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Abstract

We consider the asymptotic behavior of perturbations of transition front solutions
arising in Cahn–Hilliard systems on R. Such equations arise naturally in the study of
phase separation processes, and systems describe cases in which three or more phases
are possible. When a Cahn–Hilliard system is linearized about a transition front so-
lution, the linearized operator has an eigenvalue at 0 (due to shift invariance), which
is not separated from essential spectrum. In cases such as this, nonlinear stability
cannot be concluded from classical semigroup considerations and a more refined devel-
opment is appropriate. Our main result asserts that if initial perturbations are small
in L1∩L∞ then spectral stability—a necessary condition for stability, defined in terms
of an appropriate Evans function—implies asymptotic nonlinear stability in Lp for all
1 < p ≤ ∞.

1 Introduction

We consider the asymptotic Lp stability of transition front solutions ū(x), ū(±∞) = u±,
u− 6= u+, for Cahn–Hilliard systems on R,

ut =
(

M(u)(−Γuxx + f(u))x

)

x
, (1.1)

where u, f ∈ R
m, m an integer greater than or equal to 2 (m + 1 phases are possible) and

M,Γ ∈ R
m×m. A brief discussion of the history and physicality of this equation is given in

[10], and reasonable (physical) choices for f , M , and Γ are also discussed. We omit such a
discussion here, but state, for convenient reference, the assumptions of [10], which we will
assume throughout this paper.

(H0) (Assumptions on Γ) Γ denotes a constant, symmetric, positive definite matrix.

(H1) (Assumptions on f) f ∈ C3(Rm), and f has at least two zeros on R
m. For convenience

we denote this set
M := {u ∈ R

m : f(u) = 0}. (1.2)

1



(H2) (Transition front existence and structure) There exists a transition front solution to
(1.1) ū(x), so that

−Γūxx + f(ū) = 0, (1.3)

with ū(±∞) = u±, u± ∈ M. When (1.3) is written as a first order autonomous ODE
system ū arises as a transverse connection either from the m-dimensional unstable linearized
subspace for u−, denoted U−, to them-dimensional stable linearized subspace for u+, denoted
S+, or (by isotropy) vice versa. (We recall that since our ambient manifold is R

2m, the
intersection of U− and S+ is referred to as transverse if at each point of intersection the
tangent spaces associated with U− and S+ generate R

2m. In particular, in this setting
a transverse connection is one in which the the intersection of these two manifolds has
dimension 1; i.e., our solution manifold will comprise shifts of ū.)

(H3) (Assumptions on M and Γ) M ∈ C2(Rm); M is uniformly positive definite along the
wave; i.e., there exists θ > 0 so that for all ξ ∈ R

m and all x ∈ R we have

ξtrM(ū(x))ξ ≥ θ|ξ|2.

(H4) (Symmetry and Endstate Assumptions) We assume them×m Jacobian matrix f ′(ū(x))
is symmetric for all x ∈ R. Setting B± := f ′(u±) and M± := M(u±), we assume B± and M±

are both symmetric and positive definite. (Of course, M± is already positive definite from
(H3).) In addition, we assume that for each of the matrices M±B± and Γ−1B±, the spectrum
is distinct except possibly for repeated eigenvalues that have an associated eigenspace with
dimension equal to eigenvalue multiplicity. In the case of repeated eigenvalues, we assume
additionally that the solutions µ of

det
(

− µ4M±Γ + µ2M±B± − λI
)

= 0

can be strictly divided into two cases: if µ(0) 6= 0 then µ(λ) is analytic in λ for |λ| sufficiently
small, while if µ(0) = 0 µ(λ) can be written as µ(λ) =

√
λh(λ), where h is analytic in λ for

|λ| sufficiently small.

Regarding (H1) we observe that for Cahn-Hilliard systems we can often write f as the
gradient of an appropriate bulk free energy density F (i.e. f(u) = F ′(u)), where F has m+1
local minima on R

m. In this way, it’s natural for f to have precisely m + 1 zeros. Since F
would appear in (1.1) with both a u and an x derivative, we can subtract from it any affine
function without changing (1.1). It is often convenient to subtract a supporting hyperplane
from F so that F is also 0 on M.

Regarding (H4), we first observe that the symmetry condition on f ′(ū(x)) is natural since
F ′′(u) is a Hessian matrix. Also, we note that we can ensure that our system satisfies the
determinant condition by taking arbitrarily small perturbations of the matrices M and Γ.
Since we expect stability to be insensitive to such perturbations, we view this assumption as
purely for technical convenience. Generally speaking, (H0)-(H4) hold for physically relevant
choices of Γ, M , and f ; particular examples can be found in [10].
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When the Cahn–Hilliard system (1.1) is linearized about a transition front ū(x), as
described in (H2), the resulting linear equation is

vt =
(

M(x)(−Γvxx +B(x)v)x

)

x
, (1.4)

where (with a slight abuse of notation) M(x) := M(ū(x)) and B(x) := f ′(ū(x)). Assump-
tions (H0)–(H4) imply the following (stated with some redundancy so that these assumptions
can be referred to independently of (H0)-(H4)):

(C1) B ∈ C2(R); there exists a constant αB > 0 so that

∂j
x(B(x)− B±) = O(e−αB |x|), x → ±∞,

for j = 0, 1, 2; B± are both positive definite matrices.

(C2) M ∈ C2(R); there exists a constant αM > 0 so that

∂j
x(M(x)−M±) = O(e−αM |x|), x → ±∞,

for j = 0, 1, 2; M is uniformly positive definite on R; Γ denotes a constant, symmetric,
positive definite matrix. We will set α = min{αB, αM}.

The eigenvalue problem associated with (1.4) has the form

Lφ :=
(

M(x)(−Γφ′′ +B(x)φ)′
)′

= λφ. (1.5)

In many cases it’s possible to verify that the only non-negative eigenvalue for this equation
is λ = 0 (see, for example, [1, 2, 15] and our companion spectral paper [10]), and so stability
depends entirely on the nature of this neutral eigenvalue. In [10], we identify an appropriate
stability condition for this leading eigenvalue. Briefly, this condition is constructed in terms
of the asymptotically growing/decaying solutions of (1.5). For |λ| > 0 sufficiently small,
and Argλ 6= π (i.e., excluding negative real numbers), there are 2m linearly independent
solutions of (1.5) that decay as x → −∞ and 2m linearly independent solutions of (1.5) that
decay as x → +∞. Moreover, these functions can be constructed so that they are analytic
in ρ =

√
λ. If we denote these functions {φ±

j (x; ρ)}2mj=1 and set Φ±
j = (φ±

j , φ
±
j
′
, φ±

j
′′
, φ±

j
′′′
)tr,

the Evans function can be expressed as

Da(ρ) = det(Φ+
1 , . . . ,Φ

+
2m,Φ

−
1 , . . . ,Φ

−
2m)

∣

∣

∣

x=0
. (1.6)

In terms of this function the stability condition of [10] can be stated as follows:

Condition 1.1. The set σ(L)\{0} lies entirely in the negative half-plane Reλ < 0, and

dm+1

dρm+1
Da(ρ)

∣

∣

∣

ρ=0
6= 0.
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Remark 1.1. As discussed in Section 3 of [10], our assumptions (H0)-(H4) ensure that the
essential spectrum of L (defined here as any value that is neither in the point spectrum nor the
resolvent set of L) is confined to the negative real axis (−∞, 0]. (This follows immediately
from our assumptions that Γ, B±, and M± are all symmetric and positive definite.) In
addition, it is shown in [11] by a straightforward energy estimate that Condition 1.1 implies
that aside from the leading eigenvalue λ = 0 the point spectrum of L is bounded to the left
of a wedge with vertex on the negative real axis:

Γθ := {λ : Re λ = −θ1 − θ2|Im λ|} (1.7)

for some positive values θ1, θ2 sufficiently small. If we make one additional natural assump-
tion, that M(ū(x)) is symmetric for all x ∈ R, we can ensure that the point spectrum of L
is entirely real-valued. Finally, we verify in [10] that

Da(0) = D′
a(0) = · · · = D(m)

a (0) = 0.

Our main goal in the current analysis is to establish that Condition 1.1 is sufficient to
guarantee asymptotic stability for the wave ū(x) in Lp spaces, 1 < p ≤ ∞ (more precisely
L1 ∩ L∞ → Lp phase-asymptotic stability). We employ the pointwise Green’s function
approach of [6, 7, 17], along with the local tracking developed in [12, 16] and the Lp framework
of [14, 16].

Generally, if the initial value for (1.1) is taken as a small perturbation of ū(x), the solution
u(t, x) will approach a shift of ū(x) rather than the wave itself (orbital stability). Following
[12], we proceed by tracking this shift locally in time, our location denoted by δ(t), which is
standard notation in the literature and should not be confused with a Dirac delta function.
More precisely, we include this shift in our analysis by defining our perturbation v(t, x) as

v(t, x) := u(t, x+ δ(t))− ū(x). (1.8)

At this point, δ(t) is yet undetermined, and indeed one of the most important aspects of
our approach to this problem is that it allows us to make an effective choice of δ(t). Upon
substitution of u(t, x+ δ(t)) into (1.1) we obtain the perturbation equation

vt =
(

M(x)(−Γvxx +B(x)v)x

)

x
+ ū′(x)δ̇(t) + vxδ̇(t) +Qx, (1.9)

where Q = Q(x, v, vx, vxxx) is at least C
2 in all its variables, and if

|v|+ |vx|+ |vxxx| ≤ C̃

for some constant C̃, then there exists a constant C so that

|Q| ≤ C
(

|v||vx|+ e−α|x||v|2 + |v||vxxx|
)

, (1.10)
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where α is described in (C1)-(C2) above. On one hand, this is a beneficial nonlinearity,
because |vx| and |vxxx| will generally decay faster than |v| as |x| or t tends to ∞, and so each
of these bounds is better than the standard nonlinearity |v|2 encountered in the analysis of
viscous conservation laws (see, e.g., [17]). On the other hand, for small values of t, derivatives
of v generally blow up, and vxxx is problematic in this regard. Our short time analysis of
Section 4 is designed primarily to address this difficulty.

Let G(t, x; y) denote the Green’s function associated with the linear equation vt = Lv,
where L is as in (1.5), so that, in the standard distributional sense,

Gt = LG

G(0, x; y) = δy(x)I,
(1.11)

where I denotes an m × m identity matrix, and of course δy(x) is a standard Dirac delta
function. Integrating (1.9), we find

v(t, x) =

∫ +∞

−∞

G(t, x; y)v0(y)dy + δ(t)ū′(x)

−
∫ t

0

∫ +∞

−∞

Gy(t− s, x; y)
[

δ̇(s)v(s, y) + Q(s, y)
]

dyds,

(1.12)

where in deriving this equation we have (1) observed that since ū′(x) is a stationary solution
for vt = Lv we must have eLtū′(x) = ū′(x); (2) assumed our eventual choice of δ(t) has the
natural property δ(0) = 0; and (3) integrated the standard nonlinear integral by parts. To
be clear, we do not assume at this stage that solutions of (1.12) are necessarily solutions of
(1.9). Rather, our approach will be to work directly with (1.12) and use our estimates on
G and v to establish the correspondence. We consider the condition δ(0) = 0 to be natural,
because δ(t) should capture the shift obtained as perturbation mass accumulates near the
transition layer, and generally this accumulation will take some time.

Our approach will be to take advantage of the analysis of [11] in which G is decomposed
into two parts, an excited term E that does not decay as t → ∞ (and is associated with
the leading eigenvalue λ = 0), and a higher order term G̃(t, x; y) that does decay as t → ∞.
This approach, following [8, 12, 16, 17] and others, will allow us to choose our shift δ(t). We
will find that E can be written as E(t, x; y) = ū′(x)e(t, y), and so we can express G as

G(t, x; y) = ū′(x)e(t; y) + G̃(t, x; y), (1.13)

so that (1.12) becomes

v(t, x) =

∫ +∞

−∞

G̃(t, x; y)v0(y)dy −
∫ t

0

∫ +∞

−∞

G̃y(t− s, x; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

+ ū′(x)
{

δ(t) +

∫ +∞

−∞

e(t; y)v0(y)dy −
∫ t

0

∫ +∞

−∞

ey(t− s; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds
}

.

(1.14)
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Our goal will be to choose δ(t) in such a way that the entire expression multiplying ū′(x)
in (1.14) is annihilated. That is, we would like δ(t) to solve the integral equation

δ(t) = −
∫ +∞

−∞

e(t; y)v0(y)dy +

∫ t

0

∫ +∞

−∞

ey(t− s; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds. (1.15)

In principle now, we would like to establish existence of v, along with a bound on asymmptotic
behavior, by closing an iteration on (1.12). For such an argument we must be clear about
which functions must be carried through the iteration and which can be analyzed after the
iteration, using the obtained bounds. Of particular importance in this regard, δ(t) does
not appear directly in (1.12), and so it suffices to couple (1.12) with an equation for δ̇(t),
rather than for δ(t) itself. (Of course, v depends on δ, and this dependence is accomodated
in the short-time analysis of [11].) Afterward, estimates on δ(t) can be obtained directly
from (1.15). Also, the nonlinearity Q depends on vx and vxxx (in addition, of course, to
dependence on x and v), and so we must either couple (1.12) with integral equations for
these functions or obtain estimates on them in terms of the functions we do iterate. It’s
straightforward to show that vxxx can be bounded in terms of x, vx, and δ(t) for t bounded
away from 0, and can easily be estimated for t near 0, and so our approach will be to iterate
with the variables v, vx, and δ̇(t), and to obtain estimates on vxxx and δ(t) after the iteration.
(Though the connection between vx and vxxx will be used during the course of the iteration;
our principal reference for this calculation is [13], though vxxx does not appear there.) In
this way, we will carry out an iteration on the 2m+ 1 integral equations,

v(t, x) =

∫ +∞

−∞

G̃(t, x; y)v0(y)dy −
∫ t

0

∫ +∞

−∞

G̃y(t− s, x; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

vx(t, x) =

∫ +∞

−∞

G̃x(t, x; y)v0(y)dy −
∫ t

0

∫ +∞

−∞

G̃xy(t− s, x; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds

δ̇(t) = −
∫ +∞

−∞

et(t; y)v0(y)dy +

∫ t

0

∫ +∞

−∞

ety(t− s; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds.

(1.16)
Our first result regards Lp estimates on G(t, x; y) and its derivatives. We will prove this

theorem in Section 2.

Theorem 1.1. Suppose Conditions (C1)-(C2) hold, and also that spectral Condition 1.1
holds. Then given any time thresholds T1 > 0 and T2 > 0 there exists a constant C > 0
(depending on T1 and T2) so that the Green’s function described in (1.11) can be bounded as
follows: there exists a splitting

G(t, x; y) = ū′(x)e(t; y) + G̃(t, x; y),

so that:

(I) For all t ≥ 0

‖et(t; ·)‖Lp ≤ C(1 + t)−
1
2
− 1

2
(1− 1

p
); ‖ety(t; ·)‖Lp ≤ C(1 + t)−1− 1

2
(1− 1

p
),
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and e(t; y) ≡ 0 for all t ≤ 1/4.

(II) For t ≥ T1

sup
y∈R

‖G̃(t, ·; y)‖Lp
x
≤ Ct−

1
2
(1− 1

p
); sup

x∈R
‖G̃(t, x; ·)‖Lp

y
≤ Ct−

1
2
(1− 1

p
);

sup
y∈R

‖G̃y(t, ·; y)‖Lp
x
≤ Ct−

1
2
− 1

2
(1− 1

p
); sup

x∈R
‖G̃y(t, x; ·)‖Lp

y
≤ Ct−

1
2
− 1

2
(1− 1

p
);

sup
y∈R

‖G̃x(t, ·; y)‖Lp
x
≤ Ct−

1
2 ; sup

x∈R
‖G̃x(t, x; ·)‖Lp

y
≤ Ct−

1
2
(1− 1

p
);

sup
y∈R

‖G̃xy(t, ·; y)‖Lp
x
≤ Ct−1; sup

x∈R
‖G̃xy(t, x; ·)‖Lp

y
≤ Ct−

1
2
(1− 1

p
).

(III) For 0 < t < T2

sup
y∈R

‖∂αG̃(t, ·; y)‖Lp
x
≤ Ct−

|α|
4
− 1

4
(1− 1

p
)

sup
x∈R

‖∂αG̃(t, x; ·)‖Lp
y
≤ Ct−

|α|
4
− 1

4
(1− 1

p
)

where α is a standard multiindex in x and y and |α| ≤ 3;

Remark 1.2. We will use the observation that by taking T2 > T1 we can ensure there is
a region in the case |x − y| ≤ Kt for which estimates (II) and (III) both hold. Detailed
expressions for e(t; y) and ey(t; y) are given below in Theorem 2.1, taken from [11]. Here
and below we only use a subscript on Lp if the expression under norm depends on both x and
y; in all other cases, Lp will denote norm with respect to the spatial variable.

In Section 4 we show that the estimates of Theorem 1.1 are sufficient to close an iteration
on the system (1.16) in Lp norms. In this way, we establish the following theorem, which is
the main result of our analysis.

Theorem 1.2. Suppose ū(x) is a transition front solution to (1.1) as described in (H2),
and suppose (H0)-(H4) hold, as well as Condition 1.1. Then for Hölder continuous initial
conditions u(0, x) ∈ Cγ(R), 0 < γ < 1, with

‖u(0, x)− ū(x)‖L∞ + ‖u(0, x)− ū(x)‖L1 ≤ ǫ,

for some ǫ > 0 sufficiently small, there exists a solution u(t, x) of (1.1)

u ∈ C1+ γ
4
,4+γ((0,∞)× R) ∩ C

γ
4
,γ([0,∞)× R)

and a shift function δ ∈ C1+ γ
4 [0,∞) so that

lim
t→0+

δ(t) = 0; lim
t→∞

δ(t) = δ∞ ∈ R,
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for which the following estimates hold: there exists a constant C > 0 so that for each
1 ≤ p ≤ ∞

‖u(t, x+ δ(t))− ū(x)‖Lp ≤ Cǫ(1 + t)−
1
2
(1− 1

p
)

‖ux(t, x+ δ(t))− ū′(x)‖Lp ≤ Cǫt−1/4(1 + t)−1/4

|δ(t)− δ∞| ≤ Cǫ(1 + t)−1/4

|δ̇(t)| ≤ Cǫ(1 + t)−1.

Remark 1.3. This is the L1 ∩ L∞ → Lp analog to the pointwise theorem of [11] for which
the authors assume

|u(0, x)− ū(x)| ≤ ǫ(1 + |x|)−3/2,

which (with a slightly different value for ǫ) is a special case of the assumption made in
Theorem 1.2.

2 Proof of Theorem 1.1

In this section we carry out a straightforward proof of Theorem 1.1. The proof is based on
Theorem 1.2 from [11], for which we need to make one preliminary definition. We let ̺(t)
denote a C∞([0,∞)) function that is identically 0 for t ≤ 1/4 and identically 1 for t ≥ 3/4.
(In order to be definite, a precise choice is made in [11].) We now re-state Theorem 1.2 from
[11].

Theorem 2.1. Under the assumptions of Theorem 1.1, and given any time thresholds T1 > 0
and T2 > 0, there exist constants η > 0 (sufficiently small), and C > 0, K > 0, M > 0
(sufficiently large) so that the Green’s function described in (1.11) can be bounded as follows:
there exists a splitting

G(t, x; y) = ū′(x)e(t; y) + G̃(t, x; y),

so that for y < 0:

(I) (Excited terms)

(i) Main estimates:

e(t; y) =
( 2√

π

2m
∑

j=m+1

c−j r̃
−
j (0)

∫
y√

4β−
j−m

t

−∞

e−z2dz +Re(t; y)
)

̺(t)

ey(t; y) =
(

2m
∑

j=m+1

c−j r̃
−
j (0)

√

β−
j−mπt

e
− y2

4β−
j−m

t + ∂yRe(t; y)
)

̺(t)

where
|Re(t, y)| ≤ Ct−1/2e−y2/Mt

|∂yRe(t, y)| ≤ C
(

t−1e−y2/Mt + t−1/2e−y2/Mte−η|y|
)

.
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For brevity the (constant) values {β−
j }mj=1 and {c−j }2mj=m+1, and the vectors {r̃−j (0)}2mj=m+1 are

specified in a remark following the theorem statement.

(ii) Time derivatives:
∣

∣

∣
et(t; y)

∣

∣

∣
≤ C(1 + t)−1e−

y2

Mt

∣

∣

∣
eyt(t; y)

∣

∣

∣
≤ C(1 + t)−3/2e−

y2

Mt .

(II) For |x− y| ≤ Kt and t ≥ T1

∣

∣

∣
G̃(t, x; y)

∣

∣

∣
≤ Ct−1/2e−

(x−y)2

Mt

∣

∣

∣
G̃y(t, x; y)

∣

∣

∣
≤ Ct−1e−

(x−y)2

Mt

∣

∣

∣
G̃x(t, x; y)

∣

∣

∣
≤ C

[

t−1/2e−η|x| + t−1
]

e−
(x−y)2

Mt

∣

∣

∣
G̃xy(t, x; y)

∣

∣

∣
≤ C

[

t−1e−η|x|e−
y2

Mt + t−1e−η|x−y| + t−3/2e−
(x−y)2

Mt

]

.

(III) For |x− y| ≥ Kt or 0 < t < T2

∣

∣

∣
∂αG̃(t, x; y)

∣

∣

∣
≤ C

[

t−
1+|α|

4 e
− |x−y|4/3

Mt1/3 + e−η(|x|+t)e−
y2

Mt

]

where α is a standard multiindex in x and y with |α| ≤ 3. In all cases symmetric estimates
hold for y > 0.

Remark 2.1. Using the notation of (C1)-(C2) we can, up to a choice of scaling, specify the
values {β−

j }mj=1 and {r̃−m+j(0)}mj=1 by the relation

r̃−m+j(0)M−B− = β−
j r̃

−
m+j(0).

I.e., the β−
j are the (necessarily positive) eigenvalues of the asymptotic m×m matrix M−B−,

and the {r̃−m+j(0)}mj=1 are the associated left eigenvectors (which span R
m by (H4)). For

convenient reference we are adopting the notation of [11], where the r̃−m+j are functions of
λ, but fot he current discussion we only require the leading order. The values {cj}2mj=m+1 can
be specified as

cj = h−
(2m)j c̃

−
j (0),

where the {c̃−j }2mj=m+1 are described in Lemma 3.5 of [11], while the values {h−
(2m)j}2mj=m+1

are described in Lemma 3.9 Part (iv) of the same reference. Although we give these precise
specifications to be complete, our analysis only requires the existence of such constants.

The estimates on G̃ could be expressed in a more detailed form, similar to the expressions
for e(t; y), but our analysis won’t require that much precision, and we have chosen to omit
it. See [3, 8] for more precise statements in the scalar case.
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Using Theorem 2.1, the proof of Theorem 1.1 is straightforward, and we carry out details
only for one example case. For t ≥ T1, we verify

sup
y∈R

‖G̃(t, ·; y)‖Lp
x
≤ Ct−

1
2
(1− 1

p
).

Noting that we have different estimates on G̃ for |x− y| ≤ Kt and |x− y| > Kt, we write

‖G̃(t, ·; y)‖p
Lp
x
=

∫

|x−y|>Kt

|G̃(t, x; y)|pdx+

∫

|x−y|≤Kt

|G̃(t, x; y)|pdx

≤ C1

∫

|x−y|>Kt

[

t−
p
4 e

−
p|x−y|4/3

Mt1/3 + e−ηp(|x|+t)e−
py2

Mt

]

dx

+ C2

∫

|x−y|≤Kt

t−p/2e−
p(x−y)2

Mt dx.

For the first of these three terms, we observe that since |x− y| ≥ Kt we have

e
−

p|x−y|4/3

Mt1/3 = e
−

p|x−y|4/3

2Mt1/3 e
−

p|x−y|4/3

2Mt1/3 ≤ e
−

p|x−y|4/3

2Mt1/3 e−
pK4/3

2M
t.

In this way, we obtain exponential decay in t for both the first two terms. The claimed
estimate now follows by direct integration of the third term.

�

3 Preliminary Estimates

In order to motivate the estimates established in this section, we recall from (1.16) the
equation

v(t, x) =

∫ +∞

−∞

G̃(t, x; y)v0(y)dy −
∫ t

0

∫ +∞

−∞

G̃y(t− s, x; y)
[

δ̇(s)v(s, y) +Q(s, y)
]

dyds.

We will take Lp norms of this equation, and so our analysis will require Lp norms of expres-
sions such as

∫ +∞

−∞

G̃(t, x; y)f(y)dy,

where f is in some appropriate Lp space.
We begin with a useful straightforward lemma.

Lemma 3.1. Let p ∈ [1,∞] and suppose K(t, x; y) is any function so that for any pair
(t, x) ∈ R+ × R K(t, x; ·) ∈ L1 ∩ Lp and for any pair (t, y) ∈ R+ × R K(t, ·; y) ∈ L1 ∩ Lp.
Then given any function f ∈ L1 ∩ Lp, we have

∥

∥

∥

∫ +∞

−∞

K(t, x; y)f(y)dy
∥

∥

∥

Lp
≤ min

{

sup
y∈R

‖K‖Lp
x
‖f‖L1 , sup

y∈R
‖K‖

1
p

L1
x
sup
x∈R

‖K‖
1
q

L1
y
‖f‖Lp

}

,

where q is the Hölder conjugate q = p/(p− 1).
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Proof. For the first term in the minimum, we simply bring the Lp norm inside the integration
(the triangle inequality or Minkowski’s integral inequality; see [5]).

In order to establish the second inequality in the minimum we write
∥

∥

∥

∫ +∞

−∞

K(t, x; y)f(y)dy
∥

∥

∥

Lp
≤

∥

∥

∥

∫ +∞

−∞

|K(t, x; y)| 1p |f(y)||K(t, x; y)| 1q dy
∥

∥

∥

Lp

≤
∥

∥

∥

(

∫ +∞

−∞

|K(t, x; y)||f(y)|pdy
)

1
p
(

∫ +∞

−∞

|K(t, x; y)|dy
)

1
q
∥

∥

∥

Lp
,

where we have used Hölder’s inequality. We bring the L1 norm on K outside the Lp norm
by taking supremum over x, giving an estimate by

sup
x∈R

‖K‖
1
q

L1
y

(

∫ +∞

−∞

∫ +∞

−∞

|K||f |pdydx
)

1
p

≤ sup
x∈R

‖K‖
1
q

L1
y
sup
y∈R

‖K‖
1
p

L1
x
‖f‖Lp.

�

Theorem 3.1. Let e(t; y) and G̃(t, x; y) denote any functions satisfying the estimates of
Theorem 1.1, and suppose f ∈ L1 ∩ Lp for some p ∈ [1,∞]. Then there exists a constant
C > 0 so that the following estimates hold:

(I) For all t ≥ 0
∣

∣

∣

∫ +∞

−∞

et(t; y)f(y)dy
∣

∣

∣
≤ C(1 + t)−

1
2
− 1

2p‖f‖Lp

∣

∣

∣

∫ +∞

−∞

ety(t; y)f(y)dy
∣

∣

∣
≤ C(1 + t)−1− 1

2p‖f‖Lp.

(II) For t ≥ T1

∥

∥

∥

∫ +∞

−∞

G̃(t, x; y)f(y)dy
∥

∥

∥

Lp
≤ Cmin

{

t−
1
2
(1− 1

p
)‖f‖L1, ‖f‖Lp

}

∥

∥

∥

∫ +∞

−∞

G̃y(t, x; y)f(y)dy
∥

∥

∥

Lp
≤ Cmin

{

t−
1
2
− 1

2
(1− 1

p
)‖f‖L1, t−

1
2‖f‖Lp

}

∥

∥

∥

∫ +∞

−∞

G̃x(t, x; y)f(y)dy
∥

∥

∥

Lp
≤ Cmin

{

t−
1
2‖f‖L1, t−

1
2p ‖f‖Lp

}

∥

∥

∥

∫ +∞

−∞

G̃xy(t, x; y)f(y)dy
∥

∥

∥

Lp
≤ Cmin

{

t−1‖f‖L1, t−
1
2
− 1

2p ‖f‖Lp

}

(III) For t ≤ T2
∥

∥

∥

∫ +∞

−∞

∂αG̃(t, x; y)f(y)dy
∥

∥

∥

Lp
≤ Ct−

|α|
4 ‖f‖Lp,

where α denotes a standard multiindex in x and y, |α| ≤ 3.
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Comment on the proof. The proof of Theorem 3.1 is a straightforward combination
of the estimates of Theorem 1.1 and Lemma 3.1. We omit the details.

4 Short Time Theory

It will be useful to begin this section by defining the function we will ultimately show is
bounded. We set

ζ(t) := sup
0≤s≤t
1≤p≤∞

{

‖v(s, ·)‖Lp(1 + s)
1
2
(1− 1

p
) + ‖vx(s, ·)‖Lps1/4(1 + s)1/4 + |δ̇(s)|(1 + s)

}

. (4.1)

The following inequalities are an immediate consequence for all s ∈ [0, t]:

‖v(s, ·)‖Lp ≤ ζ(t)(1 + s)−
1
2
(1− 1

p
)

‖vx(s, ·)‖Lp ≤ ζ(t)s−1/4(1 + s)−1/4

|δ̇(s)| ≤ ζ(t)(1 + s)−1.

(4.2)

In developing our short-time theory, our primary concern is the term vxxx(t, x), which ap-
pears in the nonlinearity Q. In order to control this term, we first note that our perturbation
equation for v can be expressed as

vt = −M(ū + v)Γvxxxx −M ′(ū+ v)(ūx + vx)Γvxxx

+ (M(ū + v)(Ãv)x)x + δ̇(t)vx + δ̇(t)ūx,
(4.3)

where we have set

Ã(t, x) :=

∫ 1

0

Df(ū+ γv)dγ.

As verified in [11] and the more detailed reference [9], we can view (4.3) as a linear
equation in v. (Briefly, our point of view, following [9, 17], is that existence of a solution
v ∈ C

γ
4
,γ([0, T ]× R) is known—as established in [9]—and so expressions such as M(ū + v)

can be regarded as given coefficients for a linear problem.) Let Gv(t, x; τ, ξ) denote the
Green’s function associated with the homogeneous part of (4.3) (i.e., the equation with
δ̇(t)ūx omitted), so that

v(t, x) =

∫ +∞

−∞

Gv(t, x; 0, ξ)v0(ξ)dξ +

∫ t

0

∫ +∞

−∞

Gv(t, x; τ, ξ)δ̇(τ)ū′(ξ)dξds. (4.4)

We are closely following our references [4, 9] here, and for ease of comparison we adopt their
notation. Upon differentiating (4.4) three times with respect to x, we obtain

vxxx(t, x) =

∫ +∞

−∞

Gv
xxx(t, x; 0, ξ)v0(ξ)dξ +

∫ t

0

∫ +∞

−∞

Gv
xxx(t, x; τ, ξ)δ̇(τ)ū

′(ξ)dξds. (4.5)
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Fix any time T0 > 0 and consider times 0 < t ≤ T0. Following Friedman [4], we obtain
the estimate

∣

∣

∣
Gv

xxx(t, x; τ, ξ)
∣

∣

∣
≤ C(t− τ)−1e

− (x−ξ)4/3

M(t−τ)1/3 .

According to our definition of ζ(t), we see upon letting t → 0 and using δ̇(0) = 0 as well as
the monotonicity of ζ that

‖v(0, ·)‖Lp ≤ ζ(0) ≤ ζ(t). (4.6)

Accordingly, we can estimate vxxx(t, x) as follows:

‖vxxx(t, ·)‖Lp ≤ C1

∥

∥

∥

∫ +∞

−∞

t−1e
− (x−ξ)4/3

Mt1/3 |v0(ξ)|dξ
∥

∥

∥

Lp

+ C2

∫ t

0

∥

∥

∥

∫ +∞

−∞

(t− τ)−1e
−

(x−ξ)4/3

M(t−τ)1/3 |δ̇(τ)||ū′(ξ)|dξ
∥

∥

∥

Lp
dτ

≤ Cζ(t)t−3/4,

where we’ve used Lemma 3.1.
Since t is bounded, we can write this expression with more decay in t simply by increasing

the size of C. In particular, we are justified in writing

‖vxxx(t, ·)‖Lp ≤ C̃ζ(t)t−3/4(1 + t)1/4. (4.7)

Next, we need to verify (4.7) for t > T0. In this case we want to verify that for large time
vxxx inherits the increased decay rate of vx, and so our goal will be to bound vxxx in terms of
vx (rather than v, as in our bounded-time calculation). Formally differentiating (4.3) with
respect to x, and setting w = vx, we obtain

wt = −M(ū + v)Γwxxxx −M ′(ū+ v)xΓwxxx − (M ′(ūx + vx)Γwxx)x

+ (M(ū + v)(Ãv)x)xx + δ̇(t)wx + δ̇(t)ūxx.
(4.8)

Using now our short-time theory for v, we see that (4.8) can be solved in Friedman’s frame-
work with two source terms:

q(t, x)v(t, x) + δ̇(t)ūxx(x).

Here, q(t, x) has several terms, but we need only recognize that each of these is multiplied
by some derivative of ū(x), so that |q(t, x)| ≤ Ce−α|x|, uniformly in t.

Let Gw(t, x; τ, ξ) denote the Green’s function associated with the homogeneous part of
(4.8), so that for any fixed τ ≥ 0

w(t, x) =

∫ +∞

−∞

Gw(t, x; τ, ξ)w(τ, ξ)dξ

+

∫ t

τ

∫ +∞

−∞

Gw(t, x; s, ξ)
[

q(s, ξ)v(s, ξ) + δ̇(s)ūξξ(ξ)
]

dξds.

(4.9)
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Now, differentiating (4.9) twice with respect to x, and recalling w = vx, we find

vxxx(t, x) =

∫ +∞

−∞

Gw
xx(t, x; τ, ξ)vξ(τ, ξ)dξ

+

∫ t

τ

∫ +∞

−∞

Gw
xx(t, x; s, ξ)

[

q(s, ξ)v(s, ξ) + δ̇(s)ūξξ(ξ)
]

dξds

= I1 + I2.

(4.10)

In what follows, we fix the increment t− τ =: T as a sufficiently small value, but let τ (and
so t) grow. In particular, we take T < T0 so that for t > T0 we have t > T so that τ > 0.

We can write (from (4.10))

‖I1‖Lp ≤
∥

∥

∥

∫ +∞

−∞

|Gw
xx(t, x; τ, ξ)||vξ(τ, ξ)|dξ

∥

∥

∥

Lp
≤ C(t− τ)−1/2‖vξ(τ, ·)‖Lp

≤ Cζ(t)(t− τ)−1/2τ−1/4(1 + τ)−1/4.

Likewise,

‖I2‖Lp ≤ C

∫ t

τ

(t− τ)−1/2
(

‖q‖Lp‖v‖L∞ + |δ̇(s)|‖ū′′‖Lp

)

ds

≤ C̃ζ(t)

∫ t

τ

(t− τ)−1/2
(

‖q‖Lp(1 + s)−1/2 + (1 + s)−1‖ū′′‖Lp

)

ds

≤ ˜̃Cζ(t)(t− τ)1/2(1 + τ)−1/2.

Combining this observation with the case 0 < t < T0, we see that (4.7) holds for all t > 0.
Finally, since t = τ + T , with T small, we can find a (new) constant C so that

‖vxxx(t, ·)‖Lp ≤ Cζ(t)t−3/4(1 + t)1/4. (4.11)

5 Proof of Theorem 1.2

We begin our proof of Theorem 1.2 by estimating the nonlinearity

N (s, y) := δ̇(s)v(s, y) +Q(s, y) (5.1)

in terms of ζ . We have (combining (1.10), (4.1), and (4.11))

‖N (s, ·)‖Lp ≤ |δ̇(s)|‖v(s, ·)‖Lp + C
[

‖|v||vx|‖Lp + ‖e−α|·||v|2‖Lp + ‖|v||vxxx|‖Lp

]

≤ |δ̇(s)|‖v(s, ·)‖Lp + C
[

‖v‖L∞‖vx‖Lp + ‖v‖2L∞‖e−α|·|‖Lp + ‖v‖L∞‖vxxx‖Lp

]

≤ Cζ(t)2s−3/4(1 + s)−1/4.
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Lemma 5.1. Under the assumptions of Theorem 1.2, and for ζ(t) as defined in (4.1), we
have

‖v(t, ·)‖Lp ≤ C(ǫ+ ζ(t)2)(1 + t)−
1
2
(1− 1

p
)

‖vx(t, ·)‖Lp ≤ C(ǫ+ ζ(t)2)t−1/4(1 + t)−1/4

|δ̇(t)| ≤ C(ǫ+ ζ(t)2)(1 + t)−1.

Proof. For this calculation it will be convenient to take (referring to the statement of
Theorem 1.1) T2 = 1.

For t ≤ 1, we have

‖v(t, ·)‖Lp ≤
∥

∥

∥

∫ +∞

−∞

G̃(t, x; y)v0(y)dy
∥

∥

∥

Lp
+

∫ t

0

∥

∥

∥

∫ +∞

−∞

G̃y(t− s, x; y)N (s, y)dy
∥

∥

∥

Lp
ds

≤ C1‖v0‖Lp + C2ζ(t)
2

∫ t

0

(t− s)−1/4‖N (s, ·)‖Lpds

≤ C1ǫ+ C̃2ζ(t)
2

∫ t

0

(t− s)−1/4s−3/4(1 + s)−1/4ds

≤ C(ǫ+ ζ(t)2).

Here, since t is bounded, we can (by taking a larger constant C) express this inequality as

‖v(t, ·)‖Lp ≤ C(ǫ+ ζ(t)2)(1 + t)−
1
2
(1− 1

p
).

Proceeding similarly for ‖vx(t, ·)‖Lp we find

‖vx(t, ·)‖Lp ≤ C(ǫ+ ζ(t)2)t−1/4,

and again since t is bounded we can express this with increased decay in t

‖vx(t, ·)‖Lp ≤ C(ǫ+ ζ(t)2)t−1/4(1 + t)−1/4.

Likewise, we easily verify that
|δ̇(t)| ≤ C(ǫ+ ζ(t)2),

and for bounded time we can express this as

|δ̇(t)| ≤ C(ǫ+ ζ(t)2)(1 + t)−1.

For t > 1, we estimate ‖v(t, ·)‖Lp as

‖v(t, ·)‖Lp ≤
∥

∥

∥

∫ +∞

−∞

G̃(t, x; y)v0(y)dy
∥

∥

∥

Lp

+

∫ t−1

0

∥

∥

∥

∫ +∞

−∞

G̃y(t− s, x; y)N (s, y)dy
∥

∥

∥

Lp
ds

+

∫ t

t−1

∥

∥

∥

∫ +∞

−∞

G̃y(t− s, x; y)N (s, y)dy
∥

∥

∥

Lp
ds.

(5.2)
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Using Theorem 3.1, we estimate the integrals on the right hand side respectively by

C1t
− 1

2
(1− 1

p
)‖v0‖L1 + C2ζ(t)

2

∫ t−1

0

(t− s)−
1
2
− 1

2
(1− 1

p
)s−3/4(1 + s)−1/4ds

+ C3ζ(t)
2

∫ t

t−1

(t− s)−1/4s−3/4(1 + s)−1/4ds

≤ C(ǫ+ ζ(t)2)t−
1
2
(1− 1

p
).

Since t ≥ 1 in this case, this is equivalent with the claimed estimate.
Likewise,

‖vx(t, ·)‖Lp ≤
∥

∥

∥

∫ +∞

−∞

G̃x(t, x; y)v0(y)dy
∥

∥

∥

Lp

+

∫ t−1

0

∥

∥

∥

∫ +∞

−∞

G̃xy(t− s, x; y)N (s, y)dy
∥

∥

∥

Lp
ds

+

∫ t

t−1

∥

∥

∥

∫ +∞

−∞

G̃xy(t− s, x; y)N (s, y)dy
∥

∥

∥

Lp
ds.

(5.3)

Using Theorem 3.1, we estimate the integrals on the right hand side respectively by

C1t
− 1

2‖v0‖L1 + C2ζ(t)
2

∫ t−1

0

(t− s)−1s−3/4(1 + s)−1/4ds

+ C3ζ(t)
2

∫ t

t−1

(t− s)−1/2s−3/4(1 + s)−1/4ds

≤ C(ǫ+ ζ(t)2)t−
1
2 .

Since t ≥ 1 in this case, this is equivalent with the claimed estimate.
Finally,

|δ̇(t)| ≤
∣

∣

∣

∫ +∞

−∞

et(t; y)v0(y)dy
∣

∣

∣

+

∫ t

0

∣

∣

∣

∫ +∞

−∞

ety(t− s; y)N (s, y)dy
∣

∣

∣
ds

≤ C1(1 + t)−1‖v0‖L1 + C2ζ(t)
2

∫ t

0

(1 + (t− s))−3/2s−3/4(1 + s)−1/4ds

≤ C(ǫ+ ζ(t)2)(1 + t)−1.

�

It’s clear from Lemma 5.1 that

‖v(t, ·)‖Lp(1 + t)
1
2
(1− 1

p
) + ‖vx(t, ·)‖Lpt1/4(1 + t)1/4 + |δ̇(t)|(1 + t) ≤ 3C(ǫ+ ζ(t)2), (5.4)
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for all t > 0 such that the right-hand side is bounded. If we express this inequality with s
replacing t and taking a supremum over both sides for s ∈ [0, t], then by monotonicity of the
right-hand side we conclude

ζ(t) ≤ 3C(ǫ+ ζ(t)2).

As verified in [8] (see Claim 4.1 on p. 799), we can conclude from this last inequality that

ζ(t) < 6Cǫ,

for all t ≥ 0. The estimates claimed in Theorem 1.2 are an immediate consequence of this
last inequality. The existence follows by combining this estimate with the short-time theory
of [9]. More precisely, by a standard continuation argument, we can verify that v(t, x) exists
so long as ‖v(t, ·)‖Cγ remains bounded. But our bound

‖vx(t, ·)‖Lp ≤ 6Cǫt−1/4(1 + t)−1/4

ensures (by Sobolev embedding) that v(t, ·) ∈ Cγ(R) for any 0 < γ < 1 and any t > 0. (The
fact that v(t, ·) ∈ Cγ(R) for 0 ≤ t ≤ T0, with T0 sufficiently small is established in [9] by a
direct contraction mapping argument.)

�
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