, we require a precise definition of e(t; y)
for all y ∈ R. We have already discussed the correction associated with the case 0 < t < 1,
so we focus here on the correction associated with |x− y| > Kt.

For the undifferentiated case, we have ū′(x)e(t; y), where (as we will verify in Section
5.2.2)

e(t; y) =
2√
π

2m∑

j=m+1

c−j r̃
−
j (0)

∫ y√
4β−

j−m
t

−∞
e−z2dz +Re(t; y). (5.7)

We need to determine an estimate on this term when |x−y| > Kt. First, we observe that in
this case we must have either |x|/2 > Kt or |y|/2 > Kt (or both). If |x|/2 > Kt, we obtain
exponential decay in t from ū′(x). On the other hand, if |y|/2 > Kt, the integral in (5.7) is
bounded by

∫ − K

2
√

4β−
j−m

√
t

−∞
e−z2dz ≤

2
√

4β−
j−m

K
√
t

∫ − K

2
√

4β−
j−m

√
t

−∞
(−z)e−z2dz

=

√

4β−
j−m

K
√
t
e
− K2

16β−
j−m

t

,
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and again we obtain exponential decay in t. It’s clear that the blow-up as t→ 0 in this last
expression is an artifact of the approach and can be removed by considering t ≤ 1 separately,
as discussed above. Finally, we include the decay in y by observing

∫ y√
4β−

j−m
t

−∞
e−z2dz ≤ Ce−

y2

Mt .

This completes the proof of Theorem 1.1 Part (III) for the undifferentiated case α = 0.
Estimates on derivatives follow from similar calculations, and we omit those details.

5.2 The Case |x− y| ≤ Kt

In this subsection we consider the case |x − y| ≤ Kt, for which the estimates on Gλ(x, y)
will change along our contours.

5.2.1 Bounded Time Estimate

In this section we consider the case t ≤ T for any constant T > 0. (For specificity we often
take T = 1.) We note at the outset that for T sufficiently small (which, in fact, is all we
require) our estimate is a straightforward consequence of Friedmann’s parabolic theory [4].
The calculations here are similar to those of the case |x− y| > Kt, and so we focus only on
the different points.

For this case, we work entirely along integrals Γ for which the large |λ| estimates of
Lemma 3.16 apply. First, with R as in Lemma 3.16 we take any R̃ > R, and then we
proceed along the same contour taken in the case |x− y| > Kt (see Figure 1).

Along ∂B(0, R̃),

∣
∣
∣I(∂B(0, R̃)|[−ω0, ω0])

∣
∣
∣ ≤ C

∫ +ω0

−ω0

R̃1/4e−m|R̃1/4||x−y| ≤ CR̃e
−m|R̃1/4||x−y|.

At this stage, we recall that we are now in the case |x− y| < Kt so that

mR̃1/4|x− y|4/3
t1/3

< mR̃1/4K1/3|x− y|.

In this way,

e−m|R̃1/4||x−y| ≤ e
−mR̃1/4|x−y|4/3

K1/3t1/3 .

Similarly, we can proceed as in the case |x−y| > Kt along Γθ, using again the observation
that in the case |x− y| < Kt exponential decay in x− y is sufficient.
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5.2.2 Leading Order Estimates

For the remaining cases we take t ≥ 1. We will begin by analyzing the leading order terms,
which arise from small |λ| portions of our contour, and the excited terms from Lemma 3.12:
ū′(x)eλ(y). First, we restrict to the case |y| ≤ ǫt, where ǫ > 0 will be chosen sufficiently
small during the analysis.

The case |y| ≤ ǫt. This is the determining case of the analysis and must be analyzed
in considerable detail. For this single case, we have six fundamentally different calculations
to consider, and so we divide the analysis into further subcases, which must be defined as
we proceed. We postpone a full discussion of the contours to be taken until some further
notation has been established, but for convenient reference we gather here our terminology:
Main term, extension correction, continuation correction 1, continuation correction 2, term
higher order correction, sum higher order correction.

Main term. Using the estimates of Lemma 3.12, we need to evaluate integrals of the form

1

2πi

∫

Γr

1

λ
eλt−µ−

j (λ)ydλ, (5.8)

where j ∈ {m+ 1, m+ 2, . . . , 2m}, so that

µ−
j (λ) = −

√

λ

β−
j−m

+O(|λ|3/2).

In order to ease notation we will use β to denote a general eigenvalue β−
j−m. In this way, we

write

e−µ−
j (λ)y = e

√

λ
β
y+O(|λ3/2|)y

= e

√

λ
β
y
+ e

√

λ
β
y
(

eO(|λ3/2|)y − 1
)

.

We focus first on integrals of the form

1

2πi

∫

Γr

1

λ
e
λt+

√

λ
β
y
dλ. (5.9)

We proceed along the contour described parametrically by

√

λ

β
= − y

2βt
+ ik, (5.10)

where we emphasize that we are in the case y ≤ 0, so the real part is non-negative.
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Computing directly, we find the following useful expressions:

λ(k) =
y2

4βt2
− ik

y

t
− βk2

|λ(k)| = y2

4βt2
+ βk2

dλ = 2i
√

β
√
λdk

λt+

√

λ

β
y = − y2

4βt
− βk2t.

Our requirement |y| ≤ ǫt clearly implies

|λ(k)| ≤ ǫ2

4β
+ βk2,

which ensures that this contour crosses the real axis in B(0, r).
Substituting these expressions into (5.10) we obtain the integral

1

π
e−

y2

4βt

∫ +∞

−∞

e−βk2t

− y
2βt

+ ik
dk. (5.11)

Multiplying by a complex conjugate, we obtain an integral of the form

1

π
e−

y2

4βt

∫ +∞

−∞

e−βk2t

y2

4β2t2
+ k2

(

− y

2βt
− ik

)

dk

= −2

π

y

2βt
e−

y2

4βt

∫ +∞

0

e−βk2t

y2

4β2t2
+ k2

dk,

where the integrand has been separated into an odd summand (which integrates to 0) and
an even summand.

We now have enough analysis in place to clarify our use of contours. For this discussion,
refer to Figure 2. First, the contour described by (5.10) is depicted as the contour a-b-c
along with the extension indicated by the dashed curves. We will denote this full contour Γ̂.
Let −kr denote the value of k for which Γr strikes Γθ (at point a) and notice by symmetry
that +kr will then denote the value k for which Γr strikes Γθ (at point c). Our approach
will be as follows: we will integrate the entirety of Γ̂ (to obtain the main term) and then
subtract off a residue term corresponding with the dashed lines in Figure 2 (the extension
correction). (As will be clear below, the reason we carry out the full integration along Γ̂ is
because it provides, by way of an exact integration formula, a convenient expression for our
leading order term.) We will then obtain estimates on the residue obtained from integration
along Γθ\Γ̂ (the continuation correction).

49



Re

Im

λ

λ

Essential
spectrum B(0,r)

B(0,R)

c

a

b

Γθ

ec
cc 1

cc 2

Figure 2: Contours for the leading order analysis.
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We now employ the integral identity

∫ ∞

0

e−bζ2

a+ ζ2
dζ =

π

2

eab√
a

(

1− erf(
√
ab)
)

, (5.12)

where a and b are positive constants and erf denotes the error function with scaling

erf(x) =
2√
π

∫ x

0

e−z2dz. (5.13)

Combining this identity with our previous observations, we find

1

2πi

∫

Γ

1

λ
e
λt+

√

λ
β
y
dλ =

2√
π

∫ y√
4βt

−∞
e−z2dz, (5.14)

which can alternatively be expressed in terms of the complementary error function

erfc(x) = 1− erf(x). (5.15)

We conclude a leading order estimate of the form

2√
π

2m∑

j=1

h−(2m)j c̃
−
j (0)r̃

−
j (0)

∫ y√
4β−

j−m
t

−∞
e−z2dz. (5.16)

This is precisely the leading order term in Part (Ii) of Theorem 1.1. (See Remark 1.2
regarding our notation for constants.)

While this analysis has led to a convenient final expression for our leading order term,
we have ignored several terms, and at this point we need to make some corrections. Our
terminology will be as follows: Corrections arising from extending contours beyond the
applicability of our estimates on Gλ(x; y) (such as along the dashed lines in Figure 2) will
be termed extension corrections; corrections arising from omitted parts in Γ will be termed
continuation corrections; corrections arising from Taylor expansions in λ on our exponents
µ±
j (λ) will be termed term higher order corrections; and finally corrections arising from

higher order terms in the estimates on Gλ(x; y) will be termed sum higher order corrections.
Extension Correction. The value of our contour integral along the dashed portion of our

contour is clearly

−2

π

y

2βt
e−

y2

4βt

∫ +∞

kr

e−βk2t

y2

4β2t2
+ k2

dk. (5.17)

Since kr > 0 is fixed, this integral decays at exponential rate in t, and since we are in the
case |y| ≤ ǫt, this means it decays at exponential rate in |y| as well. We have then, after
integration, an expression bounded by Ct−1/2e−c(|y|+t) for positive constants c and C. Since
|y|2/t ≤ ǫ|y|, we have

e−δ|y| ≤ e−c y2

ǫt ,
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and so this term can be subsumed into residue terms of the form

Ct−1/2e−
y2

Mt . (5.18)

Continuation Correction 1. We now turn to the residue obtained by integrating along Γθ

from the points of its intersection with Γ̂ out to the points of its intersection with B(0, R).
We can specify Γθ parametrically in (5.4). In this case, let ±k̄1 denote the values of k at
which Γθ strikes Γ̂ and let ±k̄2 denote the values of k at which Γθ strikes B(0, R).

For k ∈ [k̄1, k̄2], it will be sufficient to use simple boundedness of Gλ(x; y). That is, we
can estimate (5.1) by

C

∫ k̄2

k̄1

eReλ(k)t|dλ(k)| = C

∫ k̄2

k̄1

e−θ1t−θ2kt
√

θ22 + 1dk

≤ (k̄2 − k̄1)e
−θ1t,

(5.19)

and this exponential decay in t provides an estimate smaller than (5.18) as before. Notice
particuarly that we have used the boundedness of our interval of integration to avoid the t−1

behavior we would naturally obtain upon integration. It is precisely this issue that requires
our division of the continuation correction into two cases.

Continuation Correction 2. We now continue our contour Γ in the complement of B(0, R),
using now our estimate from Lemma 3.16. This analysis is similar to the second part of our
analysis in Subsection 5.1—the integration along Γθ in the complement of B(0, R̃). More
precisely, we need only use the inequality

Re
(

λt−m1R
1/4|x− y|

)

≤
(

− θ1t− θ2|k|t−m1R
1/4|x− y|

)

,

from which we see that we have integrals of the form

e−θ1t

∫ ∞

k̄2

1

((θ1 + θ2k)2 + k2)3/8
e
− k

θ2
t
dk ≤ Ct−1/4e−θ1t,

where k̄2 is the same value described in our discussion of continuation correction 1.
In this case we have |x− y| ≤ Kt, and so

K2t2 ≥ |x− y|2 ⇒ t ≥ (x− y)2

K2t
. (5.20)

This allows us to estimate this term with

Ct−1/4e−
θ1
2
te−

(x−y)2

Mt ,

forM sufficiently large, where our form is intended to demonstrate that we obtain fast decay
in t for t large, but relatively low order blow-up for t small.

52



Term Higher Order Correction. We recall here that in the preceding calculations, we
omitted a term of the form

e

√

λ
β
y
(

eO(|λ3/2|)y − 1
)

.

If
∣
∣
∣|λ|3/2y

∣
∣
∣ ≤ 1, this is clearly bounded by

C|λ|3/2|y|e
√

λ
β
y
,

while if
∣
∣
∣|λ|3/2y

∣
∣
∣ > 1 we observe that for |λ| sufficiently small

e

√

λ
β
y+O(|λ3/2|)y ≤ e

√

λ
β′ y,

for β ′ > 0 sufficiently large. Combining these observations, we can use the crude estimates

e

√

λ
β
y
(

eO(|λ3/2|)y − 1
)

. ≤ C ′|λ|3/2|y|e
√

λ
β′ y ≤ C|λ|e

√

λ
β
y
, (5.21)

where β > β ′.
These terms lead to integrals of the form

∫

Γr

e
Re(λt+

√

λ
β
y)
dλ,

which can be analyzed as above with a resulting estimate by

C(1 + t)−1e−
y2

Mt .

Sum Higher Order Correction. According to Lemma 3.12, the sum higher order correction
for the leading order term is O(|λ−1/2|)e−µ−

2m(λ)y , so that we must consider integrals of the
form ∫

Γr

eλtO(|λ−1/2|)e−µ−
2m(λ)ydλ.

We can proceed as in theMain Term and Term Higher Order Correction arguments to obtain
an estimate of the form

C(1 + t)−1/2e−
y2

Mt .

The case ǫt ≤ |y| ≤ K̃t. We now turn to the case ǫt ≤ |y| ≤ K̃t, where we choose
K̃ sufficiently large so that |y| > K̃t implies |x| > ηt for some η > 0. (I.e., η = K̃ − K,
where we recall that we remain in the case |x− y| ≤ Kt.) We note at the outset that since

|y| ≥ ǫt, decay in y gives decay in t, while the inequality t ≥ |y|
K̃

ensures us that exponential

t decay implies scaled decay of the kernel form exp(−|y|2/t). In this way, we see that either
exponential decay in |y| or exponential decay in t will be sufficient to give a rate of decay
faster than that of (5.18).
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In this case we specify our contour as

√

λ

β
= − y

Lt
+ ik,

where L will be chosen sufficiently large during the analysis. In particular, we have

λ(k) = β
(x− y)2

L2t2
+ 2iβk

x− y

Lt
− βk2,

and we choose L large enough so that Reλ(0) < r, and so that this contour intersects Γθ

inside B(0, r).
Let k1 > 0 denote the positive value of k for which this contour strikes Γθ. Proceeding

similarly as in the case |y| ≤ ǫt, we find

|I(Γ|[−k, k])| ≤ Ce
β−L

L2
y2

t

∫ k1

−k1

1
√

y2

L2t2
+ k2

e−βk2tdk.

The most important observation to make regarding expressions of this type is that since
|y| ≥ ǫt, we have exponential decay in t. Clearly, this term is smaller than (5.18).

In this case, there is no extension correction. Continuation corrections 1 and 2 can be
carried out similarly as in the case |y| ≤ ǫt, and the resulting exponential decay in t is
sufficient to give a term smaller than (5.18). In this case, the term and sum higher order
corrections clearly provide estimates smaller than those of the main term.

The case |y| ≥ K̃t. As discussed at the beginning of the previous case, for |y| ≥ K̃t,
we are guaranteed |x| ≥ ηt, so that ū′(x) gives exponential decay in both |x| and t. Since
this is a subcase of t ≥ |x− y|/K, this exponential decay in t gives scaled decay of the form

e−δ1te−
(x−y)2

Mt ,

for δ1 > 0 and M sufficiently large. To make this more precise, we can proceed along
∂B(0, R) to the right of Γθ and follow Γθ out to the point at ∞.

This concludes our analysis of the leading order term ū′(x)e(t; y).

5.2.3 Remainder Estimates

We refer to estimates on G(t, x; y) arising from the terms denoted Rλ(x; y) in Lemmas 3.13,
3.14, and 3.15 as remainder estimates. Although there are quite a few such terms, they can
all be analyzed in a similar fashion, and indeed the analysis is similar to the one already
carried out above for the leading order terms. Our exposition in this section will focus only
on the most salient points. We begin with the determining case, |x− y| ≤ ǫt, for some ǫ > 0
sufficiently small.
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The case |x− y| ≤ ǫt. In this case, we begin our contours in B(0, r), where the estimates
of Lemmas 3.13, 3.14, and 3.15 are valid. We will focus on the case y < x < 0 (Lemma
3.13), and in particular on the first remainder term in that case

2m∑

j=m+1

c̃−j (λ)

µ−
j (λ)

eµ
−
j (λ)(x−y)r−j (λ)r̃

−
j (λ),

where we recall for convenient reference that for j ∈ {m+ 1, m+ 2, . . . , 2m},

µ−
j (λ) = −

√

λ

β−
j−m

+O(|λ|3/2).

We recall from Lemma 3.5 that |c̃−(λ)| ≤ C for |λ| sufficiently small, and from our construc-
tion of the eigenvectors r−j (λ) and r̃

−
j (λ) that |r−j (λ)| ≤ C and |r̃−j (λ)| ≤ C. In this way, we

can focus on integrals of the form

Ĩ :=

∫

Γr

e
Re(λt−

√

λ

β−
j−m

(x−y))

|λ−1/2||dλ|.

We will define our initial contour according to the relation
√

λ

β−
j−m

=
(x− y)

2tβ−
j−m

+ ik. (5.22)

Since |x − y| ≤ ǫt, we can choose ǫ > 0 sufficiently small, and the values θ1 and θ2 in Γθ

sufficiently small so that this contour strikes Γθ inside B(0, r). Let k1 > 0 denote the the
positive value of k at which this contour strikes Γθ. Proceeding as in our analysis of Main
Term in Section 5.2.2, we find

Ĩ ≤ Ct−1/2e−
(x−y)2

Mt .

As in our analysis in Section 5.2.2, the correction terms can all be subsumed into this
estimate.

The case ǫt ≤ |x− y| ≤ Kt. The only change we require for this case is a replacement
of our contour choice (5.22) with the choice

√

λ

β−
j−m

=
(x− y)

Lt
+ ik,

where as in the corresponding case for our leading order estimate we leave L free to be chosen
sufficiently large. Proceeding similarly as in that corresponding case, we find an estimate of
the form

Ct−1/2e−ηte−
(x−y)2

4Mt ,

for M sufficiently large.
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6 Integral Estimates

In this section we state and prove two lemmas collecting estimates on the integrals that
appear in our system of integral equations (1.21). The first lemma addresses integrals asso-
ciated with linear signal propagation, and the second lemma addresses integrals associated
with the nonlinear interactions.

Lemma 6.1. Suppose e(t; y), G̃(t, x; y) and their relevant derivatives are bounded by the
estimates claimed in Theorem 1.1, and v0 satisfies the pointwise estimate

|v0(y)| ≤ (1 + |y|)−3/2.

Then there exist positive constants C, L and η so that the following estimates hold:

∫ +∞

−∞
e(t; y)v0(y)dy =

m∑

j=1

c−j r̃
+
j (0)

∫ ∞

0

v0(y)dy +
2m∑

j=m+1

c+j r̃
−
j (0)

∫ 0

−∞
v0(y)dy

+O
(

(1 + t)−1/4
)

∣
∣
∣

∫ +∞

−∞
et(t; y)v0(y)dy

∣
∣
∣ ≤ C(1 + t)−1.

and

∣
∣
∣

∫ +∞

−∞
G̃(t, x; y)v0(y)dy

∣
∣
∣ ≤ C

[

(1 + t)−1/2e−
x2

Lt + (1 + |x|+ t)−3/2
]

∣
∣
∣

∫ +∞

−∞
G̃x(t, x; y)v0(y)dy

∣
∣
∣ ≤ Ct−1/4

[

(1 + t)−3/4e−
x2

Lt + (1 + t)−1/4(1 + |x|+ t)−3/2

+ (1 + t)−1/4e−η|x|e−
x2

Lt

]

.

Remark 6.1. As will be clear from the proof, η can be taken as the value η from Theorem
1.1 and we can take L = 4M , with M as is Theorem 1.1. (We could use L = γM for any
γ > 1.)

Proof. For the first integral we recall from Theorem 1.1 (Ii) that for y < 0

e(t; y) =
( 2√

π

2m∑

j=m+1

c−j r̃
−
j (0)

∫ y√
4β−

j−m
t

−∞
e−z2dz +Re(t; y)

)

̺(t),

where

|Re(t; y)| ≤ C(1 + t)−1/2e−
y2

Mt .
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Focusing on the integration over [0,∞), and t ≥ 1, we compute

2√
π

2m∑

j=m+1

c−j r̃
−
j (0)

∫ 0

−∞

∫ y√
4β−

j−m
t

−∞
e−z2dzv0(y)dy +

∫ 0

−∞
Re(t, y)v0(y)dy.

The second summand clearly decays with rate (1 + t)−1/2. For the first, we integrate by
parts. Setting V0(y) =

∫ y

−∞ v0(z)dz, we have

2√
π

2m∑

j=m+1

c−j r̃
−
j (0)

∫ 0

−∞
e−z2dzV0(0)−

2√
π

2m∑

j=m+1

c−j r̃
−
j (0)

1
√

4β−
j−mt

∫ 0

−∞
e
− y2

4β−
j−m

tV0(y)dy.

The second of these last two summands decays at rate (1 + t)−1/4, while the first gives
precisely the form stated in the lemma.

The second estimate follows immediately from our bound

∣
∣
∣et(t; y)

∣
∣
∣ ≤ C(1 + t)−1e−

y2

Mt

(Theorem 1.1 (Ii).) We note that since ̺(t) ≡ 1 for t ≥ 1 the estimate for 0 ≤ t < 1 can be
subsumed into O((1 + t)−1/4).

For the third estimate, we will proceed in the case x < 0. By symmetry, it will follow
that it holds as well for x > 0. First, for t ≤ 1 we have

|G̃(t, x; y)| ≤ C
[

t−1/4e
− (x−y)4/3

Mt1/3 + e−η(|x|+t)e−
y2

Mt

]

(6.1)

for all y ∈ R. Since t is bounded, we only require decay in |x|, and for the second summand
in this estimate we clearly get exponential decay in |x|. For the first summand, we observe

∫ +∞

−∞
t−1/4e

− (x−y)4/3

Mt1/3 (1 + |y|)−3/2dy

=

∫

[ 3x
2
,x
2
]

t−1/4e
− (x−y)4/3

Mt1/3 (1 + |y|)−3/2dy +

∫

[ 3x
2
,x
2
]c
t−1/4e

− (x−y)4/3

2Mt1/3 e
− (x−y)4/3

2Mt1/3 (1 + |y|)−3/2dy

≤ C
[

(1 + |x|/2)−3/2 + e
− x4/3

27/3M

]

.

(We recall in writing the interval [3x
2
, x
2
] that we are taking x < 0.) These final estimates

decay at sufficient rate in |x|.
For t ≥ 1, we divide the integration as

∫ +∞

−∞
=

∫

|x−y|≥Kt

+

∫

|x−y|<Kt

. (6.2)
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For |x− y| ≥ Kt, we have integrals

∫

|x−y|≥Kt

[

t−1/4e
− (x−y)4/3

Mt1/3 + e−η(|x|+t)e−
y2

Mt

]

(1 + |y|)−3/2dy.

For the second summand, we clearly have exponential decay in both |x| and t. For the first,
we observe that for |x− y| ≥ Kt we have

e
− (x−y)4/3

Mt1/3 = e
− (x−y)4/3

2Mt1/3 e
− (x−y)4/3

2Mt1/3 ≤ e
− (x−y)4/3

2Mt1/3 e−
K4/3

2M
t. (6.3)

Using (6.3), we compute

∫

|x−y|≥Kt

t−1/4e
− (x−y)4/3

Mt1/3 (1 + |y|)−3/2dy ≤ e−
K4/3

2M
t

∫

|x−y|≥Kt

t−1/4e
− (x−y)4/3

2Mt1/3 (1 + |y|)−3/2dy

≤ e−
K4/3

2M
tt−1/4

∫

[ 3x
2
,x
2
]

[

e
− (x−y)4/3

2Mt1/3 (1 + |y|)−3/2dy +

∫

[ 3x
2
,x
2
]c
e
− (x−y)4/3

2Mt1/3 (1 + |y|)−3/2dy
]

.

Respectively, the final two summands in this inequality are bounded by

Ce−
K4/3

2M
t
[

(1 + |x|/2)−3/2 + e
− x4/3

210/3Mt1/3

]

.

If t ≥ |x| we have exponential decay in both |x| and t. If t ≤ |x| the first term gives an
estimate with the form

(1 + |x|/4 + t/4)−3/2,

which is bounded by the claimed estimate, while for the second we again obtain exponential
decay in both |x| and t.

For integration over |x − y| < Kt, with t > 1, we proceed similarly as in the case
|x− y| ≥ Kt. We have

∫

|x−y|<Kt

t−1/2e−
(x−y)2

Mt (1 + |y|)−3/2dy

≤
∫

[ 3x
2
,x
2
]

t−1/2e−
(x−y)2

Mt (1 + |y|)−3/2dy +

∫

[ 3x
2
,x
2
]c
t−1/2e−

(x−y)2

Mt (1 + |y|)−3/2dy

≤ C
[

min
{

t−1/2(1 + |x|)−1/2, (1 + |x|)−3/2
}

+ t−1/2e−
x2

4Mt

]

.

For the second (kernel) estimate, we simply take L = 4M . For the first, we observe that
if |x| ≥ l

√
t (any l > 0) we have an estimate of the form (1 + |x|/2 + l

√
t/2)−3/2, while if

|x| ≤ l
√
t we use the simply observation

x2

t
< l2 ⇒ 1 < ee−

x2

l2t
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to verify

t−1/2(1 + |x|)−1/2 ≤ t−1/2(1 + |x|)−1/2ee−
x2

l2t .

We take L = l2.
The fourth case in Lemma 6.1 can be proved similarly as was the third case, and we omit

the details. �

We now state and prove a lemma regarding the integrals in (1.21) associated with the
nonlinear interactions.

Lemma 6.2. Suppose e(t; y), G̃(t, x; y) and their relevant derivatives are bounded by the
estimates claimed in Theorem 1.1, and suppose Υ is any function satisfying the pointwise
estimates

Υ(s, y) ≤
[

Υ1(s, y) + Υ2(s, y) + Υ3(s, y)
]

,

where

Υ1(s, y) = s−3/4(1 + s)−3/4e−
y2

Ls

Υ2(s, y) = s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2

Υ3(s, y) = s−3/4(1 + s)−1/4e−η̃|y|e−
y2

Ls ,

for positive constants L, and η̃, where L ≥ 4M and η̃ ≤ η/2, with M and η as in the
statement of Theorem 1.1. Then there exists a positive constant C so that the following
estimates hold.

∣
∣
∣

∫ t

0

∫ +∞

−∞
ety(t− s, y)Υ(s, y)dyds

∣
∣
∣≤ C(1 + t)−1

and

∣
∣
∣

∫ t

0

∫ +∞

−∞
G̃y(t− s, x; y)Υ(s, y)dyds

∣
∣
∣ ≤ C

[

(1 + t)−1/2e−
x2

Lt + (1 + |x|+
√
t)−3/2

]

∣
∣
∣

∫ t

0

∫ +∞

−∞
G̃xy(t− s, x; y)Υ(s, y)dyds

∣
∣
∣≤ Ct−1/4

[

(1 + t)−3/4e−
x2

Lt

+ (1 + t)−1/4(1 + |x|+
√
t)−3/2 + t−1/4e−η|x|e−

x2

Lt

]

.

Remark 6.2. As noted in the introduction, our nonlinearity δ̇(t)v + Q is smaller for large
t than |v|2, and so the integral estimates of Lemma 6.2 are easy to verify. In fact, we obtain
rates faster than required by roughly t−1/2 (rough because in some cases the scaling leads to
a logarithm.

Proof. First, according to Theorem 1.1 Part (Iii) we have the estimate

∣
∣
∣eyt(t− s, y)

∣
∣
∣ ≤ C(1 + (t− s))−3/2e

− y2

M(t−s) .
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For Υ1, we have integrals of the form

∫ t

0

∫ +∞

−∞
(1 + (t− s))−3/2e−

y2

M(t−s) s−3/4(1 + s)−3/4e−
y2

Lsdyds

=

∫ t

0

∫ +∞

−∞
(1 + (t− s))−3/2s−3/4(1 + s)−3/4e

−y2 Mt+(L−M)s
LMs(t−s) dyds

=
√
π

∫ t

0

(1 + (t− s))−3/2s−3/4(1 + s)−3/4

√

LMs(t− s)

Mt + (L−M)s
ds.

It’s useful to estimate integrals of this form over two intervals, s ∈ [0, t/2] and s ∈ [t/2, t].
In this case, we obtain an estimate by

√
π

∫ t/2

0

(1 + t/2)−3/2s−3/4(1 + s)−3/4

√

LM(t/2)(t)

Mt
ds

+
√
π

∫ t

t/2

(1 + (t− s))−3/2(t/2)−3/4(1 + t/2)−3/4

√

LMt(t/2)

Mt + (L−M)(t/2)
ds

≤ C(1 + t)−1.

For Υ2 we have integrals of the form

∫ t

0

∫ +∞

−∞
(1 + (t− s))−3/2e−

y2

M(t−s) s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2dyds

=

∫ t/2

0

∫ +∞

−∞
(1 + (t− s))−3/2e−

y2

M(t−s) s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2dyds

+

∫ t

t/2

∫ +∞

−∞
(1 + (t− s))−3/2e−

y2

M(t−s) s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2ds

≤
∫ t/2

0

(1 + t/2)−3/2s−3/4(1 + s)−1/4(1 +
√
s)−1/2ds

+

∫ t

t/2

(1 + (t− s))−3/2(t/2)−3/4(1 + t/2)−1/4(1 +
√

t/2)−1/2ds

≤ C(1 + t)−5/4.
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Likewise, for Υ3 we have integrals of the form
∫ t

0

∫ +∞

−∞
(1 + (t− s))−3/2e

− y2

M(t−s) s−3/4(1 + s)−1/4e−η̃|y|e−
y2

Lsdyds

=

∫ t/2

0

∫ +∞

−∞
(1 + (t− s))−3/2e

− y2

M(t−s) s−3/4(1 + s)−1/4e−η̃|y|e−
y2

Lsdyds

+

∫ t

t/2

∫ +∞

−∞
(1 + (t− s))−3/2e−

y2

M(t−s) s−3/4(1 + s)−1/4e−η̃|y|e−
y2

Lsdyds

≤
∫ t/2

0

(1 + t/2)−3/2s−3/4(1 + s)−1/4ds

+

∫ t

t/2

(1 + (t− s))−3/2(t/2)−3/4(1 + t/2)−1/4ds

≤ C(1 + t)−1.

We turn now to the integrals involving G̃y. We will carry out the analysis for x < 0,
observing by symmetry that we can conclude the same estimates for x > 0. First, for t−s ≤ 3
we have

∣
∣
∣G̃y(t− s, x; y)

∣
∣
∣ ≤ C

[

(t− s)−1/2e
− (x−y)4/3

M(t−s)1/3 + e−η(|x|+(t−s))e−
y2

M(t−s)

]

(6.4)

for all y ∈ R. If t ≤ 3 then certainly t− s ≤ 3, and we have integrals of the form
∫ t

0

∫ +∞

−∞

[

(t− s)−1/2e
− (x−y)4/3

M(t−s)1/3 + e−η(|x|+(t−s))e−
y2

M(t−s)

]

Υ(s, y)dyds. (6.5)

For t > 3 we will divide the integration into two intervals [0, t− 1] and [t− 1, t]. Our choice
of t− 1 (rather than t− 3) is taken simply to ensure t/2 < t− 1, which is certainly true for
t > 3. We obtain integrals of the form

∫ t

t−1

∫ +∞

−∞

[

(t− s)−1/2e
− (x−y)4/3

M(t−s)1/3 + e−η(|x|+(t−s))e
− y2

M(t−s)

]

Υ(s, y)dyds. (6.6)

Since the analyses of (6.5) and (6.6) are almost identical, we focus here on the latter.
For the first estimate in (6.4) and integration against Υ1(s, y), we have
∫ t

t−1

∫ +∞

−∞
(t− s)−1/2e

− (x−y)4/3

M(t−s)1/3 s−3/4(1 + s)−3/4e−
y2

Lsdyds

=

∫ t

t−1

∫

[ 3x
2
,x
2
]

(t− s)−1/2e
− (x−y)4/3

M(t−s)1/3 s−3/4(1 + s)−3/4e−
y2

Lsdyds

+

∫ t

t−1

∫

[ 3x
2
,x
2
]c
(t− s)−1/2e

− (x−y)4/3

2M(t−s)1/3 e
− (x−y)4/3

2M(t−s)1/3 s−3/4(1 + s)−3/4e−
y2

Lsdyds

≤ C
[

t−3/2e−
x2

4Lt + e
− x4/3

27/3M

]

.

(6.7)
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For either estimate, if t ≥ |x| we have sufficient decay with rate (1 + |x| + t)−3/2, while if
t ≤ |x| we have exponential decay in both |x| and t.

Integrating the first summand in (6.4) against Υ2(s, y) with a similar argument gives an
estimate by

C
[

t−1(1 + |x|/2 +
√
t)−3/2 + t−7/4e

− x4/3

27/3M

]

,

which is sufficient as for the case Υ1. Likewise, integration of this same estimate against Υ3

leads to an estimate by

C
[

t−1e−
η̃
2
|x| + t−1e

− x4/3

27/3M

]

.

In this case, if t ≥ |x|3/2 we have sufficient algebraic decay, while for t < |x|3/2 we have
exponential decay in both |x| and t.

For t− s > 1, we divide our integration as
∫ t−1

0

=

∫ t−1

0

∫

|x−y|≥K(t−s)

+

∫ t−1

0

∫

|x−y|<K(t−s)

. (6.8)

For |x−y| ≥ K(t−s) our estimate on G̃y is (6.4). For the first summand in (6.4), we observe
that for |x− y| ≥ K(t− s) we have

e
− (x−y)4/3

M(t−s)1/3 = e
− (x−y)4/3

2M(t−s)1/3 e
− (x−y)4/3

2M(t−s)1/3 ≤ e
− (x−y)4/3

2M(t−s)1/3 e−
K4/3

2M
(t−s). (6.9)

Integrating against Υ1 we have
∫ t−1

0

∫

|x−y|≥K(t−s)

(t− s)−1/2e−
K4/3

2M
(t−s)e

− (x−y)4/3

2M(t−s)1/3 s−3/4(1 + s)−3/4e−
y2

Lsdyds

≤
∫ t−1

0

∫

[ 3x
2
,x
2
]

(t− s)−1/2e−
K4/3

2M
(t−s)e

− (x−y)4/3

2M(t−s)1/3 s−3/4(1 + s)−3/4e−
y2

Lsdyds

+

∫ t−1

0

∫

[ 3x
2
,x
2
]c
(t− s)−1/2e−

K4/3

2M
(t−s)e

− (x−y)4/3

2M(t−s)1/3 s−3/4(1 + s)−3/4e−
y2

Lsdyds.

In both cases we integrate the fourth-order kernel, and we respectively obtain estimates by

C1

∫ t−1

0

(t− s)−1/4e−
K4/3

2M
(t−s)s−3/4(1 + s)−3/4e−

x2

4Lt ds

+

∫ t−1

0

(t− s)−1/4e−
K4/3

2M
(t−s)e

− x4/3

210/3Mt1/3 s−3/4(1 + s)−3/4e−
x2

4Lsds.

In obtaining this inequality, we have observed that t is larger than both s and t− s and so
can replace them in the kernels. Also, for the second summand, we have further subdivided
the fourth-order kernel. Finally, we obtain an estimate by

C(1 + t)−3/2
[

e−
x2

4Lt + e
− x4/3

210/3Mt1/3

]

.
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If |x| > t we have exponential decay in both |x| and t, while if |x| ≤ t we obtain sufficient
algebraic decay with rate (1 + |x|+ t)−3/2.

The integrations against Υ2 and Υ3 are similar. For the second summand in (6.4) we
immediately have decay in |x| at exponential rate, and decay in t is obtained as with the
first summand in (6.4).

For |x− y| ≤ K(t− s), beginning with integration against Υ1(s, y), we have
∫ t−1

0

∫

|x−y|<K(t−s)

(t− s)−1e−
(x−y)2

M(t−s) s−3/4(1 + s)−3/4e−
y2

Lsdyds.

We use the algebraic relationship

(x− y)2

M(t − s)
+
y2

Ls
=
Ls+M(t− s)

LM(t− s)

(

y − xLs

Ls+M(t − s)

)2

+
x2

Ls +M(t− s)
, (6.10)

and integrate over y to obtain an estimate by

C

∫ t−1

0

(t− s)−1

√

LMs(t− s)

Ls+M(t− s)
s−3/4(1 + s)−3/4e−

x2

Ls+M(t−s)ds

≤ C1(1 + t)−1/2

∫ t−1

0

(t− s)−1/2s−1/4(1 + s)−3/4e−
x2

Lt ds,

where we have obverved that with L > M we must have Mt ≤ Ls +M(t − s) ≤ Lt. We
proceed by subdividing the integration of s. We obtain an estimate by

C2e
−x2

Lt

∫ t/2

0

t−1s−1/4(1 + s)−3/4ds

+ C3e
−x2

Lt

∫ t−1

t/2

(t− s)−1/2t−3/2(1 + t)−3/4ds

≤ C4(1 + t)−1 log te−
x2

Lt ,

which is smaller than the estimate we require.
For the integration against Υ2, we have

∫ t−1

0

∫

|x−y|<K(t−s)

(t− s)−1e−
(x−y)2

M(t−s) s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2dyds.

First, focusing on decay in t, we obtain an esimate by
∫ t/2

0

(t− s)−1s−3/4(1 + s)−1/4(1 +
√
s)−1/2ds

+

∫ t−1

0

(t− s)−1/2s−3/4(1 + s)−1/4(1 +
√
s)−3/2ds

≤ Ct−1,
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which is sufficient for t ≥ |x|3/2.
For t < |x|3/2 (i.e., |x| > t2/3), we focus on decay in |x|. We obtain an estimate by

∫ t−1

0

∫

[ 3x
2
,x
2
]

(t− s)−1e−
(x−y)2

M(t−s) s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2dyds

+

∫ t−1

0

∫

[ 3x
2
,x
2
]c
(t− s)−1e−

(x−y)2

M(t−s) s−3/4(1 + s)−1/4(1 + |y|+
√
s)−3/2dyds

≤ C1

∫ t−1

0

(t− s)−1/2s−3/4(1 + s)−1/4(1 + |x|/2 +
√
s)−3/2ds

+ C2

∫ t−1

0

(t− s)−1e−
x2

4Mt s−3/4(1 + s)−1/4(1 +
√
s)−1/2

≤ C
[

t−1/2 log t(1 + |x|)−3/2 + t−1e−
x2

4Mt

]

.

The first estimate is sufficient for |x| ≥
√
t (and so for |x| ≥ t2/3), and the second is always

sufficient.
Integration against Υ3 is very similar to integration against Υ1, using (6.10). The deriva-

tive estimate is obtained similarly.
�

7 Nonlinear Iteration

We now turn to the proof of Theorem 1.2, which proceeds by a combination of continuous
induction on bounds obtained from the integral equations (1.21) and a short-time theory.
The short-time theory is necessitated by the appearance of vxxx in our nonlinearity Q, which
would not be present for constant mobility M . The difficulty arises in integrals such as

v(t, x) =

∫ +∞

−∞
G̃(t, x; y)v0(y)dy −

∫ t

0

∫ +∞

−∞
G̃y(t− s, x; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds,

for which differentiation three times with respect to x would appear to give a divergent
nonlinear integral. Following [19], we use a short-time theory to bound vxxx in terms of v,
vx, x, and δ̇(t). In [19], which considers viscous conservation laws, |vx| is bounded in terms
of |x|, |v|, and diffusion waves; see particularly Corollary 11.7 of that reference.

7.1 Short-time Theory

We begin the short-time theory by writing our general Cahn-Hilliard system (1.1) in the
form

ut =
(

M(u)(−Γuxxx + f ′(u)ux)
)

x
.
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We consider the linear PDE obtained if we let ũ(t, x) denote any given function (in an
appropriate function class, defined below), and set

M̃(t, x) :=M(ũ(t, x))

Ã(t, x) := f ′(ũ(t, x)).

That is, we consider the linear PDE

ut =
(

M̃(t, x)(−Γuxxx + Ã(t, x)ux)
)

x
. (7.1)

In [4] Friedman uses Levi’s parametrix method to show that (7.1) can be solved for a
classical solution u ∈ C1,4((τ, T ] × R), for T − τ > 0 sufficiently small, so long as u(τ, x)
is continuous and doesn’t grow too fast and (roughly) M̃ , Ã, and the first x-derivatives of
these functions are Hölder continuous. (This is Theorem 3 on p. 256 of [4]; by “doesn’t
grow too fast” we mean Friedman’s condition (4.22), and the conditions on M̃ and Ã can
be deduced from Friedman’s Conditions (A1) and (A2) on p. 251.) If, in addition to
Friedman’s assumptions, we take u(0, x) ∈ Cγ(R) for some 0 < γ < 1 then we obtain a
solution u ∈ C1+ γ

4
,4+γ((τ, T ]× R).

In order to slightly relax these assumptions on M̃ and Ã, we follow the approach of [19]
and consider the weak form of (7.1). Following Friedman’s analysis, it is straightforward to
show that the weak form of (7.1) can be solved for u ∈ C

γ
4
,3+γ((τ, T ] × R) so long as the

following conditions hold on M̃ and Ã:

(A1) M̃ and Ã are bounded continuous functions on Ω = [τ, T ]× R, and M̃ is continuous
in t uniformly with respect to (t, x) in Ω.

(A2) M̃ and Ã are Hölder continuous (exponent γ) in x, uniformly with respect to (t, x)
in bounded subsets of Ω, and M̃ is Hölder continuous (expondent γ) in x uniformly with
respect to (t, x) in Ω.

(For space considerations, we have omitted several details along these lines. For full
details in the case of evolutionary PDE that are parabolic in the sense of Petrovskii—a
class including Cahn-Hilliard systems—we refer the reader to the companion article [9].) In
particular, u(t, x) is constructed in terms of a Green’s function for the weak form of (7.1).
Let ũ ∈ C

γ
4
,γ([τ, T ]×R) so that M̃ and Ã satisfy (A1)-(A2), and let Gũ(t, x; τ, y) denote the

Green’s function for the weak form of (7.1). Define the map

T ũ :=

∫ +∞

−∞
Gũ(t, x; τ, y)uτ(y)dy.

In [9] we show that if uτ ∈ Cγ , then for T − τ > 0 sufficiently small, T is a contraction on
the space

S :=
{

u ∈ C
γ
4
,γ([τ, T ]× R) : u(τ, x) = uτ (x), ‖u‖

C
γ
4 ,γ ≤ K

}

,

for some sufficiently large constant K. This ensures that we have a solution u ∈ C
γ
4
,γ([τ, T ]×

R) to the weak form of (7.1). According to our linear theory, we conclude that in fact u is
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additionally in the space C
γ
4
,3+γ((τ, T ]× R). Using this choice of u in our definitions of M̃

and Ã (i.e., taking ũ = u), we find that M̃ and Ã satisfy Friedman’s stronger conditions
(on [σ, T ] × R for any τ < σ < T ), and we can solve the strong form of (7.1) for some
w ∈ C1+ γ

4
,4+γ((τ, T ] × R). Finally, we show in [9] that w and u agree pointwise, so in fact

u ∈ C1+ γ
4
,4+γ((τ, T ]× R).

We can express u in the form

u(t, x) =

∫ +∞

−∞
Gu(t, x; τ, y)uτ(y)dy,

where Gu satisfies the following estimates established by Friedman:

∣
∣
∣
∂lGu(t, x; τ, y)

∂xl

∣
∣
∣ ≤ Cl(t− τ)−

1+l
4 e

− (x−y)4/3

M(t−τ)1/3 , (7.2)

for l ∈ {0, 1, . . . , 4}. We also note that since the unique classical solution of (7.1) with
uτ (x) ≡ 1 is u(t, x) ≡ 1 for all (t, x) ∈ [τ, T ]× R, we must have

∫ +∞

−∞
Gu(t, x; τ, y)dy = I, (7.3)

where I denotes an m×m identity matrix.
We use these observations to obtain short-time estimates on u(t, x). We have, taking

τ = 0,

∂lu

∂xl
=

∫ +∞

−∞

∂l

∂xl
Gu(t, x; 0, y)u(0, y)dy

=

∫ +∞

−∞

∂l

∂xl
Gu(t, x; 0, y)u(0, x)dy +

∫ +∞

−∞

∂l

∂xl
Gu(t, x; 0, y)(u(0, x)− u(0, y))dy

= Il + Jl,

where according to (7.2) and (7.3) I0 = u(0, x) while Il = 0 for l = 1, 2, 3, 4, and

|Jl| ≤ Ct−
l
4
+ γ

4 .

We record these as the short-time estimates

‖u(t, ·)‖Cγ(R) ≤ C ‖u(t, ·)‖Cl(R) ≤ Clt
−l+γ

4 , (7.4)

l = 1, 2, 3, 4, for t ∈ (0, T ], with T sufficiently small. By continuous extension, we can
continue u so long as ‖u(t, ·)‖Cγ(R) remains bounded, obtaining the estimates

‖u(t, ·)‖Cγ(R) ≤ C ‖u(t, ·)‖Cl(R) ≤ Clt
−l+γ

4 +Kl, (7.5)

l = 1, 2, 3, 4.
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7.2 Short-time theory for the shift

In Section (7.1) we established a short-time theory for solutions u to (1.1), and we now
continue a similar theory for our shift δ. We begin by observing that given any δ̃ ∈ C1+γ [0, T ]
our perturbation definition

v(t, x) = u(t, x+ δ(t))− ū(x),

defines v (recall that, by assumption, our transition front ū(x) is well-defined; certainly we
don’t require δ ∈ C1+γ to make this definition, but this is the space we’ll work in). We
obtain from (7.5) the estimates

‖v(t, ·)‖Cl(R) ≤ C̃lt
−l+γ

4 + ˜̃Cl, (7.6)

l = 0, 1, . . . , 4, so long as ‖u(t, ·)‖Cγ(R) (or equivalently ‖v(t, ·)‖Cγ(R)) remains bounded.
Recalling from (1.21) that

δ̇(t) = −
∫ +∞

−∞
et(t; y)v0(y)dy +

∫ t

0

∫ +∞

−∞
ety(t− s; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds,

we see that for any times τ , t so that 0 < τ < t we have

δ̇(t) = δ̇(τ)−
∫ +∞

−∞

(

et(t; y)− et(τ ; y)
)

v0(y)dy

+

∫ t

0

∫ +∞

−∞

(

ety(t− s; y)− ety(τ − s; y)
)[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

+

∫ t

τ

∫ +∞

−∞
ety(t− s; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dyds.

By our choice of e(t; y) (so that e(t; y) ≡ 0 for t ≤ 1/4), we have that δ̇(t) = 0 for t ≤ 1/4.
Let τ ≥ 1/4 denote any value so that δ̇ ∈ C

γ
4 ([0, τ ]. In order to extend δ̇ to the interval

[0, τ + T ], for T sufficiently small, we define the nonlinear map J

J δ̇(t) := δ̇(τ)−
∫ +∞

−∞

(

et(t; y)− et(τ ; y)
)

v0(y)dy

+

∫ t

0

∫ +∞

−∞

(

ety(t− s; y)− ety(τ − s; y)
)[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

+

∫ t

τ

∫ +∞

−∞
ety(t− s; y)

[

δ̇(s)v(s, y) +Q(s, y)
]

dy,

along with the choice δ(t) =
∫ t

0
δ̇(s)ds.
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Taking now δ̇(t) as a given fixed function on [0, τ ], with δ̇(τ) =: δ̇τ , we verify that for T
sufficiently small, J is a contraction on the space

V := {δ̇ ∈ C
γ
4 [τ, τ + T ] : δ̇(τ) = δ̇τ , ‖δ̇‖

C
γ
4
≤ K}.

Here,

‖δ̇‖
C

γ
4
:= ‖δ̇‖C([τ,τ+T ]) + sup

t1,t2∈[τ,τ+T ]
t1 6=t2

|δ̇(t1)− δ̇(t2)|
|t1 − t2|γ/4

,

with
‖δ̇‖C([τ,τ+T ]) := sup

s∈[τ,τ+T ]

|δ̇(s)|.

We use inequalities (7.6), along with the L1 inequalities,

‖ety(t; y)‖L1(R) ≤ C(1 + t)−1

‖et(t2, ·)− et(t1, ·)‖L1(R) ≤ C(1 + t1)
−3/2(t2 − t1)

‖ety(t2, ·)− ety(t1, ·)‖L1(R) ≤ C(1 + t1)
−2(t2 − t1),

(7.7)

and we recall
|Q| ≤ C(|v||vx|+ e−η|x||v|2 + |v||vxxx|).

First, in order to verify invariance of J , we write

|J δ̇(t)| ≤ |δ̇(τ)|+ ‖et(t, ·)− et(τ, ·)‖L1(R)‖v0‖C(R)

+

∫ τ

0

‖ety(t− s, ·)− ety(τ − s, ·)‖L1(R)

[

‖δ̇(s)v(s, ·)‖C(R) + ‖Q(s, ·)‖C(R)

]

ds

+

∫ t

τ

‖ety(t− s, ·)‖L1(R)

[

‖δ̇(s)v(s, ·)‖C(R) + ‖Q(s, ·)‖C(R)

]

ds

= |δ̇(τ)| + I1 + I2 + I3.

For this argument, we’re assuming ‖u(t, ·)‖Cγ(R) remains bounded on [0, τ + T ], and so

for δ̇ ∈ V we have the nonlinearity estimate
[

‖δ̇(s)v(s, ·)‖C(R) + ‖Q(s, ·)‖C(R)

]

≤ C1 + C2s
−3+γ

4 .

Using this, we easily verify
I1 + I2 + I3 ≤ C(t− τ).

By choosing K sufficiently large, and T sufficiently small (so that t − τ is small), we can
ensure ‖δ̇‖C([τ,τ+T ]) < K/2.

Proceeding similarly, we find

|J δ̇(t1)−J δ̇(t2)| ≤ C|t2 − t1|,
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which ensures J δ̇ ∈ V. In fact, we have established Lipschitz continuity.
In order to establish that J is a contraction, we let δ̇1 and δ̇2 denote any two functions

in V and write

J δ̇1(t)−J δ̇2(t) =
∫ t

τ

∫ +∞

−∞
ety(t−s; y)

[

δ̇1(s)v1(s, y)− δ̇2(s)v2(s, y)+Q1(s, y)−Q2(s, y)
]

dyds.

Here, our notation is
vj(s, y) := u(s, y + δj(s))− ū(y)

Qj = Q(y, vj, vjy, vjyyy).

According to our short-time regularity of v, we have

|v1(s, y)− v2(s, y)| = |(u(s, y + δ1(s))− ū(y))− (u(s, y + δ2(s))− ū(y))|
= |uy(s, y∗)(δ1(s)− δ2(s))| ≤ Cs

−1+γ
4 |δ1(s)− δ2(s)|.

Recalling that δ(t) :=
∫ t

0
δ̇(σ)dσ, and that δ̇(t) is taken as given for t ∈ [0, τ ], we have

|δ1(s)− δ2(s)| = |
∫ s

τ

δ̇1(σ)− δ̇2(σ)dσ| ≤ (s− τ)‖δ̇1 − δ̇2‖C([τ,s])

≤ (s− τ)1+
γ
4 ‖δ̇1 − δ̇2‖Cγ([τ,s]).

Writing

δ̇1(s)v1(s, y)− δ̇2(s)v2(s, y) = (δ̇1(s)− δ̇2(s))v1(s, y) + δ̇2(s)(v1(s, y)− v2(s, y)),

we see that
∣
∣
∣δ̇1(s)v1(s, y)− δ̇2(s)v2(s, y)

∣
∣
∣ ≤ (C1(τ − s)γ/4 + C1s

−1+γ
4 (τ − s)1+γ/4)‖δ̇1 − δ̇2‖Cγ([τ,τ+T ]).

Likewise,

|Q1(s, y)−Q2(s, y)| ≤ (C1s
−1+γ

4 + C2s
−5+γ

4 )(s− τ)1+γ/4‖δ̇1 − δ̇2‖Cγ([τ,τ+T ]).

Combining these observations, we find

‖J δ̇1 − J δ̇2‖C([τ,τ+T ]) ≤ C(t− τ)1+γ/4‖δ̇1 − δ̇2‖Cγ([τ,τ+T ]).

Proceeding similarly, we verify

‖J δ̇1 − J δ̇2‖Cγ([τ,τ+T ]) ≤ CT 1−γ/4‖δ̇1 − δ̇2‖Cγ([τ,τ+T ]),

which verifies that J is a contraction on V.
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7.3 Estimation of vxxx

For notational convenience in this calculation and the ones that follow, we’ll set

ψ1(t, x) := (1 + t)−1/2e−
x2

Lt

ψ2(t, x) := (1 + |x|+
√
t)−3/2

ψ3(t, x) := t−1/4(1 + t)−3/4e−
x2

Lt

ψ4(t, x) := t−1/4(1 + t)−1/4(1 + |x|+
√
t)−3/2

ψ5(t, x) := t−1/4(1 + t)−1/4e−η|x|e−
x2

Lt .

With these definitions in place, we see that our goal in proving Theorem 1.2 can be expressed
as

|v(t, x)| ≤ Cǫ
(

ψ1(t, x) + ψ2(t, x)
)

|vx(t, x)| ≤ Cǫ
(

ψ3(t, x) + ψ4(t, x) + ψ5(t, x)
)

|δ̇(t)| ≤ Cǫ(1 + t)−1.

(7.8)

Throughout the nonlinear argument, we would like to replace v, vx, and δ̇ with these
estimates, but of course we must take care since these are the estimates that we are ultimately
trying to establish. Following [14] (p. 38) (and many subsequent analyses based on [19]) we
define

ζ(t) := sup
s∈[0,t]
x∈R

{ |v(s, x)|
ψ1(s, x) + ψ2(s, x)

+
|vx(s, x)|

ψ3(s, x) + ψ4(s, x) + ψ5(s, x)
+ δ̇(s)(1 + s)

}

. (7.9)

Clearly, for all (s, x) ∈ [0, t]× R, we have

|v(s, x)| ≤ ζ(t)(ψ1(s, x) + ψ2(s, x))

|vx(s, x)| ≤ ζ(t)(ψ3(s, x) + ψ4(s, x) + ψ5(s, x))

|δ̇(s)| ≤ ζ(t)(1 + s)−1.

(7.10)

In developing our short-time theory, our primary concern has been to obtain estimates
on vxxx(t, x), so that we can avoid iterating an integral equation for this term. In order to
do this, we first note that our perturbation equation for v can be expressed as

vt = −M(ū + v)Γvxxxx −M ′(ū+ v)(ūx + vx)Γvxxx

+ (M(ū + v)(Ãv)x)x + δ̇(t)vx + δ̇(t)ūx,
(7.11)

where we have set

Ã(t, x) :=

∫ 1

0

Df(ū+ γv)dγ.
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Let Gv(t, x; τ, ξ) denote the Green’s function associated with the homogeneous part of
(7.11) (i.e., the equation with δ̇(t)ūx omitted), so that

v(t, x) =

∫ +∞

−∞
Gv(t, x; 0, ξ)v0(ξ)dξ +

∫ t

0

∫ +∞

−∞
Gv(t, x; τ, ξ)δ̇(τ)ū′(ξ)dξds. (7.12)

Upon differentiating (7.12) three times with respect to x, we obtain

vxxx(t, x) =

∫ +∞

−∞
Gv

xxx(t, x; 0, ξ)v0(ξ)dξ +

∫ t

0

∫ +∞

−∞
Gv

xxx(t, x; τ, ξ)δ̇(τ)ū
′(ξ)dξds. (7.13)

Fix any time T0 > 0 and consider times 0 < t ≤ T0. Following Friedman, we obtain the
estimate

∣
∣
∣Gv(t, x; τ, ξ)

∣
∣
∣ ≤ C(t− τ)−1e

− (x−ξ)4/3

M(t−τ)1/3 .

According to our definition of ζ(t), we see upon letting t→ 0 and using the monotonicity of
ζ that

|v(0, x)| ≤ (1 + |x|)−3/2ζ(0) ≤ (1 + |x|)−3/2ζ(t). (7.14)

Accordingly, we can estimate vxxx(t, x) as follows:

|vxxx(t, x)| ≤ C1

∫ +∞

−∞
t−1e

− (x−ξ)4/3

Mt1/3 |v0(ξ)|dξ

+ C2

∫ t

0

∫ +∞

−∞
(t− τ)−1e

− (x−ξ)4/3

M(t−τ)1/3 |δ̇(τ)||ū′(ξ)|dξdτ

≤ C1ζ(t)

∫ +∞

−∞
t−1e

− (x−ξ)4/3

Mt1/3 (1 + |ξ|)−3/2dξ

+ C2ζ(t)

∫ t

0

∫ +∞

−∞
(t− τ)−1e

− (x−ξ)4/3

M(t−τ)1/3 (1 + τ)−1|ū′(ξ)|dξdτ.

Keeping in mind that t− τ ≤ T0, we find that

|vxxx(t, x)| ≤ Cζ(t)t−3/4(1 + |x|)−3/2.

Since t is bounded, we can write this expression with more decay in t simply by increasing
the size of C. In particular, we are justified in writing

|vxxx(t, x)| ≤ C̃ζ(t)t−3/4
[

(1 + t)−1/4e−
x2

Lt + (1 + t)1/4(1 + |x|+
√
t)−3/2

+ (1 + t)1/4e−η̃|x|e−
x2

Lt

]

.
(7.15)

Next, we need to verify (7.15) for t > T0. In this case we want to verify that for large
time vxxx inherits the increased decay rate of vx, and so our goal will be to bound vxxx in
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terms of vx (rather than v, as in our bounded-time calculation). Formally differentiating
(7.11) with respect to x, and setting w = vx, we obtain

wt = −M(ū + v)Γwxxxx −M ′(ū+ v)xΓwxxx − (M ′(ūx + vx)Γwxx)x

+ (M(ū + v)(Ãv)x)xx + δ̇(t)wx + δ̇(t)ūxx.
(7.16)

Using now our short-time theory for v, we see that (7.16) can be solved in Friedman’s
framework with two source terms:

q(t, x)v(t, x) + δ̇(t)ūxx(x).

Here, q(t, x) has several terms, but we need only recognize that each of these is multiplied
by some derivative of ū(x), so that |q(t, x)| ≤ Ce−α|x|, uniformly in t.

Let Gw(t, x; τ, ξ) denote the Green’s function associated with the homogeneous part of
(7.16), so that for any fixed τ ≥ 0

w(t, x) =

∫ +∞

−∞
Gw(t, x; τ, ξ)w(τ, ξ)dξ

+

∫ t

τ

∫ +∞

−∞
Gw(t, x; s, ξ)

[

q(s, ξ)v(s, ξ) + δ̇(s)ūξξ(ξ)
]

dξds.

(7.17)

(Our analysis here is based on Friedman [4], and in places we have adopted his notation.)
Now, differentiating (7.17) twice with respect to x, and recalling w = vx, we find

vxxx(t, x) =

∫ +∞

−∞
Gw

xx(t, x; τ, ξ)vξ(τ, ξ)dξ

+

∫ t

τ

∫ +∞

−∞
Gw

xx(t, x; s, ξ)
[

q(s, ξ)v(s, ξ) + δ̇(s)ūξξ(ξ)
]

dξds

= I1 + I2.

(7.18)

In what follows, we fix the increment t− τ =: T as a sufficiently small value, but let τ (and
so t) grow.

We can write (from (7.18))

|I1| ≤
∫ +∞

−∞
|Gw

xx(t, x; τ, ξ)|ζ(t)(ψ3(τ, ξ) + ψ4(τ, ξ) + ψ5(τ, ξ))dξ.

From Friedman [4] we have the estimate

|Gw
xx(t, x; τ, ξ)| ≤ C(t− τ)−3/4e

− (x−ξ)4/3

M(t−τ)1/3 .

Since t − τ is small, we have exponential decay in |x − ξ|4/3, which of course provides
exponential decay in |x− ξ|. Using this observation, we find

|I1| ≤ Cζ(t)(t− τ)−1/2
[

ψ3(τ, x) + ψ4(τ, x) + ψ5(τ, x)
]

.
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Likewise,

|I2| ≤ ζ(t)

∫ t

τ

∫ +∞

−∞
|Gw

xx(t, x; s, ξ)|
[

e−α|x|(ψ1(s, ξ) + ψ2(s, ξ)) + e−α|ξ|(1 + s)−1
]

dξds

≤ Cζ(t)(t− τ)1/2ψ5(τ, x).

Since t = τ + T , for T chosen sufficiently small, we can replace τ by t in these inequalities
(increasing C). We conclude

|vxxx(t, x)| ≤ Cζ(t)(ψ3(t, x) + ψ4(t, x) + ψ5(t, x)), (7.19)

for t > T0. Combining this observation with the case 0 < t < T0, we see that (7.15) holds
for all t > 0.

7.4 Proof of Theorem 1.2

We now turn to the proof of Theorem 1.2, which proceeds by continuous induction on
estimates for the system of integral equations (1.21). First, by combining (7.19) with (7.10),
we find

|δ̇(s)v(s, y)|+ |Q(s, y)| ≤ Cζ(t)2Υ(s, y), (7.20)

where Υ is defined in the statement of Lemma 6.2. For the first integral in (1.21), and for

|v0(y)| ≤ ǫ(1 + |y|)−3/2,

as in the statement of Theorem 1.2, we have (using Lemmas 6.1) and 6.2)

v(t, x) ≤
∫ +∞

−∞
|G̃(t, x; y)||v0(y)|dy

+

∫ t

0

∫ +∞

−∞
|G̃y(t− s, x; y)|

[

|δ̇(s)v(s, y)|+ |Q(s, y)|
]

dyds

≤ C
(

ǫ+ ζ(t)2
)

(ψ1(t, x) + ψ2(t, x)).

Likewise,

|vx(t, x)| ≤ C
(

ǫ+ ζ(t)2
)

(ψ3(t, x) + ψ4(t, x) + ψ5(t, x)),

and
|δ̇(t)| ≤ C

(

ǫ+ ζ(t)2
)

(1 + t)−1.

We conclude that there exists a constant C̃ so that

{ |v(t, x)|
ψ1(t, x) + ψ2(t, x)

+
|vx(t, x)|

ψ3(t, x) + ψ4(t, x) + ψ5(t, x)
+ δ̇(1 + t)

}

≤ C̃
(

ǫ+ ζ(t)2
)

.
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Since the right-hand side of this last inequality is non-decreasing in t, we must have

ζ(t) ≤ C̃
(

ǫ+ ζ(t)2
)

.

As verified in [8] (see Claim 4.1 on p. 799), we can conclude from this last inequality that

ζ(t) < 2C̃ǫ.

Theorem 1.2 is an immediate consequence of this last inequality.
�
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