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Abstract. It is well known that the stability of certain distinguished waves arising in evolutionary

PDE can be determined by the spectrum of the linear operator found by linearizing the PDE about
the wave. Indeed, work over the last fifteen years has shown that spectral stability implies nonlinear
stability in a broad range of cases, including asymptotically constant traveling waves in both reaction–

diffusion equations and viscous conservation laws. A critical step toward analyzing the spectrum of
such operators was taken in the late eighties by Alexander, Gardner, and Jones, whose Evans function
(generalizing earlier work of John W. Evans) serves as a characteristic function for the above-mentioned

operators. Thus far, results obtained through working with the Evans function have made critical use
of the function’s analyticity at the origin (or its analyticity over an appropriate Riemann surface).
In the case of degenerate (or sonic) viscous shock waves, however, the Evans function is certainly not

analytic in a neighborhood of the origin, and does not appear to admit analytic extension to a Riemann
manifold. We surmount this obstacle by dividing the Evans function (plus related objects) into two
pieces: one analytic in a neighborhood of the origin, and one sufficiently small.

1. Introduction

We consider degenerate viscous shock waves arising in the system,

(1.1)
ut + f(u)x = uxx, u, f ∈ R

2 ,

u(0, x) = u0(x),

where u0(±∞) = u± and f ∈ C2(R); that is, solutions of the form (ū1(x− st), ū2(x− st))tr that
satisfy the Rankine–Hugoniot condition,

s =
fk(u+

1 , u
+
2 ) − fk(u−1 , u

−
2 )

u+
k − u−k

, k = 1, 2,

and for which s ∈ Spectrum(df(u±)). (Typically, s is only in Spectrum(df(u±)) on one side, which
we refer to as the degenerate side.) Letting a±

k (k = 1, 2) represent the eigenvalues of df(u±), we
will restrict our attention to the case

a−1 < s < a−2 and a+
1 < s = a+

2

or, symmetrically, a−1 = s < a−2 and a+
1 < s < a+

2 . In either case, we have strict hyperbolicity
at the endpoints, and make no requirements regarding hyperbolicity along the wave. Under the
additional, generic, assumption of first order degeneracy, which corresponds with ū 1(ξ) and ū2(ξ)
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both decaying to endstates at rate |ξ|−1 (see Section 2) we show that the Evans function can be
constructed in this case (though not analytically) and that it can be analyzed in a manner similar
to that of the non-degenerate case (see [GZ,ZH]).

For a general discussion of degenerate viscous shock waves and the contexts in which they arise,
the reader is referred to [H.1] and the references therein. Here, we mention only that the analyses
of Howard were both limited to single equations [H.1–2], that degenerate waves are not considered
in the general systems analyses of Gardner and Zumbrun [GZ], or Zumbrun and Howard [ZH], and
that Nishihara’s analysis of degenerate waves in systems, which was carried out in the case of the
p-system (see [N])

u1t − u2x = 0

u2t + p(u1)x = u2xx,

is based on energy estimates and limited to the case of arbitrarily weak shock strength and zero-
mass initial perturbations. Our result, then, applicable to shocks of arbitrary strength and general
(sufficiently small) initial perturbations is the first general stability analysis for degenerate viscous
shock waves arising in systems of conservation laws.

In a recent analysis of the single conservation law

ut + f(u)x = (b(u)ux)x,

Howard has observed that the pointwise Green’s function approach of [ZH] can be extended to the
case of degenerate viscous shock waves so long as sufficiently sharp estimates can be obtained on
solutions to the associated eigenvalue ODE

(1.2) (b(x)vx)x − (a(x)v)x = λv,

where a(x) := f ′(ū(x))−b′(ū(x))ūx(x), and b(x) := b(ū(x)) [H.1–2]. Such analyses are complicated
by two critical features of (1.2). First, whereas in the case of non-degenerate waves the coefficients
a(x) and b(x) decay to end-states at exponential rate, in the case of degenerate waves they decay
at rate |x|−1. Exacerbating this situation is the further fact that when (1.2) is written as a first
order system, the ODE eigenvalues coalesce as λ→ 0, x→ ±∞, (whichever is the degenerate side).
It follows from these properties that asymptotically decaying solutions v+(x, λ) of (1.2) take the
form (see [H.2])

v+(x, λ) = e−
R x
0

√
λ/b(s)ds(ū(x) − u+)

(
−

√
λ/b(x) +

ūx(x)
ū(x)− u+

+ e(x, λ)
)
,

where e(x, λ) = O(|x|−1)O(
√
λ log λ). Since the Evans function is typically built from these asymp-

totically decaying solutions, it cannot be constructed analytically (or, due to the logλ behavior,
readily extended analytically on a Riemann manifold, though see [SS]). Hence, the Taylor approx-
imation techniques of e.g. [GZ, KR] near the critical point λ = 0 cannot be used. And while
solutions of (1.2) are straightforward to analyze either for the case λ = 0 or the case |λ| ≥ δ 0 > 0,
the transition from one of these cases to the other as λ goes to zero (which is our main concern)
is singular and can generally be quite subtle. In particular, solutions v+(x, λ) heuristically behave
as functions of the combined variable

√
λx (if a(x), b(x) ∼ x−1, then (1.2) can be approximated by

a Bessel equation), so tracing asymptotically decaying solutions back to x = 0, where the Evans
function is typically defined, is rather delicate. In fact, we find that estimates depend not only
on the general properties of (1.2), as is the case with non-degenerate waves, but indeed on the
structure of the underlying degenerate wave. Consequently, standard ODE estimates cannot pos-
sibly suffice (the situation is simply too specialized). In the yet more complicated setting here of
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systems, a number of further difficulties arise, including the intermingling of slow and degenerate
decay modes as well as a considerably more cumbersome Evans function.

Plan of the paper. In Section 2 we discuss the general behavior of degenerate viscous shock
waves, while in Section 3 we set a context for the Evans function analysis to follow by reviewing
the basic ideas behind the pointwise Green’s function approach to stability. Following [H.1–2], we
then develop the required system ODE estimates (Section 4), and following [GZ] we extend the
Evans function framework to this complicated setting, establishing general criteria for instability
(Sections 5 and 6). A stability criterion is also given, though its full proof will be developed in a
companion paper [H.3]. We remark at the outset that Sections 2 and 4 are somewhat technical,
Section 3 is mostly expository, and the results are all collected in Sections 5 and 6.

2. Structure of Degenerate Viscous Shock Waves

Since f(u) is a general nonlinearity in (1.1), we may shift without loss of generality to a moving
coordinate frame in which s = 0. Suppose, then, that (ū1(x), ū2(x))tr represents a standing wave
solution to (1.1), hence satisfying

ū1xx = f1(ū1, ū2)x

ū2xx = f2(ū1, ū2)x.

Integrating once and expanding about the asymptotic state (u+
1 , u

+
2 )tr, we have

(2.1)

(ū1 − u+
1 )x = ∂u1f1(u

+
1 , u

+
2 )(ū1 − u+

1 ) + ∂u2f1(u
+
1 , u

+
2 )(ū2 − u+

2 )

+
1
2
∂u1u1f1(u

+
1 , u

+
2 )(ū1 − u+

1 )2 + ∂u1u2f1(u
+
1 , u

+
2 )(ū1 − u+

1 )(ū2 − u+
2 )

+
1
2
∂u2u2f1(u

+
1 , u

+
2 )(ū2 − u+

2 )2 + . . .

(ū2 − u+
2 )x = ∂u1f2(u

+
1 , u

+
2 )(ū1 − u+

1 ) + ∂u2f2(u
+
1 , u

+
2 )(ū2 − u+

2 )

+
1
2
∂u1u1f2(u

+
1 , u

+
2 )(ū1 − u+

1 )2 + ∂u1u2f2(u
+
1 , u

+
2 )(ū1 − u+

1 )(ū2 − u+
2 )

+
1
2
∂u2u2f2(u

+
1 , u

+
2 )(ū2 − u+

2 )2 + . . . .

We assume that the linear matrices

A± :=
(
∂u1f1(u

±
1 , u

±
2 ) ∂u2f1(u

±
1 , u

±
2 )

∂u1f2(u
±
1 , u

±
2 ) ∂u2f2(u

±
1 , u

±
2 )

)

have eigenvalues a−1 < 0 < a−2 ; a+
1 < 0 = a+

2 . While, as in the case of single equations, degeneracy
allows for the possibility of (ū1(x), ū2(x)) decaying to end-states at an algebraic rate, it does
not necessitate it. For example, the wave (− tanhx/2 + 1, 0) serves as an exponentially decaying
degenerate wave for the (admittedly contrived) system

(2.2)
u1t +

1
2
(u2

1 − u2
2 − 2u1)x = u1xx

u2t + (u1u2)x = u2xx

(in this case, a−1 , a
−
2 > 0; a+

1 < 0 = a+
2 ). On the other extreme, the wave (ū1(x), ū2(x)) can decay

to end-states as slowly as we like; i.e., at rate |x|−1/k, for k (an integer) arbitrarily large. For
example, the standing wave solution (ū(x), 0) to

(2.3)
u1t + (u4

1 − u3
1 − u2

2)x = u1xx

u2t + (u1u2)x = u2xx
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(in this case a−1 = a−2 = 1; a+
1 = a+

2 = 0) given through the implicit formula

2ū(x) + 1
2ū(x)2

+ log
∣∣∣ ū(x)− 1

ū(x)

∣∣∣ = x,

clearly decays at rate |x|−1/2 to (u+
1 , u

+
2 ) = (0, 0).

Definition. We will describe degenerate viscous shock waves that decay to endstate at rate |x|−1/k

in both coordinates as kth-order degenerate.

Our focus in this paper will be on the most generic type of degeneracy, first order, or k = 1. In
the remainder of this section, we develop a criteria for distinguishing first order degeneracy.

In general, equations of form (2.1) can be analyzed by center manifold techniques [Carr, K].
Under the substitutions w := ū1(x) − u+

1 and z = ū2(x) − u+
2 , and with αjk and βjk representing

the Taylor coefficients of (2.1),we have

ẇ = a+
11w + a+

12z +
∑

j+k≥2

αjkw
jzk

ż = a+
21w + a+

22z
∑

j+k≥2

βjkw
jzk.

In the event that a+
12 = a+

21 = 0, we cannot have first-order degeneracy. In order to see this, we
observe that our degeneracy condition a+

11a
+
22 = a+

12a
+
21 requires that in this case exactly one of a+

11

and a+
22 must also be 0. (They cannot both be zero by our assumption a+

1 < 0.) Without loss of
generality, take a+

11 = 0, so that we have

ẇ =
∑

j+k≥2

αjkw
jzk

ż = a+
22z +

∑
j+k≥2

βjkw
jzk.

The Center Manifold Theorem ([Carr, K]) asserts the existence of a center manifold z = h(w) =
O(w2); that is, an invariant manifold locally tangent to the center eigenspace. Such a manifold
contradicts our assumption of first order degeneracy (ū 1(x)−u+

1 and ū2(x)−u+
2 cannot both decay

at the same algebraic rate).
Assuming either a+

12 or a+
21 is not zero, we take without loss of generality a+

12 6= 0, and make the
change of variables W = PR, where

(2.4) W =
(
w
z

)
, P =

( 1 1
−a+

11

a+
12

a+
22

a+
12

)
, R =

(
r
s

)
.

We have

PR′ = APR+




∑
j+k≥2 αjk(r + s)j(−a+

11

a+
12
r + a+

22

a+
12
s)k

∑
j+k≥2 βjk(r + s)j(−a+

11

a+
12
r + a+

22

a+
12
s)k


 ,

so that

R′ =
(

0 0
0 a+

11 + a+
22

)
R +

a+
12

a+
11 + a+

22




a+
22

a+
12

−1
a+
11

a+
12

1







∑
j+k≥2 αjk(r + s)j(−a+

11

a+
12
r + a+

22

a+
12
s)k

∑
j+k≥2 βjk(r + s)j(−a+

11

a+
12
r + a+

22

a+
12
s)k


 .
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The Center Manifold Theorem now assures us of a center manifold s = h(r) = O(r 2), so that

ṙ = γ2r
2 + O(r3),

where

γ2 :=
a+
22

a+
11 + a+

22

(
α20 + α02

(a+
11)

2

(a+
12)2

− α11
a+
11

a+
12

)

− a+
12

a+
11 + a+

22

(
β20 + β02

(a+
11)

2

(a+
12)2

− β11
a+
11

a+
12

)
.

For γ2 6= 0, r(x) = O(|x|−1), and according to (2.4) the standing-wave solution is first order
degenerate.

For example, consider the viscous p-system

u1t − u2x = u1xx,

u2t + p(u1)x = u2xx.

In this case, a+
11 = s, a+

12 = −1, a+
21 = −s2, a+

22 = −s, α20 = α11 = α02 = 0, β20 = p′′(u+
1 )/2,

β11 = β02 = 0. Hence, our first-order degeneracy condition becomes simply p ′′(u+
1 ) 6= 0.

A first order degenerate wave from the p-system with p(u1) = −u1 − u3
1 is given in Figure 2.1,

in which the exponential and algebraic decay rates can be observed clearly.

−10 −5 0 5 10 15 20 25 30
−6

−5

−4

−3

−2

−1

0

1
Degenerate wave in p−system

x

u 1 (
x)

, u
2 (

x)

Figure 2.1. Degenerate wave from the viscous p-system

Finally, we remark that for both example equations (2.2) and (2.3) both a+
12 and a+

21 are 0, and
so the wave cannot be first order degenerate.

3. The pointwise Green’s function approach to stability

It will be useful to set a context for the following analysis by providing a brief overview of the
pointwise Green’s function approach to the study of stability. Suppose ū(x) is a standing-wave
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solution of (1.1). It is well known that solutions u(t, x) of (1.1), initialized by u(0, x) near ū(x) will
not generally approach ū(x), but rather will approach a translate of ū(x) determined by the amount
of mass (measured by

∫
R
u(0, x)− ū(x)dx) carried into the shock as well as the amount carried out

to the far field. In our framework, a local tracking function δ(t) will serve to approximate this shift
at each time t. Following [HZ], we build this shift into our model by defining our perturbation
v(t, x) as v(t, x) = u(t, x+ δ(t)) − ū(x). We will say that our wave is stable with respect to some
measure if v(0, x) sufficiently small implies that v(t, x) → 0 as t → ∞. A full discussion of local
tracking is beyond the scope of this paper, and the reader is referred to [H.2] and the references
therein.

Substituting v(t, x) = u(t, x+ δ(t))− ū(x) into (1.1), we obtain the perturbation equation

(3.1) vt = Lv +Q(v)x + δ̇(t)(ūx + vx),

where Lv := vxx − (A(x)v)x, A(x) = df(ū(x)), and Q(v) = O(v2) is a smooth function of v.
Integrating (3.1), we have (after integration by parts on the second integral and observing that
eLtūx(x) = ūx(x))

(3.2)
v(t, x) =

∫ +∞

−∞
G(t, x; y)v0(y)dy + δ(t)ūx(x)

−
∫ t

0

∫ +∞

−∞
Gy(t− s, x; y)

[
Q(v(s, y)) + δ̇(s)v(s, y)

]
dyds,

where G(t, x; y) represents a (matrix) Green’s function for the linear part of (3.1):

Gt + (A(x)G)x = Gxx; G(0, x; y) = δy(x)I.

The idea behind the pointwise Green’s function approach to stability is to obtain estimates on
G(t, x; y) sharp enough so that an iteration on (3.2) can be closed (see especially [H.1, HZ, MZ,
Z] for a full nonlinear analysis). Typically, we analyze G(t, x; y) through its Laplace transform,
Gλ(x, y), which satisfies the ODE (t→ λ)

Gλxx − (A(x)Gλ)x − λGλ = −δy(x)I,

and can be estimated by standard methods. Letting ϕ+
1 , ϕ+

2 represent the (necessarily) two linearly
independent asymptotically decaying solutions at +∞ of the eigenvalue ODE

(3.3) Lϕ = λϕ

and ϕ−
1 , ϕ−

2 similarly the two linearly independent asymptotically decaying solutions at −∞, we
follow (for example) [CH] and write Gλ(x, y) as a linear combination of decaying solutions:

Gλ(x, y) =
{
ϕ+

1 (x)N−
1 (y) + ϕ+

2 (x)N−
2 (y) x > y,

ϕ−
1 (x)N+

1 (y) + ϕ−
2 (x)N+

2 (y) x < y,

where we observe the notation

ϕ+
1 N

−
1 =

(
ϕ+

11

ϕ+
12

)
(N−

11 N−
12 ) =

(
ϕ+

11N
−
11 ϕ+

11N
−
12

ϕ+
12N

−
11 ϕ+

12N
−
12

)
.
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Insisting on the continuity and jump of Gλ(x, y) and ∂xGλ(x, y) (respectively) across x = y, we
have

(3.4)
(ϕ+

1 N
−
1 + ϕ+

2 N
−
2 − ϕ−

1 N
+
1 − ϕ−

2 N
+
2 )(y) = 0

(ϕ+′
1 N−

1 + ϕ+′
2 N−

2 − ϕ−′
1 N+

1 − ϕ−′
2 N+

2 )(y) = −I.

Equations (3.4) represent eight equations and eight unknowns, which decouple into two sets of four
equations and four unknowns. Solving by Cramer’s rule, we have, for example,

N−
11(y;λ) = −

det


ϕ+

21 ϕ−
11 ϕ−

21

ϕ+
22 ϕ−

12 ϕ−
22

ϕ+′
22 ϕ−′

12 ϕ−′
22




det
(
ϕ+

1 ϕ+
2 ϕ−

1 ϕ−
2

ϕ+′
1 ϕ+′

2 ϕ−′
1 ϕ−′

2

) .

Clearly, then, Gλ(x, y) will be well behaved so long as

D(λ, x) := det
(
ϕ+

1 ϕ+
2 ϕ−

1 ϕ−
2

ϕ+′
1 ϕ+′

2 ϕ−′
1 ϕ−′

2

)
6= 0.

Following Jones et al [AGJ, E.1–4, GZ, J, KS], we define the Evans function as D(λ) := D(λ, 0).
In order to understand the behavior of the Evans function, consider an eigenvector, V (x, λ), of

the operator
Lv := vxx − (A(x)v)x.

Since V (x, λ) must decay at both ±∞, it must be a linear combination of ϕ+
1 , ϕ+

2 at +∞ and ϕ−
1 ,

ϕ−
2 at −∞; thus these four solutions must be linearly dependent, leading to a zero of the Evans

function. In general, zeros of the Evans function correspond with eigenvalues of the operator L,
an observation that has been made precise in [AGJ] in the case pertaining to reaction–diffusion
equations of standard isolated eigenvalues and in [ZH] in the case pertaining to conservation laws of
nonstandard “effective” eigenvalues embedded in essential spectrum of L. (The latter correspond
with resonant poles of L, as examined in the scalar context in [PW].)

4. ODE Estimates

The primary difficulty in analyzing the stability of degenerate viscous shock waves with the point-
wise Green’s function method lies in obtaining sufficiently sharp estimates on the growth and decay
solutions of (3.3). Loss of analyticity at the critical point λ = 0 requires that in lieu of the Taylor
expansion of previous analyses, we develop higher order (in λ) ODE estimates. As discussed in
Section 1, however, these estimates arise in the critical case that ODE eigenvalues coalesce as λ
goes to 0: a situation not covered by standard analyses such as [C]. We find, in fact, that our
estimates depend not only on the general properties of the eigenvalue ODE (as is the case in the
context of non-degenerate waves), but also on the particular structure of the underlying degenerate
wave. Indeed, the specialized tricks that will be effective here fail for higher order degeneracies,
leaving those cases as interesting open problems.

Our eigenvalue ODE (3.3) takes the form

(4.1)
v1xx − (a11(x)v1)x − (a12(x)v2)x = λv1

v2xx − (a21(x)v1)x − (a22(x)v2)x = λv2,
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where aij(x) = ∂uj
fi(ū1(x), ū2(x)). Equations of form (4.1) admit four linearly dependent solu-

tions: two degenerate and two non-degenerate (details on this terminology below). These two sets
must be treated in significantly different manners. We consider the integrated equation

(4.2)
w1xx − a11(x)w1x − a12(x)w2x = λw1

w2xx − a21(x)w1x − a22(x)w2x = λw2.

We will take advantage of the observation that the derivative of a decaying solution of (4.2) is
certainly a decaying solution of (4.1). Writing (4.2) as a first order system, we have

(4.3) W ′ = A (x, λ)W,

where

A (x, λ) =




0 0 1 0
0 0 0 1
λ 0 a11(x) a12(x)
0 λ a21(x) a22(x)


 ,

which has four eigenvalues µk(x;λ), satisfying

µ1(x;λ) =
a1(x) −

√
a1(x)2 + 4λ
2

; µ2(x;λ) =
a2(x) −

√
a2(x)2 + 4λ
2

µ3(x;λ) =
a1(x) +

√
a1(x)2 + 4λ
2

; µ4(x;λ) =
a2(x) +

√
a2(x)2 + 4λ
2

,

where a1(x) and a2(x) are the eigenvalues of

A(x) =
(
a11(x) a12(x)
a21(x) a22(x)

)
,

namely,

a1(x) =
trA− √

(trA)2 − 4detA
2

; a2(x) =
trA+

√
(trA)2 − 4detA

2
,

with associated eigenvectors

rk(x) =
(

1
ak(x)−a11(x)

a12(x)

)
, k = 1, 2

At x = +∞, µ+
1 (λ) = O(1), µ+

2 (λ) = −√
λ, µ+

3 (λ) = O(λ), µ+
4 (λ) = O +

√
λ, prompting our

designation of µ1, µ3 as non-degenerate modes and µ2, µ4 as degenerate modes.
We are now in a position to state the main result of this section.

Lemma 4.1. Suppose ū(x) = (ū1(x), ū2(x))tr represents a first-order degenerate standing wave
solution to (1.1) (that is, ū1(x) − u+

1 and ū2(x) − u+
2 are both O(|x|−1)) with f ∈ C2(R) and

a−1 < 0 < a−2 , a+
1 < 0 = a+

2 . Then for some constant Ms sufficiently small, and |λ| ≤ Ms, there
exist constants L sufficiently large and α > 0 so that the following estimates hold for solutions of
(4.3):
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(i) (Non-degenerate solutions) For x ≥ L

W+
1 (x, λ) = e

R
x
L

µ1(s,λ)ds(V +
1 (λ) + O(|x|−1))

W+
1 (0, λ) = W+

1 (0, 0) + O(|λ|)
W+

3 (x, λ) = e
R

x
L

µ3(s,λ)ds(V +
3 (λ) + O(|x|−1)),

where µ+
1 (x;λ) and µ+

3 (x;λ) represent the eigenvalues of A (x, λ) and V +
1 (λ), V +

3 (λ) represent the
associated asymptotic eigenvectors. Further, for 0 ≤ x ≤ L, W+

1 (x, λ) and W+
2 (x, λ) are both O(1)

by continuous dependence.
(ii) (Degenerate solutions) For λ 6∈ R− , x ≥ 0, and k = 1, 2

W+
2k(x, λ) = e−

√
λx(ūk(x)− u+

k )
(
1 +E2k(x, λ)

)
,

W+
2(k+2)(x, λ) = e−

√
λx(ūk(x)− u+

k )
(
−
√
λ+

ūkx

ūk − u+
k

+E2(k+2)(x, λ) +
ūkx

ūk − u+
k

E2k(x, λ)
)
,

W+
4k(x, λ) = e

√
λx(ūk(x)− u+

k )
(
1 + E4k(x, λ)

)
,

W+
4(k+2)

(x, λ) = e
√

λx(ūk(x)− u+
k )

(√
λ+

ūkx

ūk − u+
k

+ E4(k+2)(x, λ) +
ūkx

ūk − u+
k

E4k(x, λ)
)
.

where (∧ represents min)

E2k(x, λ), E4k(x, λ) = O(
√
λ log λ) ∧O(|x|−1), k = 1, 2

E2k(x, λ), E4k(x, λ) = O(
√
λ)O(|x|−1), k = 3, 4.

Proof. We specify at the outset that the ODE analysis is carried out for x > L, L sufficiently
large, with estimates obtained down to x = 0 by standard continuous dependence. In particular,
we take L large enough so that (trA(x))2 − 4detA(x) > 0 for all x ≥ L.

Non-degenerate solutions. For the non-degenerate solutions, we proceed via a standard cal-
culation, a few details of which will suffice to indicate the argument and to reveal why such a
calculation does not extend to the degenerate solutions. We begin by looking for solutions of the
form W (x) = e

R
x
L

µ1(s,λ)dsZ(x), for which Z(x) satisfies Z ′(x) = (A (x, λ)−µ1I)Z(x). Let the 4×4
matrix P (x, λ) represent the matrix of eigenvectors associated with the eigenvalues µ k,

P (x, λ) =
(

r1(x) r2(x) r1(x) r2(x)
µ1(x, λ)r1(x) µ2(x, λ)r2(x) µ3(x, λ)r1(x) µ4(x, λ)r2(x)

)
,

with inverse

P (x, λ)−1 =
1

r22 − r12




− r22µ3
µ1−µ3

µ3
µ1−µ3

r22
µ1−µ3

− 1
µ1−µ3

r12µ4
µ2−µ4

− µ4
µ2−µ4

− r12
µ2−µ4

1
µ2−µ4

r22µ1
µ1−µ3

− µ1
µ1−µ3

− r22
µ1−µ3

1
µ1−µ3

− r12µ2
µ2−µ4

µ2
µ2−µ4

r12
µ2−µ4

− 1
µ2−µ4


 .

We note that limx→∞,λ→0 P (x, λ)−1 has infinite entries (due to the coalescence of ODE eigenval-
ues). Making the standard substitution Z = PY , we have

(4.4) Y ′(x) = D(x, λ)Y (x) − P (x, λ)−1P ′(x, λ)Y (x)
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where

D(x, λ) =




0 0 0 0
0 µ2 − µ1 0 0
0 0 µ3 − µ1 0
0 0 0 µ4 − µ1


 .

As an integral equation, (4.4) becomes

Y (x) = Y (+∞) +
∫ +∞

x

e
R x

ξ
D(s,λ)dsP (ξ)−1P ′(ξ)Y (ξ)dξ.

We proceed via standard iteration, beginning with the eigenvector Y (+∞) = (1, 0, 0, 0) tr. Since
e
R

x
ξ

D(s,λ)ds decays at exponential rate in each diagonal entry except the first, and since Y (+∞)
has only one non-zero entry, the only critical entry of the matrix P (ξ)−1P ′(ξ) is the first row, first
column, {P (ξ)−1P ′(ξ)}11. Observing that r′12(x) and r′22(x) are both O(|x|−2) we find by direct
calculation,

{P (ξ)−1P ′(ξ)}11 =
µ3r

′
12 + µ′

1r22 − µ1r
′
12 − µ′

1r12
(r22 − r12)(µ1 − µ3)

= O(|x|−2).

Integration on [x,+∞), for x > L, of O(|x|−2) yields decay at rate O(|x|−1), which suffices to
close a standard iteration, for example by contraction mapping. (The strict separation between
µ+

1 and the other modes guarantees this result by standard arguments; see, for example, Coppel
[C].) The second estimate, W+

1 (0, λ) = W+
1 (0, 0) + O(|λ|) follows from the exponential decay of

e
R

x
L

µ1(s,λ)ds, x > L, and the analyticity of µ1(x, λ) in λ.
For the second non-degenerate mode, µ3, which is O(|λ|), the calculation is more subtle. Search-

ing for solutions of the form W (x) = e
R

x
L

µ3(s,λ)ds Z(x), Z(x) = PY , we obtain (4.4) with diagonal
matrix

D(x, λ) =



µ1 − µ3 0 0 0

0 µ2 − µ3 0 0
0 0 0 0
0 0 0 µ4 − µ3


 .

The critical new issue is that only the first diagonal entry of e
R x

ξ
D(s,λ)ds decays at exponential

rate. In fact, since µ2, µ4 are both (asymptotically) O(
√
λ) and µ3 = O(λ), the dominating mode

in µ2 − µ3 and µ4 − µ3 changes: µ3 dominates for λ large and µ2 or µ4 dominates when λ is
sufficiently small. Hence, in our first iteration, with Y (+∞) = (0, 0, 1, 0)tr, we are concerned with
the behavior of three critical terms in the matrix P (ξ)−1P ′(ξ), {P (ξ)−1P ′(ξ)}23,33,43. We have,
for example,

{P (ξ)−1P ′(ξ)}23 =
−µ4r

′
12 − µ′

3r12 + µ3r
′
12 + µ′

3r12
(r22 − r12)(µ2 − µ4)

=
−µ4r

′
12 + µ3r

′
12

(r22 − r12)(µ2 − µ4)
= O(|x|−2)

The analyses of {P (ξ)−1P ′(ξ)}33 and {P (ξ)−1P ′(ξ)}43 are similar.
Finally, it is enlightening to consider why this argument cannot be carried through for the

degenerate modes. In the case of µ2, for example, the critical entries in P −1(ξ)P ′(ξ) become
{P (ξ)−1P ′(ξ)}22,32,42. We have, for the first

{P (ξ)−1P ′(ξ)}22 =
−µ4r

′
22 − µ′

2r12 + µ2r
′
22 + µ′

2r12
(r22 − r12)(µ2 − µ4)

=
r′22(µ2 − µ4) + µ′

2(r22 − r12)
(r22 − r12)(µ2 − µ4)

=
r′22

r22 − r12
+

µ′
2

µ2 − µ4
.
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The critical term is

(4.5)
µ′

2

µ2 − µ4
= −

a′
2(x)
2

(1− a2(x)√
a2(x)2+4λ

)
√
a2(x)2 + 4λ

.

In order to close our iteration, we require asymptotic decay in x of order O(|x|−r), r > 1, uniform
in λ. We observe immediately, however, that for any x, if λ = a2(x), the right-hand side of (4.5)
decays as O(|x|−1), eliminating the possibility of uniform integrable decay.

Degenerate modes. We turn now to the degenerate modes. Here, we follow [H.1–2], and begin-
ning again with the integrated ODE (4.2), make the critical substitution

w1(x) = (ū1(x) − u+
1 )u1(x)

w2(x) = (ū2(x) − u+
2 )u2(x).

We find that our equation becomes

u1xx +
( 2ū1x

ū1 − u+
1

− a11(x)
)
u1x(x) +

a12(x)ū2x

ū1 − u+
1

u1

− a12(x)
ū2 − u+

2

ū1 − u+
1

u2x − a12(x)
ū2x

ū1 − u+
1

u2 = λu1

u2xx +
( 2ū2x

ū2 − u+
2

− a22(x)
)
u2x(x) +

a21(x)ū1x

ū2 − u+
2

u2

− a21(x)
ū1 − u+

1

ū2 − u+
2

u1x − a21(x)
ū1x

ū2 − u+
2

u1 = λu2.

We write this ODE as the system

U ′(x) = A+(λ)U +E(x)U(x),

where

A+(λ) :=




0 0 1 0
0 0 0 1
λ 0 a+

11 −a+
11

0 λ −a+
22 a+

22




and the non-zero entries of E are:

E31(x) = −a12(x)ū2x

ū1 − u+
1

; E32(x) =
a12(x)ū2x

ū1 − u+
1

;

E33(x) = −
( 2ū1x

ū1 − u+
1

− a11(x) + a+
11

)
; E34(x) = a12(x)

ū2 − u+
2

ū1 − u+
1

+ a+
11;

E41(x) =
a21(x)ū1x

ū2 − u+
2

; E42(x) = −a21(x)ū1x

ū2 − u+
2

;

E43(x) = a21(x)
ū1 − u+

1

ū2 − u+
2

+ a+
22; E44(x) = −

( 2ū2x

ū2 − u+
2

− a22(x) + a+
22

)
.

Critically, A+(λ) has the same eigenvalues as A +(λ) (:= limx→∞ A (x;λ)), while the degenerate
mode eigenvectors select decay modes in the direction (1, 1) tr, so that in the original (unintegrated)
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coordinates the solutions approach (ū1x, ū2x) as λ→ 0. In this way, we choose ϕ+
2 (x; 0) = ūx here

rather than (as in [GZ], for example) by a change of basis during the Evans function calculation.
Looking for solutions of the form U(x) = e−

√
λxZ, we have

Z ′(x) = (A+ +
√
λ)Z(x) + E(x)Z(x),

or as an integral equation

(4.6) Z(x) = Z(x0) +
∫ x

x0

e(A++
√

λ)(x−ξ)E(ξ)Z(ξ)dξ.

If we let P (λ) represent the matrix of eigenvectors of A+, we have

P (λ) =




1 1 1 1
−a+

22

a+
11

1 −a+
22

a+
11

1

µ+
1 (λ) −√

λ µ+
3 (λ)

√
λ

−a+
22

a+
11
µ+

1 (λ) −√
λ −a+

22

a+
11
µ+

3 (λ)
√
λ


 ,

detP = 2
√
λ(1 +

a+
22

a+
11

)2(µ+
3 − µ+

1 ),

and

P (λ)−1 = (1 +
a+
22

a+
11

)−1




µ+
3

µ+
3 −µ+

1
− µ+

3

µ+
3 −µ+

1
− 1

µ+
3 −µ+

1

1
µ+

3 −µ+
1

a+
22/a+

11
2

1
2 −a+

22/a+
11

2
√

λ
− 1

2
√

λ

− µ+
1

µ+
3 −µ+

1

µ+
1

µ+
3 −µ+

1

1
µ+

3 −µ+
1

− 1
µ+

3 −µ+
1

a+
22/a+

11
2

1
2

a+
22/a+

11

2
√

λ
1

2
√

λ



,

where µ+
k (λ) := limx→∞ µk(x, λ) and e(A++

√
λ)(x−ξ) = P (λ)eD(λ)(x−ξ)P (λ)−1, with

D(λ) =



µ+

1 +
√
λ 0 0 0

0 0 0 0
0 0 µ+

3 +
√
λ 0

0 0 0 2
√
λ


 .

In the analysis that follows, we take advantage of the symmetry of P (λ)−1; namely,

{P (λ)−1}14 = {P (λ)−1}33 = −{P (λ)−1}13 = −{P (λ)−1}34,

{P (λ)−1}44 = −{P (λ)−1}24 = −a
+
11

a+
22

{P (λ)−1}23 =
a+
11

a+
22

{P (λ)−1}43.

Computing directly, we have

e(A++
√

λ)(x−ξ)E(ξ)Z(ξ)

=




R1e
√

λ(x−ξ)(eµ+
1 (x−ξ) − eµ+

3 (x−ξ)) +R2(1− e2
√

λ(x−ξ))

−a+
22

a+
11
R1e

√
λ(x−ξ)(eµ+

1 (x−ξ) − eµ+
3 (x−ξ)) +R2(1 − e2

√
λ(x−ξ))

R1e
√

λ(x−ξ)(µ+
1 e

µ+
1 (x−ξ) − µ+

3 e
µ+

3 (x−ξ)) −√
λR2(1 + e2

√
λ(x−ξ))

−a+
22

a+
11
R1e

√
λ(x−ξ)(µ+

1 e
µ+

1 (x−ξ) − µ+
3 e

µ3(x−ξ)) −√
λR2(1 + e2

√
λ(x−ξ))


 ,
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where (summation assumed)

R1 = (P−1)13(E3kZk −E4kZk)

R2 = (P−1)23(E3kZk +
a+
11

a+
22

E4kZk).

We would like to iterate (4.6) now, beginning with (Z1, Z2, Z3, Z4)tr = (1, 1,−√
λ,−√

λ)tr, corre-
sponding to the asymptotically decaying degenerate mode. We must observe certain cancellations,
gathered in the following claim (cf. Proposition 2.2 of [H.1]).

Claim 4.1.
(i)E31(x) +E32(x) = 0,

(ii)E41(x) +E42(x) = 0,

(iii)E33(x) +E34(x) +
a+
11

a+
22

E43(x) +
a+
11

a+
22

E44(x) = O(|x|−2).

Remark. It is in the cancellation of Claim 4.1 that we explicitly make use of the structure of our
degenerate wave. We would point out that for degeneracies of order 2 or higher the result of Claim
4.1 does not hold, and a different analysis is required. In particular, in the case of higher order
degeneracies, Taylor expansions at the endpoints must be taken to higher order, and the critical
cancellation that leads to Claim 4.1 (see below) no longer holds.
Proof. We first observe that (i) and (ii) are trivial. For (iii), we begin by showing that

E33(x) +E34(x) = −a+
11 − a+

12

ū2 − u+
2

ū1 − u+
1

+ O(|x|−2).

In order to establish this, we begin with the Taylor expansion:
ū1x = f1(ū1, ū2) − f1(u+

1 , u
+
2 )

= a+
11(ū1 − u+

1 ) + a+
12(ū2 − u+

2 ) +
1
2
∂u1u1f1(u

+
1 , u

+
2 )(ū1 − u+

1 )2

+ ∂u1u2f1(u
+
1 , u

+
2 )(ū1 − u+

1 )(ū2 − u+
2 ) +

1
2
∂u2u2f1(u

+
1 , u

+
2 )(ū2 − u+

2 )2 + O(|x|−3),

with also

a11(x) = a+
11 + ∂u1u1f1(u

+
1 , u

+
2 )(ū1 − u+

1 ) + ∂u1u2f1(u
+
1 , u

+
2 )(ū2 − u+

2 ) + O(|x|−2),

and

a12(x) = a+
12 + ∂u1u2f1(u

+
1 , u

+
2 )(ū1 − u+

1 ) + ∂u2u2f1(u
+
1 , u

+
2 )(ū2 − u+

2 ) + O(|x|−2).

Combining, we have

E33(x) + E34(x) = −
( 2ū1x

ū1 − u+
1

− a11(x) + a+
11

)
+ a12(x)

ū2 − u+
2

ū1 − u+
1

+ a+
11

= −2a+
11 − 2a+

12

ū2 − u+
2

ū1 − u+
1

− ∂u1u1f1(u
+
1 , u

+
2 )(ū1 − u+

1 )

− 2∂u1u2f1(u
+
1 , u

+
2 )(ū2 − u+

2 ) − ∂u2u2f1(u
+
1 , u

+
2 )

(ū2 − u+
2 )2

ū1 − u+
1

+ a+
11 − a+

11 + ∂u1u1f1(u
+
1 , u

+
2 )(ū1 − u+

1 ) + ∂u1u2f1(u
+
1 , u

+
2 )(ū2 − u+

2 )

+ a+
12

ū+
2 − u+

2

ū+
1 − u+

1

+ ∂u1u2f1(u
+
1 , u

+
2 )(ū2 − u+

2 ) + ∂u2u2f1(u
+
1 , u

+
2 )

(ū2 − u+
2 )2

ū+
1 − u+

1

+ a+
11 + O(|x|−2) = −a+

12

ū2 − u+
2

ū1 − u+
1

− a+
11 + O(|x|−2).
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Similarly, we have

E43(x) +E44(x) = −a+
22 − a+

21

ū1 − u+
1

ū2 − u+
2

+ O(|x|−2).

Finally, we compute

E33(x) +E34(x) +
a+
11

a+
22

(E43(x) +E44(x))

= −a+
11 − a+

12

ū2 − u+
2

ū1 − u+
1

− a+
11 −

a+
11a

+
21

a+
22

ū1 − u+
1

ū2 − u+
2

+ O(|x|−2)

= − 1
a+
12

a+
11

2
(ū1 − u+

1 )2 + 2a+
11a

+
12(ū1 − u+

1 )(ū2 − u+
2 ) + a+

12

2
(ū2 − u+

2 )2

(ū1 − u+
1 )(ū2 − u+

2 )
+ O(|x|−2)

= − 1
a12+

(a+
11(ū1 − u+

1 ) + a+
12(ū2 − u+

2 ))2

(ū1 − u+
1 )(ū2 − u+

2 )
+ O(|x|−2).

But according to our center manifold development of Section 2, ū 1x = O(|x|−2) and hence a+
11(ū1−

u+
1 ) + a+

12(ū2 − u+
2 ) = O(|x|−2), establishing Claim 1. �

With algebraic decay of rate |x|−2 established, we may proceed as in [H.1–2] and [ZH, pp.
779–780] to obtain

Z21(x, λ) = 1 +E21(x, λ)

Z22(x, λ) = 1 +E22(x, λ)

Z23(x, λ) = −
√
λ+ E23(x, λ)

Z24(x, λ) = −
√
λ+ E24(x, λ),

where
E21(x, λ), E22(x, λ) = O(

√
λ log λ) ∧O(|x|−1),

and
E23(x, λ), E24(x, λ) = O(

√
λ)O(|x|−1).

Following our substitutions back now, we obtain Lemma 4.1. �

Solutions of the unintegrated eigenvalue equation (4.1),

(ϕk, ϕ
′
k)tr = (φk) = (φk1, φk2, φk3, φk4)tr

can now be obtained through appropriate differentiation. For convenience, we collect this result
as Lemma 4.2. Following [ZH], we denote growth solutions here by ψ.

Lemma 4.2. Under the hypotheses of Lemma 4.1, we have the following estimates on solutions
to the unintegrated eigenvalue equation (4.1)

(i) (x ≤ 0)

φ−j (x, λ) = eµ−
j (λ)x(V −

j (λ) + O(e−α|x|))

φ−j (0, λ) = φ−j (0, 0) + O(|λ|),

where µ−
j (λ) and V −

j (λ) are eigenvalue–eigenvector pairs of the matrix A −(λ)(:= limx→ A (x, λ)).
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(ii) (Non-degenerate solutions) For x ≥ L

ϕ+
1 (x, λ) = e

R
x
L

µ1(s,λ)ds(µ+
1 (λ)r+1 + O(|x|−1))

ϕ+
1 (0, λ) = ϕ+

1 (0, 0) + O(|λ|)
ψ+

1 (x, λ) = e
R x

L
µ3(s,λ)ds(µ+

3 (λ)r+1 + O(|x|−1)).

Further, for 0 ≤ x ≤ L, ϕ+
1 (x, λ) and ψ+

1 (x, λ) are both O(1).
(iii) (x ≥ 0) (Degenerate solutions) For λ 6∈ R− and k = 1, 2

ϕ+
2k(x, λ) = e−

√
λx(ūk(x)− u+

k )
(
−
√
λ+

ūkx

ūk − u+
k

+E2(k+2)(x, λ) +
ūkx

ūk − u+
k

E2k(x, λ)
)

ϕ+′
2 (x, λ) = A(x)ϕ+

2 (x, λ) + λW+
2 (x, λ)

ψ+
2k(x, λ) = e

√
λx(ūk(x)− u+

k )
(√

λ+
ūkx

ūk − u+
k

+ E4(k+2)(x, λ) +
ūkx

ūk − u+
k

E4k(x, λ)
)

where W2(x, λ) = (W21,W22)tr and Ejk are exactly the same terms as in Lemma 4.1.

Proof. For x ≤ 0 the analysis is identical to the proof of Proposition 2.1 of [ZH]. For x ≥ 0 the
estimates follow from Lemma 4.1 by direct calculation. �

5. Analyzing the Evans function

For values of λ bounded away from 0, the Evans function can be analyzed as in [GZ] (see especially
pp. 826–827 on Lax shocks). Here, we shall focus on its behavior near λ = 0. We begin by
developing useful expressions for the ϕ±′

k .
Fast decay ODE solutions (ϕ±

k (x; 0) = O(e−α|x|), ϕ−
2 (x; 0) = cūx). The fast decay solutions in

this analysis are ϕ−
2 and ϕ+

1 . For the first, proceeding as in [GZ], we integrate

ϕ−′′
2 (x) − (A(x)ϕ−

2 )x = λϕ−
2

on (−∞, x] to obtain

ϕ−′
2 (x) −A(x)ϕ−

2 (x) = λ

∫ x

−∞
ϕ−

2 (y)dy =: λW−
2 (x;λ),

where W−
2 (x;λ) is analytic in λ. Similarly for ϕ+

1 we have

ϕ+′
1 (x)− A(x)ϕ+

1 (x) = λW+
1 (x;λ),

where W+
1 (x;λ) = (W+

11,W
+
12)

tr and by Lemma 4.1 satisfies W+
1 (0;λ) = W+

1 (0; 0) + O(λ).
Slow decay ODE solutions (ϕ−

1 (x; 0) = O(1)). The only slow decay solution in this analysis is
ϕ−

1 (x; 0). Integrating again on (−∞, x] and taking into account the loss of decay at λ = 0, we have

ϕ−′
1 (x)−A(x)ϕ−

1 (x) +A−r−1 = λW−
1 (x;λ),

where W−
1 (x;λ) is analytic in λ, and r−1 is the eigenvector of A− associated with the eigenvalue

a−1 .
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Degenerate ODE solutions (ϕ+
2 (x; 0) = ūx(x)). Integrating our degenerate ODE solution on

[x,+∞), we have
ϕ+′

2 (x)− A(x)ϕ+
2 (x) = λW+

2 (x;λ),

where by Lemma 4.1, W+
2 (0;λ) = W+

2 (0; 0) + O(
√
λ log λ).

Now, we compute

D(λ) = det
(
ϕ+

1 ϕ+
2 ϕ−

1 ϕ−
2

ϕ+′
1 ϕ+′

2 ϕ−′
1 ϕ−′

2

) ∣∣∣
y=0

= det
(

ϕ+
1 ϕ+

2 ϕ−
1 ϕ−

2

Aϕ+
1 + λW+

1 Aϕ+
2 + λW+

2 Aϕ−
1 − a−1 r

−
1 + λW−

1 Aϕ−
2 + λW−

2

) ∣∣∣
y=0

= det
[(

I 0
A I

)(
ϕ+

1 ϕ+
2 ϕ−

1 ϕ−
2

λW+
1 λW+

2 −a−1 r−1 + λW−
1 λW−

2

) ]∣∣∣
y=0

= det
(

ϕ+
1 ϕ+

2 ϕ−
1 ϕ−

2

λW+
1 λW+

2 −a−1 r−1 + λW−
1 λW−

2

) ∣∣∣
y=0

.

From this final expression, we see immediately that D(0) = 0. The standard approach toward
gaining higher order information on the Evans function at λ = 0 involves differentiating this final
expression with respect to λ (see, for example, [GZ]). Since in the case of a degenerate wave, this
Evans function is not analytic at λ = 0 (and cannot readily be extended analytically on a Riemann
surface), our approach here will be to use our detailed estimates on ϕ±

k and W±
k to write the Evans

function as an analytic function plus a small error:

D(λ) = det
(

ϕ+
1 (0; 0) ϕ+

2 (0; 0) ϕ−
1 (0; 0) ϕ−

2 (0; 0)
λW+

1 (0; 0) λW+
2 (0; 0) −a−1 r−1 λW−

2 (0; 0)

)

+ O(|λ|3/2| log λ|) =: Da(λ) + O(|λ|3/2| log λ|).

The analytic function Da(λ) can now be analyzed directly as in [GZ].

6. Stability and Instability Criteria

Following [ZH, p. 760] we introduce the following stability condition (D):

(D): D(λ) has precisely 1 zero in {<λ ≥ 0}, necessarily at λ = 0, and D ′
a(0) 6= 0.

While condition (D) is generally quite difficult to study analytically (see, for example, [D]), it
can be checked numerically [B, OZ]. We stress that analyticity of the Evans function for Reλ ≥ 0
is only lost at λ = 0, and consequently standard methods apply away from an arbitrarily small
ball around the origin.

A condition that lends itself more readily to exact study is the stability index, typically defined
as

Γ := sgnD′(0)× sgn lim
R3λ→∞

D(λ).

For λ ∈ R+ , we have D(λ) ∈ R, so that in the event that Γ = −1, D(·) must have a positive
real root, which guarantees instability. In the case that Γ = +1, the question of stability remains
undecided. Proceeding exactly as in [GZ], we find that in the present degenerate-wave setting, Γ
becomes

Γ = sgn
[
det(r−1 , u+ − u−) det(r−1 , lim

x→−∞
ūx(x)
|ūx(x)|)

]
.
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Consider, for example, the degenerate viscous shock wave depicted in Figure 2.1, for the viscous
p-system

u1t − u2x = u1xx

u2t + p(u1)x = u2xx,

with p(u1) = −u1 − u3
1. We have in this case, u−1 = −2, u−2 = 0, with u+

1 = 1, u+
2 = −6, and

consequently s = 2, r−1 = (1, s)tr = (1, 2)tr. Thus

Γ = sgn
[
det

(
1 3
2 −6

)
det

(
1 (+)
2 (−)

) ]

= sgn
[
(−6 − 6)(1(−)− 2(+))

]
= +1,

where (+) and (−) represent quantities for which only signs are known. Proceeding similarly, we
find that any monotonic degenerate viscous shock arising in the p-system has a positive stability
index.
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