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Abstract. In this note the distribution for the occupation time of a one-dimensional

Brownian bridge process on any Lebesgue measurable set between the initial and

�nal states of the bridge is shown to be invariant under translation and reection,

so long as the translation or reection also lies between the initial and �nal states

of the bridge. The proof employs only the strong Markov property and elementary

symmetry properties of the Brownian bridge process.

Let Ws denote a standard, one-dimensional Wiener process. A Brownian bridge

from a to b on the interval [0; t], denoted Ba!b
[0;t]

(s), can be de�ned as (see [KS])

(1) Ba!b
[0;t] (s) := a(1 �

s

t
) + b

s

t
+ (Ws �

s

t
Wt); 0 � s � t:

Note that the Brownian bridge process is a standard, one-dimensional Wiener pro-

cess constrained to particular starting and ending points. An important aspect of

this process, which we employ below, is the symmetry between going from a to b

or from b to a.

The Feynman{Kac formula for a solution to the Fokker{Planck equation leads

naturally to a study of the occupation time of such a process. In particular, for the
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equation

ut =
1

2
uxx � IA(x)u; u(0; x) = �y(x);

where A is some Lebesgue measureable set, we have the solution (see [O])

u(t; x) = E
h
e�

R
t

0
IA(Xs)ds�y(Xt)

i
;

where Xt satis�es the stochastic di�erential equation

(2) dXt = dWt; X0 = x:

The delta function constrains Xt to satisfy Xt = y, leading to

u(t; x) = E
h
e�

R
t

0
IA(Ba!b

[0;t] (s))dsp(t; x; y)
i
;

where p(t; x; y) is the Wiener transition function.

The integral
Z t

0

IA(B
x!y

[0;t]
(s))ds

is the occupation time of the Brownian bridge Ba!b
[0;t]

(s) in the set A.

Proposition 1. For any Lebesgue measurable set, A, such that A � [a; b], the

distribution of the occupation time,
R t

0
IA(B

a!b
[0;t]

(s))ds, of Ba!b
[0;t]

(s) in A is invariant

under translations and reections, so long as the translation or reection also lies

in [a; b].

Proof. For simplicity, we �rst carry out the proof in the case of an interval. Let

a � c < d � b. We show that the distribution of time spent in the interval [c; d]

is the same as the distribution of time spent in the interval [b� (d� c); b], that is,

that this distribution depends only on the length of the interval [c; d].
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We observe �rst that this assertion holds trivially for the case d = b, and that

by symmetry it must also hold for c = a. Now, let Tc denote the random variable

or hitting time representing the �rst time Ba!b
[0;t]

(s) equals c|an event that occurs

with probability one, since a � c < b. (See Figure 1, below.) We remark that the

distribution of Tc depends on a; b and t.

B
t

a b

tt = 0

a

c

d

b

T
c
=τ t

Figure 1. The Brownian bridge process.

We condition on Tc and (intuitively) consider the random variable

B� :=
h Z t

0

I[c;d](B
a!b
[0;t] (s))ds

���Tc = �
i

for all � 2 [0; t]. For z 2 Rwe can write the distribution function for the occupation

time on [c; d] in terms of B� as

(3)

Pr
h Z t

0

I[c;d](B
a!b
[0;t] (s))ds � z

i
=

Z t

0

Pr
h Z t

0

I[c;d](B
a!b
[0;t] (s))ds � z

���Tc = �
i
d�Tc(� );

where �Tc(� ) is the probability measure associated with the random variable Tc.
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Let Bc!b
[�;t]

(s) represent the Brownian bridge on the interval [�; t] that goes from

c to b. Since d � b we have c � b � (d � c), so that the amount of time spent by

Bc!b
[�;t]

(s) in either of the intervals [c; d] or [b � (d � c); b] is exactly the time spent

by B� in that interval. But, by the symmetry discussed above, the distribution

of time spent by Bc!b
[�;t]

(s) in [c; d] is the same as the distribution of time spent by

Bc!b
[�;t]

(s) in [b � (d � c); b]. Hence, we can make the following computation, which

begins with the right-hand side of (3).

Z t

0

Pr
h Z t

0

I[c;d](B
a!b
[0;t] (s))ds � z

���Tc = �
i
d�Tc(� )

=

Z t

0

Pr
h Z t

�

I[c;d](B
c!b
[�;t] (s))ds � z

i
d�Tc(� )

=

Z t

0

Pr
h Z t

�

I[b�(d�c);b](B
c!b
[�;t] (s))ds � z

i
d�Tc(� )

=

Z t

0

Pr
h Z t

0

I[b�(d�c);b](B
a!b
[0;t] (s))ds � z

���Tc = �
i
d�Tc(� )

= Pr
h Z t

0

I[b�(d�c);b](B
a!b
[0;t] (s))ds � z

i
:

We note that the �rst and third equalities follow from the strong Markov property

of the Brownian bridge process (see [FPY]). This completes the proof in the case

of intervals, where reections are equivalent to translations.

The assertion regarding Lebesgue measurable sets can be obtained similarly. Let

Ad
c represent a Lebesgue measurable set with endpoints c and d. Then

Z t

�

IAd
c
(Bc!b

[�;t] (s))ds
d
=

Z t

�

I ~Ab
b�(d�c)

(Bc!b
[�;t] (s))ds;

by symmetry, where ~Ab
b�(d�c)

is the reection of Ad
c with upper endpoint b and

d
=

denotes equality in distribution.
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Using this observation, we compute as before

Pr
h Z t

0

IAd
c
(Ba!b

[0;t] (s))ds � z
i

=

Z t

0

Pr
h Z t

0

IAd
c
(Ba!b

[0;t] (s))ds � z

���Tc = �
i
d�Tc(� )

=

Z t

0

Pr
h Z t

�

IAd
c
(Bc!b

[�;t] (s))ds � z
i
d�Tc(� )

=

Z t

0

Pr
h Z t

�

I ~Ab
b�(d�c)

(Bc!b
[�;t] (s))ds � z

i
d�Tc(� )

=

Z t

0

Pr
h Z t

0

I ~Ab
b�(d�c)

(Ba!b
[0;t] (s))ds � z

���Tc = �
i
d�Tc(� )

=

Z t

0

Pr
h Z t

0

I
A
a+(d�c)
a

(Ba!b
[0;t] (s))ds � z

���Tc = �
i
d�Tc(� )

= Pr
h Z t

0

I
A
a+(d�c)
a

(Ba!b
[0;t] (s))ds � z

i
;

where A
a+(d�c)
a is the reection of ~Ab

b�(d�c)
(thus a translation of Ad

c ) with lower

endpoint a, and again we have employed the strong Markov property.

This yields the result for translations. The result regarding reections follows

similarly. �
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