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Abstract. We study the stability and pointwise behavior of perturbed viscous shock

waves for a general scalar conservation law with constant di�usion and dispersion.

Along with the usual Lax shocks, such equations are known to admit undercompres-

sive shocks. We unify the treatment of these two cases by introducing a new wave-

tracking method based on \instantaneous projection," giving improved estimates

even in the Lax case. Another important feature connected with the introduction of

dispersion is the treatment of a non-sectorial operator. An immediate consequence

of our pointwise estimates is a simple spectral criterion for stability in all L

p

norms,

p � 1 for the Lax case and p > 1 for the undercompressive case.

Our approach extends immediately to the case of certain scalar equations of higher

order, and would also appear suitable for extension to systems.

1. Introduction

We consider the scalar viscous conservation law

(1:1)

u

t

+ f(u)

x

= (b(u)u

x

)

x

+ u

xxx

; f; u; x 2 R; t 2 R

+

u(0; x) = u

0

(x);

where the constant dispersion has been scaled to unity, b 2 C

N

(R); N � 2, such that

b(�u(x)) � b

0

> 0, f 2 C

N

(R) and u

0

(x)! u

�

as x! �1. We will be concerned

with the stability of traveling wave solutions to (1.1), that is, solutions of the form

�u(x� st), which satisfy �u(�1) = u

�

and the Rankine{Hugoniot condition

s(u

+

� u

�

) = f(u

+

)� f(u

�

):

By a shift of coordinates we may take without loss of generality s = 0. We will as-

sume non-sonic shocks, that is f

0

(u

�

), f

0

(u

+

) 6= s, but note that undercompressive

shocks|viscous pro�les for n � n systems of conservation laws having fewer than

the n+1 entering characteristics of the Lax case|are allowed, and as they contain

both an incoming and an outgoing characteristic, will be the focus of the analysis.

For convenience, we will refer to the above hypotheses together as (H).

A number of the preliminary results presented here are valid for the case b(�)

nonconstant, but our nonlinear stability result is only valid in the case b(�) constant.

The di�culty we encounter in extending this result to the case of nonconstant

di�usion lies in the small time behavior of the Green's function of the linearized
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2 P. HOWARD AND K. ZUMBRUN

operator. For equations with odd order, the Green's function tends to oscillate with

increasing rapidity as time goes to zero (see, e.g., [KF]). Such oscillatory behavior

is di�cult to take advantage of within the framework or our analysis. In the case

of even order equations, however, our methods will extend to nonconstant di�usion

(see Section 7).

While a number of works regarding the stability of Lax shocks in the presence

of di�usion only have appeared [G, H.2, L.1, MN, SX, ZH], to date relatively few

results have been obtained either on the stability of undercompressive waves or

for shock waves in the presence of dispersion. For a history and discussion of

undercompressive waves, we refer the reader to [LZ.1{2], and for shock waves in

the presence of dispersion to [D]. We mention here only a few results that seem

most relevant to this paper. In 1987, Shearer et al [SSMP] solved the Riemann

problem for a non-strictly hyperbolic 2 � 2 system of conservation laws with an

undercompressive shock, indicating that in certain cases such non-Lax waves may

be necessary to consider. Zumbrun et al [ZPM] gave numerical evidence in 1992

that undercompressive shocks for certain 2� 2 systems are stable, and in 1991 Wu

[Wu] showed that undercompressive shocks for the single conservation law

u

t

+ (u

3

)

x

= 0

can be approximated by smooth traveling wave solutions to the modi�ed Korteweg{

de Vries equation,

(1:2) u

t

+ (u

3

)

x

= �u

xxx

+ �u

xx

;

a model equation for Magnetohydrodynamics (MHD). Wu further observed numer-

ically that the corresponding undercompressive shocks appeared stable. Working

with 2� 2 systems, Liu and Zumbrun [LZ.1-2] provided the �rst analytic stability

results for undercompressive shocks in 1995. Dodd then showed in 1996 that for

� su�ciently small in (1.2), certain undercompressive viscous shock solutions to

(1.2) are stable [D]. An important aspect of Dodd's analysis is the incorporation

of additional e�ects of dispersion not considered in [LZ.1-2], a feature that has

received relatively little study; to our knowledge, the only other analytic shock sta-

bility result for combined dispersion{di�usion is a much earlier analysis of scalar

Lax shocks for the KdV{Burgers equation carried out by Khodja [Ko], via energy

methods .

In this paper we study the general dispersive{di�usive conservation law (1.1),

and put forth a method which appears suitable for considerable extension. In

particular, we employ the pointwise approach developed in [L.2{3, LZ.1{2, SX, SZ,

ZH] to establish a spectral criterion for evaluating the stability of equations of form

(1.1), extending the analysis of [H, ZH] to the case with dispersion. The most

striking new development is the small time analysis in which dispersion plays a key

role. In this case, the operator is no longer sectorial, but rather generates a C

0

semigroup. We must then take a higher order expansion in the rescaling argument

of [AGJ, GZ] and take advantage of oscillations (dispersion) in our estimates.

A di�culty in the analysis of both the Lax and undercompressive cases is that

the perturbation will not generally approach the traveling wave itself, but rather



DISPERSIVE{DIFFUSIVE SHOCK WAVES 3

will approach a translate. In the Lax case it is well known that this translate can

be determined through conservation of mass [LZ.2]. In the undercompressive case,

however, this is not possible, and we employ the instantaneous projection of [ZH]

in order to track the perturbation's location as it evolves in time. Applying this

approach to the Lax case also, we unify the treatment of Lax and undercompressive

waves, in addition showing that convergence along the instantaneous translate is

faster than convergence to the time-asymptotic translate. (This can be seen by

comparing the results here with those of [H.2] and Nishihara's exact analysis of

Burgers equation [N]). Indeed, we obtain in the Lax case a convergence result even

for data not in L

1

(speci�cally, for data decaying as �(1 + jxj)

�r

; r > 1=2; � � 1),

in which case the time-asymptotic translate is not well-de�ned.

As opposed to the weighted-norm approach of Dodd, our method of analysis gives

detailed information in the far �eld, and develops a qualitative behavioral picture

of the wave interaction. For instance, we observe directly that oscillatory di�usion

waves are swept through the shock|shifting it|and out to the far �eld at +1,

where they decay like heat kernels. Further, while approaches involving energy

methods appear generally unsatisfactory for dealing with the outgoing di�usion

waves that arise in the case of undercompressive shocks arising in systems (unless

combined with the pointwise approach as in [SX]), methods such as those developed

here have previously been shown suitable for the analysis of systems [ZH].

That extension of our approach to systems is of interest is clear, for example,

from [SSMP, ZPM, LZ.1{2], while the importance of extension to higher order

scalar equations is amply demonstrated by recent developments in this context.

For example, it has been shown that for the fourth order scalar equation

(1:3) h

t

+ (h

2

� h

3

)

x

= ��

3

(h

3

h

xxx

)

x

;

viscous shocks arise and display a variety of intriguing behavior [BMS]. Numeri-

cal evidence indicates that (1.3)|governing thin liquid �lms|admits a countable

family of viscous shock solutions with alternating stability, accumulating at an un-

dercompressive viscous shock. This robust stability behavior is indicative of the

need for a readily veri�able stability criterion, such as that of [ZH].

In general, we see from equations such as (1.2) and (1.3) that high-order terms

a�ect solutions in a fundamental manner, due both to the delicate nature of singular

perturbation problems, and the large high-order coe�cients that arise in nature,

and so cannot be ignored [W, SMP, LH, BMS]. By reducing the issue of stability

to the Evans function criterion of [ZH], we develop a context in which these issues

may be studied.

Before turning to the statements of our main two results, we take a moment

to set the stage. When (1.1) is linearized about a viscous pro�le we arrive at the

convection{di�usion{dispersion equation with constant dispersion

(1:4) v

t

+ (a(x)v)

x

= (b(x)v

x

)

x

+ v

xxx

;

where a(x) = f

0

(�u(x)) � b

0

(�u(x))�u

x

, b(x) = b(�u(x)), and higher order error terms

have for the moment been omitted. The eigenvalue equation associated with (1.4)

is

(1:5) v

xxx

+ (b(x)v

x

)

x

� (a(x)v)

x

= �v:
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From (H), and the above de�nitions, we obtain the following consequences, (C):

(i) a(x) 2 C

N�1

(R); b(x) 2 C

N

(R);

(ii) j

@

N�1

@x

N�1

(a(x)� a

�

)j; j

@

N

@x

N

(b(x)� b

�

)j = O(e

��jxj

) � > 0;

(iii) a

�

6= 0;

(iv) b(x) � b

0

> 0;

where lim

x!�1

a(x) = a

�

and lim

x!�1

b(x) = b

�

.

As equations of form (1.4) are of interest in their own right, it is useful to think

of these consequences as assumptions, in which case we obtain a result independent

of (1.1). We remark that (ii) and (iii) are results of our assumption that �u(�) is

not a sonic shock. Following the notation of [ZH], we denote our stability criterion

by

(D): For the operator Lv := v

xxx

+ (b(x)v

x

)

x

� (a(x)v)

x

, a simple eigenvalue

at � = 0 is the only e�ective eigenvalue with nonnegative real part.

Here, e�ective eigenvalues are de�ned as zeroes of the Evans function W

0

(�),

de�ned below (see (2.4) and (2.5)), and we may take as our space of eigenfunctions

any L

p

space, p < 1, so long as the eigenfunctions decay at �1. These coincide

with standard eigenvalue{eigenfunction pairs away from essential spectrum. It will

often be useful to divide (D) into the following two conditions, which taken together

are equivalent to (D).

(I) Excepting the origin, all eigenvalues of the operator L lie in the strict negative-

real half-plane, Re(�) < 0.

(II) The eigenvalue at the origin arising from translation invariance gives rise to a

simple zero of the Evans function.

Typically, one employs energy estimates to show that there are no standard

eigenvalues � 6= 0 with non-negative real part, then determines the order of the

zero at � = 0 by an Evans function calculation [AGJ, D, GZ, ZH]. Alternatively,

Brin has developed a technique for numerically evaluating (D) [B]. In the present

paper (D) will be assumed to hold true.

A consequence of (D) is that, excepting the origin, the entire point spectrum of

L, and indeed all zeroes of the Evans function W

0

(�), must lie strictly to the left

of a contour in the complex plane described through

(1:6) �

d

(k) := �id

3

k

3

� d

2

k

2

� id

1

k � d;

where d; d

i

2 R

+

and will be chosen su�ciently small in the forthcoming analysis.

We will refer to this contour as �

d

(see Figure 5.1). This assertion is proved in

Lemma 3.3.

We now state the �rst of two theorems.
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Theorem 1.1. Under Conditions (C) and (D), and for some constants C;

~

C, M ,

n+m � N + 1, and � > 0 depending on the asymptotic behavior of a(x) and b(x)

and also on the eigenvalues of L, that is the values of d; d

1

; d

2

and d

3

in (1.6), the

Green's function, G(t; x; y), for (1.4) satis�es the following estimates:

(I) For jx� yj � Kt, K su�ciently large,

(i) x� y � 0

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�

n+m+1

3

)e

�

jx�yj

3=2

M

p

t

(ii) x� y � 0

G(t; x; y) = O(t

�1=3

)e

��jx�yj

and for n+m � 1

@

n+m

@x

n

@y

m

G(t; x; y) =

8

<

:

O(t

�

n+m+1

3

)e

��jx�yj

x�y

3

p

t

�

~

C

O(t

�

n+m+1

3

)

�

x�y

3

p

t

�

n+m

2

�

1

4

e

��jx�yj

x�y

3

p

t

�

~

C

(II) For jx� yj � Kt, K as above,

(L+) Lax Case (a

+

< 0 < a

�

; x � 0)

(i) y � 0 � x,

@

n+m

@x

n

@y

m

G(t; x; y) = O(e

��jxj

)O(t

�m=2

)e

�

(x�y�a

�

t)

2

Mt

+O(e

��jxj

)O(t

�(n+m+1)=2

)e

�

(x�y�a

�

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x)

�

I

fjx�yj�ja

+

jtg

(ii) 0 � y � x

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

+

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x)

�

I

fjx�yj�ja

+

jtg

(iii) 0 � x � y

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

+

t)

2

Mt

+O(e

��jxj

)O(t

�m=2

)e

�

(x�y�a

+

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x)

�

I

fjx�yj�ja

+

jtg

(L-) Lax Case (a

+

< 0 < a

�

; x � 0) (Estimates Symmetric)

(U+) Undercompressive Case (a

�

; a

+

> 0; x � 0)
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(i) y � 0 � x

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�

a

+

a

�

y�a

+

t)

2

Mt

+O(e

��jxj

)O(t

�m=2

)e

�

(x�

a

+

a

�

y�a

+

t)

2

Mt

+O(e

��jyj

)O(t

�(n+1)=2

)e

�

(x�

a

+

a

�

y�a

+

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x; y)

�

I

fjx�

a

+

a

�

yj�ja

+

jtg

(ii) 0 � y � x

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

+

t)

2

Mt

+O(e

��jyj

)O(t

�(n+1)=2

)e

�

(x�y�a

+

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x; y)

�

I

fjx�yj�ja

+

jtg

(iii) 0 � x � y

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

+

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x; y)

�

I

fjx�yj�ja

+

jtg

(U-) Undercompressive Case (a

�

; a

+

> 0; x � 0)

(i) y � x � 0

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

�

t)

2

Mt

+O(e

��jxj

)O(t

�m=2

)e

�

(x�y�a

�

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x; y)

�

I

fjx�yj�ja

�

jtg

(ii) x � y � 0

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

�

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x; y)

�

I

fjx�yj�ja

�

jtg

(iii) x � 0 � y

@

n+m

@x

n

@y

m

G(t; x; y) = O(t

�(n+m+1)=2

)e

�

(x�y�a

+

t)

2

Mt

+

�

@

n+m

@x

n

@y

m

P (x; y)

�

I

fjx�yj�ja

+

jtg

:
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Here, the projection kernel P is de�ned by

P (x; y) = �u

x

(x)�(y);

where �(y) is the eigenfunction for � = 0 of the linear operator L

�

associated with

the problem adjoint to (1.4), and can be written in terms of the asymptotically de-

caying solutions of (1.5). For the undercompressive case, we have (@

n

=@y

n

)�(y) =

O(e

��jyj

), for n � 1, and for the Lax case �(y) is constant.

We observe that the estimates of Theorem 1.1 match those of Theorem 8.3 of

[ZH], except for the dispersive e�ect of t

�1=3

blow-up as t! 0 (for jx� yj � Kt),

rather than t

�1=2

blow-up as occurs in the purely di�usive case. For x � y, this

small-time behavior matches what we would expect for a sectorial operator, but

for x � y, the lack of time dependence in the exponential decay is a result of our

non-sectorial operator. We remark that these estimates match the exact Green's

function of the Airy equation u

t

= u

xxx

(see [KF]), except that our positive di�usion

gives, additionally, exponential jx�yj-decay. Further comments regarding the type

of Green's function estimates of Theorem 1.1 can be found in [H.1] and [ZH].

We turn now to developing the framework in which our stability result will lie,

outlining the class of initial data we will be concerned with (decaying algebraically

and slower) and the type of stability we will be concerned with (L

p

orbital stability

for all 1 � p � 1 norms in the case of Lax shocks and 1 < p � 1 norms in the

case of undercompressive shocks). We shall establish this result through detailed

pointwise bounds on the solution v(t; x) of (1.4), which are of considerable interest

in their own right.

Let �u(x�st) be a traveling wave solution to (1.1), and without loss of generality

take s = 0 to get the standing wave �u(x). Since solutions with initial data near �u(x)

will typically approach a translate of �u(x) rather than �u(x) itself, we will introduce

a tracking mechanism �(t) that will be determined in the course of the analysis.

Let u(t; x) be another solution to (1.1) and de�ne

(1:7) v(t; x) := u(t; x+ �(t))� �u(x);

to be the perturbation of u from the viscous shock. We will choose �(t) in such a way

that u(t; x + �(t)) will remain near �u(x) (in an appropriate sense to be discussed)

at each time t. In this manner we will always compare u(t; x) against the shape of

�u(x) rather than its position. We assume �(0) = 0, that is that we indeed begin

with a perturbation to the viscous shock.

Substituting u(t; x+ �(t)) into (1.1) yields the perturbation equation

(1:8) v

t

� v

xxx

� (b(x)v

x

)

x

+ (a(x)v)

x

= Q(v; v

x

)

x

�

_

�(t)(�u

x

+ v

x

);

where

a(x) := f

0

(�u(x))� b

0

(�u(x))�u

x

(x); b(x) = b(�u(x))

and

Q(v; v

x

) := O(v

2

) +O(vv

x

)

is a smooth function of its arguments. In the case that b(�) is constant, Q(v) =

O(v

2

), and we do not need an estimate on v

x

.
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We note that the Green's function estimates of Theorem 1.1 correspond to those

for the equation found by setting the right-hand side of (1.8) to zero. Letting

G(t; x; y) continue to represent that Green's function, Duhamel's Principle gives

the integral representation of v

(1:9)

v(t; x) =

Z

+1

�1

G(t; x; y)v

0

(y)dy

+

Z

t

0

Z

+1

�1

G(t� s; x; y)

h

Q(v(s; y))

y

�

_

�(s)(�u

y

(y) + v

y

(s; y))

i

dyds:

Using the fact that �u

x

is an eigenfunction of the linearized eigenvalue equation (for

� = 0) we see that e

Lt

�u

x

= �u

x

, so that (after integration by parts of the nonlinear

term)

(1:10)

v(t; x) =

Z

+1

�1

G(t; x; y)v

0

(y)dy � �(t)�u

x

�

Z

t

0

Z

+1

�1

G

y

(t� s; x; y)

h

Q(v(s; y))�

_

�(s)v(s; y)

i

dyds:

We now turn to the critical task of choosing �(t). Ignoring the higher order

contribution of the term

_

�v in (1.10), we see that the principal e�ect of � (in the

more general framework of systems) is to shift v along the direction �u

x

, that is,

in the direction tangent to the manifold of translates of �u. Note that Spanf�u

x

g

comprises the nondecaying modes of the linearized solution operator e

Lt

, i.e., the

e�ective eigenspace of L at � = 0 (see [ZH] and the remarks following the statement

of Theorem 1.1 here). Following the usual strategy, therefore, we choose � so as to

annihilate an appropriately chosen projection onto Spanf�u

x

g. The standard choice

of projection, motivated by �nite-dimensional ODE analysis, would be the zero

eigenprojection of L, for which the analog in our case is the e�ective eigenprojection

Pf :=

R

P (�; y)f(y)dy; this choice, for example, was the basis of the stability

analysis in [LZ.2]. This choice, however, is not optimal in the present setting, due to

the appearance of the indicator function multiplying P (x; y) in the Green's function

bounds of Theorem 1.1, a purely PDE phenomenon related to the accumulation

of essential spectrum at � = 0. Instead, we employ a nonlinear version of the

instantaneous projection, de�ned in [ZH].

De�nition 1.1. The instantaneous projection of v is given as

'(t; x; v; �) := '

L

(t; x; v

0

)� '

N

(t; x; v;

_

�)

=

�

Z

ja

+

jt

0

P (x; y)v

0

(y)dy +

Z

0

�ja

�

jt

P (x; y)v

0

(y)dy � �(t)�u

x

�

�

�

Z

t

0

Z

ja

+

j(t�s)

0

P

y

(x; y)

h

Q(v(s; y))�

_

�(s)v(s; y)

i

dyds

�

Z

t

0

Z

0

�ja

�

j(t�s)

P

y

(x; y)

h

Q(v(s; y))�

_

�(s)v(s; y)

i

dyds

�

;
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where '

L

represents the linear part of ' and '

N

represents the nonlinear part.

Note that ', up to exponentially small tail errors (resulting from approximation

by I

fjyj�ja

�

tjg

of the exact quantity I

fjx�yj�ja

�

tjg

), is exactly the contribution to v

in (1.10) of terms in the Green's function involving the projection kernel P . It has

a physical interpretation as the superposition of all (stationary) time-asymptotic

states that have been excited up to time t by the arrival at x = 0 of a signal from

the far �eld at y.

In the scalar Lax setting, the instantaneous projection lends itself to a particuarly

direct interpretation. The excited terms E(t; x; y) = P (x; y)I(t) of Theorem 1.1 are

indicative of the mass of G(t; x; y) that does not decay in time. Comparing this

observation with our de�nition v(t; x) = u(t; x+ �(t))� �u(x); we see that this non-

decaying mass is directly connected to our shift from the stationary shock: mass

that fails to decay in time forces u(t; x) toward a translate of �u(x) rather than

�u(x) itself. More precisely,

R

u(0; x) � �u(x)dx will (in general) not be zero. The

di�erence between u(0; x) and �u(x) is principally a di�erence of shape. As t!1,

however, the shape of u(t; x) (in the case of stability) converges to that of �u(x).

The mass between u(t; x) and �u(x) must be conserved, forcing a shift. What the

instantaneous projection measures is the v

0

-weighted contribution of these excited

terms at time t. We may heuristically think of '(t; x; v; �), then, as the mass that

has accumulated at the origin at time t. With this observation in mind, we choose

�(t) so that '(t; x; v; �) � 0. Persuasive as this motivating argument may or may

not be, the wisdom of this choice of �(t) will ultimately be determined by the size

of v(t; x) (see Theorem 1.2).

Since the estimate we require in order to obtain a bound on v(t; x) is on

_

�(t)

we consider the relation (@=@t)'(t; x) � 0. This yields (recalling that P (x; y) =

�u

x

(x)�(y))

(1:11)

_

�(t)�u

x

= �u

x

(x)�(ja

+

jt)v

0

(ja

+

jt) + �u

x

(x)�(�a

�

t)v

0

(�a

�

t)

+

Z

t

0

�u

x

(x)�

y

(ja

+

j(t� s))

h

Q(v(s; ja

+

j(t� s)))�

_

�(s)v(s; ja

+

j(t� s))

i

ds

+

Z

t

0

�u

x

(x)�

y

(�a

�

(t� s))

h

Q(v(s;�a

�

(t� s)))�

_

�(s)v(s;�a

�

(t� s))

i

ds;

where we need not put j � j on a

�

because it will be positive in both the Lax and

undercompressive case. We remark here that in the Lax case P

y

� 0 so that the

integrals in (1.11) are both zero and the properties of

_

�(t) are determined without

further work (see [HZ]).

In general, we have the estimate

(1:12)

j

_

�(t)j � j�(ja

+

jt)v

0

(ja

+

jt)j+ j�(�a

�

t)v

0

(�a

�

t)j

+

�

�

�

Z

t

0

�

y

(ja

+

j(t� s))

h

Q(v(s; ja

+

j(t� s)))�

_

�(s)v(s; ja

+

j(t� s))

i

ds

�

�

�

+

�

�

�

Z

t

0

�

y

(�a

�

(t� s))

h

Q(v(s;�a

�

(t� s)))�

_

�(s)v(s;�a

�

(t� s))

i

ds

�

�

�

:

We proceed now with some de�nitions and our results on stability.
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De�nition 1.2. (Class of initial data.) Denote by �

r

, r > 0, the space of functions

d � 0 such that d(x) � C(1 + jxj)

�r

.

We remark that our analysis for the undercompressive case can accomodate

data in �

r

for any r > 1 (thus integrable), and indeed for the slightly larger set

�, de�ned as in [H.2] (De�nition 1.3). In particular, we can accomodate integrable

data that decays at the non-integrable rate (1 + jxj)

�1

.

De�nition 1.3. Denote by � the space of function d � 0 such that d 2 L

1

(R) \

L

1

(R), d(�) nonincreasing on x � 0, nondecreasing on x � 0, d(�) even, and

d(t) � C()d(t) 8 > 0, C() constant in t.

For the Lax case, our analysis can accomodate data in �

r

for any r > 1=2 (thus

not necessarily integrable), with an extended class similar to that of De�nition 1.3.

De�nition 1.4. (Asymptotic stability.) We say that a traveling wave solution �u

to (1.1) is asymptotically stable in norm jj � jj if there exists an � > 0 such that if

another solution, u, to (1.1) satis�es jju(0; x)� �u(x)jj < �, then jju(t; x)� �u(x�st)jj

decays to zero in time.

De�nition 1.5. (Orbital stability.) We say that a traveling wave solution �u to

(1.1) is orbitally stable in norm jj � jj if there exists an � > 0 and a translate of �u, say

�u

l

:= �u(x�l), such that if another solution, u, to (1.1) satis�es jju(0; x)��u(x)jj < �,

then jju(t; x)� �u

l

(x� st)jj decays to zero in time.

Theorem 1.2. Suppose �u(x�st) is a traveling wave solution to (1.1), with b(u) =

b

0

> 0 constant. If Assumptions (H) and Condition (D) hold, then we obtain the

following results. For data

u

0

(x)� �u(x) 2 A

�

:= fv

0

(x) : jv

0

(x)j � �d(x); d 2 �

r

g;

� su�ciently small, r > 1=2 in the Lax case, r > 1 in the undercompressive case,

we have:

(I) (Incoming waves) If f

0

(u

�

) > s; x � 0, or f

0

(u

+

) < s; x � 0,

ju(t; x+ �(t))� �u(x� st)j � C�

h

t

�1=3

e

��t

d(x)+ e

�

�

2

jx�stj

t

1=2

d(t)+d(jx� stj+ t)

i

:

(O) (Outgoing waves) If f

0

(u

+

) > s; x � 0,

ju(t; x+ �(t))� �u(x� st)j � C�

h

t

�1=3

e

��t

d(x) + e

�

�

2

jx�stj

t

1=2

d(t)

+

h

t

�1=2

^ d((x� st)� a

+

t) +K(t; (x� st)� a

+

t)

i

;

where K is the heat kernel

K(t; x) := (1 + t)

�1=2

e

�

x

2

2Mt

;

and j

_

�(t)j � C�d(t).

Remark. We note that our proof can be altered to accomodate data that is

integrable, but decays only as fast as (1+ jxj)

�1

. In this case, we �nd that the shift
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�(t) is bounded by C ln t and thus may be unbounded as t ! 1. Such an e�ect

occurs in general for systems; a similar phenomenon can be seen in the quarter-plane

analysis of Liu and Yu [LY]. We remark that such sublinear drift is not inconsistent

with hyperbolic rescaling, since the t!1 limit still leads to the Riemann solution.

The term t

�1=3

e

��t

d(x), which clearly blows up as t! 0, arises from the small

time estimates on G(t; x; y) in Theorem 1.1. This term is indicative of the behavior

of the Green's function for the Airy equation (u

t

= u

xxx

) as t! 0. For non-smooth

data (e.g., a delta function), we do not expect good small-time behavior. Our focus

here, however, is on large time behavior, and so we allow this blow-up. In Section

7 we outline a method by which it can be dealt with through additional regularity

assumptions on v

0

(x).

Theorem 1.2 provides two immediate corollaries on stability.

Corollary 1.3. (Linear Stability.) Under Assumptions (H), linearized L

p

orbital

stability of viscous shock solutions to (1.1) with respect to perturbations in A = L

1

is equivalent to (D). In the case of stability

v(t; �)� '

L

(t; �)! 0; as t!1

with no rate given. For

A := fv

0

(x) : jv

0

(x)j � Cd(x); d 2 �

r

g;

r > 1=2 in the Lax case, r > 1 in the undercompressive case, we have the following

rates (t � T , some T > 0):

(I) (Lax case, a

�

> s > a

+

)

kv(t; �)� '

L

(t; �)k

L

p

� Ct

1=2�r

;

(II) (Undercompressive case, , a

�

, a

+

> s)

kv(t; �)� '

L

(t; �)k

L

p

� Ct

�1=2(1�1=p)

:

Corollary 1.4. (Nonlinear stability.) Suppose �u(x�st) is a traveling wave solution

to (1.1), with b(u) = b

0

> 0 constant. Then under Assumptions (H) and Condition

(D), �u(x�st) is nonlinearly stable in L

p

with respect to data in u(0; x)� �u(x) 2 A,

A := fv

0

(x) : jv

0

(x)j � �d(x); d 2 �

r

g;

r > 1=2 in the Lax case, r > 1 in the undercompressive case, with rates of decay in

L

p

given in Corollary 1.3

Proof of Corollaries 1.3 and 1.4: Corollary 1.3 is proved during the nonlinear

analysis of Theorem 1.2. For the Lax case the proof of Corollary 1.4 is immediate

from the similar analysis in [H.2]. For the undercompressive case, the computation

is routine, and we provide only one indicative example. For the term t

�1=2

^ d(x�
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st� a

+

t), we note that clearly in L

1

norm we have an estimate by C(1 + t

1=2

)

�1

.

For 1 � p <1, we compute

Z

+1

�1

�

t

�1=2

^ d(y � st� a

+

t)

�

p

dy � C

Z

+1

�1

(1 + t)

�(1�p)

d(y � st� a

+

t)dy

� C(1 + t

1=2

)

1�p

:

Hence

kt

�1=2

^ d(y � st� a

+

t)k

L

p

� C(1 + t

1=2

)

1�p

p

:

�

The implications of Theorem 1.2(I) are discussed at length in [H.2] following the

statement of Theorem 1.1. We note here that extension to nonconstant di�usion

and/or dispersion would at least require additional regularity on initial data (H�older

continuity, for example). Moreover, in the case of nonconstant dispersion, there

appears a need for an additional restriction, such as c

0

(x)+b(x) >

~

b

0

> 0. Extension

to higher order scalar equations and systems are discussed in Section 7.

We remark �nally that for the case of systems, there will generally be both

impinging characteristics and characteristics passing through the origin so that all

terms above arise. To complicate matters more, di�usion waves can signal back

to the shock giving rise to resonant waves [SX,GSZ]. Though there are still other

factors (see, e.g., [L.3]) it would appear that a similar nonlinear analysis could be

extended to this crucial case.

Plan of the paper. In Section 2 we provide a basic framework for the analysis,

which essentially consists of four tiers of estimates, on: (1) the growth and decay

modes for the eigenvalue ODE Lv = �v, (2) the Green's function G

�

(x; y) for the

operator L � �I, (3) the time-propagating Green's function G(t; x; y) and (4) the

perturbation v(t; x). In Section 3 we carry out estimates (1) and (2), while in

Section 4 we carry out estimate (3) for small time. In Section 5 we make estimate

(3) for large time, and in Section 6 we estimate the perturbation v(t; x). In the

�nal section, Section 7, we discuss related work, applications and open problems.

2. Preliminary Observations

Our approach to the Green's function estimates will follow [H.1, ZH]. We consider

the eigenvalue equation

(2:1) Lv = �v;

or (1.5) written in terms of L, de�ned in Condition (D). In particular, we solve the

associated Green's function equation

(L� �)v = ��

y

(x):

If we let R(�) := (� � L)

�1

denote the resolvent operator, then (2.1) is solved by

the Green's function

G

�

(x; y) = R(�)�

y

(x)

wherever R(�) is de�ned (whenever � =2 �(L) := spectrum of L).
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We will carry out the computation of G

�

(x; y) in terms of the solutions of (2.1).

Our notation will be to let � denote the (unique) decay modes associated with

(2.1), so that �

+

decays at +1 and �

�

decays at �1. On the other hand,  will

denote the growth modes associated with (2.1), so that  

+

becomes unbounded at

+1 and  

�

becomes unbounded at �1. (Note that away from essential spectrum

solutions always either grow or decay exponentially at �1 and that, for example,

it may be the case that �

+

=  

�

. The essential spectrum boundary is precisely

that contour along which these solutions change from decaying to growing and vice

versa.)

The �rst di�culty we face in our analysis is that the asymptotic growth and

decay rates of � and  are not easily computed in closed form. We note that at

�1 (1.5) becomes

v

xxx

+ b

�

v

xx

� a

�

v

x

� �v = 0;

so that solutions of the form v � e

�x

give rise to the cubic equation

(2:2) �

3

+ b

�

�

2

� a

�

�� � = 0;

which we solve for � near 0 by Taylor expansion. (We note before doing so that

from (2.2) it is straightforward to obtain the essential spectrum boundary contour

(� = ik), denoted �

0

(see Figure 5.1), which is the right-most of the contours

(2:3) �

�

0

(k) = �ik

3

� b

�

k

2

� ia

�

k:)

We �nd a Taylor expansion for �(�) to have the following three expressions:

�

0

(�) := �

1

a

�

�+

b

�

a

3

�

�

2

+O(�

3

)

�

�

(�) :=

�b

�

�

q

b

2

�

+ 4a

�

2

+

�

1

4

(b

�

�

q

b

2

�

+ 4a

�

)

2

+ a

�

+O(�

2

)

�

+

(�) :=

�b

�

+

q

b

2

�

+ 4a

�

2

+

�

1

4

(b

�

+

q

b

2

�

+ 4a

�

)

2

+ a

�

+O(�

2

):

Our notation will be �

�

j

, where � indicates which asymptotic value of a(x)

and b(x) to use, and Re(�

�

j

) � Re(�

�

j+1

) (away from essential spectrum and in a

su�ciently small ball around the origin).

For example, in the Lax case (a

+

< 0 < a

�

) we have �

+

1

(�) = �

�

(�), �

+

2

(�) =

�

+

(�) and �

+

3

(�) = �

0

(�), with Re(�

+

1

) � Re(�

+

2

) � 0 � Re(�

+

3

). On the other

hand, we have �

�

1

(�) = �

�

(�), �

�

2

(�) = �

0

(�) and �

�

3

(�) = �

+

(�), with Re(�

�

1

) �

Re(�

�

2

) � 0 � Re(�

�

3

).

In particular, we see that we have two decay modes and one growth mode at

+1, and two growth modes and one decay mode at �1. We will denote these

by �

+

1

; �

+

2

;  

+

3

; �

�

3

;  

�

1

, and  

�

2

, each associated with � of the same label. Further,

we can observe directly from �

0

(�); �

�

(�) and �

+

(�) that in all cases we similarly
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have this same arrangement of growth and decay modes (the same number and

labeling at each end), though the de�nitions of the �

�

j

change. We note that while

Re(�

�

1

) < 0 and Re(�

�

3

) > 0 in all cases, Re(�

�

2

) will depend upon the case under

consideration. We remark that our spectral gap, as de�ned in [GZ], will always

be positive so that the Evans function (Wronskian) can be extended (constructed)

analytically and uniquely into the essential spectrum [AGJ, GZ, J, KS]. Hence, our

analysis will not employ the Gap Lemma of [GZ, KS], but will follow in the spirit

of analyses that do.

Under this notation, we can derive a general expression for the Green's function

of (2.1) similar to that of [CH].

We write

G

�

(x; y) =

�

�

+

1

(x)A(y) + �

+

2

(x)B(y) x � y;

�

�

3

(x)C(y) x � y:

and employ the continuity of G

�

(x; y) and (@=@x)G

�

(x; y), and the jump at x = y

in @

2

=@x

2

G

�

(x; y), to compute the coe�cients A(y); B(y) and C(y) to be

A(y) =

�

�

3

(y)�

+

2

0

(y)� �

+

2

(y)�

�

3

0

(y)

W

y

(�)

B(y) =

�

+

1

(y)�

�

3

0

(y)� �

�

3

(y)�

+

1

0

(y)

W

y

(�)

0

:=

d

dy

C(y) =

�

+

1

(y)�

+

2

0

(y)� �

+

2

(y)�

+

1

0

(y)

W

y

(�)

:

We arrive, then, at the representation

G

�

(x; y) =

8

<

:

�

+

1

(x)[�

�

3

(y)�

+

2

0

(y)��

+

2

(y)�

�

3

0

(y)]

W

y

(�)

+

�

+

2

(x)[�

+

1

(y)�

�

3

0

(y)��

�

3

(y)�

+

1

0

(y)]

W

y

(�)

x � y;

�

�

3

(x)[�

+

1

(y)�

+

2

0

(y)��

+

2

(y)�

+

1

0

(y)]

W

y

(�)

x � y;

where

(2:4)

W

�

(y) = �

+

1

�

�

3

0

�

+

2

00

+ �

+

2

�

+

1

0

�

�

3

00

+ �

�

3

�

+

2

0

�

+

1

00

� �

+

1

�

+

2

0

�

�

3

00

� �

+

2

�

�

3

0

�

+

1

00

� �

�

3

�

+

1

0

�

+

2

00

;

from which we can conclude W

y

(�) = O(j�j

�1

) for y �xed. Also useful will be

Abel's representation of the Wronskian as a solution to the ODE

(2:5) W

0

�

(y) = �b(y)W

�

(y):

In Sections 4 and 5 we will achieve the estimates of Theorem 1.1 on G(t; x; y)

from Dunford's Integral (the resolvent formula for the semigroup, or in many cases

simply the inverse Laplace transform of G

�

(x; y)) [Y], which gives

G(t; x; y) =

1

2�i

Z

�

e

�t

G

�

(x; y)d�;
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where � is a contour enclosing the entire spectrum of L (possibly passing through

the point at in�nity). Dunford's Integral is justi�ed in our case in Lemma 3.7, which

relies on estimates made on G

�

(x; y) establishing the integrability of e

�t

G

�

(x; y)

into the essential spectrum. This computation is of particular importance in the

presence of dispersion, where L is non-sectorial. We �nd that G

�

(x; y) remains

analytic to the right of a sector. It is this analysis, which we do here directly, that

generally involves the Gap Lemma.

Before beginning the analysis we make a brief remark about notation. In all that

follows, the terms O(�) will be uniform in all variables other than the argument.

Constants C will be independent of x; y; t and �, but will often change without

mention from one expression to the next. We also note that the values of d; d

j

; j =

1; 2; 3 for the contour �

d

will be chosen during the course of the proof of Theorem

1.1. Finally, our notation for the Wronskian will vary between W

�

(y) and W

y

(�),

depending upon which variable is under discussion.

3. Estimates on G

�

(x;y)

In this section we prove a number of lemmas regarding the behavior of solutions

of (2.1). These results are all in the context of the consequences (C) taken as

assumptions, and L assumed to satisfy Condition (D).

Lemma 3.1. (Small j�j ODE estimates on solutions of (2.1).) Let j�j � M

s

for

some constantM

s

, and also let � lie on or to the right of �

d

. Under Assumptions (C)

and Condition (D), there exist solutions of (1.5), � and  , satisfying the following

asymptotic estimates (n;m � N + 1, N as in (C); �

+

;  

+

for x > 0; �

�

;  

�

for

x < 0; and �

�

j

de�ned as in Section 2 for j = 1; 2; 3):

(i) If Re(�

�

j

) 7 0, then

@

n

@x

n

�

�

j

(x) = e

�

�

j

x

((�

�

j

)

n

+O(e

��jxj

));

(ii) If Re(�

�

j

) ? 0, then

@

n

@x

n

 

�

j

(x) = e

�

�

j

x

((�

�

j

)

n

+O(e

��jxj

));

(iii) For i 6= j 6= k; i; j; k = 1; 2; 3,

@

m

@y

m

W (�

�

i

; �

�

k

)

W

�

(y)

=

O(1)

W

�

(0)

e

��

�

j

y

((��

�

j

)

m

+O(e

��jyj

));

where �

�

i

represent either �

�

j

or  

�

j

. Moreover, �

�

j

and  

�

j

are analytic in � for

all � on or to the right of �

d

.

Proof. The method of proof of (i) and (ii) consists of writing (2.1) as a �rst

order system and setting up a Duhamel's Principle iteration for its solution. As the

analysis is similar to that of [C, H] we omit it here. For (iii) we note that according

to (i) and (ii) we can write

@

m

@y

m

�

�

i

(y) = e

�

�

i

y

((�

�

i

)

m

+O(e

��jyj

))

@

m

@y

m

�

�

k

(y) = e

�

�

k

y

((�

�

k

)

m

+O(e

��jyj

));
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for any �

�

i

; �

�

k

.

For m = 1 we compute

@

@y

W (�

�

i

; �

�

k

)

W

�

(y)

=

1

W

�

(y)

h

�

�

i

(y)�

�

k

00

(y)� �

�

i

(y)

00

�

�

k

(y) + b(y)W (�

i

; �

k

)

i

=

1

W

�

(y)

h

e

�

�

i

y

e

�

�

k

y

�

((�

�

k

)

2

+O(e

��jyj

))� ((�

�

i

)

2

+O(e

��jyj

))

+ b(y)(�

�

k

+O(e

��jyj

))� b(y)(�

�

i

+O(e

��jyj

))

�i

=

e

(�

�

i

+�

�

k

)y

W

�

(y)

h

(�

�

k

)

2

� (�

�

i

)

2

+ b(y)(�

�

k

� �

�

i

) +O(e

��jyj

)

i

:

We recall here that Abel's representation of W

�

(y) (2.5) yields

W

�

(y) =W

�

(0)e

�

R

y

0

b(s)ds

:

Further, since �

�

1

; �

�

2

and �

�

3

are roots of the asymptotic eigenvalue equation

�

3

+ b

�

�

2

� a

�

�� � = 0;

we have

�

�

1

+ �

�

2

+ �

�

3

= �b

�

:

We �nd that

e

(�

�

i

+�

�

k

)y

W

�

(y)

=

1

W

�

(0)

e

(�

�

i

+�

�

k

)y

e

R

y

0

b(s)ds

=

1

W

�

(0)

e

��

�

j

y

e

R

y

0

(b(s)�b

�

)ds

=

O(1)

W

�

(0)

e

��

�

j

y

:

Also,

(�

�

k

)

2

� (�

�

i

)

2

+ b(y)(�

�

k

� �

�

i

) = (�

�

k

� �

�

i

)(�

�

i

+ �

�

k

+ b(y))

= (�

�

k

� �

�

i

)(��

�

j

+O(e

��jyj

)):

Combining these last two observations, we have the claim for m = 1. A counting

argument that keeps track of derivatives reveals that more generally

@

m

@y

m

W (�

�

i

; �

�

k

)

W

�

(y)

=

1

W

�

(y)

h

(�

�

k

� �

�

i

)(�

�

i

+ �

�

k

+ b(y))

m

+O(e

��jyj

)

i

;

which yields the claimed result directly for arbitrary m. �

In the next lemma we employ a scaling argument similar to that of [GZ, JGK,

ZH], though here we must expand to higher order. As this extension is crucial to

the analysis, we provide some detail in the proof. An important element of the

small time (large j�j) analysis is that even though L is not a sectorial operator,

large-j�j solutions to (2.1) and consequently G

�

(x; y) are analytic to the right of a

sector. We will later refer to this critical property as quasi-sectorality of L.
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Lemma 3.2. (Large j�j ODE estimates on solutions of (2.1).) Under Assumptions

(C) and Condition (D), decaying solutions of (2.1) satisfy the following estimates:

For � on or to the right of a sector S = f� : Re� = 2M

l

� jIm�jg, we have, for

some k

�

i

(x) bounded in �

(i)

@

n

@x

n

�

+

1

(x) = k

+

1

(x)(

3

p

�(�

1

2

� i

p

3

2

)�

b(x)

3

)

n

(1 +O(j�j

�2=3

))

(ii)

@

n

@x

n

�

+

2

(x) = k

+

2

(x)(

3

p

�(�

1

2

+ i

p

3

2

)�

b(x)

3

)

n

(1 +O(j�j

�2=3

))

(iii)

@

n

@x

n

�

�

3

(x) = k

�

3

(x)(

3

p

��

b(x)

3

)

n

(1 +O(j�j

�2=3

))

(iv)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

=

W (�

+

1

; �

+

2

)

W

�

(y)

�

(�

3

p

�+ b(y)=3)

m

+O(j�j

m�2

3

)

�

(v)

@

m

@y

m

W (�

+

1

; �

�

3

)

W

�

(y)

=

W (�

+

1

; �

�

3

)

W

�

(y)

�

(

3

p

�(+

1

2

� i

p

3

2

) + b(y)=3)

m

+O(j�j

m�2

3

)

�

(vi)

@

m

@y

m

W (�

+

2

; �

�

3

)

W

�

(y)

=

W (�

+

2

; �

�

3

)

W

�

(y)

�

(

3

p

�(+

1

2

+ i

p

3

2

) + b(y)=3)

m

+O(j�j

m�2

3

)

�

:

Before proceeding with the proof of Lemma 3.2 we note that a useful represen-

tation of the �rst three estimates is:

(i)

0

@

n

@x

n

�

+

1

(x) = �

+

1

(x)

�

(

3

p

�(�

1

2

� i

p

3

2

)� b(x)=3)

n

+O(j�j

n�2

3

)

�

(ii)

0

@

n

@x

n

�

+

2

(x) = �

+

2

(x)

�

(

3

p

�(�

1

2

+ i

p

3

2

)� b(x)=3)

n

+O(j�j

n�2

3

)

�

(iii)

0

@

n

@x

n

�

�

3

(x) = �

�

3

(x)

�

(

3

p

�� b(x)=3)

n

+O(j�j

n�2

3

)

�

:

Proof. We give the analysis in detail for Cases (iii) and (iv) only, beginning with

Case (iii). Writing (2.1) as a �rst order system of ODE's with v

1

= v, v

2

= v

x

,

v

3

= v

xx

, we obtain the matrix equation

0

@

v

1

v

2

v

3

1

A

0

=

0

@

0 1 0

0 0 1

�+ a

0

(x) a(x)� b

0

(x) �b(x)

1

A

0

@

v

1

v

2

v

3

1

A

:

We let A(x; �) represent this matrix. For the large j�j case we make the scale

change x 7! x=

3

p

j�j, which yields the matrix equation

0

@

v

1

v

2

v

3

1

A

0

=

0

@

0 1 0

0 0 1

~

�+

a

0

(x=

3

p

j�j)

j�j

a(x=

3

p

j�j)�b

0

(x=

3

p

j�j)

j�j

2=3

�

b(x=

3

p

j�j)

j�j

1=3

1

A

0

@

v

1

v

2

v

3

1

A

;

where

~

� := �=j�j and we let

~

A(x; �) represent this matrix. We write

~

A =

0

@

0 1 0

0 0 1

~

� 0 �

b(x=

3

p

j�j)

j�j

1=3

1

A

+

0

@

0 0 0

0 0 0

a

0

(x=

3

p

j�j)

j�j

a(x=

3

p

j�j)�b

0

(x=

3

p

j�j)

j�j

2=3

0

1

A

;
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where we letM(x; �) denote the �rst matrix and note that the second isO(j�j

�2=3

).

The eigenvalues ofM(x; �) can readily be found to be (given so that on our � domain

Re(~�

1

); Re(~�

2

) � 0 � Re(~�

3

))

~�

1

=

3

p

~

�(�

1

2

� i

p

3

2

)�

b(x=

3

p

j�j)

3j�j

1=3

+O(j�j

�2=3

))

~�

2

=

3

p

~

�(�

1

2

+ i

p

3

2

)�

b(x=

3

p

j�j)

3j�j

1=3

+O(j�j

�2=3

)

~�

3

=

3

p

~

��

b(x=

3

p

j�j)

3j�j

1=3

+O(j�j

�2=3

)):

Such a computation is easily made by viewing b(x=

3

p

j�j)=j�j

1=3

as an independent

variable of � (which is then small for large j�j) and considering its Tayor expansion

around b(x=

3

p

j�j)=j�j

1=3

= 0.

The eigenvectors associated with ~�

1

; ~�

2

and ~�

3

are respectively

0

@

1

~�

1

~�

2

1

1

A

;

0

@

1

~�

2

~�

2

2

1

A

and

0

@

1

~�

3

~�

2

3

1

A

:

We let

P :=

0

@

1 1 1

~�

3

~�

2

~�

1

~�

2

3

~�

2

2

~�

2

1

1

A

;

so that

P

�1

MP = D =

0

@

~�

3

0 0

0 ~�

2

0

0 0 ~�

1

1

A

:

Now, we make the tranformation W := P

�1

(x)V (x) and compute

W

0

= (P

�1

V )

0

= P

�1

V

0

+ (P

�1

)

0

V

= P

�1

(MV +O(j�j

�2=3

)V ) + (P

�1

)

0

V

= P

�1

MPW + P

�1

O(j�j

�2=3

)PW + (P

�1

)

0

PW

= DW +O(j�j

�2=3

)W:

We let z

2

:=W

2

=W

1

and z

3

:= W

3

=W

1

and compute

z

0

2

=

W

1

W

0

2

�W

2

W

0

1

W

2

1

=

W

0

2

W

1

�

W

2

W

1

W

0

1

W

1

=

�

2

W

2

+O(j�j

�2=3

)W

1

+O(j�j

�2=3

)W

2

+O(j�j

�2=3

)W

3

W

1

� z

2

~�

3

W

1

+O(j�j

�2=3

)W

1

+O(j�j

�2=3

)W

2

+O(j�j

�2=3

)W

3

W

1

= (~�

2

� ~�

3

)z

2

+O(j�j

�2=3

) + z

2

O(j�j

�2=3

)

+ z

2

2

O(j�j

�2=3

) + z

3

O(j�j

�2=3

) + z

2

z

3

O(j�j

�2=3

):
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Similarly,

z

0

3

= (~�

1

� ~�

3

)z

3

+O(j�j

�2=3

) + z

2

O(j�j

�2=3

)

+ z

3

O(j�j

�2=3

) + z

2

3

O(j�j

�2=3

) + z

2

z

3

O(j�j

�2=3

):

Thus the key observation is the gap between modes

~�

2

� ~�

3

=

3

p

~

�(�

3

2

+ i

p

3

2

) +O(j�j

�2=3

):

Similarly,

~�

1

� ~�

3

=

3

p

~

�(�

3

2

� i

p

3

2

) +O(j�j

�2=3

):

Now, let Z :=

�

z

2

(x)

z

3

(x)

�

and let F (z

2

; z

3

) be the nonlinear term:

F (z

2

; z

3

) =

�

f

1

(z

2

; z

3

)

f

2

(z

2

; z

3

)

�

=

�

O(j�j

�

2

3

) + z

2

O(j�j

�

2

3

) + z

3

O(j�j

�

2

3

) + z

2

2

O(j�j

�

2

3

) + z

2

z

3

O(j�j

�

2

3

)

O(j�j

�

2

3

) + z

2

O(j�j

�

2

3

) + z

3

O(j�j

�

2

3

) + z

2

3

O(j�j

�

2

3

) + z

2

z

3

O(j�j

�

2

3

)

�

:

We have the matrix equation

Z

0

(x) =

�

~�

2

� ~�

3

0

0 ~�

1

� ~�

3

��

z

2

z

3

�

+ F (z

2

; z

3

):

We denote this diagonal matrix L

d

and employ Duhamel's Principle to arrive at

the integral equation

Z(x) =

Z

x

�1

e

R

x

�

L

d

(s)ds

F (z

2

(�); z

3

(�))d�;

where we have used that Z(�1) = 0. We de�ne the operator T by

TZ :=

Z

x

�1

e

R

x

�

L

d

(s)ds

F (z

2

(�); z

3

(�))d�:

Taking Z;

~

Z 2 L

1

(�1;+1), we show that T is a contraction mapping on the

space L

1

(�1;+1) by computing

TZ � T

~

Z =

Z

x

�1

e

R

x

�

L

d

(s)ds

h

F (z

2

(�); z

3

(�))� F (~z

2

(�); ~z

3

(�))

i

d�

=

Z

x

�1

e

R

x

�

L(s)ds

�

O(j�j

�

2

3

) + (z

2

� ~z

2

)O(j�j

�

2

3

) + (z

3

� ~z

3

)O(j�j

�

2

3

)

O(j�j

�

2

3

) + (z

2

� ~z

2

)O(j�j

�

2

3

)

�

d�

+

Z

x

�1

e

R

x

�

L(s)ds

�

�

(z

2

2

� ~z

2

2

)O(j�j

�

2

3

) + (z

2

z

3

� ~z

2

~z

3

)O(j�j

�

2

3

)

(z

3

� ~z

3

)O(j�j

�

2

3

) + (z

2

3

� ~z

2

3

)O(j�j

�

2

3

) + (z

2

z

3

� ~z

2

~z

3

)O(j�j

�

2

3

)

�

d�:
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For the terms z

2

z

3

� ~z

2

~z

3

, we use the representation

z

2

z

3

� ~z

2

~z

3

=

1

2

(z

2

� ~z

2

)(z

3

+ ~z

3

) +

1

2

(z

3

� ~z

3

)(z

2

+ ~z

2

):

Since Z;

~

Z 2 L

1

(�1;+1) we have

jjTZ � T

~

Zjj

L

1

� CjjZ �

~

Zjj

L

1







Z

x

�1

e

R

x

�

L(s)ds

O(j�j

�2=3

)d�







� O(j�j

�2=3

)kZ �

~

Zk







Z

x

�1

e

R

x

�

L(s)ds

d�







:

Thus the idea is to show that this normed integral is bounded so that for j�j large

enough a contraction mapping is obtained. From our representations of �

2

� �

3

and �

1

� �

3

we have

Z

x

�

�

�

2

� �

3

0

0 �

1

� �

3

�

=

Z

x

�

 

3

p

~

�(�

3

2

+ i

p

3

2

) +O(j�j

�2=3

) 0

0

3

p

~

�(�

3

2

� i

p

3

2

) +O(j�j

�2=3

)

!

ds

=

 

3

p

~

�(�

3

2

+ i

p

3

2

)(x� �) 0

0

3

p

~

�(�

3

2

� i

p

3

2

)(x� �)

!

+

�

O(j�j

�2=3

)(x� �) 0

0 O(j�j

�2=3

)(x� �)

�

;

where O(j�j

�2=3

) depends on s, but in a bounded manner. Hence, integrating

ke

R

x

�

L

d

(s)ds

k yields a bound of the form

�

�

�

Re(

3

s

~

�(�

3

2

+ i

p

3

2

)) +O(j�j

�2=3

)

�

�

�

�1

+

�

�

�

Re(

3

s

~

�(�

3

2

� i

p

3

2

)) +O(j�j

�2=3

)

�

�

�

�1

;

so that

kTZ � T

~

Zk

L

1

� kZ �

~

Zk

h

O(j�j

�2=3

)

�

�

�

Re(

3

s

~

�(�

3

2

+ i

p

3

2

)) +O(j�j

�2=3

)

�

�

�

�1

+O(j�j

�2=3

)

�

�

�

Re(

3

s

~

�(�

3

2

� i

p

3

2

)) +O(j�j

�2=3

)

�

�

�

�1

i

:

We can conclude the sought estimate if we can show that both

j�j

�1=3

jRe(

3

p

�(�

3

2

+ i

p

3

2

))j
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and the complex conjugate term can be made arbitrarily small by taking j�j arbi-

trarily large in S. That is, we must remain to the right of a contour such that

�

�

�

Re(

3

p

�(

3

2

+ i

p

3

2

))

�

�

�

� � > 0:

It is clear from the de�nitions of S and

3

p

� (the value of �

1=3

with largest positive

real part) that inside S we have Re

3

p

� � jIm

3

p

�j. For

3

p

� = a + ib, we have, for

example,

Re

3

p

�(�

3

2

+ i

p

3

2

) = �

3

2

a�

p

3

2

b;

which is bounded away from zero for a � jbj.

Finally, we note the computation

V = PW = W

1

(x)

0

@

1

~�

3

~�

2

3

1

A

+W

2

(x)

0

@

1

~�

2

~�

2

2

1

A

+W

3

(x)

0

@

1

~�

1

~�

2

1

1

A

;

so that

0

@

V

1

V

2

V

3

1

A

=W

1

(x)

h

0

@

1

~�

3

~�

2

3

1

A

+O(j�j

�2=3

)

i

;

which yields the result after reverting to the original coordinates. Cases (i) and

(ii) follow similarly.

As the proof of each of (iv){(vi) is similar, we carry out the details only for (iv).

The proof of (iv) is similar in nature to the dual eigenfunction estimates of Lemma

3.1. We begin by making the de�nitions

�

1

:=

3

p

�(�

1

2

� i

p

3

2

)� b(y)=3

�

2

:=

3

p

�(�

1

2

+ i

p

3

2

)� b(y)=3

�

3

:=

3

p

�� b(y)=3:

From the proof of Lemma 3.1 (iii) we have

@

@y

W (�

+

1

; �

+

2

)

W

�

(y)

=

1

W

�

(y)

h

�

+

1

�

+

2

00

� �

+

1

00

�

+

2

+ b(y)(�

+

1

�

+

2

0

� �

+

1

0

�

+

2

)

i

=

�

+

1

(y)�

+

2

(y)

W

�

(y)

h

(�

2

2

+O(1))

� (�

2

1

+O(1)) + b(y)(�

2

+O(j�j

�1=3

))� b(y)(�

1

+O(j�j

�1=3

))

i

=

�

+

1

�

+

2

W

�

(y)

h

(�

2

� �

1

)(�

1

+ �

2

+ b(y) +O(j�j

�1=3

))

i

:

We now make two observations. First

W (�

+

1

; �

+

2

) = �

+

1

�

+

2

0

� �

+

1

0

�

+

2

= �

+

1

�

+

2

(�

2

� �

1

+O(j�j

�1=3

)):
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Also,

�

1

+ �

2

+ �

3

= �b(y) ) �

1

+ �

2

+ b(y) = ��

3

;

so that

@

@y

W (�

+

1

; �

+

2

)

W

�

(y)

=

W (�

+

1

; �

+

2

) +O(j�j

�1=3

)

W

�

(y)

�

� �

+

3

+O(j�j

�1=3

)

�

=

W (�

+

1

; �

+

2

)

W

�

(y)

�

� �

3

+O(j�j

�1=3

)

�

;

where we have observed that

O(j�j

�1=3

)�

3

= W (�

+

1

; �

+

2

)O(j�j

�1=3

):

As in the proof of Lemma 2.1, we use a counting argument for higher order deriva-

tives to see that

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

=

�

+

1

�

+

2

W

�

(y)

h

(�

2

� �

1

)(�

1

+ �

2

+ b(y) +O(j�j

�1=3

))

m

i

;

which yields the claimed estimate. �

Lemma 3.3. Under Assumptions (C) and Condition (D), we have: (1) for � on

or to the right of �

d

, and moreover for � on or to the right of the sector S = f� :

Re� = 2M

l

�jIm�jg, W

y

(�) is analytic in �; and (2) for d; d

i

appropriately chosen

in �

d

, the set f� : � 6= 0;W

y

(�) = 0g lies strictly to the left of �

d

.

Proof. We note that (1) is immediate, as analyticity ofW

y

(�) follows directly from

(2.4) and the analyticity in � of �

�

i

, �

�

i

0

, and �

�

i

00

. As the proof of Lemma 3.1

was not provided in its entirety, we mention that this is a result of the observation

that �

j

� �

i

�

�

�

�=0

6= 0 for i 6= j, since only one can vanish at � = 0.

As for (2) the essential spectrum is bounded on or to the left of the contour

�

0

, so that any zeros of the Wronskian lying to the right of this contour must

be point spectrum, limiting them to the negative real half-plane, by Assumption

(II). Further, there can be only �nitely many of these zeros in a ball around the

origin, because in such a ball the Wronskian is a non-trivial analytic function of �

and hence can have only isolated zeros in any bounded neighborhood. An energy

estimate, or the large j�j estimates of Lemma 3.6 below, su�ces to show that all

such zeros are con�ned to a bounded domain. Consequently, we can enclose all

zeros of W

y

(�) within a contour of the form of �

d

, for d; d

i

appropriately chosen.

�

The following proof follows closely the proof of Lemma 3.4 of [H.1].

Lemma 3.4. (Small j�j Green's function estimates.) Let j�j � r for r su�ciently

small. Under Assumptions (C) and Condition (D), we have the following estimates

on the Green's function G

�

(x; y) for (2.1):

(L+) Lax Case (a

+

< 0 < a

�

; x � 0)
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(i) y � 0 � x

@

n+m

@x

n

@y

m

G

�

(x; y) =

O(e

��jxj

)

W

0

(�)

(�

�

2

)

n

e

�

�

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

(ii) 0 � y � x

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)e

�

+

2

(x�y)

+

O(e

��jyj

)

W

0

(�)

(�

+

3

)

m

e

�

+

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

(iii) 0 � x � y

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)(�

+

3

)

n+m

e

�

+

3

(x�y)

+

O(e

��jxj

)

W

0

(�)

(�

+

3

)

m

e

�

+

3

(x�y)

+O(e

��jyj

)(�

+

3

)

n

e

�

+

3

(x�y)

+

O(e

��jxj

)O(e

��jxj

)

W

0

(�)

(L-) Lax Case (a

+

< 0 < a

�

; x < 0)

(i) y � x � 0

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)(�

�

2

)

n+m

e

�

�

2

(x�y)

+O(e

��jx�yj

)e

�

�

2

(x�y)

+

O(e

��jxj

)

W

0

(�)

(�

�

2

)

m

e

�

�

2

(x�y)

+O(e

��jyj

)(�

�

2

)

n

e

�

�

2

(x�y)

+

O(e

��jxj

)O(e

��jxj

)

W

0

(�)

(ii) x � y � 0

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)e

�

�

3

(x�y)

+

O(e

��jyj

)

W

0

(�)

(�

�

2

)

n

e

�

�

3

(x�y)

+

O(e

��jxj

)O(e

��jxj

)

W

0

(�)

(iii) x � 0 � y

@

n+m

@x

n

@y

m

G

�

(x; y) =

O(e

��jxj

)

W

0

(�)

(�

+

3

)

n

e

�

+

3

(x�y)

+

O(e

��jxj

)O(e

��jxj

)

W

0

(�)

(U+) Undercompressive Case (a

�

; a

+

> 0; x > 0)

(i) y � 0 � x

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)(�

�

2

)

m

(�

+

2

)

n

e

�

+

2

x

e

��

�

2

y

+

O(e

��jxj

)

W

0

(�)

(�

�

2

)

m

e

�

+

2

x

e

��

�

2

y

+O(e

��jyj

)(�

+

2

)

n

e

�

+

2

x

e

��

�

2

y

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)
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(ii) 0 � y � x

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)(�

+

2

)

n+m

e

�

+

2

(x�y)

+O(e

��jxj

)(�

+

2

)

m

e

�

+

2

(x�y)

+O(e

��jyj

)(�

+

2

)

n

e

�

+

2

(x�y)

+O(e

��jx�yj

)e

�

+

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

(iii) 0 � x � y

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)e

�

+

3

(x�y)

+O(1)(�

+

2

)

n

e

�

+

2

x

e

��

+

3

y

+

O(e

��jxj

)O(e

��jxj

)

W

0

(�)

(U-) Undercompressive Case (a

�

; a

+

> 0; x � 0)

(i) y � x � 0

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)(�

�

2

)

n+m

e

�

�

2

(x�y)

+O(e

��jx�yj

)e

�

�

2

(x�y)

+

O(e

��jxj

)

W

0

(�)

(�

�

2

)

m

e

�

�

2

(x�y)

+O(e

��jyj

)(�

�

2

)

n

e

�

�

2

(x�y)

+

O(e

��jyj

)O(e

��jxj

)

W

0

(�)

(ii) x � y � 0

@

n+m

@x

n

@y

m

G

�

(x; y) = O(1)e

�

�

3

(x�y)

+

O(e

��jyj

)O(e

��jyj

)

W

0

(�)

(iii) x � 0 � y

@

n+m

@x

n

@y

m

G

�

(x; y) =

O(1)

W

0

(�)

e

�

�

3

x

e

��

+

3

y

:

Proof. Aside from some technical details the analysis separates into two cases:

incoming and outgoing waves. Hence, it will su�ce to study the Lax case with

x � 0 and the undercompressive case with x � 0.

Incoming waves. We begin with the Lax case, and observe that here a key

observation is that �

+

1

; �

+

2

; �

�

1

; �

�

3

= O(1) and �

�

2

; �

+

3

= O(�). For the �rst Lax

subcase, L+(i), y � 0 � x, we have from Section 2

(3:1) G

�

(x; y) =

�

+

1

(x)W (�

�

3

; �

+

2

)

W

�

(y)

+

�

+

2

(x)W (�

+

1

; �

�

3

)

W

�

(y)

;

where for y � 0 we must write

(3:2)

�

+

1

(y) = A(�) 

�

1

(y) + B(�) 

�

2

(y) + C(�)�

�

3

(y)

�

+

2

(y) = D(�) 

�

1

(y) +E(�) 

�

2

(y) + F (�)�

�

3

(y);
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and analyze the expansion coe�cients. Augmenting our expansion of �

+

1

(y) with

�rst and second derivatives, we arrive at the matrix equation

0

@

 

�

1

(y)  

�

2

(y) �

�

3

(y)

 

�

1

0

(x)  

�

2

0

(x) �

�

3

0

(x)

 

�

1

00

(x)  

�

2

00

(x) �

�

3

00

(x)

1

A

0

@

A(�)

B(�)

C(�)

1

A

=

0

@

�

+

1

(x)

�

+

1

0

(x)

�

+

1

00

(x)

1

A

:

which can be evalutated for A(�); B(�) and C(�) through Cramer's Rule of de-

terminants. Since we are in the regime of bounded � where these coe�cients are

clearly bounded, the essential issue becomes whether or not they vanish at � = 0,

and hence eliminate the pole in G

�

(x; y) caused by the Wronskian becoming zero

at � = 0. In this case, we �nd that none do. Our expression for G

�

(x; y) becomes

G

�

(x; y) =

�

+

1

(x)W (�

�

3

;D(�) 

�

1

+ E(�) 

�

2

)

W

�

(y)

+

�

+

2

(x)W (A(�) 

�

1

+B(�) 

�

2

; �

�

3

)

W

�

(y)

;

so that (as a consequence of Lemma 3.1)

@

n+m

@x

n

y

m

G

�

(x; y) =

D(�)�

+

1

(n)

(x)

@

m

@y

m

W (�

�

3

;  

�

1

)

W

�

(y)

+E(�)�

+

1

(n)

(x)

@

m

@y

m

W (�

�

3

;  

�

2

)

W

�

(y)

+ A(�)�

+

2

(n)

(x)

@

m

@y

m

W ( 

�

1

; �

�

3

)

W

�

(y)

+B(�)�

+

2

(n)

(x)

@

m

@y

m

W ( 

�

2

; �

�

3

)

W

�

(y)

=

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

�

2

y

((�

�

2

)

m

+O(e

��jyj

))

+

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

�

1

y

((�

�

1

)

m

+O(e

��jyj

))

+

O(1)

W

0

(�)

e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

�

2

y

((�

�

2

)

m

+O(e

��jyj

))

+

O(1)

W

0

(�)

e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

�

1

y

((�

�

1

)

m

+O(e

��jyj

)):

Noting that e

�

+

1

x

; e

�

+

2

x

= O(e

��jxj

) and e

��

�

1

y

= O(e

��jyj

), some �, we obtain

@

n+m

@x

n

@y

m

G

�

(x; y) =

O(e

��jxj

)

W

0

(�)

(�

�

2

)

m

e

�

�

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

:

We next consider L+ (ii), 0 � y � x. Again, we begin with (3.1), but for y � 0

we must write

(3:3) �

�

3

(y) = A(�)�

+

1

(y) + B(�)�

+

2

(y) + C(�) 

+

3

(y);



26 P. HOWARD AND K. ZUMBRUN

where A(�); B(�) and C(�) have been recycled. We recall here the important fact

about conservation laws that due to translation invariance, �u

x

is an eigenfunction

for the eigenvalue � = 0. Therefore at � = 0 we must be able to write �u

x

as a linear

combination of decaying modes at both �1. That is,

D(�)�

�

3

(y) = �u

x

= E(�)�

+

1

(y) + F (�)�

+

2

(y):

Analyzing A(�); B(�) and C(�) as before, we �nd that C(�) in this case is propor-

tional to the Wronskian, or Evans function, and so vanishes at � = 0.

Our expression for G

�

(x; y) becomes

G

�

(x; y) =

�

+

1

(x)W (A(�)�

+

1

+ C(�) 

+

3

; �

+

2

)

W

�

(y)

+

�

+

2

(x)W (�

+

1

(x); B(�)�

+

2

+ C(�) 

+

3

)

W

�

(y)

;

which yields (as a consequence of Lemma 3.1 and C(�) � W

0

(�))

@

n+m

@x

n

y

m

G

�

(x; y) =

A(�)�

+

1

(n)

(x)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

+ C(�)�

+

1

(n)

(x)

@

m

@y

m

W ( 

+

3

; �

+

2

)

W

�

(y)

+B(�)�

+

2

(n)

(x)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

+ C(�)�

+

2

(n)

(x)

@

m

@y

m

W (�

+

1

;  

+

3

)

W

�

(y)

=

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

+

1

y

((�

+

1

)

m

+O(e

��jyj

))

+

O(1)

W

0

(�)

e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

+

2

y

((�

+

2

)

m

+O(e

��jyj

)):

We observe that �

+

1

; �

+

2

= O(1), while �

+

3

= O(�), so that we obtain

@

n+m

@x

n

@y

m

G

�

(x; y) =

O(e

��jyj

)

W

0

(�)

(�

+

2

)

m

e

�

+

3

(x�y)

+O(1)e

�

+

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

:

The �nal Lax case we consider is L+(iii), 0 � x � y. Here, we use the represen-

tation for G

�

(x; y)

(3:4) G

�

(x; y) =

�

�

3

(x)W (�

+

1

; �

+

2

)

W

�

(y)

;

where for x � 0 we must write

(3:5) �

�

3

(x) = A(�)�

+

1

(x) + B(�)�

+

2

(x) + C(�) 

+

3

(x):
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As in the case L+ (ii) C(�) = 0 for � = 0. We wrote G

�

(x; y) as

G

�

(x; y) =

(A(�)�

+

1

(x) +B(�)�

+

2

(x) + C(�) 

+

3

(x))W (�

+

1

; �

+

2

)

W

�

(y)

;

so that

@

n+m

@x

n

y

m

G

�

(x; y) =

A(�)�

+

1

(n)

(x)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

+B(�)�

+

2

(n)

(x)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

+ C(�) 

+

3

(n)

(x)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

=

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+

O(1)

W

0

(�)

e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

3

x

((�

+

3

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

=

O(e

��jxj

)

W

0

(�)

(�

+

3

)

m

e

�

+

3

(x�y)

+O(1)(�

+

3

)

n+m

e

�

+

3

(x�y)

+O(e

��jyj

)(�

+

3

)

n

e

�

+

3

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

:

Outgoing waves. We now consider outgoing waves, in our case the undercom-

pressive case with x � 0. Beginning with U+ (i), y � 0 � x, we note that (3.1)

and (3.2) hold. An important di�erence, however, is that in the undercompressive

case, �

+

2

�

�

�

�=0

does not decay as x! +1. Therefore we must be able to write �u

x

as

� �

+

1

(x) at +1 and � �

�

3

(x) at �1, so that �

+

1

and �

�

3

are linearly independent.

From (3.2) we see that the crucial consequence of this is that A(�) and B(�) both

vanish at � = 0.

Computing from there we realize

@

n+m

@x

n

y

m

G

�

(x; y) =

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

�

2

y

((�

�

2

)

m

+O(e

��jyj

))

+

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

�

1

y

((�

�

1

)

m

+O(e

��jyj

))

+O(1)e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

�

2

y

((�

�

2

)

m

+O(e

��jyj

))

+O(1)e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

�

1

y

((�

�

1

)

m

+O(e

��jyj

))

= O(1)(�

+

2

)

n

(�

�

2

)

m

e

�

+

2

x

e

��

�

2

y

+O(e

��jyj

)(�

+

2

)

n

e

�

+

2

x

e

�

�

2

y

+

O(e

��jxj

)

W

0

(�)

(�

�

2

)

m

e

�

+

2

x

e

��

�

2

y

+

O(e

��jxj

)O(e

��jxj

)

W

0

(�)

:
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In the case U+ (ii), 0 � y � x, we again begin with (3.1) but with (3.3), for

which in the undercompressive case B(�) and C(�) vanish at � = 0. Proceeding as

there we have

@

n+m

@x

n

y

m

G

�

(x; y) =

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

+

1

y

((�

+

1

)

m

+O(e

��jyj

))

+O(1)e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

+

2

y

((�

+

2

)

m

+O(e

��jyj

))

= O(1)(�

+

2

)

n+m

e

�

+

2

(x�y)

+O(e

��jxj

)(�

+

2

)

m

e

�

+

2

(x�y)

+O(e

��jyj

)(�

+

2

)

n

e

�

+

2

(x�y)

+O(e

��jx�yj

)e

�

+

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

:

It is worth mentioning that the di�erence between the term

O(e

��jxj

)

W

0

(�)

(�

�

2

)

m

e

�

+

2

x

e

��

�

2

y

for y � 0 and

O(e

��jxj

)(�

+

2

)

m

e

�

+

2

(x�y)

for y � 0 is a result of the exponential y-decay of the dual eigenfunction in the

undercompressive case for y � 0.

We conclude with the proof of Case U+ (iii), 0 � x � y, for which we have (3.4)

along with (3.5)|B(�); C(�) both vanishing at � = 0. We �nd

@

n+m

@x

n

y

m

G

�

(x; y) =

O(1)

W

0

(�)

e

�

+

1

x

((�

+

1

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

2

x

((�

+

2

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

+O(1)e

�

+

3

x

((�

+

3

)

n

+O(e

��jxj

))e

��

+

3

y

((�

+

3

)

m

+O(e

��jyj

))

= O(1)e

�

+

3

(x�y)

+O(e

��jxj

)(�

+

3

)

n

e

�

+

3

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

:

�

Proposition 3.5. For � = 0 and W

b

(�; �) de�ned as

W

b

(�;  ) := � 

00

� �

00

 +W (�;  );
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the following relations hold:

(L) (Lax case)

W

b

(�

+

1

; �

+

2

)

�

�

�

�=0

=W

b

(�

�

3

; �

+

2

)

�

�

�

�=0

= W

b

(�

+

1

; �

�

3

)

�

�

�

�=0

� 0

(U) (Undercompressive case)

W

b

(�

+

1

; �

�

3

)

�

�

�

�=0

� 0:

Before proving Proposition 3.5 we remark that it is simply a convenient manner

of expressing part of Proposition 10.3 from [ZH] in the notation of this paper. Its

direct implication is that in the Lax case the e�ective eigenspace of the equation

adjoint to (2.1) at � = 0 (which looks like Res(W (�

i

; �

j

))=W

y

(�); � = 0)) are

constants. For instance, from the proof of Lemma 3.1 we see that

@

@y

W (�

+

1

; �

+

2

)

W

�

(y)

= 0;

so that from Proposition 3.5 no pole occurs here at � = 0.

We note that W

0

(W (�; �)=W

y

) are the dual eigenfunctions for L

�

, the adjoint

operator for L. As discussed in [ZH] hW

0

(W (�; �)=W

y

); �i gives the projection de-

scribing the time-asymptotic state in the near-�eld, that is the shock shift. The

observation that W (�; �)=W

y

is constant in the Lax case is tantamount to the well-

known fact that the shift in Lax shocks can be determined by inner products against

constant functions, thus by mass of the perturbation alone. The observation for un-

dercompressive shocks that W (�; �)=W

y

decays exponentially as y ! +1 indicates

that signals in the positive far �eld do not a�ect shock shift. These observations

are critical in the nonlinear analysis of Section 6.

The immediate consequence of Proposition 3.5 is that y-derivatives of G(t; x; y)

in Theorem 1.1 for the Lax case contain no contribution from the eigenvalue at the

origin.

Proof. Let �

1

; �

2

be two solutions of

(3:6) v

xxx

+ (b(x)v

x

)

x

� (a(x)v)

x

= 0;

i.e. (2.1) with � = 0, which both decay at the same in�nity, for de�niteness, say

�1. Then we may integrate (3.6) from �1 up to x to obtain the relations

�

00

i

(x) + b(x)�

0

i

(x) = a(x)�

i

(x); i = 1; 2:

Then we have

W

b

(�

1

; �

2

) = �

1

�

00

2

� �

00

1

�

2

+ b(y)�

1

�

0

2

� b(y)�

0

1

�

2

= �

1

(a(y)�

2

)� �

2

(a(y)�

1

) = 0:

Since for � = 0, �

+

1

and �

+

2

both decay at +1, W

b

(�

+

1

; �

+

2

)

�

�

�

�=0

= 0 follows

immediately. Further, in the Lax case with � = 0 �

�

3

is a linear combination of �

+

1

and �

+

2

(because �u

x

is an exponentially decaying eigenfunction at � = 0), yielding

the second and third Lax-case assertions.

The undercompressive case assertion is a result of the linear dependence in that

case (at � = 0) of �

+

1

and �

�

3

. �
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Lemma 3.6. (Large j�j estimates for the Green's function.) Under Assumptions

(C) and Condition (D), and for � on or to the right of a sector S = f� : Re� =

2M

l

� jIm�jg, we have the following estimates on the solution G

�

(x; y) of (2.1):

(i) (x � y)

@

n+m

@x

n

@y

m

G

�

(x; y) = O(j�j

n+m�2

3

)(y)e

R

x

y

3

p

��b(s)=3+O(j�j

�1=3

)(s)ds

(ii) (x � y)

@

n+m

@x

n

@y

m

G

�

(x; y) = O(j�j

n+m�2

3

)(y)e

R

x

y

3

p

�(�

1

2

+i

p

3

2

)�b(s)=3+O(j�j

�1=3

)(s)ds

+O(j�j

n+m�2

3

)(y)e

R

x

y

3

p

�(�

1

2

�i

p

3

2

)�b(s)=3+O(j�j

�1=3

)(s)ds

:

Proof. As the proof of each case is similar we will carry out the analysis only for

x � y. In this case we can rewrite G

�

(x; y) as

G

�

(x; y) =

�

�

3

(x)

�

�

3

(y)

�

�

�

3

(y)W (�

+

1

; �

+

2

)

W

�

(y)

:

Thus we need separately to bound each of these terms. A straightforward compu-

tation gives

�

�

3

(y)W (�

+

1

; �

+

2

)

W

�

(y)

= O(j�j

�2=3

)(y);

where dependence on y is O(1) and only explicity noted because y-derivatives of

this term will be taken later in the analysis. This relation is easy to observe on a

formal level, keeping in mind that derivatives on the decay modes introduce factors

of order j�j

1=3

. A rigorous proof can be made of this claim through the estimates

of Lemma 3.2 and (2.4) as long as j�j is as speci�ed.

We can estimate �

�

3

(x)=�

�

3

(y) by noticing that Lemma 3.2 yields the relation

(3:7) �

�

3

0

(x) = (

3

p

�� b(x)=3)�

�

3

(x)(1 +O(j�j

�2=3

)):

This is a simple ODE for �

�

3

(x) and we can solve it with initial data �

�

3

(y) to get

(3:8) �

�

3

(x) = �

�

3

(y)e

R

x

y

(

3

p

��b(s)=3)(1+O(j�j

�2=3

))ds

;

where O(j�j

�2=3

) may depend on s but will do so in a bounded manner. We get

j�

�

3

(x)j

j�

�

3

(y)j

� e

Re

R

x

y

(

3

p

��b(s)=3)(1+O(j�j

�2=3

))ds

� e

�Re(

3

p

��b

s

=3)(1+O(j�j

�2=3

))jx�yj

:

By taking j�j su�ently large, the term O(j�j

�2=3

) goes to zero, leaving a bound by

e

�

1

2

Re(

3

p

��b

s

=3)jx�yj

, where the 2 could be any constant larger than 1.
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Combining the last two observations, we have

jG

�

(x; y)j � O(j�j

�2=3

)e

�

1

2

Re(

3

p

��b

s

=3)jx�yj

;

where on our contours, we will have Re(

3

p

�� b

s

=3) > 0 for j�j su�ciently large.

We now turn our attention to derivatives, continuing to work in the case x � y.

From our representation for G

�

(x; y) we can compute

@

n+m

@x

n

@y

m

G

�

(x; y) = �

�

3

(n)

(x) �

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

:

Following the above analysis, we write

@

n+m

@x

n

@y

m

G

�

(x; y) =

�

�

3

(n)

(x)

�

�

3

(n)

(y)

� �

�

3

(n)

(y)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

;

and estimate each term separately. First, we may observe from Lemma 3.2 that

�

�

3

(n+1)

(x) =

�

3

p

�� b(x)=3 +O(j�j

�1=3

)

�

�

�

3

(n)

(x)

so that

(3:9)

�

�

3

(n)

(x)

�

�

3

(n)

(y)

= e

R

x

y

3

p

��b(s)=3+O(j�j

�1=3

)ds

:

Similarly, we have

(3:10)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

=

W (�

+

1

; �

+

2

)

W

�

(y)

�

(�

3

p

�+ b(y)=3)

m

+O(j�j

m�2

3

)

�

We then have

(3:11)

�

�

3

(n)

(y)

@

m

@y

m

W (�

+

1

; �

+

2

)

W

�

(y)

= �

�

3

(y)

�

(

3

p

�� b(y)=3)

n

+O(j�j

n�2

3

)

�

�

W (�

+

1

; �

+

2

)

W

�

(y)

�

(�

3

p

�+ b(y)=3)

m

+O(j�j

m�2

3

)

�

O(j�j

n+m�2

3

):

Combining (3.9) and (3.10) we have

@

n+m

@x

n

@y

m

G

�

(x; y) = O(j�j

n+m�2

3

)e

R

x

y

3

p

��b(s)=3+O(j�j

�1=3

)ds

;

as claimed. The proof of Case (ii) follows similarly. �
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Lemma 3.7. Under Assumptions (C) and condition (D), and for any contour �

to the right of �

d

, enclosing the spectrum of L and parametrized by k, with large-k

behavior Re� � �k

2

; Im� � k

3

, (1.4) has a Green's function G(t; x; y) given in

terms of G

�

(x; y) by (Dunford's Integral)

G(t; x; y) =

1

2�i

Z

�

e

�t

G

�

(x; y)d�:

Proof. Though L is not sectorial in this case, it is clear from the estimates of

Lemma 3.6 that over such a contour � e

�t

G

�

(x; y) is integrable for all t; x. (In

particular, this integrability is brought out in the forthcoming analysis.) An ap-

plication of Lebesgue Dominated convergence then gives that distributional x- and

t-derivatives commute with the � integration to give

�

@

@t

� L

�

G(t; x; y) =

1

2�i

Z

�

h

�e

�t

G

�

(x; y)� (�e

�t

G

�

(x; y)� e

�t

�

y

(x))

i

d�

=

1

2�i

Z

�

e

�t

�

y

(x)d� = �

y

(x)�

0

(t);

where the last equality is a standard result from the theory of Laplace transforms.

�

4. Small time Green's Function Estimates

We now convert the pointwise estimates on G

�

(x; y) into pointwise estimates on

G(t; x; y), beginning with the case of small time, which corresponds with large j�j.

We proceed through the representation

G(t; x; y) =

1

2�i

Z

�

e

�t

G

�

(x; y)d�:

In the case jx�yj � Kt, K to be chosen during the analysis, we expect the Green's

function to principally be governed by the high-order e�ects of dispersion. Indeed,

the estimates we �nd are similar in form to those for the exact Green's function of

the Airy equation, u

t

= u

xxx

[KF]. For x� y � 0 the Green's function for the Airy

equation has the scaling of the Green's function for a sectorial operator, namely for

(x� y)=t

1=3

! �1

(4:1)

@

n

@x

n

G

A

(t; x; y) � t

�(n+1)=3

�

x� y

3

p

3t

�

n=2�1=4

e

�

2(x�y)

3=2

3

p

3t

� Ct

�

n+1

3

e

�

(x�y)

3=2

2

p

t

:

For x�y � 0 the representation takes the oscillatory form (for (x�y)=t

1=3

! +1)

(4:2)

@

n

@x

n

G

A

(t; x; y) � t

�(n+1)=3

�

x� y

3

p

3t

�

n=2�1=4

sin(�

2(x� y)

3=2

3

p

3t

+ c

n

):

In our case, this oscillation is di�cult to quantify, so we will develop only normed

estimates. In the case x � y � 0 signi�cant information is lost, but the stability
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results of Section 1 can still be recovered as a consequence of the exponential jx�yj-

decay arising from the di�usion (see the estimates of Theorem 1.1 and below). It

would seem plausible that more detailed oscillatory estimates on the Green's func-

tion could lead to a stability result for non-constant di�usion. We note, however,

that Kruzhkov and Faminskii's analysis of u

t

+ (u

2

)

x

= u

xxx

proceeds similarly to

ours even though they had access to an exact representation of the linear Green's

function (for u

t

= u

xxx

). The di�culty in extending the nonlinear portion of our

analysis to non-contant b(�) is that second derivatives of G have the form (t�s)

�5=4

,

which we cannot integrate from 0 to t in the absence of either exponential scaling

or oscillation.

We begin with the case x� y � 0, for which we have from Lemma 3.6

@

n+m

@x

n

@y

m

G

�

(x; y) = O(j�j

n+m�2

3

)e

R

x

y

3

p

��b(s)=3+O(j�j

�1=3

)ds

;

so that by dominated convergence and the proof of Lemma 3.7

@

n+m

@x

n

@y

m

G(t; x; y) =

1

2�i

Z

�

e

�t

O(j�j

n+m�2

3

)e

R

x

y

3

p

��b(s)=3+O(j�j

�1=3

)ds

d�:

We take the contour �

0

, de�ned through

�(k) = �

0

� �k

2

� ik

3

;

where �

0

> 0 and � > 0 are to be chosen, with �

0

chosen to insure the proper

scaling and so that j�(k)j � M

l

for all k. (Recall that the large-j�j estimates of

Lemma 3.2 and Lemma 3.6 hold for j�j � M

l

, as well as to the right of the sector

S.) We note that

j�(k)j

2

= (�

0

� �k

2

)

2

+ k

6

) j�(k)j �

1

2

�

0

+

1

2

k

3

;

and

(4:3) Re

3

p

�

0

� �k

2

� ik

3

�

1

2

6

p

(�

0

� �k

2

)

2

+ k

6

�

1

4

�

1=3

0

+

1

4

k;

where our convention will be that while �(�)

1=3

will represent three values,

3

p

�(�)

will represent only the third root of � with largest positive real part. Along this

contour �

0

we have

Z

+1

�1

e

�

0

t��k

2

t�ik

3

t

O(j�(k)j

n+m�2

3

)e

R

x

y

3

p

�(k)�b(s)=3+O(j�j

�1=3

)ds

(�2�k� 3ik

2

)dk:

Evaluation of this integral on (�1; 0] is similar to evaluation on [0;+1), so we

consider only [0;+1). We divide this integral into two subintervals, [0; t

�1=3

] and

[t

�1=3

;+1). On [0; t

�1=3

] we have (with j�(k)j � C(j�

0

j+ k) and k � t

�1=3

)

�

�

�

Z

t

�1=3

0

e

�

0

t��k

2

t�ik

3

t

O(j�(k)j

n+m�2

3

)

� e

R

x

y

3

p

�(k)�b(s)=3+O(j�j

�1=3

)ds

(�2�k � 3ik

2

)dk

�

�

�

� Ct

�1=3

(t

�2=3

�

n+m�2

3

0

+ t

�

n+m

3

)e

�

0

t�

1

4

3

p

�

0

jx�yj+

�

bjx�yj

;
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where

�

b = O(1) and so will later be absorbed by the exponential scaling. We now

choose �

0

so as to insure the correct scaling. That is, we take

�

0

:=

(x� y)

3=2

64t

3=2

;

so that

(4:4) �

0

t�

1

4

3

p

�

0

jx� yj =

(x� y)

3=2

64t

1=2

�

1

4

(x� y)

3=2

4t

1=2

= �

3(x� y)

3=2

64t

1=2

:

We note that since jx � yj=t � K, with K to be taken arbitrarily large, we can

insure j�(k)j �

1

4

�

0

�M

l

. For the algebraic decay, we observe that

(4:5)

t

�1

�

n+m�2

3

0

e

�3

(x�y)

3=2

64

p

t

= t

�1

(x� y)

n+m�2

2

t

n+m�2

2

e

�3

(x�y)

3=2

64

p

t

= t

�

n+m+1

3

�

(x� y)

3=2

p

t

�

n+m�2

3

e

�3

(x�y)

3=2

64

p

t

� Ct

�

n+m+1

3

e

�

(x�y)

3=2

64

p

t

;

as claimed in Theorem 1.1.

On the in�nite integral we have

Z

+1

t

�1=3

e

�

0

t��k

2

t�ik

3

t

O(j�(k)j

n+m�2

3

)e

R

x

y

3

p

�(k)�b(s)=3+O(j�j

�1=3

)ds

(�2�k� 3ik

2

)dk:

The exponential decay on this interval will be obtained as before (under norm), but

as the algebraic decay is a dispersive phenomenon, it will be most readily noted

through integration by parts. Since we would like to put integration on the term

e

�ik

3

t

we make the change of variable � = k

3

t, so that �(�) = �

0

���

2=3

t

�2=3

�i�t

�1

.

We have, then

(4:6)

Z

+1

1

e

�

0

t���

2=3

t

1=3

�i�

O(j�(�)j

n+m�2

3

)

� e

R

y

x

3

p

�(�)�b(s)=3+O(j�(�)j

�1=3

)ds

(�

2

3

��

�1=3

t

�2=3

� it

�1

)d�;

which we integrate by parts, putting integrals on e

�i�

. In order to take derivatives

of the O(�) terms, we will employ the quasi-sectorality of L (see remarks prior to

the statement of Lemma 2.2) and the following lemma, stated from Olver [Ol, p.

9].

Lemma 4.1. Let f(z) be analytic in a region containing a closed annular sector

S, and

f(z) = O(z

p

) or f(z) = o(z

p

)

as z !1 in S, where p is any �xed real number. Then

f

(m)

(z) = O(z

p�m

) or f

(m)

(z) = o(z

p�m

)

as z ! 1 in any closed annular sector C properly interior to S and having the

same vertex.
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Corollary 4.2. The terms of form O(j�j

p

) arising in G

�

(x; y) satisfy

@

@�

O(j�j

p

) = O(j�j

p�1

):

Proof. Lemma 4.1 is proved in Olver through interior estimates for such a sector

S. In our case (Corollary 4.2), we have that the O(�) terms appearing in (4.6)

are analytic in the sector consisting of S from Lemma 3.2 and thus in any annular

sector contained therein. In particular, � lies in such an annular sector. �

Integrating (4.6) by parts, we have

(4:7)

ie

�i�

e

�

0

t���

2=3

t

1=3

O(j�(�)j
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3

)

� e

R

x

y

3

p

�(�)�b(s)=3+O(j�(�)j
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2

3
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t
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)

�

�

�
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1

� i

Z

+1

1

e

�

0

t�i�
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e
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t
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3
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� e

R

x

y

3

p

�(�)�b(s)=3+O(j�(�)j

�1=3

)ds
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2

3

��

�1=3

t

�2=3
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�1

)

i

d�

= �ie

�i

e

�

0

t��t

1=3

O(j�(1)j
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3

)

� e

R

y

x

3

p

�(1)�b(s)=3+O(j�(1)j

�1=3

)ds

(�

2

3

�t
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�1

)

1

� i

Z

+1

1

e

�

0

t�i�

(�

2

3
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�1=3

t

1=3

)

h

e

���

2=3

t

1=3

O(j�(�)j

n+m�2

3

)

� e

R

y

x

3

p

�(�)�b(s)=3+O(j�(�)j

�1=3

)ds

(�

2

3
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�1=3

t

�2=3
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�1

)

i
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2

� i

Z

+1

1

e

�

0

t�i�

O(j�(�)j

n+m�5

3

)�

0

(�)

h

e

���

2=3

t

1=3

� e

R

y

x

3

p

�(�)�b(s)=3+O(j�(�)j

�1=3

)ds

(�

2

3

��

�1=3

t

�2=3

� it

�1

)

i

d�

3

� i

Z

+1

1

e

�

0

t�i�

�

Z

x

y

1

3

�(�)

�2=3

�

0

(�) +O(j�(�)j

�4=3

)�

0

(�)ds

�h

e

���

2=3

t

1=3

�O(j�(�)j

n+m�2

3

)e

R

y

x

3

p

�(�)�b(s)=3+O(j�(�)j

�1=3

)ds

(�

2

3

��

�1=3

t

�2=3

� it

�1

)

i

d�

4

� i

Z
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1

e

�

0

t�i�

h

e

���

2=3

t

1=3

O(j�(�)j

n+m�2

3

)

� e

R

y

x

3

p

�(�)�b(s)=3+O(j�(�)j

�1=3

)ds

(

2

9

��

�4=3

t

�2=3

)

i

d�:

All we require is an understanding of the correct algebraic decay under norm, as

the exponential decay follows from the previous choice of �

0

. For the boundary

expression, we may observe that j�(1)j � C(�

0

+t

�1

) so that a computation similar

to (4.5) yields the claim.

What we will observe on each of the four integrals in (4.7) is that as a consequence

of Corollary 4.2 the �-derivative has the expected e�ect of decreasing the expression

by a factor of �

�1

yielding algebraic integrability so that we need not integrate
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e

���

2=3

t

1=3

, which would return t blow-up of the from t

�1=2

. For example, on the

�rst integral on the right-hand side of (4.7) (reference numbers appear at the far

left over the negative signs) we observe that

�

�1=3

t

1=3

e

���

2=3

t

1=3

� C�

�1

e

�

�

2

�

2=3

t

1=3

;

so that under norm we have an expression of the form

(4:8)

Z
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1

e

�

0

t�

1

4

3
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�

0

jx�yj+

�

bjx�yj

�

n+m�5

3

t

�

n+m+1

3

d�:

For n+m � 1 this yields the same estimate as above by the integrability of �

n+m�5

3

.

On the second integral we have

jO(j�(�)j

n+m�5

3

)�

0
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�1

)

n+m�5

3

t

�1

� �

n+m�5

3

t

�

n+m�2

3

so that under norm we have again an expression of form (4.8). For the third integral

we have, employing now our relation Re

3

p

�(�) �

1

4

�

0

+

1

4

�

1=3

t

�1=3

�

j�(�)j

�2=3
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0

(�)j+O(j�(�)j
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)j�

0
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�
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�

1

4

�
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t
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� C�
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�
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jx�yj

� C�
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�

1
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�

1=3
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�1=3

jx�yj

;

from which the result follows. The �nal integral is trivial. Estimates on higher

order derivatives may be made through further applications of integration by parts.

That is to say, we would take each of the integrals 1{4 and integrate again by parts,

putting integrals on e

�i�

.

The case x � y is more delicate, even if we content ourselves with an estimate

in norm only. The principal di�culty is that the expected scaling (jx� yj

3=2

=t

1=2

)

arises in an oscillatory fashion (see (4.2)). In this case, we have

(4:9)
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3
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p
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2
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3
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)�b(s)=3+O(j�j

�1=3
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;

where it will be the case that over portions of our contour both Re

3

p

�(�

1

2

+ i

p

3

2

)

and Re

3

p

�(�

1

2

� i

p

3

2

) will approach zero, so that (4.3) will no longer hold. As

we no longer expect exponential scaling, we now take the �xed contour �(k) =

M � �k

2

� ik

3

, where M is chosen su�ciently large so that we will have again

j�j �M

l

. We denote this contour �

M

. A straightforward computation reveals that

along this contour we have

3

p

�(k) =

(

(

p

3

2

�

i

2

)k +

�

3

(

1

2
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p

3

2

) +O((M
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+ k)

�1

); k � 0

(�

p

3

2

�

i

2

)k +

�

3

(

1

2

� i

p

3

2

) +O((M

1=3

+ jkj)

�1

); k � 0:
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The analysis of each term in (4.9) will be the same, so we consider only the �rst,

which will have the form

(4:10)

Z

+1

�1

e

Mt��k

2

t�ik

3

t

O(j�(k)j

n+m�2

3

)

� e

R

x

y

3

p

�(k)(�

1

2

+i

p

3

2

)�b(s)=3+O(j�j

�1=3

)ds

(�2�k� 3ik

2

)dk

=

Z

0

�1

e

Mt��k

2

t�ik

3

t

O(j�(k)j

n+m�2

3

)

� e

R

x

y

3

p

�(k)(�

1

2

+i

p

3

2

)�b(s)=3+O(j�j

�1=3

)ds

(�2�k� 3ik

2

)dk

+

Z

+1

0

e

Mt��k

2

t�ik

3

t

O(j�(k)j

n+m�2

3

)e

ik(x�y)

� e

R

x

y

�

~
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)ds
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2
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where

~

b(s) := b(s)=3 + �=3 �

~

b

0

> 0. In particular, we will be able to take K

(jx� yj � Kt) su�ciently large so that

e

Mt�

~

b

0

2

jx�yj

� e
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~
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0

4
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:

Observing that for k � 0 Re(

3

p

�(k)(�

1

2

+ i

p

3

2

)) �

1

4

3

p

M +

1

4

k on this contour,

we see that the �rst integral on the right-hand side of (4.10) can be analyzed in a

manner similar to the case x � y � 0, except that without the exponential scaling

introduced by �

0

we obtain exponential decay of the form e

��jx�yj

for some � > 0.

That is, we gain an estimate of the form

t

�

n+m+1

3

e

��jx�yj

:

We observe that were we to take the contour �

0

we would obtain on this integral

the same estimate as in the case x� y � 0. The contour �

0

, however, would fail to

yield a useful estimate on the second integral of (4.10).

For the second integral on the right-hand side of (4.10), we see that on the

integral over [0; t

�1=3

] we have a trivial estimate by

Ct

�

n+m+1

3

e

��jx�yj

:

For k 2 [t

�1=3

;+1), we make the usual change of variable � = k

3

t to arrive at the

representation

Z

+1

1

e

Mt���

2=3

t

1=3

�i�+i�

1=3

t

�1=3

jx�yj

O(j�(�

1=3

t

�1=3

)j

n+m�2

3

)

� e

R

x

y

�

~

b(s)+O(j�(�

1=3

t

�1=3

)j

�1=3

)

(�

2

3

��

�1=3

t

�2=3

� it

�1

)d�:

Integrating by parts as in (4.7), we observe that the only term that cannot be dealt

with precisely as before is that arising from the derivative on e

i�

1=3

t

�1=3

jx � yj.

Where in the previous analysis we had

�

�

�

@

@�

e

��

1=3

t

�1=3

jx�yj

�

�

�

=

�

�

�

1

3

�

�2=3

t

�1=3

jx�yje

��

1=3

t

�1=3

jx�yj

�

�

�

� C�

�1

e

�

1

2

�

1=3

t

�1=3

jx�yj

;
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we now have

�

�

�

@

@�

e

i�

1=3

t

�1=3

jx�yj

�

�

�

=

�

�

�

1

3

�

�2=3

t

�1=3

jx� yje

i�

1=3

t

�1=3

jx�yj

�

�

�

� �

�2=3

t

�1=3

jx� yj:

This estimate yields the desired algebraic integrability in � for n +m = 0 only if

t

�1=3

jx�yj �

~

C, for some constant

~

C. For n+m > 0, we may integrate repeatedly

by parts to gain the required integrability for this scaling.

We are left with the case jx�yj=t

1=3

�

~

C, for which we will apply an asymptotic

analysis similar to that found in [Ol, pp. 98{103] to obtain results similar to those

of [FK] (cf. (4.1) and (4.2)). As our scaling will now change, we begin again with

Z

+1

0

e

Mt��k

2

t�ik

3

t+ik(x�y)

O(j�(k)j

n+m�2

3

)

� e

R

x

y

�

~

b(s)+O(j�(k)j

�1=3

)ds

(�2�k � 3ik

2

)dk:

We would like to integrate by parts, but vis-�a-vis the previous analysis we now put

anti-derivatives on the entire oscillating portion, namely

e

ik(x�y)�ik

3

t

:

The point is that for jx � yj=t

1=3

�

~

C, t is su�ciently dominant that the ik

3

t

term controls the integrand's oscillation. For the case jx � yj=t

1=3

�

~

C, the terms

compete. In fact, it is fairly clear heuristically that the main contribution arises

when k(x � y) = k

3

t, or when k =

p

(x� y)=t. This observation motivates the

forthcoming analysis.

We make the change of variable (x� y � 0)

k :=

r

x� y

t

�

to get

r

x� y

t

Z

+1

0

e

Mt��jx�yj�

2

+i�(���

3

)

O((M

1=3

+ (

p

(x� y)=t)�)

n+m

)

� e

R

x

y

�

~

b(s)+O(j�((

p

(x�y)=t)�)j

�1=3

)ds

d�;

where

� :=

(x� y)

3=2

p

t

:

We expect the largest contribution to this integral to occur for � � �

3

= 0, where

there is no oscillation. Accordingly, we make the de�nitions

p(�) := � � �

3

and v(�) := p(�)� p(1=

p

3);
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where p

0

(1=

p

3) = 0. Splitting the integrand up we have

(4:11)

e

i�p(1=

p

3)

�

x� y

t

�

n+m+1

2

Z

0

�1

e

Mt��jx�yj�(v)

2

+i�v

O(

~

M + v

n+m

3

)

� e

R

x

y

�

~

b(s)+O(jM+vj

�1=3

)ds

�dv

p

0

(�(v))

+e

i�p(1=

p

3)

�

x� y

t

�

n+m+1

2

Z

0

�p(1=

p

3)

e

Mt��jx�yj�(v)

2

+i�v

O(

~

M + v

n+m

3

)

� e

R

x

y

�

~

b(s)+O(jM+vj

�1=3

)ds

dv

p

0

(�(v))

:

In the absence of our O(�) terms (for example in an analysis of the Airy equation)

oscillation of the form e

i�p(1=

p

3)

is clearly obtained (see [Ol]).

We now collect some useful observations regarding

�(v)

2

and h(v) :=

1

p

0

(�(v))

:

We have

@

n

@v

n

�(v)

2

= O(v

2=3�n

); v � v

0

> 0

@

n

@v

n

h(v) = O(v

�2=3�n

); v � v

0

> 0:

Also, v(1=

p

3) = v

0

(1=

p

3) = 0 so that v(1=

p

3) � (��1=

p

3)

2

and hence ��1=

p

3 �

v

1=2

. Thus

p

0

(�) = 1� 3�

2

= (1�

p

3�)(1 +

p

3�) � v

1=2

and

(4:12) h(v) = o(v

�1=2

);

@

n

@v

n

h(v) = o(v

�1=2�n

):

We are now in a position to evaluate the �rst integral in (4.11) by splitting

its analysis into regions of large and small v. In light of (4.12) we may choose

~

C ((x � y)=t

1=3

�

~

C) large enough so that on v 2 [��

�1

; 0] jh(v)j < �jvj

�1=2

.

That is to say, (4.12) gives that there exists some � > 0 such that for jvj � �,

jh(v)j < �v

�1=2

, and we may choose

~

C large enough so that j�

�1

j � �. This yields

�

�

�

e

i�p(1=

p

3)

�

x� y

t

�

n+m+1

2

Z

0

��

�1

e

Mt��jx�yj�(v)

2

+i�v

O(

~

M + v

n+m

3

)

� e

R

x

y

�

~

b(s)+O(jM+vj

�1=3

)ds

h(v)dv

�

�

�

� Ce

��jx�yj

�

x� y

t

�

n+m+1

2

Z

0

��

�1

v

�1=2

dv = Ce

��jx�yj

�

x� y

t

�

n+m+1

2

�

�1=2

= Ct

�

n+m+1

3

�

x� y

3

p

t

�

n+m

2

�

1

4

:
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For v � ��

�1

we have

�

�

�

Z

��

�1

��

e

Mt��jx�yj�(v)

2

+i�v

O(

~

M + v

n+m�2

3

)

� e

R

x

y

�

~

b(s)+O(jM+vj
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)ds
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�

�

�

�

�

�

�

�

�1

e

i�v

e

Mt��jx�yj�(v)

2

O(

~
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3

)e

R

x

y

�

~

b(s)+O(jM+vj

�1=3

)ds

�

�

�
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�

�

�
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e
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@
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h

e
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2

O(
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M + v

n+m�2

3

)

� e

R

x

y

�

~

b(s)+O(jM+vj

�1=3

)ds

i
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�

�

�

� C�

�1=2

;

and

Z

��

�1

e

Mt��jx�yj�(v)

2

+i�v

O(

~

M + v

n+m�2

3

)

� e

R

x

y

�

~

b(s)+O(jM+vj)

�1=3

ds

dv

�

�

�
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= (i�)

�1

e

Mt��jx�yj�(v)

2

+i�v

O(

~

M + v

n+m�2

3

)e

R

x

y

�

~

b(s)+O(jM+vj)

�1=3

ds

�

�

�

��

�1

�1

�

Z

��

�1

�1

(i�)

�1

e

i�v

@

@v

h

e

Mt��jx�yj�(v)

2

�O(

~

M + v

n+m�2

3

)e

R

x

y

�

~

b(s)+O(jM+vj)

�1=3

ds

i

dv;

which is better than the small-v term by a factor of �

�1=2

(for n +m � 1). For

n+m > 1 we integrate repeatedly by parts. The second integral in (4.11) may be

analyzed in a similar fashion, as indeed can similar oscillatory integrals that arise

in the analysis of equations of higher order (see Section 7).

5. Large time Green's Function Estimates

In the case jx � yj � Kt, we follow very closely the analysis of [ZH]. In fact,

the main point is that for j�j small (t large) we only see the e�ect of the �rst

two orders of spatial derivatives, making the analysis e�ectively that of the case

with convection and di�usion only. Numerous subcases arise here for which the

analyses are almost identical. Our strategy will be to present the analysis for a

few of these cases in detail, then list for subsequent subcases the previous analysis

that pertains. At the end of the subsection we make a general comment about

converting the estimates of Lemma 3.4 into those of Theorem 1.1.

Lax case. We begin the small j�j analysis with the Lax case for which we have

a

+

< 0 < a

�

. Here, by symmetry, we need consider only the subcase x � 0.

Case L+ (i) In the Lax case with y � 0 � x, we have from Lemma 3.4

@

n+m

@x

n

@y

m

G

�

(x; y) =

O(e

��jxj

)

W

0

(�)

(�

�

2

)

n

e

�

�

2

(x�y)

+

O(e

��jxj

)O(e

��jyj

)

W

0

(�)

:


