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Abstract

One of the obstacles that arises in the generalization of Sturm’s oscillation theo-
rem to the case of general linear Hamiltonian systems is the need to associate a sign
with each crossing point, necessitating a signed count rather than a direct count of such
points. It’s known, however, that this di�culty does not arise for all system/boundary-
condition combinations, and so it can be overcome in some cases by exchanging one
boundary condition for another while also keeping track of any ancillary counts that ac-
company the exchange. The primary tool for making such an exchange is Hörmander’s
index, and in this analysis we develop a straightforward method for computing Hörmander’s
index, and employ our method to formulate oscillation-type theorems for linear Hamil-
tonian systems on both bounded and unbounded intervals.

1 Introduction

The notion of oscillation theory dates back to about 1836, when the French mathematician
Jacques Sturm published a striking result asserting that for Sturm-Liouville equations (as
they are now called) under certain conditions, the number of eigenvalues below a given
eigenvalue � can be counted as the number of roots for the eigenfunction �(x;�) associated
to � [42]. A natural generalization of Sturm’s Oscillation Theorem to systems was carried
out by H. C. Marston Morse in 1934 [36], and we set the context for the current analysis by
briefly discussing a consequence of Morse’s Index Theorem. For a Sturm-Liouville system
with Dirichlet boundary conditions,

�(P (x)�0)0 + V (x)� = �Q(x)�; x 2 (0, 1), �(x;�) 2 Cn
,

�(0) = 0, �(1) = 0,
(1.1)

suppose P
�1
, V,Q 2 L

1((0, 1),Cn⇥n), with P (x), V (x), Q(x) self-adjoint for a.e. x 2 (0, 1),
and that there exist constants ✓P , ✓Q, CV > 0 so that

(P (x)v, v) � ✓P |v|
2; (Q(x)v, v) � ✓Q|v|

2
, |(V (x)v, v)|  CV |v|

2
,

for a.e. x 2 (0, 1) (for every v 2 Cn). (Here and throughout, our restriction to (0, 1) is taken
for notational convenience and serves to indicate generic bounded intervals.) For some fixed
� 2 R, let X(x;�) denote an n⇥ n matrix solution of (1.1), initialized with X(0;�) = 0 and
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P (0)X 0(0;�) = I. Then one consequence of the Morse Index Theorem is that the number
of eigenvalues that (1.1) has below �—for which we will use the notation N ((�1,�))—can
be computed as the sum

N ((�1,�)) =
X

x2(0,1)

dimkerX(x;�). (1.2)

(As is clear from the title of Morse’s original work, the Morse Index Theorem was developed
in a variational framework, and is typically stated in that context. The statement given here
simply fits better with our development.)

Expressed this way, the Morse Index Theorem is a natural generalization of the Sturm
Oscillation Theorem. However, if we try to express a Morse-type theorem for general equa-
tions and/or more general self-adjoint boundary conditions (not just Dirichlet), we find,
among other complications, that the right-hand side of (1.2) must generally be replaced
with a signed count of the dimensions of certain kernels. Early work along these lines with
a specific emphasis on generalizing Sturm’s theorems was carried out by Edwards [15] and
Arnol’d [2], and more generally the literature in this direction has become quite vast (see,
for example, [6, 8, 9, 11, 13, 24, 26, 34, 40] and the references therein). While the current
analysis is closely related to such work, the emphasis here is limited to developing a frame-
work that allows us to readily compute counts such as N ((�1,�)) via unsigned sums of
the dimensions of certain kernels. In particular, the primary application we have in mind
is to the study of spectral stability of stationary and traveling waves arising as solutions to
certain nonlinear PDE (see particularly Theorems 1.3 and 1.4), and in such cases the count
we are interested in is N ((�1, 0)) (with a sign convention placing unstable spectrum in the
negative half-plane).

In order to place Sturm-Liouville systems in the context of linear Hamiltonian systems,
we can set y =

�
y1
y2

�
, with y1(x) = �(x) and y2(x) = P (x)�0(x), and express (1.1) as a linear

Hamiltonian system

Jy
0 = B(x;�)y; J =

✓
0 �I

I 0

◆
; B(x;�) =

✓
�Q(x)� V (x) 0

0 P (x)�1

◆
. (1.3)

More generally, the setting for the current analysis will be as follows: for values � in some
open interval I ⇢ R we consider general linear Hamiltonian systems

Jy
0 = B(x;�)y; x 2 (0, 1), y(x;�) 2 C2n

, (1.4)

where throughout most of the analysis we will make the following assumptions on B(x;�):
(A) We assume B(·;�) 2 L

1((0, 1),C2n⇥2n), with B(x;�) self-adjoint for a.e. x 2 (0, 1),
and additionally that B is di↵erentiable in �, with B�(·;�) 2 L

1((0, 1),C2n⇥2n) for each � 2 I.

In the case of separated self-adjoint boundary conditions, we can write

↵y(0) = 0; �y(1) = 0, (1.5)

where the boundary operator matrices ↵ and � satisfy

↵ 2 Cn⇥2n
, rank↵ = n, ↵J↵

⇤ = 0; � 2 Cn⇥2n
, rank � = n, �J�

⇤ = 0. (1.6)
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Throughout the remainder of the analysis, whenever we refer to (1.5), we assume the speci-
fications (1.6) hold.

We will say that � 2 I is an eigenvalue of (1.4)-(1.5) if there exists an absolutely contin-
uous function y 2 AC([0, 1],C2n)\{0} that satisfies (1.4)-(1.5) (here, AC(·) denotes absolute
continuity). In the usual way, we will refer to the dimension of the space of all such solutions
to (1.4)-(1.5) as the geometric multiplicity of �.

Our primary tool for this analysis will be the Maslov index, and as a starting point for
a discussion of this object, we define what we will mean by a Lagrangian subspace of C2n.

Definition 1.1. We say ` ⇢ C2n is a Lagrangian subspace of C2n if ` has dimension n and

(Ju, v)C2n = 0, (1.7)

for all u, v 2 `. Here, (·, ·)C2n denotes the standard inner product on C2n. In addition, we
denote by ⇤(n) the collection of all Lagrangian subspaces of C2n, and we will refer to this as
the Lagrangian Grassmannian.

Any Lagrangian subspace of C2n can be spanned by a choice of n linearly independent
vectors in C2n. We will generally find it convenient to collect these n vectors as the columns
of a 2n ⇥ n matrix X, which we will refer to as a frame for `. Moreover, we will often
coordinatize our frames as X =

�
X
Y

�
, where X and Y are n⇥ n matrices. Following [16] (p.

274), we specify a metric on ⇤(n) in terms of appropriate orthogonal projections. Precisely,
let Pi denote the orthogonal projection matrix onto `i 2 ⇤(n) for i = 1, 2. I.e., if Xi denotes
a frame for `i, then Pi = Xi(X⇤

iXi)�1X⇤
i . We take our metric d on ⇤(n) to be defined by

d(`1, `2) := kP1 � P2k,

where k · k can denote any matrix norm. We will say that a path of Lagrangian subspaces
` : I ! ⇤(n) is continuous provided it is continuous under the metric d.

Suppose `1(·), `2(·) denote continuous paths of Lagrangian subspaces `i : I ! ⇤(n),
i = 1, 2, for some parameter interval I. The Maslov index associated with these paths,
which we will denote Mas(`1, `2; I), is a count of the number of times the paths `1(·) and
`2(·) intersect, counted with both multiplicity and direction. (In this setting, if we let t⇤
denote the point of intersection (often referred to as a crossing or crossing point; see, e.g.,
Definition 3.20 in [16]), then multiplicity corresponds with the dimension of the intersection
`1(t⇤)\ `2(t⇤); a precise definition of what we mean in this context by direction will be given
in Section 2.)

In order to formulate a standard spectral-counting theorem via the Maslov index, we let
X0(x;�) denote a 2n⇥ n matrix solving

JX0
0 = B(x;�)X0

X0(0;�) = J↵
⇤
.

(1.8)

Under our assumptions (A) on B(x;�), we can conclude that for each � 2 I, X0(·;�) 2

AC([0, 1];C2n⇥n). In addition, X0 2 C([0, 1] ⇥ I;C2n⇥n), and X0(x;�) is di↵erentiable in
�, with @�X0 2 C([0, 1] ⇥ I;C2n⇥n). (See, for example, [43].) As shown in [21], for each
pair (x,�) 2 [0, 1] ⇥ I, X0(x;�) is the frame for a Lagrangian subspace, which we will
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denote `0(x;�). (In [21], the authors make slightly stronger assumptions on B(x;�), but
their proof carries over immediately into our setting.) In addition to `0(x;�), we specify a
fixed Lagrangian subspace `1 with frame X1 = J�

⇤.
The following positivity assumption will be have an important role in our analysis.

(B1) For any � 2 I and any x 2 (0, 1], the matrix

Z x

0

X0(⇠;�)
⇤B�(⇠;�)X0(⇠;�)d⇠ (1.9)

is positive definite. The assumption that (B1) holds for x = 1 (but not necessarily for other
values of x) will be denoted (B1)1.

Suppose � 2 I is an eigenvalue of (1.4)-(1.5), and denote by E(�) the linear subspace of
solutions of (1.4)-(1.5) corresponding to �. Given any two values �1,�2 2 I, with �1 < �2,
it is shown in [21] that under positivity assumption (B1)1 the spectral count

N ([�1,�2)) :=
X

�2[�1,�2)

dimE(�), (1.10)

is well-defined, and in our notation is precisely Mas(`0(1; ·), `1; [�1,�2)). It’s clear that
N ([�1,�2)) is a count of the eigenvalues of (1.4)-(1.5) on [�1,�2), counted with geomet-
ric multiplicity. In order to understand the nature of essential spectrum in this setting, and
also the notion of algebraic multiplicity, it’s useful to frame our discussion in terms of the
operator pencil

L(�) = J
d

dx
� B(x;�),

specified on the domain (independent of �)

D := {y 2 L
2((0, 1),C2n) : y 2 AC([0, 1],C2n),

Ly 2 L
2((0, 1),C2n), ↵y(0) = 0, �y(1) = 0}.

Using the methods of [43], we can readily verify that for each � 2 I, L(�) is Fredholm and self-
adjoint on D, from which we can conclude that L has no essential spectrum on I. Moreover,
under slightly stronger assumptions on B (in particular, B(·;�) 2 L

2((0, 1),C2n⇥2n) for all
� 2 I), we can verify that L has no Jordan chains of length greater than one, implying that
the algebraic and geometric multiplicities of its eigenvalues agree. (See the appendix of [25]
for further discussion, and also Section 1.2 of [24], in which the authors consider the same
operator pencil under slightly stronger assumptions on B(x;�).)

In [21], the authors establish the following theorem.

Theorem 1.1. For equation (1.4) with boundary conditions (1.5), let Assumptions (A) and
(B1)1 hold. Then for any �1,�2 2 I, �1 < �2, we have

N ([�1,�2)) = �Mas(`0(·;�2), `1; [0, 1]) + Mas(`0(·;�1), `1; [0, 1]).

Remark 1.1. In Corollary 1.7 of [24], the authors formulate a stronger version of Theorem
1.1, in which the spectral count N ([�1,�2)) is replaced by the spectral flow for the operator
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pencil L(�) on the interval [�1,�2]—i.e., a count of the number of eigenvalues of L(�) that
cross zero in the positive direction as � increases from �1 to �2 minus the number of eigen-
values of L(�) that cross zero in the negative direction as � increases from �1 to �2 (see
Definition 2.4 in [24] for a precise definition). An advantage of the spectral-flow formula-
tion is that it does not require our positivity assumption (B1)1, and indeed in the case of
overlapping assumptions on B(x;�), our Theorem 1.1 results as a special case of Corollary
1.7 of [24] when positivity is assumed.

The Maslov indices in Theorem 1.1 are signed counts of intersections between the paths
`0(·,�i) (i = 1, 2) and the target space `1. For certain targets, however (depending on the
structure of B(x;�)), the intersections will all have the same direction, and in such cases
we again have a direct count of intersections as in (1.2). Hörmander’s index provides a way
to replace the target frame `1 with a frame for which the Maslov index gives a monotonic
count.

In order to clarify the manner in which this monotonicity can be determined, we recall
from [25] a straightforward method for determining the direction of a crossing (e↵ectively,
a convenient method for evaluating the crossing form of [38] in our general framework). If
� is fixed, and x⇤ is a crossing point, it means `0(x⇤;�) \ `1 6= {0}. Let P (x⇤) denote an
orthogonal projection onto this intersection space. Then the direction of the crossing as
x increases through x⇤ is determined by the matrix �P (x⇤)B(x⇤;�)P (x⇤) in the following
sense: if dim(`0(x⇤;�) \ `1) = m, then �P (x⇤)B(x⇤;�)P (x⇤) can have up to m non-zero
eigenvalues. Suppose all m of these eigenvalues are non-zero (we say the crossing point x⇤

is non-degenerate in this case), and let m+ denote the number that are positive and let m�
denote the number that are negative. Then the Maslov index increments by an amount
m+ � m� as x increases through x⇤. (We note that the matrix �P (x⇤)B(x⇤;�)P (x⇤) is
e↵ectively the same object as the matrix �(t) specified in Corollary 3.1 of [34]).

As an important motivating case, for the Sturm-Liouville system (1.3), suppose the
boundary conditions are general separated self-adjoint at x = 0 (i.e., ↵y(0) = 0, with ↵

satisfying (1.6)) and Dirichlet at x = 1 (i.e., � = (I 0)). In this case, the target Lagrangian
subspace `1 is `1 = `D = colspan

�
0
I

�
. If x⇤ 2 [0, 1] is a crossing point and P (x⇤;�) denotes

projection onto the space `0(x⇤;�)\ `D, then we must have ranP (x⇤;�) ⇢ `D. The eigenval-
ues of �P (x⇤;�)B(x⇤;�)P (x⇤;�) are determined precisely by the restriction of the quadratic
form

Q(v) = �(B(x⇤;�)v, v) (1.11)

to v 2 `0(x⇤;�) \ `1 ⇢ `D. We see that any v 2 `0(x⇤;�) \ `D can be expressed as v =
�
0
v2

�

for some v2 2 Cn, and consequently, for any v 2 (`0(x⇤;�) \ `1)\{0}, we have

Q(v) = �(B(x⇤;�)v, v) = �

⇣✓ 0

P (x⇤)�1v2

◆
,

✓
0

v2

◆⌘

C2n

= �(P (x⇤)
�1
v2, v2)Cn < 0,

where the final inequality follows from our assumption that P (x) is positive definite for
all x 2 [0, 1]. We can conclude that in this case each crossing is negatively directed, and
indeed it is well known that for Sturm-Liouville systems with Dirichlet boundary conditions
all crossings are negatively directed (see, e.g., [2, 6, 15]). More generally, it’s clear that
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if B(x;�) is the self-adjoint matrix function associated with a general linear Hamiltonian
system, and the boundary condition at x = 1 is characterized by a Lagrangian subspace
`1, then the direction of crossings will be monotonic so long as the quadratic form (1.11),
restricted to `1, is either positive definite or negative definite.

We contrast this situation with the case in which the target space is the Neumann space
`N = colspan

�
0
I

�
. Proceeding as above we see that any v 2 `0(x⇤;�) \ `N can be expressed

as v =
�
v1
0

�
for some v1 2 Cn, and consequently, for any v 2 (`0(x⇤;�) \ `N)\{0}, we have

Q(v) = �((�Q(x⇤)� V (x⇤))v1, v1).

For su�ciently negative values of �, the restriction of Q to `0(x⇤;�) \ `N will be positive
definite, but otherwise it will not generally be either positive definite or negative definite.

Before generalizing these considerations, we state another Atkinson-type positivity con-
dition:

(B2) We assume that for some � 2 I and some `1 2 ⇤(n), the restriction B(x;�)|`1 is
non-negative for a.e. x 2 (0, 1), and moreover that if y(x;�) is any non-trivial solution of
Jy

0 = B(x;�)y with y(x;�) 2 `1 for all x in some interval [a, b] ⇢ [0, 1], a < b, then we have

Z b

a

(B(x;�)y(x;�), y(x;�))dx > 0.

We note that Condition (B2) can be satisfied in the vacuous case that there are no such
non-trivial functions y(x;�).

In Section 2, we will prove the following lemma.

Lemma 1.1. Let Assumptions (A) and (B1) hold, and suppose (B2) holds for some � 2 I

and some `1 2 ⇤(n). If X0(x;�) solves (1.8), then

Mas(`0(·;�), `1; [0, 1]) = �

X

x2[0,1)

dim(`0(x;�) \ `1)

= �

X

x2[0,1)

dimker(X0(x;�)
⇤
JX1).

Remark 1.2. Our statement of Lemma 1.1 utilizes Lemma 2.2 from [25], which asserts that
if X0 and X1 respectively denote frames for Lagrangian subspaces of C2n, `0 and `1, then

dim(`0 \ `1) = dimker(X⇤
0JX1).

In the event that the quadratic form Q is indefinite, we can sometimes use Hörmander’s
index to exchange `1 for a target frame for which Q is negative definite. The development
of a systematic approach to making such exchanges is precisely the goal of this analysis.

To understand how this works in principle, we fix any four Lagrangian subspaces ⌫, �,
⌫̃, and �̃, and we let P(⌫, �) denote the collection of continuous paths ` : [0, 1] ! ⇤(n) such
that `(0) = ⌫ and `(1) = �. It’s well known (and will also be verified in Section 3) that the
di↵erence

Mas(`(·), �̃; [0, 1])�Mas(`(·), ⌫̃; [0, 1]),
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is independent of ` 2 P(⌫, �), and so this di↵erence is an integer depending only on the fixed
Lagrangian subspaces ⌫, �, ⌫̃, and �̃. Following standard terminology and notation (e.g.,
Equation (2.9) in [14] and Definition 3.9 in [44]), we refer to this value as Hörmander’s index
and express it as

s(⌫̃, �̃; ⌫, �) = Mas(`(·), �̃; [0, 1])�Mas(`(·), ⌫̃; [0, 1]). (1.12)

(In addition to [14, 44], the reader is referred to the recent article [6], in which the authors
obtain a number of useful estimates on Hörmander’s index.) In Section 3, we will discuss a
straightforward method for evaluating Hörmander’s index, and we will compare our approach
to a well-known formula of Hörmander’s.

Remark 1.3. Our use of Greek letters to denote Lagrangian subspaces is somewhat stan-
dard in this context, following e.g., [14, 44]. In practice, we’re introducing this convention
to distinguish general formulas, which will be stated with Greek letters denoting Lagrangian
subspaces, with particular implementations, for which specific Lagrangian subspaces will typ-
ically be designated with `. The most commonly used Greek letters for Lagrangian subspaces
seem to be � and µ, but for the current analysis, we prefer to reserve these to denote spectral
parameters.

In the setting of Theorem 1.1, let ˜̀
1 denote any fixed Lagrangian subspace ˜̀

1 2 ⇤(n).
Then

Mas(`0(·;�2), `1; [0, 1]) = Mas(`0(·;�2), ˜̀1; [0, 1]) + s(˜̀1, `1; `0(0;�2), `0(1;�2)).

If we use Lemma 1.1, this allows us to formulate the following theorem.

Theorem 1.2. For equation (1.4)-(1.5), let Assumptions (A) and (B1) hold, and suppose
that additionally (B2) holds for some � 2 I and some ˜̀

1 2 ⇤(n). Then

Mas(`0(·;�), `1; [0, 1]) = �

X

x2[0,1)

dimker(X0(x;�)
⇤
JX̃1) + s(˜̀1, `1; `0(0;�), `0(1;�)).

Theorem 1.2 is clearly in the spirit of (1.2), and more generally of the equality (A) = (B)
in Theorem 3.1 of [15], though the emphasis in Theorem 1.2 is on the exchange of targets
that allows the right-hand side to be expressed as an unsigned sum of nullities similarly as
in (1.2).

Our approach also allows us to formulate theorems addressing linear Hamiltonian systems
on unbounded domains, and we illustrate the idea with an application to Schrödinger opera-
tors in this setting. Our primary reference for this case is [23], and following the development
provided there, we consider eigenvalue problems

H� := ��
00 + V (x)� = ��; dom(H) = H

2(R), (1.13)

and also (for any s 2 R)

Hs� := ��
00 + s�

0 + V (x)� = ��; dom(Hs) = H
2(R), (1.14)
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where � 2 R, �(x) 2 Rn and V 2 C(R;Rn⇥n) is a real-valued symmetric matrix potential
satisfying the following asymptotic condition:

(S) The limits limx!±1 V (x) = V± exist, and for each M 2 R,
Z 1

�M

(1 + |x|)|V (x)� V+|dx < 1;

Z M

�1
(1 + |x|)|V (x)� V�|dx < 1.

Let min denote the minimum among all eigenvalues of the matrices V±. In [23], the
authors verify that under our assumptions on V (x), and for � < min, (1.13) has n linearly
independent solutions that decay to zero as x ! �1 and n linearly independent solutions
that decay to zero as x ! +1. In order to remain consistent with the indexing of [23], we
denote the former {�

�
n+j(x;�)}

n
j=1 and the latter {�

+
j (x;�)}

n
j=1. In [23], the authors verify

that if we create a frame X�(x;�) =
�
X�(x;�)
Y �(x;�)

�
by taking {�

�
n+j(x;�)}

n
j=1 as the columns

of X
�(x;�) and {@x�

�
n+j(x;�)}

n
j=1 as the respective columns of Y

�(x;�) then X�(x;�)
is a frame for a Lagrangian subspace, which we will denote `

�(x;�). Likewise, we can

create a frame X+(x;�) =
�
X+(x;�)
Y +(x;�)

�
by taking {�

+
j (x;�)}

n
j=1 as the columns of X+(x;�)

and {@x�
+
j (x;�)}

n
j=1 as the respective columns of Y +(x;�). Then X+(x;�) is a frame for a

Lagrangian subspace, which we will denote `
+(x;�).

We will show in Section 5.3 that the methods developed here can be used to prove the
following theorems addressing the Morse index for the operators H and Hs respectively.

Theorem 1.3. Let V 2 C(R;Rn⇥n) be a real-valued symmetric matrix potential, and suppose
(S) holds. Then for any � < min,

Mor(H;�) =
X

x2R

dimkerX�(x;�),

and likewise
Mor(H;�) =

X

x2R

dimkerX+(x;�).

Here, Mor(H;�) denotes the number of eigenvalues that H has strictly below �, counted
with geometric multiplicity. For the final theorem, we let X�

s (x;�) and X+
s (x;�) be similar

to X±(x;�) above, except specified in terms of asymptotically decaying solutions to (1.14)
(see [23] for details).

Theorem 1.4. Let V 2 C(R;Rn⇥n) be a real-valued symmetric matrix potential, and suppose
(S) holds. Then for any � < min,

Mor(Hs;�) =
X

x2R

dimkerX�
s (x;�),

and likewise
Mor(Hs;�) =

X

x2R

dimkerX+
s (x;�).
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The precise results we take from [23] are stated as Theorems 5.1 and 5.2 in Section 5.3. In
both cases, the Maslov index is computed as the intersection number of a path of Lagrangian
subspaces with a fixed target, and Theorems 1.3 and 1.4 follow upon using Theorem 1.2 to
replace the original target with the Dirichlet subspace. We emphasize at this point that the
primary goal of the current analysis is to provide a general framework for readily making
such a change of targets, and that the applications we have in mind are to the development of
results such as Theorems 1.3 and 1.4 for a fairly general class of linear Hamiltonian systems.
Results along these lines have been used to study the spectral stability of nonlinear waves
arising in certain evolutionary PDE (see, e.g., [3, 4, 8, 29, 30, 31]), and the current approach
extends the range of equations that can be analyzed in this way. We note particularly that
the inclusion of s in (1.14) (making Hs non-self-adjoint) allows us to handle traveling waves
in this setting.

Alternative approaches to those taken in Theorems 5.1 and 5.2 have been based on
computing Maslov indices for appropriate pairs of evolving Lagrangian subspaces (i.e., with
no fixed target). In [24], the authors evolve one path of Lagrangian subspaces forward from
�1 and another backward from +1, and the associated spectral flow is captured where
the two meet at x = 0 (see Theorem 1 in [24], which is formulated for a much more general
class of linear Hamiltonian systems than those arising from Schrödinger systems, and stated
in terms of the spectral flow of the operator pencil L(�), rather than our Mor(H;�)). In
[18, 19, 28], the authors use renormalized oscillation theory, in which the Maslov index is
computed for a pair of Lagrangian paths, with one specified at some value �1 and the other
specified at �2 > �1, leading to a count of the number of eigenvalues the operator has on
(�1,�2). This latter method has the advantage of providing a naturally monotonic flow
as x increases from �1 to +1 and being applicable in a wider range of cases than the
approaches of [23, 24] (perhaps most notably, in the renormalized oscillation setting, there’s
no requirement on the existence of asymptotic endstates).

The remainder of the paper is organized as follows. In Section 2, we provide some
background on the Maslov index, along with results that will be needed in the sequel, and
in Section 3, we describe our approach to evaluating Hörmander’s index. In Section 4, we
compare our approach to computing Hörmander’s index with analogous computations using
Hörmander’s formula, and in Section 5, we implement our framework in a variety of contexts,
including the proofs of Theorems 1.3 and 1.4.

2 The Maslov Index on C2n

Approaches to computing the Maslov index for pairs of Lagrangian subspaces have been
developed, for example, in [10, 22, 34]. Our approach is taken from [25], which adapts
the development of [22] from the setting of Lagrangian subspaces of R2n to the setting of
Lagrangian subspaces of C2n.
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2.1 Informal Definition of the Maslov Index

Given any pair of Lagrangian subspaces `1 and `2 with respective frames X1 =
�
X1

Y1

�
and

X2 =
�
X2

Y2

�
, we consider the matrix

W̃ := �(X1 + iY1)(X1 � iY1)
�1(X2 � iY2)(X2 + iY2)

�1
. (2.1)

In [25], the authors establish: (1) the inverses appearing in (2.1) exist; (2) W̃ is independent
of the particular choice of frames X1 and X2, so long as these are indeed frames for `1 and
`2; (3) W̃ is unitary; and (4) the identity

dim(`1 \ `2) = dim(ker(W̃ + I)). (2.2)

As context for (2.1), we note that in the case that X1 =
�
0
I

�
and X2 =

�
I
S

�
, with S an n⇥ n

self-adjoint matrix, W̃ reduces to precisely the unitary matrix (I � iS)(I + iS)�1 specified
in equation (7) of [1]. The matrix (2.1) allows us to readily detect intersections between
arbitrary pairs of Lagrangian subspaces. We also mention that up to sign conventions, W̃ is
the same matrix as the matrix V

⇤
U specified in Proposition 2 of [40].

Given two continuous paths of Lagrangian subspaces `i : [0, 1] ! ⇤(n), i = 1, 2, with
respective frames Xi : [0, 1] ! C2n⇥n, relation (2.2) allows us to compute the Maslov index
Mas(`1, `2; [0, 1]) as a spectral flow through �1 for the path of matrices

W̃ (t) := �(X1(t) + iY1(t))(X1(t)� iY1(t))
�1(X2(t)� iY2(t))(X2(t) + iY2(t))

�1
. (2.3)

In [25], the authors provide a rigorous definition of the Maslov index based on the spectral
flow developed in [37]. Here, rather, we give only an intuitive discussion. As a starting
point, if �1 2 �(W̃ (t⇤)) for some t⇤ 2 [0, 1], then t⇤ is a crossing point, and its multiplicity
is taken to be dim(`1(t⇤) \ `2(t⇤)), which by virtue of (2.2) is equivalent to its multiplicity
as an eigenvalue of W̃ (t⇤). We compute the Maslov index Mas(`1, `2; [0, 1]) by allowing t to
increase from 0 to 1 and incrementing the index whenever an eigenvalue crosses �1 in the
counterclockwise direction, while decrementing the index whenever an eigenvalue crosses �1
in the clockwise direction. These increments/decrements are counted with multiplicity, so
for example, if a pair of eigenvalues crosses �1 together in the counterclockwise direction,
then a net amount of +2 is added to the index. Regarding behavior at the endpoints, if an
eigenvalue of W̃ rotates away from �1 in the clockwise direction as t increases from 0, then
the Maslov index decrements (according to multiplicity), while if an eigenvalue of W̃ rotates
away from �1 in the counterclockwise direction as t increases from 0, then the Maslov index
does not change. Likewise, if an eigenvalue of W̃ rotates into �1 in the counterclockwise
direction as t increases to 1, then the Maslov index increments (according to multiplicity),
while if an eigenvalue of W̃ rotates into �1 in the clockwise direction as t increases to 1,
then the Maslov index does not change. Finally, it’s possible that an eigenvalue of W̃ will
arrive at �1 for t = t⇤ and stay (i.e., remain at �1 for some interval [t⇤, t⇤ + �] with � > 0).
In these cases, the Maslov index only increments/decrements upon arrival or departure, and
the increments/decrements are determined as for the endpoints (departures determined as
with t = 0, arrivals determined as with t = 1).

One of the most important features of the Maslov index is homotopy invariance, for which
we need to consider continuously varying families of Lagrangian paths. To set some notation,
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we denote by P(I) the collection of all paths L(·) = (`1(·), `2(·)), where `1, `2 : I ! ⇤(n) are
continuous paths in the Lagrangian–Grassmannian. We say that two paths L,M 2 P(I)
are homotopic provided there exists a family Hs so that H0 = L, H1 = M, and Hs(t) is
continuous as a map from (t, s) 2 I ⇥ [0, 1] into ⇤(n)⇥ ⇤(n).

The Maslov index has the following properties.

(P1) (Path Additivity) If L 2 P(I) and a, b, c 2 I, with a < b < c, then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Fixed Endpoints Homotopy Invariance) If L,M 2 P(I) are homotopic, with L(a) =
M(a) and L(b) = M(b) (i.e., if L,M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

Straightforward proofs of these properties appear in [22] for Lagrangian subspaces of R2n,
and proofs in the current setting of Lagrangian subspaces of C2n are essentially identical.

2.2 Direction of Rotation

As noted previously, the direction we associate with a crossing point is determined by the
direction in which eigenvalues of W̃ rotate through �1 (counterclockwise is positive, while
clockwise is negative). In this subsection, we review the framework developed in [25] for
analyzing this direction. Our starting point is the following lemma from [25].

Lemma 2.1. Suppose `1, `2 : I ! ⇤(n) denote paths of Lagrangian subspaces of C2n with
absolutely continuous frames X1 =

�
X1

Y1

�
and X2 =

�
X2

Y2

�
(respectively). If there exists � > 0

so that the matrices

�X1(t)
⇤
JX0

1(t) = X1(t)
⇤
Y

0
1(t)� Y1(t)

⇤
X

0
1(t)

and (noting the sign change)

X2(t)
⇤
JX0

2(t) = �(X2(t)
⇤
Y

0
2(t)� Y2(t)

⇤
X

0
2(t))

are both a.e.-non-negative in (t0 � �, t0 + �), and at least one is a.e.-positive definite in
(t0 � �, t0 + �) then the eigenvalues of W̃ (t) rotate in the counterclockwise direction as t

increases through t0. Likewise, if both of these matrices are a.e.-non-positive, and at least
one is a.e.-negative definite, then the eigenvalues of W̃ (t) rotate in the clockwise direction
as t increases through t0.

Remark 2.1. The corresponding statement Lemma 4.2 in [22] is stated in the slightly more
restrictive case in which the frames are continuously di↵erentiable.

Using Lemma 2.1, we can readily verify that as � increases along any subinterval of I,
the eigenvalues of W̃ (x;�) will rotate (strictly) monotonically in the clockwise direction.
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Lemma 2.2. Let Assumptions (A) and (B1) hold, and suppose ↵ and � are as described
in (1.6). If X0(x;�) is the matrix solution defined in (1.8) and X1 = J�

⇤, then for any
x 2 (0, 1], the following holds: as � increases along any subinterval [�1,�2] ⇢ I, �1 < �2, the
n eigenvalues of

W̃ (x;�) = �(X0(x;�) + iY0(x;�))(X0(x;�)� iY0(x;�))
�1(X1 � iY1)(X1 + iY1)

�1

all rotate strictly monotonically in the clockwise direction.

Proof. According to Lemma 2.1, we only need to check the sign of the matrix

�X0(x;�)
⇤
J@�X0(x;�).

For this, we compute

@

@x
X⇤

0(x;�)J@�X0(x;�) = (X0
0)

⇤
J@�X0 +X⇤

0J@�X
0
0

= �(X0
0)

⇤
J
⇤
@�X0 +X⇤

0@�JX
0
0

= �X⇤
0B@�X0 +X⇤

0@�(BX0) = X⇤
0B�X0.

Integrating on [0, x], and noting that @�X0(0;�) = 0, we see that

X0(x;�)
⇤
J@�X0(x;�) =

Z x

0

X0(y;�)
⇤B�(y;�)X0(y;�)dy.

Monotonicity follows immediately from our assumption (B1).

For monotonicity as the independent variable varies, we typically require additional in-
formation, starting with our next lemma. Although this lemma e↵ectively just states the
well-known fact that for regular crossings the direction is determined by the crossing form
of [38], we state it in the current notation and for completeness provide a short proof. For a
detailed discussion of the relation between such calculations in our notation and the develop-
ment of [38], we refer the reader to Section 4.2 of [22]. In the event of degenerate crossings,
the determination of direction becomes more complicated, and Lemma 2.3 does not address
such cases. For an approach to accommodating degenerate crossings, we refer the reader to
[17].

Lemma 2.3. Suppose `1 : [a, b] ! ⇤(n) denotes a path of Lagrangian subspaces of C2n

with absolutely continuous frames X1 : [a, b] ! C2n⇥n, and suppose `2 2 ⇤(n) is fixed. Let
t⇤ 2 [a, b] be a crossing point for `1(·) and `2 with multiplicity dim(`1(t⇤) \ `2) = m, and let
P⇤ denote projection onto ker(X⇤

2JX1(t⇤)). Fix �0 > 0 su�ciently small so that t⇤ is the only
crossing point for `1(·) and `2 on (t⇤ � �0, t⇤ + �0). If there exists 0 < � < �0 so that

�P⇤X1(t⇤)JX
0
1(t⇤)P⇤

has m� a.e.-negative eigenvalues on (t⇤ � �, t⇤ + �) \ [0, 1] and m+ a.e.-positive eigenvalues
on (t⇤ � �, t⇤ + �) \ [0, 1], and if in addition m� + m+ = m (i.e., the crossing point t⇤ is
non-degenerate), then the following hold:
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(i) if t⇤ 2 (a, b),
Mas(`1(·), `2; [t⇤ � �, t⇤ + �]) = m+ �m�;

(ii) If t⇤ = a, then
Mas(`1(·), `2; [a, a+ �]) = �m�;

(iii) If t⇤ = b, then
Mas(`1(·), `2; [b� �, b]) = m+.

Proof. We coordinatize X1(t) in the usual way as X1(t) =
�
X1(t)
Y1(t)

�
. The lemma assumes that

t⇤ is the only crossing point in [t⇤ � �, t⇤ + �], so the Maslov indices stated in the three parts
are all entirely determined by the direction of the rotation of the eigenvalues of

W̃ (t) = �(X1(t) + iY1(t))(X1(t)� iY1(t))
�1(X2 � iY2)(X2 + iY2)

�1
, (2.4)

through �1 as t increases through t⇤.
According to [25], the direction of rotation for the eigenvalues of W̃ (t) is determined by

the restriction of the quadratic form

Q̃1(w) := �2
⇣
X1(t)

⇤
JX0

1(t)(X1(t) + iY1(t))
�1
w, (X1(t) + iY1(t))

�1
w

⌘
,

to the space V⇤ := ker(W̃ (t⇤) + I) in the following way: positive eigenvalues of Q̃1(w) corre-
spond with rotation in the positive (counterclockwise) direction, while negative eigenvalues of
Q̃1(w) correspond with rotation in the negative (clockwise) direction. In addition, according
to Lemma 2.1 of [25],

ran(X1(t⇤) + iY1(t⇤))
�1
���
V⇤

= ker(X⇤
2JX1(t⇤)).

Combining these observations, we see that the rotation of the eigenvalues of W̃ (t) through
�1 as t increases through t⇤ is determined by the restriction of �X1(t)⇤JX0

1(t) to

ker(X⇤
2JX1(t⇤))

for a.e. t 2 (t⇤ � �, t⇤ + �). (If X1 is di↵erentiable at t⇤, we can simply evaluate at t⇤.)

In the current analysis, we have an evolving frame X0(x;�) specified by

JX0
0 = B(x;�)X0; X(0;�) = J↵

⇤
,

and a fixed target frame X1 = J�
⇤. The key point in adapting the results of [25] to the

current setting is the observation that X1 can be viewed as an evolving frame solving

JX0
1 = B1(x;�)X1; X1(1;�) = J�

⇤
, (2.5)

where B1(x;�) ⌘ 0.
We begin with the following lemma.
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Lemma 2.4. Let Assumptions (A) and (B1) hold, and assume that P1B(x;�)P1 is non-
negative for a.e. x 2 (0, 1), where P1 denotes projection onto the Lagrangian subspace `1 with
frame X1 = J�

⇤. For � fixed and W̃ (x;�) as in Lemma 2.2, let x⇤ 2 [0, 1] be a crossing point.
If x⇤ 2 (0, 1], then no eigenvalue of W̃ (·;�) can arrive at �1 moving in the counterclockwise
direction as x increases to x⇤. If x⇤ = 0, then no eigenvalue of W̃ (·;�) can rotate away from
�1 moving in the counterclockwise direction as x increases from 0.

Proof. If we take the convention described in (2.5), then we are in precisely the setting of
Claim 4.1 (Part (1)) of [25], except with the direction of rotation reversed. The statement
follows immediately.

Lemma 2.4 asserts that under its assumptions, no crossing point can have positive direc-
tion (with x increasing). We also need to check that the flow cannot get stuck at a crossing
point. For this, we can adapt the framework from Section 3.1 of [25], beginning with the
following claim (adapted from Claim 3.4 in [25]).

Lemma 2.5. Let Assumption (A) hold, and assume that P1B(x;�)P1 is non-negative for a.e.
x 2 (0, 1), where P1 denotes projection onto the Lagrangian subspace `1 with frame X1 = J�

⇤.
With W̃ (x;�) specified as in Lemma 2.2, assume that for some interval [a, b] ⇢ [0, 1], a < b,
and some m 2 {1, 2, . . . , n},

dimker(W̃ (x;�) + I) = m

for all x 2 [a, b]. Then there exist functions v, w 2 AC([a, b],Cn) so that

X0(x;�)v(x) = X1w(x)

for all x 2 [a, b]. Moreover,
X0(x;�)v

0(x) = X1w
0(x),

for a.e. x 2 (a, b).

Proof. If we again viewX1 as described in (2.5), we arrive in the framework of Claim 3.4 from
[25]. The only di↵erence is that in Claim 3.4 from [25] the authors assume B1(x;�)�B(x;�)
is semi-definite (non-negative in that case) for a.e. x 2 (a, b), and in the current setting we
assume this di↵erence is semi-definite (non-positive in our case) when restricted to `1. (We
emphasize that the type of semi-definiteness is not the issue, but rather the restriction.) The
proof from the referenced claim can be used precisely as given in [25], with the following
change.

In [25], the authors observe that since B1(x;�)� B(x;�) is non-negative, they have that
for a.e. x 2 (a, b)

⇣
(B1(x;�)� B(x;�))y0, y0

⌘
= 0 () y0 2 ker(B1(x;�)� B(x;�)).

In the current setting, the vectors y0 must belong to `1, so the di↵erence (B1(x;�)�B(x;�))
can be replaced by P1B(x;�)P1 (using B1 ⌘ 0 and changing signs). With this change, our
Lemma 2.5 is established by the proof of Claim 3.4 from [25].
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Lemma 2.6. Let Assumption (A) hold, and assume that P1B(x;�)P1 is non-negative for
a.e. x 2 (0, 1), where P1 denotes projection onto the Lagrangian subspace `1 with frame
X1 = J�

⇤. If there exists an interval [a, b] ⇢ [0, 1], a < b, and m 2 {1, 2, . . . , n} so that
dim(`0(x;�) \ `1) = m for all x 2 [a, b], then there exists an interval [c, d] ⇢ [a, b], c < d,
and a constant vector v0 2 Cn so that

X0(x;�)v0 2 `0(x;�) \ `1

for all x 2 [c, d]. Moreover, it follows that we must have B(x;�)X0(x;�)v0 = 0 for a.e.
x 2 (c, d).

Proof. The proof is identical to that of Claim 3.5 in [25], using here Lemma 2.5 where Claim
3.4 is used in [25].

We are now in a position to prove Lemma 1.1.

Proof of Lemma 1.1. Under the assumptions of Lemma 1.1, we know from Lemma 2.4 that
in the computation of Mas(`0(·;�), `1; [0, 1]), no crossing points can be associated with the
positive direction. In particular, with the possible exception of x = 0, each crossing point
must correspond with one or more eigenvalues of W̃ (x;�) arriving at �1 from the clockwise
direction. (If x = 0 is crossing, the associated eigenvalue(s) of W̃ (x;�) residing at �1 cannot
rotate away from �1 in the counterclockwise direction). In order to ensure that each such
crossing point corresponds with a negative contribution to the Maslov index (according to
multiplicity), we need to be sure that no eigenvalue of W̃ (x;�) can reside at �1 on an interval
[a, b] ⇢ [0, 1], a < b.

Suppose to the contrary that dim ker(W̃ (x;�) + I) 6= 0 for all x 2 [a, b] for some in-
terval [a, b] ⇢ [0, 1], a < b. According to Claim 3.3 of [25], we can conclude that there
exists a subinterval [c, d] ⇢ [a, b], c < d, and an integer m 2 {1, 2, . . . , n}, so that in fact
dim ker(W̃ (x;�) + I) = m for all x 2 [c, d]. We can now conclude from Lemma 2.6 that
there exists a further subinterval [c̃, d̃] ⇢ [c, d], c̃ < d̃, and a constant vector v0 2 Cn so that
X0(x;�)v0 2 `1 for all x 2 [c̃, d̃], and additionally

B(x;�)X0(x;�)v0 = 0

for a.e. x 2 (c̃, d̃). This contradicts our positivity assumption (B2), so we can conclude that
there can be no such interval [a, b], a < b, so that dim ker(W̃ (x;�) + I) 6= 0 for all x 2 [a, b].
This completes the proof.

2.3 Spectral Curves

We see from the proof of Lemma 1.1 that, under its assumptions, as x increases, with � fixed,
the eigenvalues of W̃ (x;�) can only rotate through �1 in the clockwise direction around S

1.
Likewise, from Lemma 2.2, we see that as � increases, with x fixed, the eigenvalues of
W̃ (x;�) rotate monotonically in the clockwise direction around S

1. By combining these two
observations, we can establish the monotonicity of spectral curves, by which we mean certain
connected subsets of the dispersion diagram for (1.4)–(1.5),

D := {(x,�) 2 [0, 1]⇥ I : dim kerX0(x;�)
⇤
JX1 6= 0}.
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(Examples appear in Figures 1, 3 and 4.)
Suppose (x⇤,�⇤) 2 [0, 1]⇥I is a crossing point for the flow of W̃ (x;�). Due to monotonic-

ity in �, the eigenvalue(s) of W̃ (x⇤;�) that cross �1 as � increases through �⇤ must cross
in the clockwise direction. Moreover, by di↵erentiability of W̃ (x;�) in �, we can find r > 0
su�ciently small so that the rate of rotation is bounded below by some constant � > 0 for all
(x;�) 2 B(x⇤,�⇤; r) (the closed ball centered at (x⇤,�⇤) with radius r). (This follows from
Theorem II.5.4. in [32]; the use of that theorem in the current setting is discussed in detail
in Section 3 of [25].) We can now think of taking some small increment �x and tracking
the eigenvalues of W̃ (x;�⇤) as x increases from x⇤ to x⇤ + �x. By monotonicity in x, the
eigenvalues residing at �1 will all rotate away from �1 in the clockwise direction, and by
choosing �x su�ciently small, we can keep these eigenvalues as close as we like to �1. In
particular, since the rate of rotation in � is bounded below, we can take �x su�ciently small
so that there exists a small increment �� so that as (x,�) goes linearly from (x⇤ +�x,�⇤)
to (x⇤ +�x,�⇤ ���) the eigenvalues of W̃ (x;�) residing at �1 at (x⇤,�⇤) have all rotated
back through �1 in the counterclockwise direction. In this way, we see that the spectral
curves associated with all of these crossing points decrease monotonically when viewed in
the (�, x)-plane. (See Figure 1; this monotonicity is also depicted on the right-hand side of
Figure 3).

x

� �1 �2

Figure 1: Monotonic spectral curves.

We see from this discussion that if a spectral curve contains the point (x⇤,�⇤), then for
any �x > 0 su�ciently small, there will exist �� > 0, depending on �x, so that the spectral
curve will contain the point (x⇤ + �x,�l) for some �l 2 (�⇤ � ��,�⇤), and likewise it will
contain the point (x⇤ � �x,�r) for some �r 2 [�⇤,�⇤ + ��]. Moreover, given any ✏ > 0,
there exists � > 0 su�ciently small so that �x < � =) �� < ✏. In this way, we see
that near x⇤ the crossing points (x,�(x)) correspond with a well-defined function �(x) for
all x 2 [x⇤ ��x, x⇤ +�x], and that �(x) is continuous in x.

For convenience, we can choose a distinct labeling of these curves so that the lower-most
is always curve 1, the curve just above it curve 2 etc. In this way, even if the curves cross,
we can express the i

th curve as

Si := {(si(�),�) : � 2 Ii},
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for some continuous function si defined on some subinterval Ii ⇢ I.

3 Evaluating Hörmander’s index

In this section, we introduce a method for computing Hörmander’s index that is especially
convenient for the applications we have in mind (see Section 5). As a starting point, we
fix four Lagrangian subspaces ⌫, �, ⌫̃, �̃ and consider two continuous paths of Lagrangian
subspaces `, ˜̀ : [0, 1] ! ⇤(n), with `(0) = ⌫, `(1) = �, ˜̀(0) = ⌫̃, and ˜̀(1) = �̃. If we let s
denote the parameters for `, and let s̃ denote the parameter for ˜̀, then we can compute the
Maslov index associated with ` and ˜̀ along a Maslov box, which we describe as follows: fix
s̃ = 0 and let s increase from 0 to 1; fix s = 1 and let s̃ increase from 0 to 1; fix s̃ = 1 and
let s decrease from 1 to 0; fix s = 0 and let s̃ decrease from 1 to 0. (See Figure 2.)

s̃

s1

1

Mas(`(·), ˜̀(0); [0, 1])

M
as
(`
(1
),
˜̀ (
·)
;[
0,
1]
)

�Mas(`(·), ˜̀(1); [0, 1])

�
M
as
(`
(0
),
˜̀ (
·)
;[
0,
1]
)

Figure 2: The Maslov Box in the (s, s̃)-plane.

Using path additivity and homotopy invariance, we see that

Mas(`(·), ˜̀(0); [0, 1]) + Mas(`(1), ˜̀(·); [0, 1])

�Mas(`(·), ˜̀(1); [0, 1])�Mas(`(0), ˜̀(·); [0, 1]) = 0.
(3.1)

We see immediately that the di↵erence

Mas(`(·), �̃; [0, 1])�Mas(`(·), ⌫̃; [0, 1])

is independent of the path ` as long as ` has endpoints `(0) = ⌫ and `(1) = �, and likewise

Mas(�, ˜̀(·); [0, 1])�Mas(⌫, ˜̀(·); [0, 1])

is independent of the path ˜̀ as long as ˜̀ has endpoints ˜̀(0) = ⌫̃ and ˜̀(1) = �̃. This justifies
our definition of the Hörmander index as

s(⌫̃, �̃; ⌫, �) := Mas(`(·), �̃; [0, 1])�Mas(`(·), ⌫̃; [0, 1]); `(0) = ⌫, `(1) = �. (3.2)

In addition, we see from (3.1) that

s(⌫̃, �̃; ⌫, �) = Mas(�, ˜̀(·); [0, 1])�Mas(⌫, ˜̀(·); [0, 1]); ˜̀(0) = ⌫̃, ˜̀(1) = �̃. (3.3)
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3.1 Interpolation Paths

Formulas (3.2) and (3.3) are independent of the paths `(·) and ˜̀(·) (respectively), and this
allows us to choose paths that are convenient to work with. Of particular interest here are
interpolation paths, which we specify as follows.

Definition 3.1. Let X⌫̃ and X�̃ respectively denote frames for Lagrangian subspaces ⌫̃ and
�̃, and assume

X⇤
⌫̃JX�̃ +X⇤

�̃JX⌫̃ = 0, (3.4)

and
ker

⇣
tX⌫̃ + (1� t)X�̃

⌘
= {0},

for all t 2 [0, 1]. We define the interpolation frame by

X̃(t) = tX�̃ + (1� t)X⌫̃ . (3.5)

Proposition 3.1. Under the specifications of Definition 3.1, X̃(t) is the frame for a La-
grangian subspace of C2n for all t 2 [0, 1]. In particular, if for each t 2 [0, 1], ˜̀(t) denotes
the Lagrangian subspace associated with X̃(t), then ˜̀ : [0, 1] ! ⇤(n) is a continuous path of
Lagrangian subspaces.

Proof. Dimensionality is assumed in the definition, so we only need to check the Lagrangian
property. We compute

X̃(t)⇤JX̃(t) = (tX⇤
�̃ + (1� t)X⇤

⌫̃)(tJX�̃ + (1� t)JX⌫̃)

= t(1� t)(X⇤
�̃JX⌫̃ +X⇤

⌫̃JX�̃).

from which it’s clear that X̃(t) satisfies the Lagrangian property for all t 2 [0, 1] if and only
if (3.4) holds.

Interpolation paths constitute a natural tool in this context, and have been used, for
example, in the proof of Theorem 3.5 from [38]. Nonetheless, the current analysis seems
to be the first systematic use of such paths in the development of a general framework for
computing Hörmander’s index in applications.

It will be convenient to set some notation for the Maslov index obtained for an interpo-
lation path ˜̀(t) and a fixed target ⌫. Since the value of this index is entirely determined by
the target ⌫ and the frames X⌫̃ and X�̃, we will denote by

I(⌫;X⌫̃ ,X�̃) (3.6)

the Maslov index Mas(⌫, ˜̀(·); [0, 1]), where ˜̀ : [0, 1] ! ⇤(n) denotes the path of Lagrangian
subspaces with frames (3.5). We emphasize that this value depends on the specific frames
X⌫̃ and X�̃, not just the spaces ⌫̃ and �̃, and as such is less fundamental than objects such
as the quadratic form Q and triple index ◆ discussed below. Our rationale for introducing
I is primarily computational convenience: as we’ll see, it allows us to readily compute
Hörmander’s index in a wide variety of useful cases.
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We note that switching the roles of X⌫̃ and X�̃ simply reverses the path, and so by
homotopy invariance,

I(⌫;X⌫̃ ,X�̃) = �I(⌫;X�̃,X⌫̃). (3.7)

In addition, it will be clear from our development that if either ⌫ \ ⌫̃ = {0} or ⌫ \ �̃ = {0}
we have the inequality

�n  I(⌫;X⌫̃ ,X�̃)  n. (3.8)

(We will see that in these cases crossing points for the calculation of Mas(⌫, ˜̀(·); [0, 1]) are
in bijective correspondence with eigenvalues of the generalized eigenvalue problem specified
in (3.14).)

With this notation, we can express (3.3) as the useful relation

s(⌫̃, �̃; ⌫, �) = I(�;X⌫̃ ,X�̃)� I(⌫;X⌫̃ ,X�̃). (3.9)

A typical implementation of our framework will look as follows. Given some continuous
path ` : [0, 1] ! ⇤(n), with `(0) = ⌫ and `(1) = �, and two fixed Lagrangian subspaces ⌫̃, �̃ 2

⇤(n), we would like to relate the Maslov indices Mas(`(·), ⌫̃; [0, 1]) and Mas(`(·), �̃; [0, 1]). Our
development allows us to do this by writing

Mas(`(·), �̃; [0, 1])�Mas(`(·), ⌫̃; [0, 1])

= s(⌫̃, �̃; ⌫,�) = I(�;X⌫̃ ,X�̃)� I(⌫;X⌫̃ ,X�̃).

Of course the e�cacy of this approach is determined by the ease with which we can
compute these interpolation values, and that’s the topic we turn to next.

3.2 Computing I(⌫;X⌫̃,X�̃)

In practice, the evaluation of I(⌫;X⌫̃ ,X�̃) typically involves counting the number of positive,
negative, and null eigenvalues of certain related matrices (counted with geometric multiplic-
ity). For an n ⇥ n matrix A, we will respectively denote these counts n+(A), n�(A), and
n0(A). Moreover, for a generalized eigenvalue problem

Av = �Bv, (3.10)

we will denote the corresponding counts n+(A,B), n�(A,B), and n0(A,B).
We fix three Lagrangian subspaces ⌫, ⌫̃, and �̃, along with an interpolation path ˜̀ :

[0, 1] ! ⇤(n) with frame
X̃(t) = tX�̃ + (1� t)X⌫̃ .

Our goal is to compute
I(⌫;X⌫̃ ,X�̃) = Mas(⌫; ˜̀(·); [0, 1]). (3.11)

To fix notation, we will set

⌫ = colspanX⌫ = colspan

✓
X⌫

Y⌫

◆

⌫̃ = colspanX⌫̃ = colspan

✓
X⌫̃

Y⌫̃

◆

�̃ = colspanX�̃ = colspan

✓
X�̃

Y�̃

◆
.
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Interpolation frame properties. In order for X̃(t) to be an interpolation frame, we require
that the conditions of Definition 3.1 hold. In particular, we assume

X⇤
�̃JX⌫̃ +X⇤

⌫̃JX�̃ = 0, (3.12)

and
ker X̃(t) = {0}, for all t 2 [0, 1]. (3.13)

This latter condition can be expressed as

for each t 2 [0, 1], (tX�̃ + (1� t)X⌫̃)v = 0 =) v = 0.

If we multiply this last expression on the left by X⇤
⌫̃J , we see that this would be implied by

X⇤
⌫̃JX�̃v = 0 =) v = 0, for all t 2 [0, 1].

If ⌫̃ \ �̃ = {0}, then X⇤
⌫̃JX�̃ will be non-singular, so a su�cient (though not necessary)

condition for the dimensionality condition is

⌫̃ \ �̃ = {0}.

Crossing points and directionality. In order to compute

Mas(⌫; ˜̀(·); [0, 1]),

we proceed by identifying the crossing points for ˜̀(·) and ⌫ and assigning a direction to
each. First, a value t⇤ 2 [0, 1] will be a crossing point for ˜̀(·) and ⌫ if and only if there exists
v 2 C\{0} so that

X⇤
⌫JX̃(t⇤)v = 0.

Rearranging this last expression, we obtain the generalized eigenvalue problem

X⇤
⌫JX�̃v = �

1� t⇤

t⇤
X⇤

⌫JX⌫̃v.

We see that t⇤ 2 (0, 1] is a crossing point for ˜̀(·) and ⌫ of multiplicity m if and only if the
generalized eigenvalue problem

X⇤
⌫JX�̃v = ⌧X⇤

⌫JX⌫̃v, (3.14)

has a non-positive eigenvalue ⌧ = �(1� t⇤)/t⇤ with multiplicity m. We note that t⇤ = 0 will
be a crossing point if and only if dim kerX⇤

⌫JX⌫̃ = m 6= 0, and in this case, its multiplicity
will be m.

For directionality, we know from Lemma 2.3 that the the direction(s) associated with a
crossing point t⇤ 2 [0, 1] will be determined by the eigenvalues of the restricted matrix

X̃(t⇤)
⇤
JX̃0(t⇤)

���
kerX⇤

⌫JX̃(t⇤)
.

I.e., by the non-zero eigenvalues of

P⇤X̃(t⇤)
⇤
JX̃0(t⇤)P⇤,
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where P⇤ denotes projection onto ker(X⇤
⌫JX̃(t⇤)).

We can readily compute

X̃(t⇤)
⇤
JX̃0(t⇤) = (tX⇤

�̃ + (1� t)X⇤
⌫̃)(JX�̃ � JX⌫̃)

= X⇤
⌫̃JX�̃ � t(X⇤

�̃JX⌫̃ +X⇤
⌫̃JX�̃)

= X⇤
⌫̃JX�̃,

where in obtaining the final equality we have used (3.12). In this way, we see that direction-
ality will be determined by the eigenvalues of

X⇤
⌫̃JX�̃

���
kerX⇤

⌫JX̃(t⇤)
. (3.15)

In particular, suppose t⇤ 2 [0, 1] is a crossing point with multiplicity m⇤. Then the operator
in (3.15) will have at most m⇤ non-zero eigenvalues, and each positive eigenvalue will cor-
respond with an increase of the Maslov index according to multiplicity, while each negative
eigenvalue will correspond with a decrease in the Maslov index according to multiplicity.
In the event that P⇤X⌫̃JX�̃P⇤ has fewer than m⇤ non-zero eigenvalues, directionality is not
entirely determined; we will not address such cases in the current analysis. For t⇤ = 0, we
are restricting to kerX⇤

⌫JX⌫̃ , while for any t⇤ 2 (0, 1], we are restricting to the geometric
eigenspace of ⌧⇤ = 1� 1/t⇤ as an eigenvalue of the generalized eigenvalue problem (3.14).

At this point, the computation of I(⌫;X⌫̃ ,X�̃) has been reduced to matrix calculations.
In many important cases, these calculations take particularly simple forms, and we turn next
to such cases.

3.3 Exchanging the Dirichlet Plane

As discussed in the introduction, the Dirichlet Lagrangian plane enjoys a distinguished re-
lationship with the evolution of Sturm-Liouville systems, and so constitutes an important
special case.

In the framework of Section 3.2, suppose `�̃ is the Dirichlet plane, for which we use the
natural frame X�̃ =

�
0
I

�
. In this case, condition (3.12) becomes

0 = X⇤
�̃JX⌫̃ +X⇤

⌫̃JX�̃ = X⌫̃ �X
⇤
⌫̃ . (3.16)

I.e., the interpolation frame X̃(t) will have the Lagrangian property for all t 2 [0, 1] if and
only if X⌫̃ is self-adjoint. The following lemma will be useful for choosing Lagrangian frames
for which the first coordinate matrix is self-adjoint.

Lemma 3.1. Let X =
�
X
Y

�
be a frame for a Lagrangian subspace `. Then the following hold.

(i) If X is invertible, then the matrix X̂ :=
�

I
Y X�1

�
is a frame for `, and Y X

�1 is self-
adjoint;

(ii) If Y is invertible, then the matrix X̂ :=
�
XY �1

I

�
is a frame for `, and XY

�1 is
self-adjoint;

(ii) If there exists a self-adjoint matrix M so that Y �MX is invertible (i.e., so that ` does

not intersect the Lagrangian subspace with frame
�
I
M

�
), then the matrix X̂ :=

�
X(Y�MX)�1

Y (Y�MX)�1

�

is a frame for `, and X(Y �MX)�1 is self-adjoint.
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Proof. In each case, we find an invertible matrix A so that X̂ = XA, and then verify that
XA has the stated properties. For (i), we take A = X

�1, which immediately gives the stated
form of X̂. To see that Y X

�1 is self-adjoint, we observe from the Lagrangian property,

X
⇤
Y = Y

⇤
X =) Y X

�1 = (X⇤)�1
Y

⇤
.

For (ii), we take A = Y
�1 and proceed similarly as with (i).

For (iii), we take A = (Y � MX)�1, and we need to show that X(Y � MX)�1 is self-
adjoint. In order to do this, we compute

X
⇤(Y �MX) = X

⇤
Y �X

⇤
MX = Y

⇤
X �X

⇤
MX = (Y ⇤

�X
⇤
M)X.

If we now multiply on the right by (Y �MX)�1 and on the left by (Y ⇤
�X

⇤
M), we obtain

the sought relation
(Y ⇤

�X
⇤
M)�1

X
⇤ = X(Y �MX)�1

.

For dimensionality, if X�̃ =
�
0
I

�
, then we have

X̃(t) =

✓
(1� t)X⌫̃

tI + (1� t)Y⌫̃

◆
.

We see that we only lose dimensionality if there exists v 2 Cn
\{0} so that

X⌫̃v = 0

Y⌫̃v = �
t

1� t
v,

for some t 2 (0, 1). If we let E(�1,0)(Y⌫̃) denote the union of eigenspaces of Y⌫̃ associated
with negative eigenvalues, then the condition

ker(X⌫̃) \ E(�1,0)(Y⌫̃) = {0} (3.17)

implies dim colspan X̃(t) = n for all t 2 [0, 1].
In this setting, crossing points t⇤ 2 (0, 1] correspond with eigenvalues of the generalized

eigenvalue problem

X
⇤
⌫v =

1� t⇤

t⇤
X⇤

⌫JX⌫̃v, (3.18)

via the relation ⌧⇤ = �(1� 1/t⇤). The value t⇤ = 0 is a crossing if and only if ker(X⇤
⌫JX⌫̃) =

m 6= 0, and its multiplicity as a crossing point is m.
For any crossing point t⇤ 2 [0, 1], the direction of rotation associated with t⇤ is determined

by

�X
⇤
⌫̃

���
kerX⇤

⌫JX̃(t⇤)
. (3.19)
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3.3.1 Useful Special Cases

In this section, we employ the preceding considerations to derive specific formulas for com-
puting I(⌫;X⌫̃ ,X�̃) in two common and important special cases.

Dirichlet-Neumann Exchange. We consider the case

X⌫̃ =

✓
I

0

◆
; X�̃ =

✓
0

I

◆
; X⌫ =

✓
X⌫

Y⌫

◆
. (3.20)

In this case, the interpolation path of matrices is

X̃(t) =

✓
(1� t)I

tI

◆
,

and for each t 2 [0, 1], X̃(t) is clearly the frame for a Lagrangian subspace ˜̀(t).
The equation for crossing points (3.18) is

X
⇤
⌫v =

1� t⇤

t⇤
Y

⇤
⌫ v,

and the direction is determined by �X⌫̃ = �I. From the direction, we can conclude that all
crossing points correspond with a crossing in the negative direction. Due to this direction,
a crossing point at t⇤ = 1 will not contribute to the Maslov index, but a crossing point at
t⇤ = 0 will contribute an amount equal to dim ker Y ⇤

⌫ . I.e., in this case, we have

I(⌫;XN ,XD) = �n+(X
⇤
⌫ , Y

⇤
⌫ )� n0(Y

⇤
⌫ ).

Dirichlet-non-Dirichlet Exchange. If a Lagrangian subspace ⌫̃ does not intersect the
Dirichlet subspace, then we can choose a frame for it with the form X⌫̃ =

�
I

M⌫̃

�
, where M⌫̃

is a self-adjoint matrix. We consider the case

X⌫̃ =

✓
I

M⌫̃

◆
; X�̃ =

✓
0

I

◆
; X⌫ =

✓
I

M⌫

◆
. (3.21)

First, X⌫̃ = I, so (3.16) is satisfied, as is (3.17), thus establishing that in this case X̃(t)
remains Lagrangian for all t 2 [0, 1]. The eigenvalue problem for crossing points (3.18) can
be expressed as

(M⌫̃ �M⌫)v = �
t⇤

1� t⇤
v,

and directionality is determined by �X
⇤
⌫̃ = �I. In this case, t⇤ = 1 cannot be a crossing,

because `�̃ \ `⌫ = {0}. We see that each crossing point corresponds with a non-positive
eigenvalue of M⌫̃ � M⌫ , and that each such crossing point decrements the Maslov index
according to multiplicity. We can conclude that

I(⌫;X⌫̃ ,XD) = �n�(M⌫̃ �M⌫)� n0(M⌫̃ �M⌫). (3.22)
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3.4 Exchanging the Neumann Plane

In the framework of Section 3.2, suppose `�̃ is the Neumann plane, for which we use the
natural frame XN =

�
I
0

�
. I.e., we are addressing the computation of

I(⌫;X⌫̃ ,XN),

where ⌫ 2 ⇤(n) is arbitrary, and we will make assumptions on X⌫̃ as we proceed.
The analysis in this case is analogous to that of Section 3.3, and we only summarize the

results. First, the Lagrangian property holds if and only if Y ⇤
⌫̃ = Y⌫̃ . For dimensionality, we

let E(�1,0)(X⌫̃) denote the union of all eigenspaces ofX⌫̃ associated with negative eigenvalues.
Then X̃(t) retains dimensionality for all t 2 [0, 1] if and only if

ker(Y⌫̃) \ E(�1,0)(X⌫̃) = {0}. (3.23)

A value t⇤ 2 (0, 1] is a crossing point if and only if there exists v 2 Cn so that

Y
⇤
⌫ v = �

1� t⇤

t⇤
X⇤

⌫JX⌫̃v, (3.24)

and the multiplicity of t⇤ is precisely the geometric multiplicity of ⌧⇤ = �
1�t⇤
t⇤

as an eigenvalue
of the generalized eigenvalue problem

Y
⇤
⌫ v = ⌧X⇤

⌫JX⌫̃v.

Likewise, t⇤ = 0 is a crossing point with multiplicity m if and only if

dim ker(X⇤
⌫JX⌫̃) = m.

Finally, the direction of rotation is determined by

Y
⇤
⌫̃

���
ker(X⇤

⌫JX̃(t⇤))
.

For t⇤ 2 (0, 1], ker(X⇤
⌫JX̃(t⇤)) is the geometric eigenspace associated with ⌧⇤ = �

1�t⇤
t⇤

as

an eigenvalue of the generalized eigenvalue problem (3.24). For t⇤ = 0, ker(X⇤
⌫JX̃(t⇤)) =

ker(X⇤
⌫JX̃⌫̃).

Special cases analogous to those taken for the Dirichlet case can be analyzed similarly.

4 Comparison with Hörmander’s Formula

In this section, we briefly relate our evaluations of Hörmander’s index to Hörmander’s formula
(equation (2.10) in [14], given below as (4.1)). In order to state Hörmander’s formula, we
need to introduce an associated bilinear form.

Definition 4.1. Fix any ⌫̃, �̃ 2 ⇤(n) with ⌫̃ \ �̃ = {0}. Then any n-dimensional linear
subspace ⌫ ⇢ C2n (i.e., ⌫ not necessarily Lagrangian) with ⌫ \ �̃ = {0} can be expressed as

⌫ = {u+ Cu : u 2 ⌫̃}
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for some 2n⇥ 2n matrix C that maps ⌫̃ to �̃. We define a bilinear form

Q = Q(⌫̃, �̃; ⌫) : ⌫̃ ⇥ ⌫̃ ! C

by the relation
Q(u, v) := �(JCu, v),

for all u, v 2 ⌫̃.

Remark 4.1. The negative sign in our specification of Q is an artifact of convention: while
we’re taking our symplectic form to be (Ju, v), our reference [14] uses (u, Jv), which simply
has the opposite sign.

Hörmander’s Q-form is precisely the form defined in [14], and aside from a sign convention
is also the same form specified in Section 3.1 of [44]. Suppose ⌫ intersects neither ⌫̃ nor �̃
and likewise � intersects neither ⌫̃ nor �̃. Then if ⌫̃ \ �̃ = {0}, Hörmander’s formula for
s(⌫̃, �̃; ⌫,�) can be expressed as (equation (2.10) of [14])

s(⌫̃, �̃; ⌫, �) =
1

2

⇣
sgnQ(⌫̃, �̃; ⌫)� sgnQ(⌫̃, �̃; �)

⌘
, (4.1)

where sgn(·) denotes the usual signature of a bilinear form (number of positive eigenvalues
minus the number of negative eigenvalues).

In [27], the authors derive a convenient formula for sgnQ(⌫̃, �̃, ⌫) in the case that ⌫̃ is
the Dirichlet plane and neither ⌫ nor �̃ intersects the Dirichlet plane. In this case, frames
for ⌫ and �̃ can respectively be taken as

X⌫ =

✓
I

M⌫

◆
and X�̃ =

✓
I

M�̃

◆
, (4.2)

where M⌫ and M�̃ are self-adjoint matrices. Under the additional assumption that ⌫ \ �̃ =
{0}, Lemma 3.2 from [27] asserts that

sgnQ(⌫̃, �̃, ⌫) = sgn(M�̃ �M⌫).

Proceeding similarly for sgnQ(⌫̃, �̃, �) (assuming additionally that � does not intersect the
Dirichlet plane, and � \ �̃ = {0}), we can express Hörmander’s index as

s(⌫̃, �̃; ⌫, �) =
1

2

⇣
sgn(M�̃ �M⌫)� sgn(M�̃ �M�)

⌘
. (4.3)

In the current analysis, we can use (3.22) to express Hörmander’s index under these
assumptions as

s(⌫̃, �̃; ⌫, �) = I(�;X⌫̃ ,X�̃)� I(⌫;X⌫̃ ,X�̃)

= �I(�;X�̃,X⌫̃) + I(⌫;X�̃,X⌫̃)

= n�(M�̃ �M�) + n0(M�̃ �M�)� n�(M�̃ �M⌫)� n0(M�̃ �M⌫).

(4.4)
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In order to accommodate the assumptions required for Hörmander’s formula (though not
required for the current analysis), we are taking ⌫ \ �̃ = {0} and � \ �̃ = {0}, and under
these additional assumptions, we have

n0(M�̃ �M�) = 0

n0(M�̃ �M⌫) = 0.

I.e., we obtain the relation

s(⌫̃, �̃; ⌫, �) = n�(M�̃ �M�)� n�(M�̃ �M⌫). (4.5)

We can write
sgn(M�̃ �M⌫) = n+(M�̃ �M⌫)� n�(M�̃ �M⌫),

and similarly for (M�̃ � M�). Also, we notice that the assumption �̃ \ ⌫ = {0} implies
(M�̃ �M⌫) has no zero eigenvalues, and consequently

n�(M�̃ �M⌫) + n+(M�̃ �M⌫) = n,

and again similarly for (M�̃ �M�). Working from (4.3), we can compute

s(⌫̃, �̃; ⌫, �) =
1

2

⇣
sgn(M�̃ �M⌫)� sgn(M�̃ �M�)

⌘

=
1

2

⇣
n� 2n�(M�̃ �M⌫)� (n� 2n�(M�̃ �M�)

⌘

= n�(M�̃ �M�)� n�(M�̃ �M⌫),

which is equivalent to (4.5).
It’s clear from these calculations that despite the similarity between (4.1) and the first

equality in (4.4), it’s not the case that the value I(�;X⌫̃ ,X�̃) is another way of expressing
1
2 sgnQ(⌫̃, �̃; ⌫). In fact, no such correspondence is possible, because I(�;X⌫̃ ,X�̃) depends
on the specific frames X⌫̃ and X�̃, not just on ⌫̃ and �̃ (as with Q(⌫̃, �̃; ⌫)). In this way,
I(�;X⌫̃ ,X�̃) should rightly be viewed as a computational tool rather than an index.

We also note that while Hörmander’s formula (4.1) requires the specified conditions
⌫ \ ⌫̃ = ⌫ \ �̃ = {0} and � \ ⌫̃ = � \ �̃ = {0}, a corresponding formulation in [44] requires
no such assumptions. Precisely, with Q(⌫̃, �̃; ⌫) specified as above, the authors of [44] work
with the triple index

◆(⌫̃, �̃, ⌫) := n+Q(⌫̃, �̃; ⌫) + dim(⌫̃ \ ⌫)� dim(⌫̃ \ �̃ \ ⌫), (4.6)

and establish in their Theorem 1.1 that for any quadruple of Lagrangian subspaces ⌫̃, �̃ ⌫,
� (and no additional assumptions)

s(⌫̃, �̃; ⌫,�) = ◆(⌫̃, �̃, �)� ◆(⌫̃, �̃, ⌫)

= ◆(⌫̃, ⌫, �)� ◆(�̃, ⌫, �).

(For simplicity of this brief discussion, (4.6) is actually an alternative formulation of the
triple index, taken from Remark A.12 of [6]; for the original formulation, see equation (2.16)
in [14], or equivalently Corollary 3.12 in [44]).
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5 Applications

In this section, we illustrate our theory with three straightforward applications.

5.1 Schrödinger Systems on [0, 1]

We consider a Schrödinger system with two equations,

��
00 + V (x)� = ��

↵1�(0) + ↵2�
0(0) = 0

�1�(1) + �2�
0(1) = 0,

(5.1)

which can be expressed as a linear Hamiltonian system as in (1.3) with Q(x) = I2 and
P (x) = I2. We will take

V (x) =

✓
10x(1� x) 25 sin(10x)
25 sin(10x) 10 cos(10x)

◆
,

and Neumann boundary conditions at both x = 0 and x = 1, ↵ = (↵1 ↵2) = (02 I2) and
� = (�1 �2) = (02 I2). (The specific matrix V (x) has no particular significance, and is chosen
merely to provide an example that clearly illustrates the nature and implementation of the
results.)

We will first illustrate how Theorems 1.1 and 1.2 can be used to count the number of
eigenvalues that (5.1) has between �1 = �3 and �2 = 0, and then we will discuss more
generally the dynamics for this example.

To start, we have from Theorem 1.1 that

N ([�1,�2)) = �Mas(`0(·;�2), `1; [0, 1]) + Mas(`0(·;�1), `1; [0, 1]), (5.2)

where `0(x;�) denotes the path of Lagrangian subspaces associated with X0(x;�) specified
in (1.8) and `1 denotes the Neumann Lagrangian subspace, for which we use the standard
frame XN =

�
I2
02

�
. We proceed by replacing `1 in both instances by the Dirichlet Lagrangian

subspace `D, for which we use the standard frameXD =
�
02
I2

�
. We recall from the introduction

that for B(x;�) specified from a Schrödinger system (and more generally from a Sturm-
Liouville system), the restriction B(x;�)`D is non-negative, and additionally Assumption
(B2) holds. This allows us to apply Theorem 1.2, so that for each index on the right-hand
side of (5.2), we can write

Mas(`0(·;�i), `D; [0, 1])�Mas(`0(·;�i), `1; [0, 1]) = s(`1, `D; `0(0;�i), `0(1;�i)). (5.3)

Following the approach outlined in Section 3.1, we can compute s(`1, `D; `0(0;�i), `0(1;�i))
with

s(`1, `D; `0(0;�i), `0(1;�i)) = I(`0(1;�i);X1,XD)� I(`0(0;�i);X1,XD).

In this case, we have the frames

X0(0;�i) =

✓
I2

02

◆
, i = 1, 2; X1 =

✓
I2

02

◆
; XD =

✓
02
I2

◆
,
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and we find by numerical computation that

X0(1;�1) =

✓
I2

M0(1;�1)

◆
; M0(1;�1) =

✓
1.5181 1.1717
1.1717 .7090

◆

X0(1;�2) =

✓
I2

M0(1;�2)

◆
; M0(1;�2) =

✓
.6757 1.3237
1.3237 �.1040

◆
.

In addition, the eigenvalues of M0(1;�1) were computed to be �.1261 and 2.3532, while the
eigenvalues of M0(1;�2) were computed to be �1.0941 and 1.6658.

Using relations (3.22), we find that

I(`0(0;�i);X1,XD) = �n�(0)� n0(0) = �2,

for i = 1, 2, and likewise

I(`0(1;�i);X1,XD) = �n�(�M0(1;�i))� n0(�M0(1;�i)) = �1,

for i = 1, 2. This allows us to compute

s(`1, `D; `0(0;�i), `0(1;�i)) = �1� (�2) = 1,

for i = 1, 2. Using (5.3), we see that

Mas(`0(·;�i), `1; [0, 1]) = Mas(`0(·;�i), `D; [0, 1])� 1,

for i = 1, 2. This relation clearly allows us to compute Mas(`0(·;�i), `1; [0, 1]) in terms of
Mas(`0(·;�i), `D; [0, 1]). For this example, we find by numerical computation that

Mas(`0(·;�i), `D; [0, 1]) = �1,

for i = 1, 2, and we conclude Mas(`0(·;�i), `1; [0, 1]) = �2 for i = 1, 2. Using (5.2), we can
conclude that N ([�1,�2)) = 0.

In order to illustrate the spectral dynamics associated with these calculations, we depict
in Figure 3 the Maslov box for the target space `1 = `N (on the left), along with the Maslov
box for the target space `D (on the right). In the latter case, the crossings are monotonic, and
correspondingly the spectral curves are monotonic (see the discussion in of spectral curves
in Section 2.3).

5.2 Fourth Order Equations

In this section, we consider a single fourth order equation

�
0000

� (v2(x)�
0)0 + v0(x)� = �� (5.4)

with separated self-adjoint boundary conditions

↵1�(0) + ↵2�
0(0) + ↵3�

00(0) + ↵4(�
000(0)� v2(0)�

0(0)) = 0

�1�(1) + �2�
0(1) + �3�

00(1) + �4(�
000(1)� v2(1)�

0(1)) = 0.
(5.5)
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Figure 3: Spectral curves for (5.1): the Neumann target on the left; the Dirichlet target on
the right.

Following the development of [21], we set

↵̃ =
�
↵1 ↵2 ↵3 ↵4

�
2 C2⇥4

�̃ =
�
�1 �2 �3 �4

�
2 C2⇥4

,

and assume,
rank ↵̃ = 2; ↵̃J↵̃⇤ = 0

rank �̃ = 2; �̃J�̃⇤ = 0,

where

J =

✓
0 J2

J2 0

◆
.

Again following [21], we formulate (5.4) as a first-order system by writing y = (y1 y2 y3 y4)T ,
with y1 = �, y2 = �

00, y3 = ��
000+v2�

0, and y4 = ��
0. With these choices, y solves the linear

Hamiltonian system

Jy
0 = B(x;�)y; B(x;�) =

0

BB@

�� v0(x) 0 0 0
0 1 0 0
0 0 0 �1
0 0 �1 �v2(x)

1

CCA . (5.6)

If we set ↵ = (↵1 ↵3 � ↵4 � ↵2) and likewise � = (�1 �3 � �4 � �2), then we can express
our boundary conditions for (5.6) as ↵y(0) = 0 and �y(1) = 0.

As a specific case, we will take

v0(x) = �2 + 10 sin(12x)

v2(x) = 10 cos(10x),

along with

↵, � =

✓
0 0 0 �1
0 0 �1 0

◆
. (5.7)
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These boundary conditions correspond with �
0(0) = 0, �000(0) = 0, �0(1) = 0, and �

000(1) = 0.
The associated target Langrangian subspace `1 has frameX1 = J�

⇤, and an equivalent frame
for this space is the Neumann frame XN =

�
I2
02

�
(i.e., we will take X1 = XN). (Similarly

as with the matrix V (x) in Section 5.1, the functions v0(x) and v2(x) have no particular
significance, and rather have been chosen to provide a specific example that clearly illustrates
the nature and implementation of the results.)

For (5.6), we can check that the flow will be monotonic if the target is taken as the
Lagrangian subspace `2 associated with the boundary matrix

� =

✓
1 0 0 0
0 0 0 �1

◆
.

To see this, we note that the target frame associated with � is

X2 = J�
⇤ =

0

BB@

0 0
0 1
1 0
0 0

1

CCA . (5.8)

Any element of `2 will have the form u = (0, u2, u3, 0)T , so that

(B(x;�)u, u) = |u2|
2
� 0.

In this way, we see that B(x;�)|`2 � 0 for all x 2 [0, 1]. This establishes the first part of
(B2). For the second, suppose y(x;�) solves Jy0 = B(x;�)y in some interval [a, b] ⇢ [0, 1],
a < b, and y(x;�) 2 `2 for all x 2 [a, b]. Then, in particular, we must have y1(x;�) = 0 for
all x 2 [a, b]. But since y1(x;�) = �(x;�), this implies y(x;�) = 0 for all x 2 [a, b], so that y
must be trivial. This establishes the second condition in (B2), allowing us to use Theorem
1.2 with the target space `2.

As in the previous example, we can use Theorems 1.1 and 1.2 to compute N ([�3, 0)).
For each index on the right-hand side of (5.2), we can write

Mas(`0(·;�i), `1; [0, 1])�Mas(`0(·;�i), `2; [0, 1]) = s(`2, `1; `0(0;�i), `0(1;�i)),

and we can compute s(`2, `1; `0(0;�i), `0(1;�i)) with

s(`2, `1; `0(0;�i), `0(1;�i)) = I(`0(1;�i);X2,X1)� I(`0(0;�i);X2,X1).

Since `1 is the Neumann Lagrangian subspace, we can apply the development from Section
3.4. The relevant frames are X0(0;�) =

�
I2
02

�
, X1 =

�
I2
02

�
, and X2 from (5.8), along with the

following two frames, obtained by numerical computation,

X0(1;�1) =

✓
M(1;�1)

I2

◆
; M(1;�1) =

✓
1.0263 �.7332
�.7332 .0301

◆

X0(1;�2) =

✓
M(1;�2)

I2

◆
; M(1;�2) =

✓
�.5326 �.1073
�.1073 �.1613

◆
.
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Referring now to Section 3.4, we see that the Lagrangian property is clear since Y2 is
self-adjoint, and dimensionality is clear since E(�1,0)(X1) = {0}. Starting with

I(`0(0;�i);X2,X1),

since Y0(0;�i) = 0, a value t⇤ 2 [0, 1) is a crossing in this case if and only if kerX0(0;�i)⇤JX2 6=
{0}. We have

X0(0;�i)
⇤
JX2 =

✓
�1 0
0 0

◆
,

so in fact every t⇤ 2 [0, 1) is a crossing with order 1. Moreover, since X0(0;�i)⇤JX1 = 0,
t⇤ = 1 is a crossing with order 2. We can conclude that the only possible contribution to the
Maslov index will occur at t⇤ = 1 with this change in order. The direction associated with
this arrival is determined in the usual way by the restriction of Y ⇤

2 to

kerX0(0;�i)
⇤
JX2 = C2

.

The eigenvalue residing at �1 for all t⇤ 2 [0, 1] corresponds with the neutral direction, and
the eigenvalue arriving at �1 at t⇤ = 1 corresponds with the positive direction. We conclude
that

I(`0(0;�i);X2,X1) = +1,

for both �1 = �3 and �2 = 0.
Turning now to the evaluation of I(`0(1;�i);X2,X1), we note from (3.24) that crossing

points correspond with non-positive eigenvalues of the matrix

X0(1;�i)
⇤
JX2 = M(1;�i)

✓
�1 0
0 0

◆
+

✓
0 0
0 1

◆
=

✓
�M11(1;�i) 0
�M21(1;�i) 1.

◆
(5.9)

For �1 = �3, �M11(1;�3) = �1.0263, and so this matrix has exactly one non-positive
eigenvalue. For �2 = 0, �M11(1; 0) = .5326, and this matrix has no non-positive eigenvalues.
We can conclude immediately that for �2 = 0,

I(`0(1; 0);X2,X1) = 0,

while for �1 = �3, we need to consider the direction of the crossing.
Although we don’t strictly require this much detail, we observe that the precise crossing

point t⇤ 2 (0, 1) can be obtained by solving

t⇤

1� t⇤
= 1.0263 =) t⇤ = .5065.

The direction associated with this crossing point is determined by restricting the matrix Y
⇤
2

to the subspace kerX0(1;�3)⇤JX̃(t⇤). We can compute

X0(1;�3)⇤JX̃(t⇤) =

✓
0 0

�(1� t⇤)M21(1;�3) 1

◆
.

We see that due to the form of Y ⇤
2 , its restriction to kerX0(1;�3)JX̃(t⇤) will only be non-

positive if (1 � t⇤)M21(1;�3) = 0. This is clearly not the case for any t⇤ 2 (0, 1), which is
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why we didn’t need the specific crossing point in this case. Since the restricted matrix is
positive, the crossing point is counted positively, and we find

I(`0(1;�3);X2,X1) = 1.

With these values in place, we see that

s(`2, `1; `0(0;�3), `0(1;�3)) = 0

s(`2, `1; `0(0; 0), `0(1; 0)) = �1,

and consequently

Mas(`0(·;�3), `1; [0, 1]) = Mas(`0(·;�3), `2; [0, 1])

Mas(`0(·; 0), `1; [0, 1]) = Mas(`0(·; 0), `2; [0, 1])� 1.

By numerical computation, we find

Mas(`0(·;�3), `2; [0, 1]) = �1

Mas(`0(·; 0), `2; [0, 1]) = �1,

and from these we compute

Mas(`0(·;�3), `1; [0, 1]) = �1

Mas(`0(·; 0), `1; [0, 1]) = �2.

Using (5.2) from [21], we conclude that N ([�3, 0)) = �(�2)� 1 = 1.
As with the previous example, we illustrate the process by depicting the full Maslox

boxes associated with these calculations. In Figure 4 the Maslov box for the target space
`1 is on the left, while the Maslov box for the target space `2 is on the right. In the latter
case, no spectral curves enter the Maslov box, though the entire bottom shelf is comprised
of crossings.

5.3 Schrödinger Systems on R
In this section, we apply our theory in the setting of [23]. In that reference, the authors
consider eigenvalue problems

H� := ��
00 + V (x)� = ��; dom(H) = H

2(R), (5.10)

and also (for any s 2 R)

Hs� := ��
00 + s�

0 + V (x)� = ��; dom(Hs) = H
2(R), (5.11)

where � 2 R, �(x) 2 Rn and V 2 C(R;Rn⇥n) is a real-valued symmetric matrix potential
satisfying Condition (S) from the introduction.

In this setting, the essential spectrum plays a role, so we briefly recall how it can be
defined and identified.
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Figure 4: Spectral curves for (5.1): the Neumann target on the left; the Dirichlet target on
the right.

Definition 5.1. We define the point spectrum of H, denoted �pt(H), as the set

�pt(H) = {� 2 R : H� = �� for some � 2 H
2(R)\{0}}.

We define the essential spectrum of H, denoted �ess(H), as the values in R that are not in
the resolvent set of H and are not isolated eigenvalues of finite multiplicity.

We note that the total spectrum is � = �pt(H) [ �ess(H), and the discrete spectrum
is defined as �discrete(H) = �\�ess(H). Since our analysis takes place entirely away from
essential spectrum, the eigenvalues we are counting are elements of the discrete spectrum.

As discussed, for example, in [20, 33], the essential spectrum of H is determined by the
asymptotic equations

��
00 + V±� = ��. (5.12)

In particular, if we look for solutions of the form �(x) = e
ikx

r, for some scalar constant k 2 R
and (non-zero) constant vector r 2 Rn then the essential spectrum will be confined to the
allowable values of �. For (5.12), we find

(k2
I + V±)r = �r,

so that

�(k) �
(V±r, r)Rn

krk2
.

Applying the min-max principle, we see that �ess(H) ⇢ [min,1), where as specified in the
introduction min denotes the minimum of all eigenvalues of the matrices V±.

Away from essential spectrum, construction of the asymptotically growing and decaying
solutions to (5.10) is standard and carried out in detail in [23]. Briefly reviewing that
development, we proceed by looking for solutions of (5.12) of the form �(x;�) = e

µx
r, where

in this case µ is a scalar function of �, and r is again a constant vector in Rn. We obtain
the relation

(�µ
2
I + V± � �I)r = 0,
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from which we see that the values of µ2 + � will correspond with eigenvalues of V±, and the
vectors r will be eigenvectors of V±. We denote the spectrum of V± by �(V±) = {

±
j }

n
j=1,

ordered so that j < k implies 
±
j  

±
k , and we order the eigenvectors correspondingly so

that V±r
±
j = 

±
j r

±
j for all j 2 {1, 2, . . . , n}. Moreover, since V± are symmetric matrices, we

can choose the set {r�j }
n
j=1 to be orthonormal, and similarly for {r+j }

n
j=1.

We have

µ
2 + � = 

±
j =) µ = ±

q

±
j � �.

We will denote the admissible values of µ by {µ
±
j }

2n
j=1, and for consistency we choose our

labeling scheme so that j < k implies µ
±
j  µ

±
k (for �  min). This leads us to the

specifications

µ
±
j (�) = �

q

±
n+1�j � �

µ
±
n+j(�) =

q

±
j � �,

for j = 1, 2, . . . , n.
We now express (5.10) as a first order system, with y =

�
y1
y2

�
, y1 = �, y2 = �

0. We find

dy

dx
= A(x;�)y; A(x;�) =

✓
0 I

V (x)� �I 0

◆
, (5.13)

and we additionally set

A±(�) := lim
x!±1

A(x;�) =
✓

0 I

V± � �I 0

◆
.

We note that the eigenvalues of A± are precisely the values {µ
±
j }

2n
j=1, and the associated

eigenvectors are {r±j }nj=1 = {
� r±n+1�j

µ±
j r±n+1�j

�
}
n
j=1 and {r±n+j}

n
j=1 = {

� r±j
µ±
n+jr

±
j

�
}
n
j=1.

We have now established the notation we need to state Lemma 2.2 from [23].

Lemma 5.1. Let V 2 C(R;Rn⇥n) be a real-valued symmetric matrix potential, and suppose
(S) holds. Then for any � < min there exist n linearly independent solutions of (5.13) that
decay to zero as x ! �1 and n linearly independent solutions of (5.13) that decay to zero
as x ! +1. Respectively, we can choose these so that they can be expressed as

y
�
n+j(x;�) = e

µ�
n+j(�)x(r�n+j + E�

n+j(x;�)); j = 1, 2, . . . , n,

y
+
j (x;�) = e

µ+
j (�)x(r+j + E+

j (x;�)); j = 1, 2, . . . , n,

where for any fixed �0 < min and �1 > 0 (with ��1 < �0), E
�
n+j(x;�) = O((1 + |x|)�1),

uniformly for � 2 [��1,�0], and similarly for E+
j (x;�).

Moreover, there exist n linearly independent solutions of (5.13) that grow to infinity as
x ! �1 and n linearly independent solutions of (5.13) that grow to infinity as x ! +1.
Respectively, we can choose these so that they can be expressed as

y
�
j (x;�) = e

µ�
j (�)x(r�j + E�

j (x;�)); j = 1, 2, . . . , n,

y
+
n+j(x;�) = e

µ+
n+j(�)x(r+n+j + E+

n+j(x;�)); j = 1, 2, . . . , n,

where for any fixed �0 < min and �1 > 0 (with ��1 < �0), E
�
j (x;�) = O((1 + |x|)�1),

uniformly for � 2 [��1,�0], and similarly for E+
n+j(x;�).
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As noted in our introduction, the authors of [23] verify that if we create a frameX�(x;�) =�
X�(x;�)
Y �(x;�)

�
by taking {y

�
n+j(x;�)}

n
j=1 as the columns of X�(x;�), then X�(x;�) is a frame for

a Lagrangian subspace, which we will denote `
�(x;�). Likewise, we can create a frame

X+(x;�) =
�
X+(x;�)
Y +(x;�)

�
by taking {y

+
j (x;�)}

n
j=1 as the columns of X+(x;�). Then X+(x;�) is

a frame for a Lagrangian subspace, which we will denote `
+(x;�).

In constucting our Lagrangian frames, we can view the exponential multipliers e
µ±
j x as

expansion coe�cients, and if we drop these o↵ we retain frames for the same spaces. That is,
we can create an alternative frame for `�(x;�) by taking the expressions r�n+j+E�

n+j(x;�) as
the columns for a new frame, which we will again denote X�(x;�). We see that in the limit

as x tends to �1 (of the resulting modified frames) we obtain the frame R�(�) =
�

R�

R�D�(�)

�
,

where
R

� =
�
r
�
1 r

�
2 . . . r

�
n

�
,

D
�(�) = diag

�
µ
�
n+1(�) µ

�
n+2(�) . . . µ

�
2n(�)

�
.

In [23], the authors verify that R�(�) is the frame for a Lagrangian subspace, and we
denote this space `

�
R(�). We notice that since V� is self-adjoint, we can choose R

� so that
(R�)�1 = (R�)⇤.

Proceeding similarly with `
+(x;�), we obtain the asymptotic Lagrangian subspace `+R(�)

with frame R+(�) =
�

R+

R+D+(�)

�
, where

R
+ =

�
r
+
n r

+
n�1 . . . r

+
1

�
,

D
+(�) = diag

�
µ
+
1 (�) µ

+
2 (�) . . . µ

+
n (�)

�
.

(5.14)

(The ordering of the columns of R+ is simply a convention, which follows naturally from
our convention for indexing {�

+
j }

n
j=1.) Since V+ is self-adjoint, we can normalize R+ so that

(R+)�1 = (R+)⇤.
The main result of [23] can now be stated as follows (Theorem 1.2 in [23], slightly adapted

for consistency with the current discussion):

Theorem 5.1. Let V 2 C(R;Rn⇥n) be a real-valued symmetric matrix potential, and suppose
(S) holds. Then for any � < min,

Mor(H;�) = �Mas(`�(·;�), `+R(�); R̄).

In addition, the authors obtain the following theorem (Theorem 1.6 in [23], slightly
adapted for consistency with the current discussion):

Theorem 5.2. Let V 2 C(R;Rn⇥n) be a real-valued symmetric matrix potential, and suppose
(S) holds. Let s 2 R, and let `�(x;�) and `

+
R(�) denote Lagrangian subspaces developed for

(5.11). Then for any � < min

Mor(Hs;�) = �Mas(`�(·;�), `+R(�); R̄).

Remark 5.1. In both theorems, our notation R̄ indicates that we allow the possibility for a
crossing point to be obtained in either limit, x ! ±1. We note that for the case of +1, the
limiting point will be a crossing if and only if � is an eigenvalue for the equation, and it’s
straightforward to verify that for the case �1 the limiting point cannot be a crossing (see
[23]).
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In order to prove Theorems 1.3 and 1.4, we need to show respectively that in Theorems 5.1
and 5.2, the target Lagrangian subspace `+R(�) can be replaced with the Dirichlet Lagrangian
subspace `D (with frame XD =

�
0
I

�
), for which the resulting spectral flow is monotonic. In

order to accomplish this, we will use the relation

Mas(`�(·;�), `+R(�); R̄)�Mas(`�(·;�), `D; R̄)
= s(`D, `

+
R(�); `

�(�1;�), `�(+1;�)).
(5.15)

Using 3.9, we can compute

s(`D,`
+
R(�); `

�(�1;�), `�(+1;�))

= I(`�(+1;�);XD,R+(�))� I(`�(�1;�);XD,R+(�)).

Since R+ is invertible, we can take our frame for `+R(�) to be R+(�) =
�

I
R+D+(�)(R+)⇤

�

As emphasized in [23], the exponential approach to endstates of the solutions comprising
the frames X±(x;�) allows us to compactify R via (e.g.) the standard map

x = ln(
1 + ⌧

1� ⌧
), ⌧ 2 [�1, 1]. (5.16)

In this way, our development of the Maslov index on finite intervals can be applied on R̄, as
described in Remark 5.1.

To start, we will suppose that some � < min is not an eigenvalue of (5.10). The advantage
to this case is that if it holds, then we know both `

�(�1;�) and `
�(+1;�) explicitly,

and we can evaluate Hörmander’s index directly. First, for any � < min, we can take
R�(�) =

�
I

R�D�(�)(R�)⇤

�
as our frame for `�(�1;�). In addition, if � is not an eigenvalue of

(5.10), then the Lagrangian subspace `
�(+1;�) will be the (unique) Lagrangian subspace

associated with solutions of (5.10) that grow as x ! +1. We can take the frame for this
space to be R̃+(�) =

�
I

�R+D+(�)(R+)⇤

�
.

This places us precisely in the setting of (3.22), and using additionally (3.7), we can write

I(`�(+1;�);XD,R+(�)) = n�(R
+
D

+(�)(R+)⇤ � (�R
+
D

+(�)(R+)⇤))

+ n0(R
+
D

+(�)(R+)⇤ � (�R
+
D

+(�)(R+)⇤))

I(`�(�1;�);XD,R+(�)) = n�(R
+
D

+(�)(R+)⇤ � (R�
D

�(�)(R�)⇤))

+ n0(R
+
D

+(�)(R+)⇤ � (R�
D

�(�)(R�)⇤)).

The matrix R
+
D

+(�)(R+)⇤ is negative definite, since the diagonals of D+(�) are all negative,
and likewise the matrix R

�
D

�(�)(R�)⇤ is positive definite. We can conclude

I(`�(+1;�);XD,R+(�)) = n

I(`�(�1;�);XD,R+(�)) = n,

so that
s(`D, `

+
R(�); `

�(�1;�), `�(+1;�)) = 0.

Using (5.15), we see that

Mas(`�(·;�), `+R(�); R̄) = Mas(`�(·;�), `D; R̄).
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Recalling that we have monotonicity in this case when the target space is `D, and that
`
�(x;�) \ `D = {0} for |x| su�ciently large, we can conclude Theorem 1.3 in the case that
� is not an eigenvalue of (5.10).

Remark 5.2. We have observed here that `R \ `D = {0}, and noted in addition that if �i is
not an eigenvalue of H, then as x ! +1, `�(x;�i) will approach the Lagrangian subspace
with frame R̃+(�i) =

�
I

�R+D+(�i)(R+)⇤

�
, and this Lagrangian subspace does not intersect `D.

In the event that � is an eigenvalue of (5.10), the only part of our calculation that
changes is that we no longer have an explicit expression for a frame for `

�(+1;�), which
now comprises a combination of growing and decaying solutions. Nonetheless, we always
have

�n  I(`�(+1;�);XD,R+(�))  n,

so that

s(`D, `
+
R(�); `

�(�1;�), `�(+1;�)) = I(`�(+1;�);XD,R+(�))� n  0.

We see that in this case,

Mor(H;�) = �Mas(`�(·;�), `+R(�); R̄) � �Mas(`�(·;�), `D; R̄). (5.17)

For the reverse inequality, we recall from Section 2.3 that when the Dirichlet Lagrangian
plane `D is taken as the target for flow under the Schrödinger equation, the spectral curves
will be monotonic, and in particular strictly decreasing when viewed in the (�, x)-plane. It
follows that for any ✏ > 0 we have the inequality

�Mas(`�(·;�� ✏), `D; R̄)  �Mas(`�(·;�), `D; R̄);

i.e., the number of crossings along the vertical line at � � ✏ is less than or equal to the
number of crossings along the vertical line at � (see Figure 1). Since we’re away from
essential spectrum, the eigenvalues are discrete, and we can choose ✏ > 0 small enough so
that (5.10) has no eigenvalues on the interval [�� ✏,�). Since �� ✏ is not an eigenvalue, we
see that

Mor(H;�) = Mor(H;�� ✏) = �Mas(`�(·;�� ✏), `D; R̄)
 �Mas(`�(·;�), `D; R̄).

(5.18)

Combining (5.17) and (5.18), we obtain the claimed equality, and this completes the proof
of Theorem 1.3. ⇤

The proof of Theorem 1.4 is essentially identical, based on Theorem 1.6 from [23].

5.3.1 Reduction to the Case of Large Bounded Intervals

We conclude this section on the Schrödinger equation on R by observing a connection between
the current analysis and results such as [5, 41], in which it is shown that in certain cases the
eigenvalues for a linear Hamiltonian system on R can be approximated by the eigenvalues
of the same linear Hamiltonian system posed on a large bounded interval with appropriate
boundary conditions. Since this is e↵ectively just a long remark, we only sketch the argument.
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First, using Theorem 1.3, we see that if �1 < �2 < min, then the number of eigenvalues
that H has on the interval [�1,�2) can be computed as

N ([�1,�2)) = �Mas(`�(·;�2), `D; R̄) + Mas(`�(·;�1), `D; R̄).

Suppose neither �1 nor �2 is an eigenvalue of H. Then, recalling Remark 5.2, we can find
L > 0 su�ciently large so that for each i 2 {1, 2}, `�(x;�i) \ `D = {0} for all x � L. It
follows that

N ((�1,�2)) = �Mas(`�(·;�2), `D; (�1,+L]) + Mas(`�(·;�1), `D; (�1,+L]), (5.19)

for all L su�ciently large. By an argument similar to the one used to establish Theorem
5.1, we can show that the right-hand side of (5.19) is precisely a count of the number of
eigenvalues on the interval (�1,�2) for the half-line problem

��
00 + V (x)� = ��; x 2 (�1, L); �(L) = 0. (5.20)

Next, for each of i 2 {1, 2}, let XL(x;�i) solve the matrix equation

JX0
L(x;�i) = B(x;�i)XL(x;�i); x 2 (�1, L); XL(L;�i) =

✓
0n
In

◆
.

By homotopy invariance, we have the relation

Mas(`�(·;�i), `D; (�1,+L]) + Mas(`�(�1;�i), `L(·;�i); (�1,+L])

= Mas(`�(·;�i), `L(·;�i); (�1,+L]).

For the Maslov index on the right-hand side of this relation, crossing points indicate that �i is
an eigenvalue for the Schrödinger system on the half-line with Dirichlet boundary condition
at x = L. However, by monotonicity for the Dirichlet boundary condition, we’ve seen that
the spectral curves associated with this problem will have asymptotes at the eigenvalues of
H and consequently we see that if �i is not an eigenvalue of H we can take L su�ciently
large so that �i is not an eigenvalue of this half-line problem. We can conclude that

Mas(`�(·;�i), `L(·;�i); (�1,+L]) = 0,

so that

Mas(`�(·;�i), `D; (�1,+L]) = �Mas(`�(�1;�i), `L(·;�i); (�1,+L]).

To complete the argument, we now use Hörmander’s index again to replace the target
`
�(�1;�i) in this last Maslov index with `D. For this, we have, as usual (i.e., using (3.3)),

Mas(`�(�1;�i), `L(·;�i); (�1,+L])�Mas(`D, `L(·;�i); (�1,+L])

= s(`L(�1;�i), `D; `D, `
�(�1;�i)).

We can compute Hörmander’s index with

s(`L(�1;�i), `D; `D, `
�(�1;�i))

= I(`�(�1;�i);XL(�1;�i),XD)� I(`D;XL(�1;�i),XD).
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Using the frames

X�(�1;�i) =

✓
I

R�D�(�i)(R�)⇤

◆
; and XL(�1;�i) =

✓
I

�R�D�(�i)(R�)⇤

◆
,

we compute

I(`�(�1;�i);XL(�1;�i),XD) = �n�(2R
�
D

�(�i)(R
�)⇤)� n0(2R

�
D

�(�i)(R
�)⇤) = 0,

and likewise

I(`D;XL(�1;�i),XD) = �n�(R
�
D

�(�i)(R
�)⇤)� n0(R

�
D

�(�i)(R
�)⇤) = 0.

(In both cases, the result follows from the positivity of the matrices R�
D

�(�i)(R�)⇤.)
In this way, we see that for each of i 2 {1, 2} we have the equality

Mas(`�(�1;�i), `L(·;�i); (�1,+L]) = Mas(`D, `L(·;�i); (�1,+L]),

so that (5.19) can be expressed as

N ((�1,�2)) = Mas(`D, `L(·;�2); (�1,+L])�Mas(`D, `L(·;�1); (�1,+L]). (5.21)

Last, we can choose K > 0 su�ciently large so that for each of i 2 {1, 2}, `D\`L(x;�i) = {0}
for all x < �K. This allows us to write

N ((�1,�2)) = Mas(`D, `L(·;�2); [�K,+L])�Mas(`D, `L(·;�1); [�K,+L]). (5.22)

The right-hand side of (5.22) is now a count of the number of eigenvalues on (�1,�2) for the
bounded-interval problem

��
00 + V (x)� = ��; x 2 (�K,L) �(�K) = 0, �(L) = 0. (5.23)

Much more general results along these lines have been obtained in [5, 41], and we only
give the analysis here as an illustration of our general theory.
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